
COMPUTING LOW-RANK APPROXIMATIONS OF LARGE-SCALE
MATRICES WITH THE TENSOR NETWORK RANDOMIZED SVD

KIM BATSELIER∗, WENJIAN YU† , LUCA DANIEL‡ , AND NGAI WONG §

Abstract. We propose a new algorithm for the computation of a singular value decomposition
(SVD) low-rank approximation of a matrix in the Matrix Product Operator (MPO) format, also
called the Tensor Train Matrix format. Our tensor network randomized SVD (TNrSVD) algorithm
is an MPO implementation of the randomized SVD algorithm that is able to compute dominant
singular values and their corresponding singular vectors. In contrast to the state-of-the-art tensor-
based alternating least squares SVD (ALS-SVD) and modified alternating least squares SVD (MALS-
SVD) matrix approximation methods, TNrSVD can be up to 17 times faster while achieving the same
accuracy. In addition, our TNrSVD algorithm also produces accurate approximations in particular
cases where both ALS-SVD and MALS-SVD fail to converge. We also propose a new algorithm for
the fast conversion of a sparse matrix into its corresponding MPO form, which is up to 509 times
faster than the standard Tensor Train SVD (TT-SVD) method while achieving machine precision
accuracy. The efficiency and accuracy of both algorithms are demonstrated in numerical experiments.

Key words. curse of dimensionality, low-rank tensor approximation, matrix factorization, ma-
trix product operator, singular value decompositon (SVD), tensor network, tensor train (TT) de-
composition, randomized algorithm

AMS subject classifications. 15A69,15A18,15A23, 68W20

1. Introduction. When Beltrami established the existence of the singular value
decomposition (SVD) in 1873 [2, 20], he probably had not foreseen that this matrix
factorization would become a crucial tool in scientific computing and data analy-
sis [3, 9, 10, 13]. Among the many applications of the SVD are the determination of
the numerical rank and condition number of a matrix, the computation of low-rank
approximations and pseudoinverses, and solving linear systems. These applications
have found widespread usage in many fields of science and engineering [10, 20]. Ma-
trices with low numerical ranks appear in a wide variety of scientific applications [15].
For these matrices, finding a low-rank approximation allows them to be stored inex-
pensively without much loss of accuracy. It is not uncommon for matrices in data
analysis to be very large and classical methods to compute the SVD [11, 12, 13] can
be ill-suited to handle large matrices. One proposed solution to compute a low-rank
approximation of large data matrices is to use randomized algorithms [15]. An attrac-
tive feature of these algorithms is that they require only a constant number of passes
over the data. It is even possible to find a matrix approximation with a single pass
over the data[14]. This enables the efficient computation of a low-rank approximation
of dense matrices that cannot be stored completely in fast memory [30].

Another way to handle large matrices is to use a different data storage represen-
tation. A Matrix Product Operator (MPO), also called Tensor Train Matrix [24], is a
particular tensor network representation of a matrix that originates from the simula-
tion of one-dimensional quantum-lattice systems [29]. This representation transforms

∗Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
(kimb@eee.hku.hk)
†TNList, Department of Computer Science and Technology, Tsinghua University, Beijing 100084,

China (yu-wj@tsinghua.edu.cn)
‡Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology (MIT), Cambridge, MA. (luca@mit.edu)
§Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

(nwong@eee.hku.hk)

1

ar
X

iv
:1

70
7.

07
80

3v
1

 [
m

at
h.

N
A

]
 2

5
Ju

l 2
01

7

2 KIM BATSELIER et al.

the storage complexity of an nd × nd matrix into O(dn2r2), where r is the maximal
MPO-rank, effectively transforming the exponential dependence on d into a linear one.
The main idea of this representation is to replace the storage of a particular matrix
element by a product of small matrices. An efficient representation is then found when
only a few small matrices are required. A Matrix Product State (MPS), also called a
Tensor Train [22], is a similar tensor network representation of a vector. These tensor
network representations have gained more interest over the past decade, together with
their application to various problems [1, 4, 5, 6, 19, 21, 25, 26]. In particular, finding
an SVD low-rank approximation of a matrix in the MPO representation is addressed
in [18] with the development of the ALS-SVD and MALS-SVD methods. These two
methods are shown to be able to compute a few extreme singular values of 250 × 250

matrix accurately in a few seconds on desktop computers. In this article, we propose
a randomized tensor network algorithm for the computation of an SVD low-rank ap-
proximation of a matrix. As we will demonstrate through numerical experiments, our
proposed algorithm manages to achieve the same accuracy up to 17 times faster than
MALS-SVD. Moreover, our algorithm is able to retrieve accurate approximations for
cases where both ALS-SVD and MALS-SVD fail to converge. More specifically, the
main contributions of this article are twofold:

1. We present a fast algorithm that is able to convert a given sparse matrix into
MPO form with machine precision accuracy.

2. We present a MPO version of the randomized SVD algorithm that can out-
perform the current state-of-the-art tensor algorithms [18] for computing low-
rank matrix approximations of large-scale matrices.1

This article is organized as follows. In Section 2, some basic tensor concepts and
notation are explained. We introduce the notion of Matrix Product Operators in
Section 3. Our newly proposed algorithm to convert a matrix into the MPO represen-
tation is presented in Section 4. In Section 5, we present our randomized algorithm
to compute an SVD low-rank approximation of a given matrix in MPO form. Numer-
ical experiments in Section 6 demonstrate both the fast matrix to MPO conversion
as well as our randomized algorithm. We compare the performance of our matrix
conversion algorithm with both the TT-SVD [22] and TT-cross [27] algorithms, while
also comparing the performance of our randomized algorithm with the ALS-SVD and
MALS-SVD algorithms [18]. Section 7 presents some conclusions together with an
avenue of future research.

2. Tensor basics and notation. Tensors in this article are multi-dimensional
arrays with entries either in the real or complex field. We denote scalars by italic
letters, vectors by boldface italic letters, matrices by boldface capitalized italic letters
and higher-order tensors by boldface calligraphic italic letters. The number of indices
required to determine an entry of a tensor is called the order of the tensor. A dth
order or d-way tensor is hence denoted A ∈ RI1×I2×···×Id . An index ik always satisfies
1 ≤ ik ≤ Ik, where Ik is called the dimension of that particular mode. We use the
MATLAB array index notation to denote entries of tensors. Suppose that A is a 4-
way tensor with entries A(i1, i2, i3, i4). Grouping indices together into multi-indices
is one way of reshaping the tensor. For example, a 3-way tensor can now be formed
from A by grouping the first two indices together. The entries of this 3-way tensor are
then denoted by A([i1i2], i3, i4), where the multi-index [i1i2] is easily converted into

1MATLAB implementations of all algorithms are distributed under a GNU lesser general public
license and can be freely downloaded from https://github.com/kbatseli/TNrSVD.

https://github.com/kbatseli/TNrSVD

TNrSVD 3

a single index as i1 + I1(i2− 1). Grouping the indices into [i1] and [i2i3i4] results in a
I1× I2I3I4 matrix with entries A(i1, [i2i3i4]). The column index [i2i3i4] is equivalent
to the linear index i2 + I2(i3−1)+ I2I3(i4−1). More general, we define a multi-index
[i1i2 · · · id] as

[i1i2 · · · id] := i1 +

d∑
k=2

(ik − 1)

k−1∏
l=1

Il.(2.1)

Grouping indices together in order to change the order of a tensor is called reshaping
and is an often used tensor operation. We adopt the MATLAB/Octave reshape op-
erator “reshape(A, [I1, I2, · · · , Id])”, which reshapes the d-way tensor A into a tensor
with dimensions I1 × I2 × · · · × Id. The total number of elements of A must be the
same as I1× I2× · · · × Id. The mode-n matricization A(n) of a d-way tensor A maps
the entry A(i1, i2, · · · , id) to the matrix element with row index in and column index
[i1 · · · in−1in+1 · · · id].

