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In this paper we give sufficient conditions for a Pontryagin extremal tra-
jectory, consisting of two bang arcs followed by a singular one, to be a strong
local minimizer for a Mayer problem. The problem is defined on a manifold M

and the end-points constraints are of fixed-free type. We use a Hamiltonian
approach and its connection with the second order conditions in the form of
an accessory problem on the tangent space to M at the final point of the
trajectory. Two examples are proposed.

1 Introduction

In this paper we consider a reference trajectory consisting of two bang arcs followed by
a singular (or partially singular) one, for a Mayer problem with fixed final time T and a
control affine dynamics.

We give sufficient optimality conditions for the reference trajectory to be a strong local
minimiser in the case when the end-point constraints are of fixed-free type.

A Bolza problem can be reduced to a Mayer one, hence sufficient optimality conditions
can be also derived for a Bolza problem, see the examples in Section 4.5.

Control affine systems can be modelled in different ways; since we want to consider
both bang-bang arcs and partially singular arcs, we model the system as follows.

Let M be a finite dimensional manifold and let X1, . . . ,Xm be smooth vector fields
on M . Let ∆ := {u = (u1, . . . , um) ∈ R

m : ui ≥ 0, i = 1, . . . ,m,
∑m

i=1 ui = 1} so that at
each point x ∈ M the closed convex hull X of the vector fields X1, . . . ,Xm is given by

X (x) =

{
m∑

i=1

uiXi(x) : u = (u1, . . . , um) ∈ ∆

}
.

Let T > 0 and x0 ∈ M , we consider an optimal control problem of the following kind

minimize c(ξ(T )) subject to (1a)

ξ̇(t) ∈ X (ξ(t)) a.e. t ∈ [0, T ], (1b)

ξ(0) = x0. (1c)
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2 1 INTRODUCTION

Equivalently, by Filippov’s theorem, see e.g. [4], equation (1b) can also be written as

ξ̇(t) =

m∑

i=1

υi(t)Xi(ξ(t)), a.e. t ∈ [0, T ], υ ∈ L∞ ([0, T ],∆) .

Our aim is to give sufficient conditions for an extremal reference trajectory to be indeed
a strong local optimiser of the problem in the following sense:

Definition 1.1. The trajectory ξ̂ : [0, T ] → M is a strong local minimiser of problem (1)
if there exists a neighbourhood U of its graph in R×M such that ξ̂ is a minimiser among
the admissible trajectories whose graph is in U , i.e. among the admissible trajectories
which are in a neighborhood of ξ̂ with respect to the C0 topology.

Here we assume that the control associated to the reference trajectory is the concate-
nation of two bang arcs and of a partially singular one, as explained below.

Remark 1.2. In this paper we consider the case when the final point is not constrained,
in order to avoid some technical difficulties. In a future paper, [10], we shall extend the
result to the case when the final point ξ(T ) is constrained to a smooth submanifold N

of M . The extension can be obtained by adding a penalty term and taking advantage of
some classical results on quadratic forms due to Hestenes, see [7], which permit to reduce
the problem to a problem with free final point.

In [10] we shall also give an explicit formulation of the sufficient conditions for a Bolza
problem.

Assume ξ̂ is the reference trajectory and that there exist times τ̂1, τ̂2, 0 < τ̂1 < τ̂2 < T ,
vector fields h1, h2, h3 ∈ {X1, . . . Xm}, (where h1 and h3 might be the same vector field)
and a measurable function υ̂ ∈ L∞ ([τ̂2, T ], (0, 1)) such that the solution ξ̂ to

ξ̇(t) = h1(ξ(t)) t ∈ [0, τ̂1),

ξ̇(t) = h2(ξ(t)) t ∈ (τ̂1, τ̂2),

ξ̇(t) = υ̂(t)h3(ξ(t)) + (1− υ̂(t)) h2(ξ(t)) a.e. t ∈ (τ̂2, T ],

ξ(0) = x0,

satisfies Pontryagin Maximum Principle (PMP).
Setting f1 := h3 − h2 we can write the dynamic on the singular arc as

ξ̇(t) = h2(ξ(t)) + υ̂(t)f1(ξ(t)), t ∈ (τ̂2, T ). (2)

We shall also define the time-dependent reference vector field f̂t as

f̂t :=





h1 t ∈ [0, τ̂1),

h2 t ∈ (τ̂1, τ̂2),

h2 + υ̂(t)f1 a.e. t ∈ (τ̂2, T ].

(3)
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To get the sufficient conditions we use a Hamiltonian approach and its connection with
the second order conditions, whose leading ideas are the following:

1. To use the symplectic properties of the cotangent bundle to compare the costs of
neighbouring admissible trajectories by lifting them to the cotangent bundle.

2. To define a suitable Hamiltonian flow Ht in the cotangent bundle T ∗M , emanating
from a horizontal Lagrangian submanifold Λ. Since the final point is free, the flow
is considered to have the final time T as a starting time and to go backward in
time, Sec. 4.1.

3. To obtain a suitable second order approximation (2nd variation) in the form of
a coordinate-free linear-quadratic (LQ) problem and to require its coercivity, Sec.
3.2.

4. To show that the derivative of Ht along the reference extremal is, up to an isomor-
phism, the linear Hamiltonian flow associated to the LQ problem, see Sec. 4.2 and
4.3.

5. To deduce that the projection onM ofHt emanating from Λ is locally invertible (see
Sec. 4.4), so that we can go back to the first issue and we can compare the costs
of neighbouring admissible trajectories by lifting them to the cotangent bundle,
Theorem 4.3.

In this paper we only give the main ideas of the constructions and some proofs of the
main results, while all the details will be given in [10].

2 Notation and preliminaries

In this paper we use some basic element of the theory of symplectic manifolds referred to
the cotangent bundle T ∗M. For a general introduction see [3], for specific application to
Control Theory we refer to [1]. Let us recall some basic facts and let us introduce some
specific notations.

Denote by π : T ∗M → M the canonical projection, for ℓ ∈ T ∗M the space T ∗

πℓM is
canonically embedded in TℓT

∗M as the space of tangent vectors to the fibres.
The canonical Liouville one–form s on T ∗M and the associated canonical symplectic

two–form σ = ds allow associating to any, possibly time–dependent, smooth Hamiltonian

Ht : T
∗M → R, a Hamiltonian vector field

−→
Ht, by

σ(v,
−→
Ht(ℓ)) = 〈dHt(ℓ) , v〉, ∀v ∈ TℓT

∗M.

