ON TANGENT CONES TO LENGTH MINIMIZERS IN CARNOT-CARATHÉODORY SPACES

ROBERTO MONTI, ALESSANDRO PIGATI, AND DAVIDE VITTONE

Abstract

We give a detailed proof of some facts about the blow-up of horizontal curves in Carnot-Carathéodory spaces.

1. Introduction

We give a detailed proof of some facts about the blow-up of horizontal curves in Carnot-Carathéodory spaces. These results are crucially used in [6, 7, 10]. The proof of a fraction of these results was already sketched, in a special case, in [13, Section 3.2].

Let M be a connected n-dimensional C^{∞}-smooth manifold and $\mathscr{X}=\left\{X_{1}, \ldots, X_{r}\right\}$, $r \geq 2$, a system of C^{∞}-smooth vector fields on M that are pointwise linearly independent and satisfy the Hörmander condition introduced below. We call the pair (M, \mathscr{X}) a Carnot-Carathéodory (CC) structure. Given an interval $I \subseteq \mathbb{R}$, a Lipschitz curve $\gamma: I \rightarrow M$ is said to be horizontal if there exist functions $h_{1}, \ldots, h_{r} \in L^{\infty}(I)$ such that for a.e. $t \in I$ we have

$$
\begin{equation*}
\dot{\gamma}(t)=\sum_{i=1}^{r} h_{i}(t) X_{i}(\gamma(t)) \text {. } \tag{1.1}
\end{equation*}
$$

The function $h \in L^{\infty}\left(I ; \mathbb{R}^{r}\right)$ is called the control of γ. Letting $|h|:=\left(h_{1}^{2}+\ldots+h_{r}^{2}\right)^{1 / 2}$, the length of γ is then defined as

$$
L(\gamma):=\int_{I}|h(t)| d t
$$

Since M is connected, by the Chow-Rashevsky theorem (see e.g. [2, 12, 1]) for any pair of points $x, y \in M$ there exists a horizontal curve joining x to y. We can therefore define a distance function $d: M \times M \rightarrow[0, \infty)$ letting

$$
\begin{equation*}
d(x, y):=\inf \{L(\gamma) \mid \gamma:[0, T] \rightarrow M \text { horizontal with } \gamma(0)=x \text { and } \gamma(T)=y\} \tag{1.2}
\end{equation*}
$$

[^0]The resulting metric space (M, d) is a Carnot-Carathéodory space. Since our analysis is local, our results apply in particular to sub-Riemannian manifolds (M, \mathscr{D}, g), where $\mathscr{D} \subset T M$ is a completely non-integrable distribution and g is a smooth metric on \mathscr{D}. If the closure of any ball in (M, d) is compact, then the infimum in (1.2) is a minimum, i.e., any pair of points can be connected by a length-minimizing curve. A horizontal curve $\gamma:[0, T] \rightarrow M$ is a length minimizer if $L(\gamma)=d(\gamma(0), \gamma(T))$.

The main contents of the paper are the following:
(i) we define a tangent Carnot-Carathéodory structure $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ at any point of M, using exponential coordinates of the first kind, see Section 2;
(ii) in Section 3, we define the tangent cone for a horizontal curve, at a given time, as the set of all possible blow-ups in $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ of the curve, and we show that this cone is always nonempty, see Proposition 3.2,
(iii) we show that, if the curve has a right derivative at the given time, the (positive) tangent cone consists of a single half-line, see Theorem 3.5:
(iv) if the curve is a length minimizer, in Theorem 3.6 we show that all the blow-ups are length minimizers in $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$, as well;
(v) in Section 4, we show that a tangent Carnot-Carathéodory structure can be lifted to a free Carnot group, in a way that preserves length minimizers.

2. Nilpotent approximation: Definition of a tangent structure

In this section we introduce some basic notions about Carnot-Carathéodory spaces. Then we describe the structure of a specific frame of vector fields Y_{1}, \ldots, Y_{n} (constructed below) in exponential coordinates, see Theorem [2.3. We also prove a lemma describing the infinitesimal behaviour of the Carnot-Carathéodory distance d near 0 , with respect to suitable anisotropic dilations, see Lemma 2.4.

We denote by Lie $\left(X_{1}, \ldots, X_{r}\right)$ the real Lie algebra generated by X_{1}, \ldots, X_{r} through iterated commutators. The evaluation of this Lie algebra at a point $x \in M$ is a vector subspace of the tangent space $T_{x} M$. If, for any $x \in M$, we have

$$
\operatorname{Lie}\left(X_{1}, \ldots, X_{r}\right)(x)=T_{x} M
$$

we say that the system $\mathscr{X}=\left\{X_{1}, \ldots, X_{r}\right\}$ satisfies the Hörmander condition and we call the pair (M, \mathscr{X}) a Carnot-Carathéodory (CC) structure.