Example 1. We illustrate the reshaping operator on the 4× 3× 2 tensor A that
contains all entries from 1 up to 24. Its mode-1 matricization is

A(1) = reshape(A, [4, 6]) =


1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

 .

Another important reshaping of a tensor A is its vectorization, denoted vec(A) and
obtained from grouping all indices into one multi-index.

Example 2. For the tensor of Example 1, we have

vec(A) = reshape(A, [24, 1]) =
(
1 2 · · · 24

)T
.

Suppose we have two d-way tensors A ∈ RI1×I2×···×Id ,B ∈ RJ1×J2×···×Jd . The
Kronecker product C = A⊗B ∈ RI1J1×I2J2×···×IdJd is then a d-way tensor such that

C([j1i1], [j2i2], . . . , [jdid]) = A(i1, i2, . . . , id)B(j1, j2, . . . , jd).(2.2)

Similarly, the outer product D = A ◦B of the d-way tensors A,B is a 2d-way tensor
of dimensions I1 × · · · × Id × J1 × · · · × Jd such that

D(i1, i2, . . . , id, j1, j2, . . . , jd) = A(i1, i2, . . . , id)B(j1, j2, . . . , jd).(2.3)

From equations (2.2) and (2.3) one can see that the Kronecker and outer products are
interrelated through a reshaping and a permutation of the indices. A very convenient
graphical representation of d-way tensors is shown in Figure 2.1. Tensors are here
represented by circles and each ‘leg’ denotes a particular mode of the tensor. The
order of the tensor is then easily determined by counting the number of legs. Since a
scalar is a zeroth-order tensor, it is represented by a circle without any lines. One of
the most important operations on tensors is the summation over indices, also called
contraction of indices. For example, the following mode product [17] of a 3-way tensor
A ∈ RI×I×I with a matrix U1 ∈ RR×I and a vector u3 ∈ RI

A ×1 U1 ×3 uT
3 =

∑
i,j

A(i, :, j) U1(:, i) u3(j)

4 KIM BATSELIER et al.

Aa a A

Fig. 2.1: Graphical depiction of a scalar a, vector a, matrix A and 3-way tensor A.

AU1 u3

Fig. 2.2: Summation over the first and third index of A represented by connected
lines in the tensor network graph.

is graphically depicted in Figure 2.2 by connected lines between A,U1 and u3. Fig-
ure 2.2 also illustrates a simple tensor network, which is a collection of tensors that
are interconnected through contractions. The tensor network in Figure 2.2 has two
legs, which indicates that the network represents a matrix. This article uses a very
particular tensor network structure, the Matrix Product Operator structure.

3. Matrix Product Operators. In this section, we give a brief introduction
to the notion of MPOs. Simply put, an MPO is a linear chain of 4-way tensors
that represents a matrix and was originally used to represent an operator acting on
a multi-body quantum system. Since their introduction to the scientific community
in 2010 [24], MPOs have found many other applications. We now discuss the MPO
representation of a matrix through an illustrative example. Suppose that we have a
matrix A of size I1I2I3I4 × J1J2J3J4, as shown in Figure 3.1. This matrix A can be

I1I2I3I4 J1J2J3J4

I1 J1 I2 J2 I3 J3 I4 J4

A A(1) A(2) A(3) A(4)

Fig. 3.1: Representation of an I1I2I3I4 × J1J2J3J4 matrix A as an MPO.

represented by an MPO of four 4-way tensors, where the first tensor has dimensions
R1 × I1 × J1 × R2. Similarly, the kth tensor in the MPO of Figure 3.1 hence has
dimensions Rk × Ik × Jk × Rk+1. We require that R1 = R5 = 1, which ensures
that the contraction of this particular MPO results in a 8-way tensor with entries
A(i1, j1, i2, j2, i3, j3, i4, j4). This tensor can then be permuted and reshaped back into
the original matrix with entries A([i1i2i3i4], [j1j2j3j4]). The dimensions Rk, Rk+1 of
the connecting indices in an MPO are called the MPO-ranks and play a crucial role

TNrSVD 5

in the computational complexity of our developed algorithms. The MPO-ranks are
called canonical if they attain their minimal value such that the MPO represents
a given matrix exactly. A very special MPO is obtained when all MPO-ranks are
unity. The contraction of a rank-one MPO corresponds with the outer product of the
individual MPO-tensors. Indeed, suppose that the MPO-ranks in Figure 3.1 are all
unity. The 4-way tensors of the MPO are then reduced to matrices such that we can
write A(k) := A(k)(1, :, :, 1) (k = 1, . . . , 4) and

A(i1, j1, i2, j2, i3, j3, i4j4) = A(1)(i1, j1)A(2)(i2, j2)A(3)(i3, j3)A(4)(i4, j4),

which is exactly the outer product of the matrices A(1),A(2),A(3) with A(4) into a
8-way tensor. The relation between the Kronecker and outer products, together with
the previous example leads to the following important theorem.

Theorem 3.1. A matrix A ∈ RI1I2···Id×J1J2···Jd that satisfies

A = A(d) ⊗ · · · ⊗A(2) ⊗A(1)

has an MPO representation where the kth MPO-tensor is A(k) ∈ R1×Ik×Jk×1 (k =
1, . . . , d) with unit canonical MPO-ranks.

It is important to note that the order of the MPO-tensors is reversed with respect
to the order of the factor matrices in the Kronecker product. This means that the
last factor matrix A(1) in the Kronecker product of Theorem 3.1 is the first tensor in
the corresponding MPO representation. Theorem 3.1 can also be written in terms of
the matrix entries as

A([i1i2 · · · id], [j1j2 · · · jd]) = A(d)(id, jd) · · ·A(2)(i2, j2)A(1)(i1, j1).

As mentioned earlier, the MPO-ranks play a crucial role in the computational com-
plexity of the algorithms. For this reason, only MPOs with small ranks are desired.
An upper bound on the canonical MPO-rank Rk for an MPO of d tensors for which
R1 = Rd+1 = 1 is given by the following theorem.