In this paper we consider all the flows – both in M and in T ∗M – as starting at the final

time T , unless otherwise explicitly stated. We denote the flow of
−→
Ht from time T to time

t by
H : (t, ℓ) 7→ H(t, ℓ) = Ht(ℓ).
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We keep these notation throughout the paper, namely the overhead arrow denotes the
vector field associated to a Hamiltonian and the script letter denotes its flow from time
T , unless otherwise stated.

Finally we recall that any vector field f on the manifold M defines, by lifting to the
cotangent bundle, a Hamiltonian

F : ℓ ∈ T ∗M 7→ 〈ℓ , f(πℓ)〉 ∈ R.

We denote by F1, Hi the Hamiltonians associated to f1, hi, i = 1, 2, 3, respectively and
by

Hij := {Hi,Hj} , i, j ∈ 1, 2, 3

Hijk := {Hi, {Hj,Hk}} , i, j, k ∈ 1, 2, 3

the Poisson parenthesis and the iterated Poisson parenthesis between Hamiltonians. We
recall that Hij is the Hamiltonian associated to the Lie bracket hij := [hi, hj ].

In order to write the second order variation of the problem in an useful way we shall
consider flows going backwards in time, i.e. starting at the final time T . The flow from
time T of the reference vector field f̂t is a map defined in a neighbourhood of x̂f := ξ̂(T ).

We denote such flow as Ŝt : M → M , t ∈ [0, T ], i.e.

d

dt
Ŝt(x) = f̂t ◦ Ŝt(x), ŜT (x) = x.

We also denote x̂1 := ξ̂(τ̂1) = Ŝτ̂1(x̂f ), x̂2 := ξ̂(τ̂2) = Ŝτ̂2(x̂f ).

The time-dependent Hamiltonian associated to f̂t is denoted by F̂t and its flow back-
wards in time starting at time T is denoted by F̂t.

Also we use the following notation from differential geometry: Lfα (·) is the Lie deriva-
tive of a function α with respect to the vector field f . Moreover, if G is a C1 map from
a manifold M1 in a manifold M2, we denote its tangent map at a point x ∈ M1 as TxG.
If the point x is clear from the context, we also write TxG = G∗ .

2.1 The necessary conditions

We start by stating the necessary conditions of optimality, i.e. Pontryagin Maximum
Principle (PMP) and the Legendre condition. Since there is no constraint on the final
point, then PMP must hold in its normal form:

Assumption 1 (PMP). There exists a map λ̂ : [0, T ] → T ∗M , which is absolutely con-
tinuous and such that

πλ̂(t) = ξ̂(t) t ∈ [0, T ],

˙̂
λ(t) =

−→
F̂t(λ̂(t)) a.e. t ∈ [0, T ],

λ̂(T ) = − dc(x̂f ),

F̂t(λ̂(t)) = max
{
〈λ̂(t) , v〉 : v ∈ X (ξ̂(t))

}
t ∈ [0, T ].
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We shall use the following notation for the end points and for the switching points of
λ̂(t):

ℓ̂f := λ̂(T ), ℓ̂2 := λ̂(τ̂2) = F̂τ̂2(ℓ̂f ), ℓ̂1 := λ̂(τ̂1) = F̂τ̂1(ℓ̂f ), ℓ̂0 := λ̂(0) = F̂0(ℓ̂f ).

Thanks to the structure of the reference trajectory, PMP gives the following necessary
conditions:

1. On the first bang arc, t ∈ [0, τ̂1], we get H1(λ̂(t)) ≥ 〈λ̂(t) , X〉, ∀X ∈ X (ξ̂(t)).

2. On the second bang arc, t ∈ [τ̂1, τ̂2], we get H2(λ̂(t)) ≥ 〈λ̂(t) , X〉, ∀X ∈ X (ξ̂(t)),
in particular H1(ℓ̂2) = H2(ℓ̂2).

3. On the singular arc, t ∈ [τ̂2, T ], we get

(H2 + aF1) (λ̂(t)) ≥ 〈λ̂(t) , X〉, ∀X ∈ X (ξ̂(t)), ∀a ∈ [0, 1],

which implies F1(λ̂(t)) ≡ 0 and, by differentiation,

d

dt
F1(λ̂(t)) = H23(λ̂(t)) ≡ {H2, F1} ◦ λ̂(t) = 0

and

−H232(λ̂(t)) + υ̂(t)L(λ̂(t)) = 0 (4)

where

L(ℓ) := (H323 +H232)(ℓ) = 〈ℓ , [f1, [h2, f1]] (πℓ)〉, ℓ ∈ T ∗M.

4. At the first switching time τ̂1 we get H12(ℓ̂1) =
d

dt
(H2 −H1) ◦ λ̂(t)

∣∣∣∣
t=τ̂1

≥ 0, see

for example [2].

5. At the second switching time τ̂2 we get H232(ℓ̂2) = −
d2

dt2
F1 ◦ λ̂(t)

∣∣∣∣
t=τ̂−

2

≥ 0, see

[11].

Moreover, other necessary conditions are known, namely the Goh condition (which in
this case is automatically satisfied) and the generalised Legendre condition (GLC), see
e.g. [1],

R(t) := L(λ̂(t)) ≥ 0 t ∈ [τ̂2, T ].
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3 Assumptions and main result

3.1 Regularity conditions

We now state regularity conditions by requiring strict inequalities to hold whenever
necessary conditions yield mild inequalities.

Assumption 2 (Regularity along the bang arcs).

H1(λ̂(t)) > 〈λ̂(t) , X〉, ∀X ∈ X (ξ̂(t)) \ {h1(ξ̂(t))}, ∀t ∈ [0, τ̂1),

H2(λ̂(t)) > 〈λ̂(t) , X〉, ∀X ∈ X (ξ̂(t)) \ {h2(ξ̂(t))}, ∀t ∈ (τ̂1, τ̂2),

i.e. we require that the reference control is the only maximising control along the given
arc.

Assumption 3 (Regularity along the singular arc). For any a, s ∈ [0, 1] and any t ∈
[τ̂2, T ]

H2(λ̂(t)) + aF1(λ̂(t)) > 〈λ̂(t) , X(ξ̂(t))〉, ∀X ∈ X , X 6= h2 + sf1,

i.e. we require that the set of maximisers along the singular arc is the edge defined by
h2 and h3 .