Given a point $x_{0} \in M$, let $\varphi \in C^{\infty}\left(U ; \mathbb{R}^{n}\right)$ be a chart such that U is an open neighborhood of x_{0} and $\varphi\left(x_{0}\right)=0$. Then $V:=\varphi(U)$ is an open neighborhood of $0 \in \mathbb{R}^{n}$ and the system of vector fields $Y_{i}:=\varphi_{*} X_{i}$, with $i=1, \ldots, r$, still satisfies the Hörmander condition in V.

For a multi-index $J=\left(j_{1}, \ldots, j_{k}\right)$ with $k \geq 1$ and $j_{1}, \ldots, j_{k} \in\{1, \ldots, r\}$, define the iterated commutator

$$
Y_{J}:=\left[Y_{j_{1}}, \ldots, Y_{j_{k-1}}, Y_{j_{k}}\right]
$$

where, here and in the following, for given vector fields V_{1}, \ldots, V_{q} we use the short notation $\left[V_{1}, \ldots, V_{q}\right]$ to denote the commutator $\left[V_{1},\left[\cdots,\left[V_{q-1}, V_{q}\right] \cdots\right]\right.$. We say that Y_{J} is a commutator of length $\ell(J):=k$ and we denote by L^{j} the linear span of $\left\{Y_{J}(0) \mid \ell(J) \leq j\right\}$, so that

$$
\{0\}=L^{0} \subseteq L^{1} \subseteq \cdots \subseteq L^{s}=\mathbb{R}^{n}
$$

for some minimal $s \geq 1$. We select multi-indices $J_{1}=(1), \ldots, J_{r}=(r), J_{r+1}, \ldots, J_{n}$ such that, for each $1 \leq j \leq s$,

$$
\ell\left(J_{\operatorname{dim} L^{(j-1)}+1}\right)=\cdots=\ell\left(J_{\operatorname{dim} L^{j}}\right)=j
$$

and such that, setting $Y_{i}:=Y_{J_{i}}$, the vectors $Y_{1}(0), \ldots, Y_{\operatorname{dim} L^{j}}(0)$ form a basis of L^{j}. In particular, we have $\operatorname{dim} L^{1}=r$.

Possibly composing φ with a diffeomorphism (and shrinking U and V), we can assume that V is convex, that for any point $x=\left(x_{1}, \ldots, x_{n}\right) \in V$ we have

$$
\begin{equation*}
x=\exp \left(\sum_{i=1}^{n} x_{i} Y_{i}\right)(0) \tag{2.3}
\end{equation*}
$$

and that Y_{1}, \ldots, Y_{n} are linearly independent on V. Such coordinates $\left(x_{1}, \ldots, x_{n}\right)$ are called exponential coordinates of the first kind associated with the frame Y_{1}, \ldots, Y_{n}. To each coordinate x_{i} we assign the weight $w_{i}:=\ell\left(J_{i}\right)$ and we define the anisotropic dilations $\delta_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\begin{equation*}
\delta_{\lambda}(x):=\left(\lambda^{w_{1}} x_{1}, \ldots, \lambda^{w_{n}} x_{n}\right), \quad \lambda>0 . \tag{2.4}
\end{equation*}
$$

Definition 2.1. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is δ-homogeneous of degree $w \in \mathbb{N}$ if $f\left(\delta_{\lambda}(x)\right)=\lambda^{w} f(x)$ for all $x \in \mathbb{R}^{n}, \lambda>0$. We will refer to such a w as the δ-degree of f.

We will frequently use the anisotropic (pseudo-)norm

$$
\begin{equation*}
\|x\|:=\sum_{i=1}^{n}\left|x_{i}\right|^{1 / w_{i}}, \quad x \in \mathbb{R}^{n} . \tag{2.5}
\end{equation*}
$$

The norm function, $x \mapsto\|x\|$, is δ-homogeneous of degree 1 .
We recall two facts about the exponential map, which are discussed e.g. in [11, pp. 141-147]. First, for any $\psi \in C^{\infty}(V)$, we have the Taylor expansion

$$
\begin{equation*}
\psi\left(\exp \left(\sum_{i=1}^{n} s_{i} Y_{i}\right)(0)\right) \sim\left(\mathrm{e}^{\sum_{i} s_{i} Y_{i}} \psi\right) \tag{2.6}
\end{equation*}
$$

where

- the left-hand side is a function of $s \in \mathbb{R}^{n}$ near 0 ;
- the right-hand side is a shorthand for the formal series

$$
\sum_{k=0}^{\infty} \frac{1}{k!}\left(\left(s_{1} Y_{1}+\cdots+s_{n} Y_{n}\right)^{k} \psi\right)(0)=\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}} s_{i_{1}} \cdots s_{i_{k}}\left(Y_{i_{1}} \cdots Y_{i_{k}} \psi\right)(0)
$$