Theorem 3.2. (Modified version of Theorem 2.1 in [27]) For any matrix A ∈
RI1I2···Id×J1J2···Jd there exists an MPO with MPO-ranks R1 = Rd+1 = 1 such that the
canonical MPO-ranks Rk satisfy

Rk ≤ min

(
k−1∏
i=1

IiJi,

d∏
i=k

IiJi

)
for k = 2, . . . , d.

Proof. The upper bound on the canonical MPO-rank Rk can be determined from
contracting the first k−1 tensors of the MPO together and reshape the result into the
I1J1 · · · Ik−1Jk−1×Rk matrix B. Similarly, we can contract the kth tensor of the MPO
with all other remaining tensors and reshape the result into the Rk × IkJk · · · IdJd
matrix C. The canonical rank Rk is now upper bounded by the matrix product BC
due to rank(BC) ≤ min(rank(B), rank(C)).

These upper bounds are quite pessimistic and are attained for generic tensors. For
example, a generic full-rank I10 × I10 matrix has an exact MPO representation with
a canonical MPO-rank R6 = I10. This implies that any MPO representation with
R6 < I10 will consequently be an approximation of the original matrix. Theorem 3.2
therefore allows us to conclude that MPOs are only useful when either the canonical
MPO-ranks are small or a low-rank MPO exists that approximates the underlying
matrix sufficiently.

6 KIM BATSELIER et al.

Two important MPO operations are addition and rounding, which are easily
generalized from MPS addition and rounding. Indeed, by grouping the Ik and Jk
indices together, one effectively transforms the MPO into an MPS such that MPS
addition and rounding can be applied. The addition of two MPOs results in an MPO
for which the corresponding ranks, except R1 and Rd+1, are added. The rounding
operation repeatedly uses the singular value decomposition (SVD) on each of the
MPO-tensors going from left-to-right and right-to-left in order to truncate the ranks
Rk such that a specific relative error tolerance is satisfied. For more details on MPS
addition and rounding we would like to refer the reader to [22, p. 2305] and [22,
p. 2308], respectively. An alternative MPO rounding operation that does not require
the SVD but relies on removing parallel vectors is described in [16]. This alternative
rounding procedure can be computationally more efficient for MPOs that consist of
sparse tensors.

4. Converting a sparse matrix into an MPO. The standard way to convert
a matrix into MPO form is the TT-SVD algorithm [22, p. 2301], which relies on
consecutive reshapings of the matrix from which an SVD needs to be computed. This
procedure is not recommended for matrices in real applications for two reasons. First,
application-specific matrices tend to be sparse and computing the SVD of a sparse
matrix destroys the sparsity, which results in requiring more and often prohibitive
storage. Second, real life matrices are typically so large that it is infeasible to compute
their SVD. An alternative method to convert a matrix into an MPO is via cross
approximation [27]. This method relies on heuristics to find subsets of indices for all
modes of a tensor in order to approximate it. In practice, the cross approximation
method can be very slow and not attain the desired accuracy. Our matrix to MPO
conversion method relies on a partitioning of the sparse matrix such that it is easily
written as the addition of rank-1 MPOs.

4.1. Algorithm derivation. We derive our algorithm with the following illus-
trative example. Suppose we have a sparse matrix A ∈ RI×J with the following
sparsity pattern 

0 0 0 A14

0 A22 0 0
0 0 A33 0
0 0 0 0

 .

Assume that each of the nonzero block matrices has dimensions I1× J1 and that I =
I1 I2, J = J1 J2 such that the rows and columns of A are now indexed by [i1i2], [j1j2],
respectively. The main idea of our method is to convert each nonzero block matrix
into a rank-1 MPO and add them all together. Observe now that

0 0 0 A14

0 0 0 0
0 0 0 0
0 0 0 0

 = E14 ⊗A14,

where E14 ∈ RI2×J2 is a matrix of zeros except for E14(1, 4) = 1. From Theorem 3.1
we know that E14⊗A14 is equivalent with a rank-1 MPO where the first MPO-tensor
is A14 and the second MPO-tensor is E14. Generalizing the matrix E14 to the matrix
Eij of zero entries except for Eij(i, j) = 1 allows us to write

A = E14 ⊗A14 + E22 ⊗A22 + E33 ⊗A33,(4.1)

TNrSVD 7

from which we conclude that the MPO representation of A is found from adding
the unit-rank MPOs of each of the terms. Another important conclusion is that the
MPO-rank for the particular MPO obtained from this algorithm is the total number
of summations. The number of factors in the Kronecker product is not limited to
two and depends on the matrix partitioning. Indeed, suppose we can partition A14

further into

A14 =

(
0 0

X14 0

)
= E21 ⊗X14,

then the first term of (4.1) becomes E14⊗E21⊗X14 and likewise for the other terms.
A crucial element is that the matrix A is partitioned into block matrices of equal
size, which is required for the addition of the MPOs. In general, for a given matrix
A ∈ RI×J , we consider the partitioning of A determined by a Kronecker product of
d matrices

A(d) ⊗A(d−1) ⊗ · · · ⊗A(2) ⊗A(1)

with A(k) ∈ RIk×Jk (k = 1, . . . , d) and I =
∏d

k=1 Ik, J =
∏d

k=1 Jk. The algorithm to
convert a sparse matrix into an MPO is given in pseudo-code in Algorithm 4.1.

Algorithm 4.1. Sparse matrix to MPO conversion
Input: matrix A, dimensions I1, . . . , Id, J1, . . . , Jd.
Output: MPO A with tensors A(1), . . . ,A(d).

Initialize MPO A with zero tensors.
for all nonzero matrix blocks X do

Determine d− 1 Eij matrices.
Construct rank-1 MPO T with X and Eij matrices.
A← A + T

end for

4.2. Algorithm properties. Having derived our sparse matrix conversion al-
gorithm, we now discuss some of its properties. Algorithm 4.1 has the following nice
features, some of which we will address in more detail:

• Except for A(1), almost all of the MPO-tensors will be sparse.
• The user is completely free to decide on how to partition the matrix A, which

determines the number of tensors in the resulting MPO.
• The generalization of Algorithm 4.1 to construct an MPO representation of

a given tensor is straightforward.
• The maximal number of tensors in an MPO representation are easily deduced

and given in Lemma 4.1.
• The obtained MPO-rank for a particular partitioning of the matrix A is also

easily deduced and given in Lemma 4.2.
• A lower bound on the obtained MPO-rank for a fixed block size I1, J1 is

derived in Lemma 4.3.
• As the dimensions of each of the MPO-tensors are known a priori, one can

preallocate the required memory to store the tensors in advance. This allows
a fast execution of Algorithm 4.1.

The maximal number of tensors in an MPO representation of a matrix is determined
by choosing a partitioning such that each block matrix of A becomes a single scalar

8 KIM BATSELIER et al.

entry and is given by the following lemma.

Lemma 4.1. Given a matrix A ∈ RI×J , suppose dI , dJ are the number of factors
in the prime factorizations of I, J , respectively. Then the maximal number of tensors
in an MPO representation of A is max (dI , dJ) + 1.