Assumption 4 (Regularity at the switching points).

H12(ℓ̂1) > 0, H232(ℓ̂2) > 0. (5)

Assumption 5 (Strong generalised Legendre condition).

R(t) = L(λ̂(t)) = {F1, {H2, F1}} (λ̂(t)) > 0 t ∈ [τ̂2, T ] (SGLC)

Thanks to (SGLC) we can recover the value of the control along the singular arc:

υ̂(t) =
H232

L
(λ̂(t)) ∀t ∈ (τ̂2, T ],

so that, by recurrence, one can easily prove that υ̂ ∈ C∞([τ̂2, T ], (0, 1)).
Notice that under (SGLC), the second inequality in (5) is equivalent to the disconti-

nuity of the reference vector field at t = τ̂2.
For ℓ in a neighborhood of the range of the singular arc λ̂([τ̂2, T ]) in T ∗M we can define

the Hamiltonian feedback control

uS(ℓ) :=
H232

L
(ℓ). (6)

Notice that λ̂ also satisfies the autonomous differential equation

λ̇(t) =
(−→
H2 +

−−−→
uSF1

)
(λ(t)). (7)

The condition υ̂(t) ∈ (0, 1) reads

H232(λ̂(t)) > 0, H323(λ̂(t)) > 0 ∀t ∈ (τ̂2, T ]. (8)
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3.2 The extended second variation

The sufficient conditions will be derived studying a sub problem of the given one. Namely
we consider problem (1), the reference vector field f̂t and allow only for perturbations of
υ̂ on the singular interval (τ̂2, T ) and for perturbations of the switching time τ̂1. Following
the ideas of [11] the subproblem can be written as

Minimize c(ξ(T )) subject to (9a)

ξ̇(t) =





υ0(t)h1(ξ(t)) t ∈ (0, τ̂1),

υ0(t)h2(ξ(t)) t ∈ (τ̂1, τ̂2),

h2(ξ(t)) + υ(t)f1(ξ(t)) t ∈ (τ̂2, T ),

(9b)

υ0(t) > 0,

∫ τ̂2

0
υ0(t) dt = τ̂2, υ(t) ∈ (0, 1), (9c)

ξ(0) = x0. (9d)

Set

gt := Ŝ−1
t∗ f1 ◦ Ŝt , t ∈ [τ̂2, T ], ki := Ŝ−1

τ̂1∗
hi ◦ Ŝτ̂1 , i = 1, 2, k := k1 − k2, (10)

i.e. gt is the push-forward of f1 from time t ∈ [τ̂2, T ] to time T while the ki-s are the
push-forward of the hi-s from the first switching time τ̂1 to T . With this notation the
second variation of (9) is given by

J ′′[(δx, δυ0(·), δυ(·))]
2 =

∫ T

τ̂2

δυ(t)Lδη(t)Lgtc (x̂f ) dt+
ε20
2

(
L2
kc (x̂f ) +H12(ℓ̂1)

)
(11)

subject to

δ̇η(t) = δυ(t)gt(x̂f ), δη(T ) = δx ∈ Tx̂f
M, δη(τ̂2) = ε0k(x̂f )

where

ε0 =

∫ τ̂1

0
δυ0(t) dt = −

∫ τ̂2

τ̂1

δυ0(t) dt.

The precise construction will appear in [10]. We point out that the perturbation at the
switching time τ̂1 gives rise to a cost in the accessory problem.

We then extend the second variation to a new quadratic form called extended second
variation. Following the same lines as in the appendix of [11] and setting

w(t) :=

∫ τ̂2

t

δu(s) ds, ε1 := w(T ),
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the extended second variation of (9) is given by the following singular LQ problem on
the interval [τ̂2, T ].

J ′′
ext[(δx, ε0, ε1, w)]

2 = −ε1LδxLf1c (x̂f )−
ε21
2
L2
f1
c (x̂f )+

+
ε20
2

(
L2
kc (x̂f ) +H12(ℓ̂1)

)
+

1

2

∫ T

τ̂2

(
2w(t)Lζ(t)Lġtc (x̂f ) + w(t)2R(t)

)
dt

(12)

subject to

ζ̇(t) = w(t)ġt(x̂f ), ζ(τ̂2) = ε0 k(x̂f ), ζ(T ) = δx+ ε1f1(x̂f ). (13)

This means that we consider the quadratic form J ′′
ext defined by (12) on the linear space

called space of admissible variations given by

Wext := {(δx, ε0, ε1, w) ∈ Tx̂f
M ×R× R× L2([τ̂2, T ]) :

system (13) admits a solution}.

Notice that
ġt = Ŝ−1

t∗ h23 ◦ Ŝt, t ∈ [τ̂2, T ]. (14)

Choosing (δx, ε0, ε1, w(·)) = (−f1(x̂f ), 0, 1, 0) in (12) we get L2
f1
c (x̂f ) > 0 as a neces-

sary condition for the coercivity of the extended second variation (12) on Wext.
Let O(x̂f ) be a neighborhood of x̂f in M and consider the set

M̃ := {x ∈ O(x̂f ) : Lf1c (x) = 0} .

If L2
f1
c (x̂f ) > 0, then M̃ is a hypersurface such that

Tx̂f
M̃ =

{
δz ∈ Tx̂f

M : LδzLf1c (x̂f ) = 0
}
.

For x = exp(rf1)(z), z ∈ M̃ set
c̃(x) := c(z),

i.e. we extend c|
M̃

as a constant function along the integral lines of f1. If O(x̂f ) is
sufficiently small, then the function c̃ : O(x̂f ) → R is smooth and it enjoys the following
properties

c̃(x̂f ) = c(x̂f ), dc̃(x̂f ) = dc(x̂f ),

c̃(x) ≤ c(x), Lf1 c̃ (x) = 0 ∀x ∈ O(x̂f ).
(15)

Following [11] it can be shown that the coercivity of (12) on Wext is equivalent to
L2
f1
c (x̂f ) > 0 plus the coercivity of

J̃ext[(δx, ε0, w)]
2 =

ε20
2

(
L2
kc̃ (x̂f ) +H12(ℓ̂1)

)
+

+
1

2

∫ T

τ̂2

(
2w(t)Lζ(t)Lġt c̃ (x̂f ) +R(t)w(t)2

)
dt

(16)
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subject to

ζ̇(t) = w(t)ġt(x̂f ), ζ(τ̂2) = ε0 k(x̂f ), ζ(T ) = δx ∈ Tx̂f
M. (17)

In the case when Lf1c (·) ≡ 0 in O(x̂f ), we set c̃ := c. Thus, also in this case, we end up
with (16) subject to (17).