- given a smooth function $f(x)$ and a formal power series $S(x)$, we define the relation $f(x) \sim S(x)$ if the formal Taylor series of $f(x)$ at 0 is $S(x)$.
Second, letting $S:=\sum_{i=1}^{n} s_{i} Y_{i}$ and $T:=\sum_{i=1}^{n} t_{i} Y_{i}$, the following formal Taylor expansions hold as well:

$$
\begin{equation*}
\psi(\exp (S) \circ \exp (T)(0)) \sim\left(\mathrm{e}^{T} \mathrm{e}^{S} \psi\right)(0)=\left(\mathrm{e}^{P(T, S)} \psi\right)(0) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
P(T, S):=\sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{p} \sum_{k_{i}+\ell_{i} \geq 1} \frac{\left[T^{k_{1}}, S^{\ell_{1}}, \ldots, T^{k_{p}}, S^{\ell_{p}}\right]}{k_{1}!\cdots k_{p}!\ell_{1}!\cdots \ell_{p}!\left(k_{1}+\ell_{1}+\cdots+k_{p}+\ell_{p}\right)} . \tag{2.8}
\end{equation*}
$$

Above, the notation T^{k} stands for T, \ldots, T, k times.
Remark 2.2. The formal power series identity $\mathrm{e}^{T} \mathrm{e}^{S}=\mathrm{e}^{P(T, S)}$ is a purely algebraic fact which holds in any (noncommutative, graded, complete) associative real algebra, see e.g. [5, Sec. X.2]: this principle will be used in the proofs of Theorem 2.3 and Lemma 2.4 .

In the case of exponential coordinates of the second kind, the following theorem is proved in 4].

Theorem 2.3. The vector fields Y_{1}, \ldots, Y_{n} are of the form

$$
\begin{equation*}
Y_{i}(x)=\sum_{j=i}^{n} a_{i j}(x) \frac{\partial}{\partial x_{j}}, \quad x \in V, \quad i=1, \ldots, n \tag{2.9}
\end{equation*}
$$

where $a_{i j} \in C^{\infty}(V)$ are functions such that $a_{i j}=p_{i j}+r_{i j}$ and:
(i) for $w_{j} \geq w_{i}, p_{i j}$ are δ-homogeneous polynomials in \mathbb{R}^{n} of degree $w_{j}-w_{i}$;
(ii) for $w_{j} \leq w_{i}, p_{i j}=\delta_{i j}$ (in particular, $p_{i j}=0$ for $w_{j}<w_{i}$);
(iii) $r_{i j} \in C^{\infty}(V)$ satisfy $r_{i j}(0)=0$;
(iv) for $w_{j} \geq w_{i}, r_{i j}(x)=o\left(\|x\|^{w_{j}-w_{i}}\right)$ as $x \rightarrow 0$.

Proof. Suppose for a moment that

$$
\begin{equation*}
a_{i j}(x)=O\left(\|x\|^{w_{j}-w_{i}}\right), \quad i, j=1, \ldots, n, w_{j} \geq w_{i} \tag{2.10}
\end{equation*}
$$

Let $p_{i j}$ be the sum of all monomials of δ-degree $w_{j}-w_{i}$ in the Taylor expansion of $a_{i j}$, with the convention that $p_{i j}=0$ if $w_{j}<w_{i}$. Statements (i) and (iv) then hold by construction, while (ii) and (iii) follow from $a_{i j}(0)=\delta_{i j}$, which is a consequence of (2.3).

Let us show (2.10). We pullback the identity $Y_{i}(x)=\sum_{j} a_{i j}(x) \frac{\partial}{\partial x_{j}}$ to the origin using the map $\exp (-X)$ (locally defined near x), where $X:=\sum_{k} x_{k} Y_{k}$, for a fixed $x \in V$. We have

$$
\begin{equation*}
\exp (-X)_{*}\left(Y_{i}(x)\right)=\sum_{j} a_{i j}(x) \exp (-X)_{*}\left(\frac{\partial}{\partial x_{j}}(x)\right) \tag{2.11}
\end{equation*}
$$

where the sum ranges from 1 to n. The above equation reads

$$
\sum_{\ell} b_{i \ell}(x) Y_{\ell}(0)=\sum_{j, \ell} a_{i j}(x) c_{j \ell}(x) Y_{\ell}(0)
$$

for suitable smooth coefficients $b_{i \ell}(x), c_{j \ell}(x)$. We claim that

$$
b_{i \ell}(x)=O\left(\|x\|^{w_{\ell}-w_{i}}\right), \quad c_{j \ell}(x)=O\left(\|x\|^{w_{\ell}-w_{j}}\right), \quad \text { and } \quad c_{j \ell}(0)=\delta_{j \ell} .
$$