The following simple example illustrates the maximal number of tensors max(dI , dJ)+
1 from Lemma 4.1.

Example 3. Let

A =

(
2 0 0 0 0 0
0 0 0 −5 0 0

)
∈ R2×6.

Then the prime factorizations are 2 = 2 and 6 = 2 × 3, which sets dI = 1, dJ = 2
and the maximal number of tensors in the MPO of A is max(1, 2) + 1 = 2 + 1 = 3.
Indeed, by setting I1 = 1, J1 = 1, I2 = 1, J2 = 3, I3 = 2, J3 = 2 we can write

A =

(
1 0
0 0

)
⊗
(
1 0 0

)
⊗ 2 +

(
0 0
0 1

)
⊗
(
1 0 0

)
⊗−5.

We therefore have A(1) ∈ R1×1×2,A(2) ∈ R2×1×3×2,A(3) ∈ R2×2×2×1. Theorem 3.2
states that the canonical MPO-ranks satisfy R2 ≤ 1, R3 ≤ 3, which demonstrates that
the MPO-ranks obtained from Algorithm 4.1 are not necessarily minimal.

The rank of the MPO obtained from Algorithm 4.1 for a particular partitioning
of the matrix A is given by the following lemma.

Lemma 4.2. The MPO obtained from Algorithm 4.1 has a uniform MPO-rank
equal to the total number of nonzero matrix blocks X as determined by the partitioning
of A.

Lemma 4.2 follows trivially from the fact that ranks are added in MPO addition
and all MPOs in Algorithm 4.1 are unit-rank. It is important to realize that the usage
of Algorithm 4.1 is not limited to sparse matrices per se. One could apply Algorithm
4.1 to dense matrices but then the possible computational benefit of having to process
only a few nonzero matrix blocks X is lost. It is also the case that the MPO-ranks
can be reduced in almost all cases via a rounding procedure without the loss of any
accuracy, as the upper bounds of Theorem 3.2 are usually exceeded. Partitioning
the matrix A such that each term in Algorithm 4.1 corresponds with a single scalar
entry sets the resulting MPO-rank to the total number of nonzero entries of A. This
might be too high in practice. On the other hand, choosing any Ik, Jk too large
results in a large MPO-tensor A(k), which is also not desired. A strategy that can
work particularly well is to use the Cuthill-Mckee algorithm [7] to permute A into a
banded matrix with a small bandwidth. Grouping all nonzero entries together around
the main diagonal also effectively reduces the number of nonzero block matrices and
hence the total MPO-rank. A block size I1 × J1 can then be chosen such that the
bandwidth is covered by a few blocks. Algorithm 4.1 can then be applied to the
permuted matrix. Other permutations may reduce the maximal MPO-rank even
further. We will discuss choosing the partitioning of A in more detail in Section 4.3.

Algorithm 4.1 will construct an MPO with a uniform MPO-rank, which will
exceed the upper bounds from Theorem 3.2 in almost all cases. One can use a rounding
step to truncate the MPO-ranks without the loss of any accuracy after Algorithm 4.1
has finished. Alternatively, one can apply a rounding step on the intermediate result
as soon as the MPO-rank reaches a certain threshold during the execution of the
algorithm. The following example illustrates the necessity of the rounding step.

TNrSVD 9

Example 4. Suppose we have three random 2× 2 matrices A(1),A(2),A(3) such
that

A = A(3) ⊗A(2) ⊗A(1).

By Theorem 3.1, the matrix A has a canonical unit-rank MPO representation where
the first MPO-tensor is A(1) reshaped into a 1×2×2×1 tensor. Choosing I1 = J1 =
I2 = J2 = I3 = J3 = 2 and applying Algorithm 4.1 results in an MPO with a uniform
rank of 16. Applying a rounding step truncates each of these ranks down to unity.

For a fixed block size I1, J1 one can determine a lower bound for the resulting
MPO-rank in the following manner.

Lemma 4.3. Let z be the number of nonzero elements of A and I1, J1 the first
dimensions of the partitioning of A. If z = I1 × J1×R, then the minimal MPO-rank
obtained by Algorithm 4.1 is R.

Proof. Suppose that we found a permutation such that all z nonzero entries can
be arranged into R block matrices of size I1× J1. It then trivially follows that R will
be the MPO-rank since z = I1 × J1 ×R.

In practice, it will be difficult, or in some cases impossible, to find a permutation
such that all nonzero entries are nicely aligned into I1 × J1 block matrices. The R in
Lemma 4.3 is therefore a lower bound.

4.3. Choosing a partition. In this subsection we discuss choosing a partition of
the matrix A prior to applying Algorithm 4.1. We suppose, without loss of generality,
that the dimensions of A have prime factorizations I = I1 I2 · · · Id and J = J1 J2 · · · Jd
with an equal amount of d factors. The number of factors can always be made equal by
appending ones. Ultimately, the goal is to obtain an MPO with “small” MPO-ranks.
Although Algorithm 4.1 constructs an MPO with ranks that are likely to exceed the
canonical values, these ranks can always be truncated through rounding. Theorem
3.2 can be used for choosing a partition that minimizes the upper bounds in the hope
that the canonical values are even smaller. The key idea is that the upper bounds
depend on the ordering of the prime factors. The following small example illustrates.

Example 5. Suppose the factorizations are I = 35 = 7× 5× 1 and J = 12 = 3×
2× 2. If we choose the ordering of the partition as I1 = 1, J1 = 3, I2 = 5, J2 = 2, I3 =
7, J3 = 2 then the upper bounds are R2 ≤ min(3, 140) = 3 and R3 ≤ min(30, 14) = 14.
Choosing the partition I1 = 5, J1 = 2, I2 = 7, J2 = 3, I3 = 1, J3 = 2 changes the upper
bounds to R2 ≤ 10 and R3 ≤ 2.

In light of the randomized SVD algorithm that is developed in Section 5 it will be
necessary to order the prime factors in a descending sequence. In this way, the first
MPO-tensor will have sufficiently large dimension in order to compute the desired
low-rank approximation. Observe that if we use the descending ordering I1 = 7, J1 =
3, I2 = 5, J2 = 2, I3 = 1, J3 = 2 in Example 5, then the upper bounds are R2 ≤
min(21, 20) = 20 and R3 ≤ min(210, 2) = 2. Large matrices can have dimensions
with a large number of prime factors. Choosing a partition with a large number
of MPO-tensors usually results in a high number of nonzero block matrices X and
therefore also in a large MPO-rank. The problem with such a large MPO-rank can be
that it becomes infeasible to do the rounding step due to lack of sufficient memory. In
this case one needs to reduce the number of MPO-tensors until the obtained MPO-
rank is small enough such that the rounding step can be performed. This way of
choosing a partition will be demonstrated in more detail by means of a worked-out
example in Section 6.1.