Assumption 6. We assume the following conditions hold

1. The quadratic form J̃ext, (16), is coercive on

W̃ext := {(δx, ε0, w) ∈ Tx̂f
M × R× L2([τ̂2, T ],R) :

system (17) admits a solution}.

2. Either L2
f1
c (x̂f ) > 0 or Lf1c (·) ≡ 0 in a neighborhood O(x̂f ) of x̂f in M .

3.3 The main result

We can now state the main result of this paper

Theorem 3.1. Let ξ̂ be the admissible trajectory defined in (2). Assume that ξ̂ satisfies
Assumptions 1–6. Then ξ̂ is a strict strong local optimal trajectory of (1).

More precisely we prove that Assumptions 1-5 plus 1. of Assumption 6 imply that ξ̂ is
a strict strong locally optimal trajectory for the cost c̃(ξ(T )). This concludes the proof
in the case L2

f1
c (·) ≡ 0.

When L2
f1
c (x̂f ) > 0, c = c̃ on M̃ , hence we have to compute the difference c− c̃ along

the integral lines of f1 starting at z ∈ M̃ , so that (15) easily gives the claim.

4 Hamiltonian approach

The first step in applying the Hamiltonian approach described in the Introduction, is the
construction of an overmaximised Hamiltonian flow. Indeed the presence of a singular arc
prevents us from using the maximized Hamiltonian (see [11]) which can be used in the
classical case, i.e. when it is C2, see [1]. The overmaximized Hamiltonian was introduced
in [13] and then used in [11, 12] . In [15] the authors give a sistematic extension of the
classical techniques to the case of an overmaximized Hamiltonian whose flow is only
Lipshitz continuous.



10 4 HAMILTONIAN APPROACH

4.1 The overmaximised flow

The (SGLC) condition (Assumption 5) implies that there exists a neighborhood Os of
the range of the singular arc λ̂([τ̂2, T ]) in T ∗M such that

Σ := {ℓ ∈ Os : F1(ℓ) = 0} = {ℓ ∈ Os : H2(ℓ) = H3(ℓ)}

and

S := {ℓ ∈ Σ: H23(ℓ) = 0} = {ℓ ∈ Os : H2(ℓ) = H3(ℓ), H23(ℓ) = 0}

are smooth simply connected manifolds of codimension 1 and 2, respectively. More pre-

cisely
−−→
H23 is transverse to Σ in Os, while

−→
F1 is tangent to Σ and transverse to S, see

[11].

Here we want to describe how the regularity conditions allow to define in a tubular
neighborhoodO of the graph of λ̂ in [0, T ]×T ∗M , a time-dependent Hamiltonian function
H : O → R whose flow satisfies the assumptions stated in [15]. The coercivity of the
second variation will then guarantee the invertibility of the projected overmaximised
flow of such Hamiltonian.

In [11] the authors prove that possibly restricting Os, the following implicit function
problem has a solution θ : Os → R:

θ(ℓ) :

{
H23 ◦ exp θ

−→
F1(ℓ) = 0,

θ(ℓ) = 0 if H23(ℓ) = 0,

and

〈dθ(ℓS) , δℓ〉 =
−σ

(
δℓ,

−−→
H23(ℓS)

)

L(ℓS)
∀ℓS : H23(ℓS) = 0.

Let

H̃2(ℓ) := H2 ◦ exp θ(ℓ)
−→
F1(ℓ).

From the results in [11] we can derive the following Lemma:

Lemma 4.1. Possibly restricting Os the following properties hold

1. H̃2(ℓ) ≥ H2(ℓ) for any ℓ ∈ Σ. Equality holds if and only if ℓ ∈ S.

2. For any ℓS ∈ S

D
(
H̃2 −H2

)
(ℓS) = 0, D2

(
H̃2 −H2

)
(ℓS) =

(
σ

(
δℓ,

−−→
H23(ℓS)

))2

L(ℓS)
.

3.
−→
H̃2 and hence

−→
H̃2 + υ̂(t)

−→
F1 are tangent to Σ for any t ∈ [τ̂2, T ].
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Set

Ht(ℓ) = H̃2 + υ̂(t)F1 ∀(t, ℓ) ∈ [τ̂2, T ]×Os (18)

4. λ̂
∣∣∣
[τ̂2,T ]

is the solution of the Cauchy problem

λ̇(t) =
−→
Ht(λ(t)), λ(T ) = ℓ̂f .

Moreover the following invariant properties hold:

5.
−→
H2 is invariant with respect to the flow of

−→
Ht =

−→
H̃ 2+ υ̂(t)

−→
F1 along the singular arc

of the reference trajectory:

−→
H2(λ̂(t)) = Ht∗

−→
H2(ℓ̂f ) t ∈ [τ̂2, T ];

6.
−→
F1 is invariant on Σ with respect to the flow of

−→
Ht:

−→
F1 ◦ Ht(ℓ) = Ht∗

−→
F1(ℓ), ∀ℓ ∈ Σ, t ∈ [τ̂2, T ].

This Lemma is the main tool for handling the singular arc. The bang arcs present
a different kind of problems. Namely we need to define the switching times near the
reference switching points ℓ̂1 and ℓ̂2 of the Pontryagin extremal λ̂. In [11] it is shown

that the flow of
−→
H2 is the maximised one in a left hand side neighborhood of τ̂2 if and

only if H23(ℓ) ≥ 0. In order to overcome this problem we introduce a correction of the
backwards flow from time τ̂2 by keeping the flow on Σ when H23(ℓ) < 0.

By the implicit function theorem applied to the problem:

{
H23 ◦ exp(t2 − τ̂2)

−→
H̃ 2 (ℓ) = 0,

t2(ℓ) = τ̂2 if H23(ℓ) = 0.

it is possible to define a function t2 : O(ℓ̂2) → R such that if ℓ ∈ Σ, then t2(ℓ) = τ̂2 if and
only if ℓ ∈ S; moreover

〈dt2(ℓ̂2) , δℓ〉 =
−σ

(
δℓ,

−−→
H23(ℓ̂2)

)

H223(ℓ̂2)
.