Then, defining $A:=\left(a_{i j}\right), B:=\left(b_{i \ell}\right)$ and $C:=1-\left(c_{j \ell}\right)$ (1 denoting the identity matrix), we obtain three $n \times n$ matrices satisfying $B(x)=A(x)(1-C(x))$ and $C(0)=$ 0 . In particular, $1-C(x)$ is invertible for x close to 0 and $(1-C(x))^{-1}=\sum_{p=0}^{\infty} C(x)^{p}$. This gives

$$
A(x)=\sum_{p=0}^{s} B(x) C(x)^{p}+o\left(|x|^{s}\right)=\sum_{p=0}^{s} B(x) C(x)^{p}+o\left(\|x\|^{s}\right)
$$

for any $s \in \mathbb{N}$, and (2.10) easily follows.
The proof of $c_{j \ell}(0)=\delta_{j \ell}$ follows from the definition of $c_{j \ell}$ and from $\frac{\partial}{\partial x_{j}}=Y_{j}(0)$, which in turn comes from (2.3), as already observed.

We prove the claim $b_{i \ell}(x)=O\left(\|x\|^{w_{\ell}-w_{i}}\right)$. By (2.3), the left-hand side of (2.11) satisfies

$$
\exp (-X)_{*}\left(Y_{i}(x)\right)=\left.\frac{d}{d t} \exp (-X) \circ \exp \left(t Y_{i}\right) \circ \exp (X)(0)\right|_{t=0}
$$

Using (2.7) and Remark 2.2, for any smooth ψ we obtain

$$
\psi\left(\exp (-X) \circ \exp \left(t Y_{i}\right) \circ \exp (X)(0)\right) \sim \mathrm{e}^{P\left(P\left(X, t Y_{i}\right),-X\right)} \psi(0)
$$

the left-hand side being interpreted as a function of (x, t). We now differentiate this identity at $t=0$. Since $W(t):=P\left(P\left(X, t Y_{i}\right),-X\right)$ vanishes at $t=0$, one has $\left.\frac{d}{d t}\left(\mathrm{e}^{W(t)} \psi\right)(0)\right|_{t=0}=\left.\frac{d}{d t}(W(t) \psi)(0)\right|_{t=0}$ and, letting ψ range among the coordinate functions, we deduce that any finite-order expansion in x of $\exp (-X)_{*}\left(Y_{i}(x)\right)$ is a linear combination of terms of the form

$$
x_{i_{1}} \cdots x_{i_{p}}\left[Y_{i_{1}}, \ldots, Y_{i_{m}}, Y_{i}, Y_{i_{m+1}}, \ldots, Y_{i_{p}}\right](0)
$$

where $p \geq 1$ and $0 \leq m \leq p$. By Jacobi's identity, the iterated commutator $\left[Y_{i_{1}}, \ldots, Y_{i_{m}}, Y_{i}, Y_{i_{m+1}}, \ldots, Y_{i_{p}}\right](0)$ is a linear combination of the vectors $Y_{J}(0)$ with
$\ell(J)=\bar{w}:=\sum_{q=1}^{p} w_{i_{q}}+w_{i}$ and so, by construction, it is a linear combination of the vectors $Y_{\ell}(0)$ with $w_{\ell} \leq \bar{w}$. Hence, letting $w_{\alpha}:=\sum_{q=1}^{n} \alpha_{q} w_{q}$ for all $\alpha \in \mathbb{N}^{n}$, we have

$$
\exp (-X)_{*}\left(Y_{i}(x)\right) \sim \sum_{\ell} \sum_{\alpha: w_{\alpha} \geq w_{\ell}-w_{i}} d_{\alpha i \ell} x^{\alpha} Y_{\ell}(0)
$$

for suitable coefficients $d_{\text {qil }} \in \mathbb{R}$. This gives the required estimate.
The proof of $c_{j \ell}(x)=O\left(\|x\|^{w_{\ell}-w_{j}}\right)$ is analogous to the preceding argument, once we observe that

$$
\exp (-X)_{*}\left(\frac{\partial}{\partial x_{j}}(x)\right)=\left.\frac{d}{d t} \exp (-X) \circ \exp \left(X+t Y_{j}\right)(0)\right|_{t=0}
$$

We can omit the details.
Lemma 2.4. For any compact set $K \subset \mathbb{R}^{n}$ and any $\varepsilon>0$ there exist $\delta>0$ and $\bar{\lambda}>0$ such that $\lambda d\left(\delta_{1 / \lambda}(x), \delta_{1 / \lambda}(y)\right)<\varepsilon$ for all $x, y \in K$ with $|x-y|<\delta$ and all $\lambda \geq \bar{\lambda}$.