10 KIM BATSELIER et al.

5. Tensor network randomized SVD.

5.1. The rSVD algorithm. Given a matrix A, which does not needs to be
sparse, the rSVD computes a low-rank factorization USV T where U ,V are orthog-
onal matrices and S is a diagonal and nonnegative matrix. The prototypical rSVD
algorithm [15, p. 227] is given as pseudocode in Algorithm 5.1. When a rank-K/2
approximation is desired, we compute a rank-K approximation after which only the
first K/2 singular values and vectors are retained. This is called oversampling and
for more details on this topic we refer the reader to [15, p. 240].It has been shown
that a slow decay of the singular values of A results in a larger approximation error.
The power iteration (AAT)q tries to alleviate this problem by increasing the decay
of the singular values while retaining the same left singular vectors of A. Common
values for q are 1 or 2. Note that the computation of Y is sensitive to round-off
errors and additional orthogonalization steps are required. For a large matrix A, it
quickly becomes infeasible to compute orthogonal bases for Y or to compute the SVD
of B. This is the main motivation for doing all steps of Algorithm 5.1 in an MPO-
form. We therefore assume that all matrices in Algorithm 5.1 can be represented by
an MPO with relatively small MPO-ranks. For a matrix A ∈ RI1···Id×J1···Jd with d
MPO-tensors A(i) ∈ RRi×Ii×Ji×Ri+1 (i = 1, . . . , d), Algorithm 5.1 computes a rank-K

factorization that consists of d MPO-tensors U (1), . . . ,U (d) and V(1), . . . ,V(d) and the
K×K diagonal and nonnegative S matrix. We denote this MPO-version of the rSVD
algorithm the tensor network randomized SVD (TNrSVD).

Algorithm 5.1. Prototypical rSVD algorithm [15, p. 227]
Input: matrix A ∈ RI×J , target number K and exponent q
Output: approximate rank-K factorization USV T , where U ,V are orthogonal

and S is diagonal and nonnegative.

Generate an J ×K random matrix O.
Y ← (AAT)q AO
Q← Orthogonal basis for the range of Y
B ← QT A
Compute the SVD B = WSV T .
U ← QW

The rSVD algorithm relies on multiplying the original matrix A with a random ma-
trix O. Fortunately, it is possible to directly construct a random matrix into MPO
form.

Lemma 5.1. A particular random J1J2 · · · Jd ×K matrix O with rank(O) = K
and K ≤ J1 can be represented by a unit-rank MPO with the following random MPO-
tensors

O(1) ∈ R1×J1×K×1,

O(i) ∈ R1×Ji×1×1, (i = 2, . . . , d).

Proof. All MPO-ranks being equal to one implies that Theorem 3.1 applies. The
random matrix O is constructed from the Kronecker product of d−1 random column
vectors O(i) ∈ RJi , (i = 2, . . . , d) with the matrix O(1) ∈ RJ1×K . The Kronecker

TNrSVD 11

product has the property that

rank(O) = rank(O(d)) · · · rank(O(1)).

The fact that O(1) is a random matrix then ensures that rank(O) = K.
Probabilistic error bounds for Algorithm 5.1 are typically performed for random

Gaussian matrices O [15, p. 273]. Another type of test matrices O are subsampled
random Fourier transform matrices [15, p. 277]. The random matrix in MPO form
from Theorem 5.1 will not be Gaussian, as the multiplication of Gaussian random
variables is not Gaussian. This prevents the straightforward determination of error
bounds for the MPO-implementation of Algorithm 5.1 that we propose. In spite of
the lack of any probabilistic bounds on the error, all numerical experiments that we
performed demonstrate that the orthogonal basis that we obtain for the range of
A can capture the action of A sufficiently. Once the matrix A has been converted
into an MPO using Algorithm 4.1 and a random MPO has been constructed using
Theorem 5.1, what remains are matrix multiplications and computing low-rank QR
and SVD factorizations. We will now explain how these steps can be done efficiently
using MPOs.

5.2. Matrix multiplication. Matrix multiplication is quite straightforward.
Suppose the matrices A ∈ RI1I2···Id×J1J2···Jd ,O ∈ RJ1J2···Jd×K have MPO represen-
tations of 4 tensors. This implies that the rows and columns of A are indexed by the
multi-indices [i1i2i3i4], [j1j2j3j4], respectively. The matrix multiplication AO then
corresponds with the summation of the column indices of A

AO =
∑

j1,j2,j3,j4

A(:, [j1j2j3j4])O([j1j2j3j4], :)

and is visualized as contractions of two MPOs meshed into one tensor network in Fig-
ure 5.1, where unlabelled indices have a dimension of one. The contraction

∑
ji
A(i)(:

, ji, :)O(i)(:, ji, :) for each of the four MPO-tensors results in a new MPO that repre-

sents the matrix multiplication AO. If A(i) ∈ RRi×Ii×Ji×Ri+1 and O(i) ∈ RSi×Ji×1×Si+1 ,
then the summation over the index Ji results in an MPO-tensor with dimensions
RiSi × Ii × 1 × Ri+1Si+1 with a computational complexity of O(RiSiIiJiRi+1Si+1)
flops. Corresponding MPO-ranks Ri, Si and Ri+1, Si+1 are multiplied with one an-
other, which necessitates a rounding step in order to reduce the dimensions of the
resulting MPO-tensors. Note, however, that the random matrix O constructed via
Lemma 5.1 has a unit-rank MPO, which implies that S1 = S2 = · · · = Sd+1 = 1 such
that the MPO corresponding with the matrix AO will retain the MPO-ranks of A.

5.3. Thin QR and economical SVD in MPO-form. An orthogonal basis
for the range of Y ∈ RI×K can be computed through a thin QR decomposition
Y = QR, where Q ∈ RI×K has orthogonal columns and R ∈ RK×K . The algorithm
to compute a thin QR decomposition from a matrix in MPO-form is given in pseudo
code in Algorithm 5.2. The thin QR is computed by an orthogonalization sweep from
right-to-left, absorbing the R factor matrix into the preceding MPO-tensor. The main
operations in the orthogonalization sweep are tensor reshaping and the matrix QR
decomposition. The first MPO-tensor is orthogonalized in a slightly different way
such that the K × K R matrix is obtained. The computational cost of Algorithm
5.2 is dominated by the QR computation of the first MPO-tensor, as it normally has
the largest dimensions. Using Householder transformations to compute this QR de-
composition costs approximately O(I21R

2
2K) flops. The proof of the procedure can be

12 KIM BATSELIER et al.

I1

J1

I2

J2

I3

J3

I4

J4

A(1) A(2) A(3) A(4)

K

O(1) O(2) O(3) O(4)

Fig. 5.1: The matrix multiplication AO as contractions of a tensor network.

found in [22, p. 2302]. The Thin QR decomposition in MPO-form is illustrated for
an MPO of 4 tensors in Figure 5.2. Again, all unlabeled indices have a dimension of
one.