We set

τ2(ℓ) := min {t2(ℓ), τ̂2} =

{
t2(ℓ) if H23(ℓ) < 0,

τ̂2 if H23(ℓ) ≥ 0.



12 4 HAMILTONIAN APPROACH

H1 H2

H̃2

H̃2 + ν̂(t)F1

t
=
τ 1
(ℓ̃
)

t = τ̂1 t = τ̂2 t = T

t
=
τ 2
(ℓ̃
)

T ∗M

t

Figure 1: The over–maximised Hamiltonian

The next step will be the definition of the switching time τ1 : O(ℓ̂2) → R. Actually, the
implicit function theorem applies also to

{
(H2 −H1) ◦ exp (τ1 − τ2(ℓ))

−→
H2 ◦ exp (τ2(ℓ)− τ̂2)

−→
H̃2(ℓ) = 0,

τ1(ℓ̂2) = τ̂1,

see [2] and

〈dτ1(ℓ̂2) , δℓ〉 =
−σ

(
exp (τ̂1 − τ̂2)

−→
H2 ∗δℓ,

(−→
H2 −

−→
H1

)
(ℓ̂1)

)

H12(ℓ̂1)
. (19)

We can now define the flow (t, ℓ) 7→ Ht(ℓ) backwards in time emanating from a neigh-
borhood O(ℓ̂f ) of ℓ̂f in T ∗M at time T . Namely, for any t ∈ [τ̂2, T ], Ht(ℓ) is the flow

associated to the time-dependent Hamiltonian defined in (18). Let ℓ̃ := Hτ̂2(ℓ). For t < τ̂2,
Ht(ℓ) is defined as

Ht(ℓ) :=





exp(t− τ̂2)
−→
H̃2(ℓ̃) t ∈ [τ2(ℓ̃), τ̂2],

exp(t− τ2(ℓ̃))
−→
H2 ◦ Hτ2(ℓ̃)

(ℓ) t ∈ [τ1(ℓ̃), τ2(ℓ̃)),

exp(t− τ1(ℓ̃))
−→
H1 ◦ Hτ1(ℓ̃)

(ℓ) t ∈ [0, τ1(ℓ̃)),

(20)

see Figure 4.1.

Remark 4.2. Notice that H is C∞ on [τ̂+2 , T ]×O(ℓ̂f ) and it is Lipschitz continuous on

[0, τ̂−2 ]×O(ℓ̂f ).
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We now state and prove the main result obtained by the Hamiltonian approach, see
[15]. After, we shall exploit the coercivity of J̃ in order to obtain the required invertibility
property.

Theorem 4.3. Let Λ := {d(−c̃)(x) : x ∈ O(x̂f )}. Assume the projected overmaximised
flow emanating from Λ is locally Lipschitz invertible onto a neighborhood U of the graph
of ξ̂ in [0, T ]×M :

id× πH : (t, ℓ) ∈ [0, T ]× Λ 7→ (t, πHt(ℓ)) ∈ U . (21)

Then ξ̂ is a strict strong locally optimal trajectory for the cost c̃(ξ(T )) subject to (1b)-(1c).

Proof. Clearly (id × πH)−1(t, ξ̂(t)) = (t, ℓ̂f ) for any t ∈ [0, T ]. Let ξ : [0, T ] → M be an
admissible trajectory for (1) whose graph is in U and let

(t, µ(t)) := (id× πH)−1(t, ξ(t)), λ(t) := Ht(µ(t)), t ∈ [0, T ].

Let ϕ : [0, 1] → Λ be a smooth curve such that ϕ(0) = µ(T ), ϕ(1) = ℓ̂f . In [0, T ]×Λ we can
consider the closed path obtained by the concatenation of the curves t ∈ [0, T ] 7→ (t, µ(t)),
s ∈ [0, 1] 7→ (T, ϕ(s)) and of the curve t ∈ [0, T ] 7→ (t, ℓ̂f ) ran backwards in time.

Integrating the one-form ω := H∗ (p dq −Ht dt) (which is exact on [0, T ]×Λ, see [15],
we obtain

0 =

∮
ω =

∫

id×µ

〈λ(t) , ξ̇(t)〉 −Ht(λ(t)) dt+

∫

ϕ

H∗p dq

−

∫

id×ℓ̂f

〈λ̂(t) ,
˙̂
ξ(t)〉 −Ht(λ̂(t)) dt.

(22)

By construction of the overmaximised Hamiltonian Ht the integrand is non positive along
id× µ and is identically zero along id× ℓ̂f . Thus

0 ≤

∫

ϕ

H∗p dq =

∫ 1

0
〈ϕ(s) ,

d

ds
(πϕ)(s)〉ds

=

∫ 1

0
〈d(−c̃)(πϕ(s)) ,

d

ds
(πϕ)(s)〉ds = c̃(ξ(T ))− c̃(x̂f ). (23)

Thus c̃(ξ(T )) ≥ c̃(x̂f ), i.e. the reference trajectory ξ̂ is a strong local minimiser for the
cost c̃. Let us show that in fact it is a strict one.

If c̃(ξ(T )) = c̃(x̂f ), then (22)-(23) imply that

〈λ(t) , ξ̇(t)〉 −Ht(λ(t)) = 0 a.e. t ∈ [0, T ]. (24)

Since ξ(0) = x0 = ξ̂(0), we also have λ(0) = ℓ̂0 and from the regularity condition
along the bang arcs, Assumption 2, we easily get λ(t) = λ̂(t) for any t ∈ [0, τ̂2], so that
ξ(t) = πλ(t) = πλ̂(t) = ξ̂(t) for any t ∈ [0, τ̂2]. In particular λ(τ̂2) = ℓ̂2.
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Moreover, for t ∈ [τ̂2, T ], equation (24) yields H̃2(λ(t)) = H2(λ(t)), i.e. λ(t) ∈ S. Let
Σ
ξ̂(t)

be the intersection of Σ with the fiber over ξ̂(t) and consider the function

∆: ℓ ∈ Σ
ξ̂(t)

7→ 〈ℓ , ξ̇(t)〉 −Ht(ℓ) ∈ R.