Algorithm 5.2. MPO-QR algorithm [22, p. 2302]

Input: rank-K matrix A ∈ RI×K in MPO-form with A(1) ∈ R1×I1×K×R2 , I1 ≥ K.
Output: d MPO-tensors of Q ∈ RI×K with Q(1) ∈ R1×I1×K×R2 , QTQ = IK

and R ∈ RK×K .

for i=d:-1:2 do
Reshape A(i) into Ri × IiRi+1 matrix Ai.
Ai = Ri Qi with Ri ∈ RRi×Ri and QiQ

T
i = IRi

.

Q(i) ← reshape Qi into Ri × Ii × 1×Ri+1 tensor.
A(i−1) ← A(i−1) ×4 Ri.

end for
Permute A(1) into K × 1× I1 ×R2 tensor.
Reshape A(1) into K × I1R2 matrix A1.
A1 = RQ1 with R ∈ RK×K and Q1Q

T
1 = IK .

Reshape Q1 into K × 1× I1 ×R2 tensor Q(1).
Permute Q(1) into 1× I1 ×K ×R2 tensor.

The rSVD algorithm also requires an economical SVD computation of the K ×
J1 · · · Jd matrix B = W SV T , where both W ,S are K × K matrices, W is or-
thogonal and S is diagonal and nonnegative. The matrix V is stored in MPO-form.
Only a slight modification of Algorithm 5.2 is required to obtain the desired matrices.
Indeed, the only difference with Algorithm 5.2 is that now the SVD of A1 needs to
be computed. From this SVD we obtain the desired W ,S matrices and can reshape
and permute the right singular vectors into the desired V(1) MPO-tensor. Again, the
overall computational cost will be dominated by this SVD step, which costs approxi-
mately O(J2

1R
2
2K) flops. The economical SVD of a matrix in MPO-form is given in

pseudo-code in Algorithm 5.3. A graphical representation of the corresponding tensor
network for a simple example of 4 MPO-tensors is depicted in Figure 5.3.

TNrSVD 13

I1

K

I2 I3 I4

Q(1) Q(2) Q(3) Q(4)

K

R

Fig. 5.2: Thin QR decomposition QR as a tensor network with Q ∈ RI1I2I3I4×K and
R ∈ RK×K .

Algorithm 5.3. MPO-SVD algorithm
Input: d MPO-tensors of A ∈ RK×J with A(1) ∈ R1×K×J1×R2 and J1 ≥ K.
Output: d MPO-tensors of V ∈ RK×J with V(1) ∈ R1×K×J1×R2 , V V T = IK

and W ∈ RK×K , W TW = I, and S ∈ RK×K diagonal and nonnegative.

for i=d:-1:2 do
Reshape A(i) into Ri × IiRi+1 matrix Ai.
Ai = Ri Qi with Ri ∈ RRi×Ri and QiQ

T
i = IRi

.

V(i) ← reshape Qi into Ri × Ii × 1×Ri+1 tensor.
A(i−1) ← A(i−1) ×4 Ri.

end for
Permute A(1) into K × 1× J1 ×R2 tensor.
Reshape A(1) into K × J1R2 matrix A1.
Compute SVD of A1 = W SQT

1 .

Reshape Q1 into K × 1× J1 ×R2 tensor V(1).
Permute V(1) into 1×K × J1 ×R2 tensor.

Both the thin QR and economical SVD of the matrix in MPO-form are computed
for each tensor of the MPO separately, which reduces the computational complexity
significantly. Unlike the ALS-SVD and MALS-SVD, no iterative sweeping over the
different MPO-tensors is required.

5.4. Randomized subspace iteration. The computation of the matrix Y =
(AAT)q AO is vulnerable to round-off errors and an additional orthogonalization
step is required between each application of A and AT [15, p. 227]. Instead of com-
puting Y and applying Algorithm 5.2, the randomized MPO-subspace iteration of
Algorithm 5.4 is proposed. First, the random matrix O is multiplied onto A, after
which a rounding step is performed to reduce the MPO-ranks. Algorithm 5.2 is then
applied to obtain an orthogonal basis Q for the range of Y . One now proceeds with
the multiplication ATQ, after which another rounding step and orthogonalization
through Algorithm 5.2 are performed. These steps are repeated until the desired
number of multiplications with A and AT have been done. The SVD-based rounding
and orthogonalization steps can actually be integrated into one another. Indeed, one
can apply a left-to-right rounding sweep first, followed by the right-to-left sweep of

14 KIM BATSELIER et al.

J1

K

J2 J3 J4

V(1) V(2) V(3) V(4)

K

K

S

W

Fig. 5.3: Economical SVD WSV T as a tensor network with V ∈ RJ1J2J3J4×K and
W ,S ∈ RK×K .

Algorithm 5.2. This prevents performing the right-to-left sweep twice. Similarly, one
can integrate the rounding step after the multiplication QTA with the computation
of the economical SVD WSV T . Also note that since W ∈ RK×K , the multiplication
QW in MPO-form is equivalent with Q(1) ×3 W

T .

Algorithm 5.4. Randomized MPO-subspace iteration
Input: A ∈ RI×J and random matrix O ∈ RJ×K in MPO-form.
Output: MPO-tensors of Q ∈ RI×K with QTQ = IK .

Y ← AO
Q← Use Algorithm 5.2 on Y
for i=1:q do
Y ← AT Q
Q← Use Algorithm 5.2 on Y
Y ← AQ
Q← Use Algorithm 5.2 on Y

end for

6. Numerical Experiments. In this section we demonstrate the effectiveness
of the algorithms discussed in this article. Algorithms 4.1 up to 5.4 were implemented
in MATLAB and run on a desktop computer with an 8-core Intel i7-6700 cpu @
3.4 GHz and 64 GB RAM. These implementations can be freely downloaded from
https://github.com/kbatseli/TNrSVD.

6.1. Matrix permutation prior to MPO conversion. Applying a permuta-
tion prior to the conversion can effectively reduce the maximal MPO-rank. Consider
the 150102 × 150102 AMD-G2-circuit matrix from the UF Sparse Matrix Collec-
tion [8], with a bandwidth of 93719 and sparsity pattern shown in Figure 6.1. The
sparsity pattern after applying the Cuthill-Mckee algorithm is shown in Figure 6.2

https://github.com/kbatseli/TNrSVD

TNrSVD 15

Fig. 6.1: Original matrix
sparsity pattern.

Fig. 6.2: Sparsity pattern after the
Cuthill-Mckee permutation.

and the bandwidth is reduced to 1962. We can factor 150102 as 2× 3× 3× 31× 269,
which sets the maximal number of tensors in the MPO to 6. The total number
of nonzero entries is 726674, which makes an MPO representation of 6 tensors in-
feasible as for this case all Rk = 726674 and there is insufficient memory to store
the MPO-tensors. Table 6.1 lists the number of MPO-cores d, the obtained MPO-
rank for both the original matrix and after applying the Cuthill-Mckee algorithm
and the runtime for applying Algorithm 4.1 on the permuted matrix. Applying the
permutation effectively reduces the MPO-rank approximately by half so we only con-
sider the permuted matrix. First, we order the prime factors in a descending fashion
269, 31, 3, 3, 2, which would result in an MPO that consists of the following five ten-
sors A(1) ∈ R1×269×269×4382,A(2) ∈ R4382×31×31×4382,A(3) ∈ R4382×3×3×4382,A(4) ∈
R4382×3×3×4381,A(5) ∈ R4382×2×2×4382. Due to the high MPO-rank, however, it is
not possible to construct this MPO. We can now try to absorb the prime factor 2
into 269 and construct the corresponding MPO that consists of four tensors with
A(1) ∈ R1×538×538×1753. This takes about 5 seconds. As Table 6.1 shows, increasing
the dimensions of A(1) by absorbing it with more prime factors further reduces the
MPO-rank and runtimes. Note that if MATLAB supported sparse tensors by default,
then it would be possible to use Algorithm 4.1 for both the original and permuted
matrix as all MPO-tensors are sparse. SVD-based rounding on the d = 3 MPO with
a tolerance of 10−10 reduces the MPO-rank from 347 down to 7 and takes about
61 seconds. Using the alternative parallel vector rounding from [16] truncates the
MPO-rank also down to 7 in about 5 seconds.

6.2. Fast matrix-to-MPO conversion. In this experiment, Algorithm 4.1 is
compared with the TT-SVD algorithm [24, p. 2135] and the TT-cross algorithm [27,
p. 82], [28], both state-of-the-art methods for converting a matrix into an MPO. Both
the TT-SVD and TT-cross implementations from the TT-Toolbox[23] were used. The
TT-cross method was tested with the DMRG CROSS function and was run for 10
sweeps and with an accuracy of 10−10 We use the 15838 × 15838 power simulation
matrix from Liu Wenzhuo, EPRI, China, also in the UF Sparse Matrix Collection [8].

16 KIM BATSELIER et al.

Table 6.1: Maximal MPO-ranks for varying block matrix sizes.

Matrix block size d
Maximal Rank

Runtime
Original Permuted [seconds]

269× 269 5 9352 4382 NA
538× 538 4 3039 1753 5.47
807× 807 4 1686 1018 4.67

1614× 1614 3 665 347 3.92

Table 6.2: Runtimes and relative errors for three different matrix to MPO methods.

Algorithm 4.1 TT-SVD TT-cross

Runtime [s] 0.1396 71.035 81.746
Relative error 9.4e-15 4.8e-15 0.65

The prime factorization of 15838 consists of only two prime factors, 2 and 7919, and
is not very suitable for a MPO conversion. We therefore append the matrix with
zeros such that its dimensions are rounded to the nearest power of 2, as the SVD
of the original matrix is easily recovered from the appended matrix. An MPO of 7
tensors is then constructed from the appended 16384×16384 matrix with dimensions
I1 = J1 = 256, I2 = · · · = I7 = J1 = · · · = J7 = 2. Applying the Cuthill-Mckee algo-
rithm reduces the maximal MPO-rank from 413 to 311 and is therefore not applied as
the resulting rank decrease is not very significant. Table 6.2 lists the runtimes and rel-
ative errors when converting the appended matrix into the MPO format for the three
considered methods. The relative errors are obtained by contracting the obtained
MPO back into a matrix Â and computing ||A − Â||F /||A||F . Both Algorithm 4.1
and the TT-SVD manage to obtain a result that is accurate up to machine precision.
Although the maximal MPO-rank obtained with the TT-SVD algorithm is 22, which
is an order of magnitude smaller than 413, our proposed algorithm is about 509 times
faster than the TT-SVD algorithm. The TT-cross method fails to find a sufficiently
accurate MPO and takes about the same amount of time as the TT-SVD algorithm.
Applying the TT-SVD and TT-cross method on the AMD-G2-circuit matrix was not
possible due to insufficient memory.

6.3. Comparison with ALS-SVD and MALS-SVD. The tensor network-
method described in [18] uses the alternating least squares (ALS) and modified alter-
nating least squares (MALS) methods to compute low-rank approximations of a given
matrix in MPO-form. Three numerical experiments are considered in [18], of which
two deal with finding a low-rank approximation to a given matrix. The first matrix
that is considered is a rectangular submatrix of the Hilbert matrix. The Hilbert ma-

trix H ∈ R2N×2N is a symmetric matrix with entries H(i, j) = (i + j − 1)−1, i, j =
1, 2, . . . , 2N . For this experiment, the submatrix A := H(:, 1 : 2N−1) is considered
with 10 ≤ N ≤ 50. Following [18], the corresponding MPO is constructed using the
FUNCRS2 function of the TT-Toolbox [23], which applies a TT-cross approximation
method using a functional description of the matrix entries, and consists of N MPO-
tensors. The obtained MPO approximates the Hilbert matrix with a relative error

TNrSVD 17

of 10−11. Maximal MPO-ranks for all values of N were bounded between 18 and 24.
A tolerance for the relative residual of 10−8 was set for the computation of rank-16
approximations with both the ALS and MALS algorithms. In order to be able to
apply Algorithm 5.1, we first need to make sure that the MPO-tensor Y(1) of the
matrix Y = AO has dimensions 1 × I1 × K × R2 with I1 ≥ K. Since a rank-16
approximation is desired, this means that K = 32. By contracting the first 5 MPO-
tensors A(1),A(2),A(3),A(4),A(5) into a tensor with dimensions 1 × 32 × 32 × R6,
we obtain a new MPO of N − 5 + 1 tensors that satisfies the I1 ≥ K condition. A
tolerance of 10−9 was used in the rounding procedure and q was set to 2, 3, 4 for
N = 10, . . . , 30, N = 35, 40 and N = 45, 50, respectively. Figure 6.3 shows the
runtimes of the ALS, MALS and TNrSVD method as a function of N . All com-
puted rank-16 approximations obtained from the ALS and MALS methods satisfied
||A−USV T ||F /||A||F ≤ 10−8, as reported by the respective methods. As mentioned
in [18], computing the norm of the residual in MPO-form can be computationally chal-
lenging when the MPO-ranks are high. For this reason, we compared the obtained
singular values from the ALS method with the singular values from the TNrSVD
method to ensure the relative residuals were below 10−8. The MALS method solves
larger optimization problems than the ALS method at each iteration and is there-
fore considerably slower. The TNrSVD method is up to 6 times faster than the ALS
method and 13 times faster than the MALS method for this particular example. Us-
ing a standard matrix implementation of Algorithm 5.1 we could compute low-rank
approximations only for the N = 10 and N = 15 cases, with respective runtimes of
0.04 and 9.79 seconds. From this we can conclude that all three tensor-based methods
outperform the standard matrix implementation of Algorithm 5.1 when N ≥ 15 for
this particular example.

Fig. 6.3: Runtimes for computing rank-16 approximations of 2N × 2N−1 Hilbert ma-
trices for 10 ≤ N ≤ 50.