By PMP the function ∆ is non positive and by (24) it is null in λ(t). Differentiating ∆
with respect to the vertical fiber we thus obtain

〈δp , ξ̇(t)− π∗
−→
Ht(λ(t))〉 = 0, ∀δp ∈ T ∗

ξ(t)M , such that 〈δp , f1(ξ(t))〉 = 0. (25)

Hence there exists b(t) ∈ R such that

ξ̇(t) = π∗
−→
Ht(λ(t)) + b(t)f1(ξ(t)) ∀t ∈ [τ̂2, T ].

Hence, by Lemma 4.1, point 6,

µ̇(t) = (πHt)
−1
∗

(
ξ̇(t)− π∗

−→
Ht(λ(t))

)
= b(t) (πHt)

−1
∗

f1(ξ(t)) = b(t)
−→
F1(µ(t)).

Thus
λ̇(t) =

−→
Ht(λ(t)) +Ht∗µ̇(t) =

−→
H2(λ(t)) + (υ̂(t) + b(t))

−→
F1(λ(t)).

Finally, since λ(t) ∈ S, we get

0 = σ

(
λ̇(t),

−−→
H23(λ(t))

)
= −H232(λ(t)) + (υ̂(t) + b(t))L(λ(t)). (26)

Comparing (26) with (6) we obtain

υ̂(t) + b(t) = uS(λ(t)),

so that λ(t) and λ̂(t) solve the same Cauchy problem on the interval [τ̂2, T ]:

λ̇ =
−→
H2(λ) + uS(λ)

−→
F1(λ), λ(τ̂2) = ℓ̂2.

Hence λ ≡ λ̂ and ξ ≡ ξ̂. This proves that ξ̂ is a strict strong locally optimal trajectory
for the cost c̃(ξ(T )).

4.2 Consequences of the coercivity of J̃

In this section we exploit the coercivity of the second variation, Assumption 6 a). Let
Λ := {d(−c̃)(x) : x ∈ O(x̂f )}.

Assume k(x̂f ) 6= 0, i.e. h1(x̂1) 6= h2(x̂1). In order to rewrite the extended second
variation (16) as a standard LQ form, choose ω ∈ T ∗

x̂f
M such that 〈ω , k(x̂f )〉 = 1 and

set

γ′′τ̂2 := H12(ℓ̂1)ω ⊗ ω −
1

2

(
ω ⊗ L(·)Lk(−c̃) (x̂f ) + L(·)Lk(−c̃) (x̂f )⊗ ω

)
.
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We obtain

J̃ [(δx,w)]2 =
1

2
γ′′τ̂2 [ζ(τ̂2)]

2 +
1

2

∫ T

τ̂2

(
w(t)2R(t) + 2w(t)Lζ(t)Lġt(−c̃) (x̂f )

)
dt (27)

subject to

ζ̇(t) = w(t)ġt(x̂f ), ζ(τ̂2) = δy ∈ R k(x̂f ), ζ(T ) = δx ∈ Tx̂f
M. (28)

If k(x̂f ) = 0 then ζ(τ̂2) = 0, so that in (16) ε0 is a decoupled variable and Jext is equivalent
to the problem described by (27)-(28) whatever the quadratic form γ′′τ̂2 is.

Consider the Lagrangian subspace of trasversality conditions

L′′
T =

{
(0, δx) : δx ∈ Tx̂f

M
}
.

Let
W :=

{
(δx,w) ∈ Tx̂f

M × L2([τ̂2, T ]) : system (28) admits a solution
}

and consider the subspace of W

V := {δe = (δx,w) ∈ W : ζ(τ̂2) = 0} .

Notice that V = W if and only if k(x̂f ) = 0. It can be easily shown, see [7], that

Proposition 4.4. J̃ is coercive if and only if J̃ is coercive on V and J̃ [δe]2 > 0 for any
δe ∈ W, δe 6= 0, which is J̃-orthogonal to V.

The Hamiltonian relative to (27)–(28) is given by the quadratic form

H ′′
t (δp, δx) = −

1

2R(t)
(〈δp , ġt(x̂f )〉+ LδxLġt(−c̃) (x̂f ))

2 (29)

while the associated Hamiltonian linear system with initial conditions in L′′
T is given by





µ̇(t) =
1

R(t)

(
〈µ(t) , ġt(x̂f )〉+Lζ(t)Lġt(−c̃) (x̂f )

)
L(·)Lġt(−c̃) (x̂f ) , µ(T ) = 0

ζ̇(t) =
−1

R(t)

(
〈µ(t) , ġt(x̂f )〉+Lζ(t)Lġt(−c̃) (x̂f )

)
ġt(x̂f ), ζ(T ) = δx.

(30)

J̃ is coercive on V if and only if for any solution of the Hamiltonian system (30) where
δx 6= 0, we have ζ(t) 6= 0 for any t ∈ [τ̂2, T ], see for example [14]. This concludes the case
k(x̂f ) = 0.

Assume k(x̂f ) 6= 0 and consider the variations δe ∈ W which are J̃-orthogonal to V.

In terms of system (30) the bilinear form associated to J̃ (27) is given by

J̃ [δe, δe] = 〈µ(τ̂2) , ζ(τ̂2)〉+ 〈µ(τ̂2) , ζ(τ̂2)〉+ γ̃′′τ̂2 [ζ(τ̂2), ζ(τ̂2)], (31)
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where δe = (δx,w) and δe = (δx,w) are in W and (µ(τ̂2), ζ(τ̂2)) and
(
µ(τ̂2), ζ(τ̂2)

)
are

the solutions of the Hamiltonian system (30) with initial conditions (0, δx) and (0, δx),

respectively. Thus δe ∈ W ∩ V J̃⊥

if and only if there exists δp ∈ T ∗

x̂f
M such that

J̃ [δe, δe] = 〈δp , ζ(τ̂2)〉 ∀δe ∈ W

i.e. if and only if {
〈µ(τ̂2) , ζ(τ̂2)〉 = 0 ∀δe,

δp = µ(τ̂2) + γ̃′′τ̂2 [ζ(τ̂2), · ].

Hence

0 < J̃ [δe]2 = 〈µ(τ̂2) , ζ(τ̂2)〉+ γ̃′′τ̂2 [ζ(τ̂2)]
2 ∀δe ∈ W ∩ V J̃⊥

. (32)

Since ζ(τ̂2) ∈ R k(x̂f ), from equation (32) we get

0 < γ̃′′τ̂2 [k(x̂f )]
2 + 〈µ(τ̂2) , k(x̂f )〉 = H12(ℓ̂1)− L2

k(−c̃) (x̂f ) + 〈µ(τ̂2) , k(x̂f )〉. (33)

4.3 The antisymplectic isomorphism

Define the linear mapping ι by

ι : (δp, δx) ∈ T ∗

x̂f
M ⊗ Tx̂f

M 7→ δℓ := −δp + d(−c̃)∗δx ∈ T
ℓ̂f
T ∗M

so that

ι−1 : δℓ ∈ T
ℓ̂f
T ∗M 7→ (d(−c̃)∗π∗δℓ− δℓ, π∗δℓ) ∈ T ∗

x̂f
M ⊗ Tx̂f

M.

Moreover ι is an antisymplectic ismorphism, i.e.

σ

(
ι(δp, δx), ι(δp, δx)

)
= σ

(
(δp, δx), (δp, δx)

)
, ∀(δp, δx), (δp, δx) ∈ T ∗

x̂f
M ⊗ Tx̂f

M.

With this notation we get

ιL′′
T =

{
d(−c̃)∗δx : δx ∈ Tx̂f

M
}
= T

ℓ̂f
Λ.

Following the lines of Lemma 9 in [11] one can prove the following Lemma:

Lemma 4.5. Let H′′
t and Ht be the Hamiltonian flows associated to the quadratic Hamil-

tonian H ′′
t defined in (29) and to the overmaximised Hamiltonian Ht defined in (18),

respectively. Then

ιH′′
t ι

−1 = F̂−1
t∗ Ht∗ ∀t ∈ [τ̂2, T ]. (34)
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4.4 Proof of the main result

Applying Theorem 4.3, the proof of our main result, Theorem 3.1, is completed once we
show that πHt is locally Lipschitz one-to-one for each t ∈ [0, T ]. In fact, as [0, T ] is a
compact interval, the map id × πHt defined in (21) is locally Lipschitz invertible if and
only if for all t ∈ [0, T ] the map

πHt : Λ 7→ πHt(ℓ) ∈ O(ξ̂(t))

is locally Lipschitz invertible. We in fact show that π∗Ht∗ : Tℓ̂f
Λ → T

ξ̂(t)
M is one-to-one

for t 6= τ̂1 and by means of Clarke inverse function theorem, see [5, 6], for t = τ̂1.

Since the Hamiltonian F̂t is the lift of a vector field, from the coercivity of J̃ on V and
(34), the claim holds for any t ∈ [τ̂2, T ]. For t ∈ (τ̂1, τ̂2) from the definition of the flow,
equation (20), we get

(πHt)∗ = exp(t− τ̂2)h2∗π∗Hτ̂2∗;

hence we now have to prove the invertibility of (πHτ̂1)∗.

Let δℓ ∈ T
ℓ̂f
Λ and set δ̃ℓ := (πHτ̂2)∗ δℓ. Notice that since (πHτ̂2)∗ is one-to-one, then

π∗δ̃ℓ = 0 if and only if δ̃ℓ = 0.

Thus the linearization of πHτ̂1(ℓ) at ℓ̂f is given by

(πHτ̂1)∗δℓ =

{
exp(τ̂1 − τ̂2)h2 ∗π∗δ̃ℓ 〈dτ1(ℓ̂2) , δ̃ℓ〉 < 0,

〈dτ1(ℓ̂2) , δ̃ℓ〉(h2 − h1)(x̂1) + exp(τ̂1 − τ̂2)h2 ∗π∗δ̃ℓ 〈dτ1(ℓ̂2) , δ̃ℓ〉 > 0.

=

{
exp(τ̂1 − τ̂2)h2 ∗π∗δ̃ℓ 〈dτ1(ℓ̂2) , δ̃ℓ〉 < 0,

exp(τ̂1 − τ̂2)h2 ∗

(
π∗δ̃ℓ− 〈dτ1(ℓ̂2) , δ̃ℓ〉k̃(x̂2)

)
〈dτ1(ℓ̂2) , δ̃ℓ〉 > 0.

where k̃ := Ŝτ̂2∗k ◦ Ŝ−1
τ̂2

= exp((τ̂2 − τ̂1)h2)∗(h1 − h2) ◦ exp(τ̂1 − τ̂2)h2. It thus suffices to
prove that for any a ∈ [0, 1] and δℓ ∈ T

ℓ̂f
Λ, δℓ 6= 0

(1− a)π∗(δ̃ℓ) + a
(
π∗(δ̃ℓ)− 〈dτ1(ℓ̂2) , δ̃ℓ〉k̃(x̂2)

)
6= 0.

If 〈dτ1(ℓ̂2) , δ̃ℓ〉k̃(x̂2) = 0 there is nothing to prove. Otherwise assume by contradiction
there exist a ∈ [0, 1], δℓ ∈ T

ℓ̂f
Λ such that

π∗δ̃ℓ− a 〈dτ1(ℓ̂2) , δ̃ℓ〉k̃(x̂2) = 0. (35)

Since (πHτ̂2)∗ is bijective, there exists a function α2 : O(x̂2) → R such that

dα2(x̂2) = ℓ̂2, and Hτ̂2∗

(
T
ℓ̂f
Λ
)
= dα2∗ (πHτ̂2)∗

(
T
ℓ̂f
Λ
)
. (36)
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Thus, from (35) we get

0 = dα2 ∗

(
π∗δ̃ℓ− a 〈dτ1(ℓ̂2) , δℓ〉k̃(x̂2)

)
= δ̃ℓ− a 〈dτ1(ℓ̂2) , δ̃ℓ〉dα2 ∗k̃(x̂2). (37)

Computing dτ1(ℓ̂2) on each side of (37) we finally get

0 = 〈dτ1(ℓ̂2) , δ̃ℓ〉 − a 〈dτ1(ℓ̂2) , δ̃ℓ〉〈dτ1(ℓ̂2) , dα2 ∗k̃(x̂2)〉 =

= 〈dτ1(ℓ̂2) , δ̃ℓ〉
(
1− a 〈dτ1(ℓ̂2) , dα2 ∗k̃(x̂2)〉

)

i.e. 1− a 〈dτ1(ℓ̂2) , dα2 ∗k̃(x̂2)〉 = 0 or, equivalently by (19),

H12(ℓ̂1)− aσ

(
dα2 ∗k̃(x̂2),

−→
K̃(ℓ̂2)