The second matrix that is considered is one with 50 prescribed singular values

0.5k, (k = 0, . . . , 49) and random left and right singular vectors U ∈ R2N×50,V ∈
R2N×50. As with the Hilbert matrices, N ranges from 10 up to 50 and equals the
number of tensors in the MPO. The maximal MPO-rank of all constructed MPOs

18 KIM BATSELIER et al.

was 25. The orthogonal U ,V matrices were generated in MPO-form using the
TT RAND function of the TT-Toolbox. The MPO-representation of the matrix
was then obtained by computing USV T in MPO-form. A tolerance of 10−6 was
set for the computation of rank-50 approximations with both the ALS and MALS
algorithms such that all approximations satisfy ||S − Ŝ||F /||S||F ≤ 10−6, where Ŝ
denotes the diagonal matrix obtained from either the ALS or MALS method. One
sweep of the ALS and MALS algorithms sufficed to obtain the desired accuracy,
except for the cases N = 45 and N = 50. For these two cases neither ALS nor
MALS was able to converge to the desired accuracy. The exponent q was set to
1 for all runs of the TNrSVD algorithm and the rounding tolerances were set to
10−5, 10−6, 10−8, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13 for N = 10, 15, 20, . . . , 50, re-
spectively. This ensured that the result of the TNrSVD method had a relative error
||S − Ŝ||F /||S||F on the estimated 50 dominant singular values below 10−6. Com-
puting a rank-50 approximation implies that K = 100 and the first 7 MPO tensors
need to be contracted prior to running the TNrSVD algorithm. These contractions
result in a new MPO where the first tensor has dimensions 1× 128× 128×R8, such
that I1 = 128 ≥ K = 100 is satisfied. Figure 6.4 shows the runtimes of the ALS,
MALS and TNrSVD method as a function of N . Just like with the Hilbert matrices,
the MALS algorithm takes considerately longer to finish one sweep. The TNrSVD
algorith is up to 5 times faster than ALS and 17 times faster than MALS for this
particular example. Using a standard matrix implementation of Algorithm 5.1 we
could compute low-rank approximations only for the N = 10 and N = 15 cases, with
respective runtimes of 0.04 and 7.59 seconds. For N = 15, the runtimes for the ALS,
MALS and TNrSVD methods were 7.63, 19.5 and 2.13 seconds, respectively.

Fig. 6.4: Runtimes for computing rank-50 decompositions of 2N×2N random matrices
with prescribed singular values for 10 ≤ N ≤ 50.

7. Conclusion. We have proposed a new algorithm to convert a sparse matrix
into an MPO form and a new randomized algorithm to compute a low-rank approxi-
mation of a matrix in MPO form. Our matrix to MPO conversion algorithm is able
to generate MPO representations of a given matrix with machine precision accuracy
up to 509 times faster than the standard TT-SVD algorithm. Compared with the

TNrSVD 19

state-of-the-art ALS-SVD and MALS-SVD algorithms, our TNrSVD is able to find
low-rank approximations with the same accuracy up to 6 and 17 times faster, respec-
tively. Future work includes the investigation of finding permutations, other than the
Cuthill-Mckee permutation, that can reduce the MPO-rank of a given matrix.

REFERENCES

[1] Kim Batselier, Zhongming Chen, and Ngai Wong, Tensor network alternating linear
scheme for MIMO Volterra system identification, Automatica, 84 (2017), pp. 26 – 35.

[2] E. Beltrami, Sulle Funzioni Bilineari, Giornale di Mathematiche, 11 (1873), pp. 98–106.
[3] A. Björck, Numerical Methods for Least Squares Problems, Society for Industrial and Applied

Mathematics, 1996.
[4] Z. Chen, K. Batselier, and N. Wong, Parallelized Tensor Train Learning of Polynomial

Classifiers, CoRR, abs/1612.06505 (2016).
[5] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, Tensor

networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions, Foundations and Trends in Machine Learning, 9 (2016), pp. 249–429.

[6] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, and D. P. Mandic,
Tensor networks for dimensionality reduction and large-scale optimization: Part 2 appli-
cations and future perspectives, Foundations and Trends in Machine Learning, 9 (2017),
pp. 431–673.

[7] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceed-
ings of the 1969 24th National Conference, ACM ’69, New York, NY, USA, 1969, ACM,
pp. 157–172.

[8] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Softw., 38 (2011), pp. 1:1–1:25.

[9] J. Demmel, Applied Numerical Linear Algebra, Society for Industrial and Applied Mathemat-
ics, 1997.

[10] L. Eldén, Matrix Methods in Data Mining and Pattern Recognition, Society for Industrial and
Applied Mathematics, 2007.

[11] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis,
2 (1965), pp. 205–224.

[12] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Nu-
mer. Math., 14 (1970), pp. 403–420.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, 3rd ed., Oct. 1996.

[14] Y. Gu, W. Yu, and Y. Li, Efficient randomized algorithms for adaptive low-rank factorizations
of large matrices, CoRR, abs/1606.09402 (2016).

[15] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Proba-
bilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53
(2011), pp. 217–288.

[16] C. Hubig, I. P. McCulloch, and U. Schollwöck, Generic construction of efficient matrix
product operators, Phys. Rev. B, 95 (2017), p. 035129.

[17] T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009),
pp. 455–500.

[18] N. Lee and A. Cichocki, Estimating a Few Extreme Singular Values and Vectors for Large-
Scale Matrices in Tensor Train Format, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 994–
1014.

[19] , Regularized Computation of Approximate Pseudoinverse of Large Matrices Using Low-
Rank Tensor Train Decompositions, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 598–623.

[20] M. Moonen and B. De Moor, SVD and Signal Processing, III: Algorithms, Architectures and
Applications, Elsevier Science, 1995.

[21] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, Tensorizing neural networks,
in Proceedings of the 28th International Conference on Neural Information Processing
Systems, NIPS’15, Cambridge, MA, USA, 2015, MIT Press, pp. 442–450.

[22] I.V. Oseledets, Tensor-Train Decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–
2317.

[23] I.V. Oseledets, S. Dolgov, et al., MATLAB TT-Toolbox Version 2.3. Available online,
June 2014.

20 KIM BATSELIER et al.

[24] I. V. Oseledets, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J.
Matrix Anal. Appl., 31 (2010), pp. 2130–2145.

[25] , DMRG approach to fast linear algebra in the TT–format, Comput. Meth. Appl. Math.,
11 (2011), pp. 382–393.

[26] I. V. Oseledets and S. V. Dolgov, Solution of linear systems and matrix inversion in the
tt-format, SIAM Journal on Scientific Computing, 34 (2012), pp. A2718–A2739.

[27] I. V. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays,
Linear Algebra and its Applications, 422 (2010), pp. 70–88.

[28] D. Savostyanov and I. Oseledets, Fast adaptive interpolation of multi-dimensional arrays
in tensor train format, in The 2011 International Workshop on Multidimensional (nD)
Systems, Sept 2011, pp. 1–8.

[29] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states,
Annals of Physics, 326 (2011), pp. 96–192.

[30] W. Yu, Y. Gu, J. Li, S. Liu, and Y. Li, Single-pass PCA of large high-dimensional data,
CoRR, abs/1704.07669 (2017).