)
= 0

where
−→
K̃ = exp (τ̂2 − τ̂1)

−→
H2∗

(−→
H2 −

−→
H1

)
, so that

H12(ℓ̂1)− aL2
k̃
α2 (x̂2) = 0. (38)

We now use (33), i.e. the coercivity of J̃ , to get a contradiction. Let (0, δx) ∈ L′′
T be such

that H′′

τ̂2
(0, δx) = (µ(τ̂2), k(x̂f )). Then

〈µ(τ̂2) , k(x̂f )〉 = σ

(
H′′

τ̂2
(0, δx), (0, k(x̂f ))

)
= σ

(
H′′

τ̂2
ιι−1(0, δx), ιι−1(0, k(x̂f ))

)
=

= σ

(
H′′

τ̂2
ιd(−c̃)∗δx, ιd(−c̃)∗k(x̂f )

)
= σ

(
ιd(−c̃)∗k(x̂f ), ι

−1H′′

τ̂2
ιd(−c̃)∗δx

)
=

= σ

(
d(−c̃)∗k(x̂f ), F̂

−1
τ̂2 ∗

Hτ̂2 ∗ d(−c̃)∗δx
)
= σ

(
d
(
−c̃ ◦ Ŝ−1

τ̂2

)
∗

k̃(x̂2),dα2 ∗k̃(x̂2)
)
.

The last equality holds because F̂t is the lift of a vector field and thanks to (36). Moreover

L2
k(−c̃) (x̂f ) = L2

k̃
(−c̃ ◦ Ŝ−1

τ̂2
) (x̂2) .

Substituting in (33) we finally get

0 <H12(ℓ̂1)− L2
k̃
(−c̃ ◦ Ŝ−1

τ̂2
) (x̂2) + σ

(
d
(
−c̃ ◦ Ŝ−1

τ̂2

)
∗

k̃(x̂2),dα2 ∗k̃(x̂2)
)
=

= H12(ℓ̂1)− L2
k̃
α2 (x̂2) ,

a contradiction to (38).
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4.5 Examples

Van der Pol Oscillator. As an example consider the following Van der Pol Oscillator,
studied in [9] where the author numerically shows that the optimal control is bang-bang-
singular.

minimize
1

2

∫ 4

0

(
ξ21 + ξ22

)
(t) dt subject to (39a)

ξ̇1(t) = ξ2(t),

ξ̇2(t) = −ξ1(t) + ξ2(t)
(
1− ξ21(t)

)
+ u(t),

a.e. t ∈ [0, 4], (39b)

ξ(0) = (0, 1) , ξ(4) ∈ R
2. (39c)

The problem can be restated as a Mayer problem by substituting the state variable ξ

with a state variable (which we still denote as ξ) in R
3:

minimize ξ3(4) subject to (40a)

ξ̇1(t) = ξ2(t),

ξ̇2(t) = −ξ1(t) + ξ2(t)
(
1− ξ21(t)

)
+ u(t),

ξ̇3(t) =
1

2

(
ξ21(t) + ξ22(t)

)
,

a.e. t ∈ [0, 4], (40b)

ξ(0) = (0, 1, 0) , ξ(4) ∈ R
3. (40c)

More precisely the author numerically shows that the optimal control has two bang arcs
and a singular arc where the control can be written as a feedback control.

û =





−1 t ∈ [0, τ̂1),

1 t ∈ (τ̂1, τ̂2),

using(x) = 2x1 − x2
(
1− x21

)
t ∈ (τ̂2, 4].

with τ̂1 ≃ 1.3667, τ̂2 ≃ 2.4601.

The problem fits in our setting defining

h1(x) = h3(x) =




x2
−x1 + x2(1− x21)− 1

x2

1
+x2

2

2


 , h2(x) =




x2
−x1 + x2(1− x21) + 1

x2

1
+x2

2

2 ,


 ,

X = co {h1, h2} , υ̂(x) =
1 + using(x)

2
∈ (0, 1), f1(x) =




0
−2
0


 .
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Bilinear systems. Consider the following example proposed in [8] with state-space

M := {N = (N1, . . . Nn) ∈ R
n : Ni > 0, i = 1, . . . n} and control set U :=

m∏

i=1

[0, umax
i ]:

minimize C(u) := 〈r , N(T )〉+

∫ T

0
〈q , N(T )〉+ 〈s , u(t)〉dt subject to

Ṅ(t) =


A+

m∑

j=1

uj(t)Bj


N(t) a.e. t ∈ [0, T ],

u ∈ L∞ ([0, T ], U) ,

N(0) = N0.

where T > 0 is fixed and A, B1, . . . , Bm are given n× n matrices,
The problem can be transformed into a Mayer one on M ×R and the control box can

be normalised to the unit control box Ũ := [0, 1]m by setting

s̃j = umax
j sj , Cj := umax

j Bj , ∀j = 1, . . . m

as

minimize C(u) := 〈r , N(T )〉+Nn+1(T ) subject to

Ṅ(t) =


A+

m∑

j=1

uj(t)Cj


N(t) a.e. t ∈ [0, T ],

Ṅn+1(t) = 〈q , N(t)〉+ 〈s̃ , u(t)〉,

u ∈ L∞

(
[0, T ], Ũ

)
,

N(0) = N0, Nn+1(0) = 0.

Denote as x̃ = (x, xn+1) the points in M × R
n and set

r̃ :=
(
r, 1

)
, f0(x̃) :=

(
A 0
q 0

)
x̃, fj(x̃) :=

(
Cj 0
0 1

)(
x

s̃j

)
j = 1, . . . ,m.

Then the problem can be written as

minimize C(u) := 〈r̃ , ξ̃(T )〉 subject to

˙̃
ξ(t) = f0(ξ̃(t)) +

m∑

j=1

uj(t)fj(ξ̃(t)) a.e. t ∈ [0, T ],

u ∈ L∞

(
[0, T ], Ũ

)
,

ξ̃(0) =

(
N0

0

)
.
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Thus the problem fits into our setting defining X1 = f0, Xj+1 = f0 + fj, j = 1, . . . ,m
Xm−1+j+k = f0 + fj + fk, 1 ≤ j < k ≤ m, . . . , X2m = f0 + f1 + f2 + . . . + fm.
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