Proof. Let $\psi \in C^{\infty}(V)$ be an arbitrary smooth function. Using (2.6) and Remark 2.2, we have the following identity of formal power series in $(s, t) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$: letting $S:=\sum_{i=1}^{n} s_{i} Y_{i}$ and $T:=\sum_{i=1}^{n} t_{i} Y_{i}$,

$$
\begin{equation*}
\psi(\exp (S)(0)) \sim\left(\mathrm{e}^{S} \psi\right)(0)=\left(\mathrm{e}^{T} \mathrm{e}^{-T} \mathrm{e}^{S} \psi\right)(0)=\left(\mathrm{e}^{T} \mathrm{e}^{P(-T, S)} \psi\right)(0) \tag{2.12}
\end{equation*}
$$

The truncation $P_{N}(-T, S)$ of the series $P(-T, S)$ up to δ-degree $N:=w_{n}$ is

$$
\begin{equation*}
P_{N}(-T, S)=\sum_{1 \leq \ell(J) \leq N} q_{J}(s, t) Y_{J} \tag{2.13}
\end{equation*}
$$

where the sum is over all J such that $1 \leq \ell(J) \leq N$ and q_{J} is a homogeneous polynomial with δ-degree $\ell(J)$, i.e., $q_{J}\left(\delta_{\lambda} s, \delta_{\lambda} t\right)=\lambda^{\ell(J)} q_{J}(s, t)$. This follows from the fact that any iterated commutator $\left[Y_{i_{1}}, \ldots, Y_{i_{k}}\right]$ is a constant linear combination of the vector fields Y_{J} 's with $\ell(J)=\sum_{j=1}^{k} w_{i_{j}}$ (which in turn is a consequence of Jacobi's identity).

Moreover, using (2.13) and applying (2.7) with the vector fields Y_{J} in place of Y_{1}, \ldots, Y_{n}, we have the following formal Taylor expansion in (s, t) at $0 \in \mathbb{R}^{2 n}$

$$
\psi\left(\exp \left(P_{N}(-T, S)\right) \circ \exp (T)(0)\right) \sim\left(\mathrm{e}^{T} \mathrm{e}^{P_{N}(-T, S)} \psi\right)(0)
$$

which, by (2.12), coincides with the one of $\psi(\exp (S)(0))$ up to δ-degree N. Since this holds for any ψ, we deduce (for instance letting ψ range among the coordinate functions) that

$$
\exp (S)(0)=\exp \left(P_{N}(-T, S)\right) \circ \exp (T)(0)+o\left(|s|^{N}+|t|^{N}\right)
$$

which by (2.3) gives

$$
s=\exp \left(P_{N}(-T, S)\right)(t)+o\left(|s|^{N}+|t|^{N}\right)=: f(s, t)+o\left(|s|^{N}+|t|^{N}\right)
$$

Now let $s=\delta_{1 / \lambda}(x)$ and $t=\delta_{1 / \lambda}(y)$ with $x, y \in K$. Since

$$
q_{J}(s, t)=\lambda^{-\ell(J)} q_{J}(x, y),
$$

by [11, Theorem 4] we get

$$
d(t, f(s, t)) \leq C \sum_{1 \leq \ell(J) \leq N}\left|q_{J}(s, t)\right|^{1 / \ell(J)}=C \lambda^{-1} \sum_{1 \leq \ell(J) \leq N}\left|q_{J}(x, y)\right|^{1 / \ell(J)},
$$

while, by [11, Lemma 2.20(b)],

$$
d(s, f(s, t))=O\left(|s-f(s, t)|^{1 / w_{n}}\right)=o(|s|+|t|)=o\left(\lambda^{-1}\right)
$$

provided λ is sufficiently large. Thus, by the triangle inequality,

$$
\lambda d\left(\delta_{1 / \lambda}(x), \delta_{1 / \lambda}(y)\right)=\lambda d(s, t) \leq C \sum_{1 \leq \ell(J) \leq N}\left|q_{J}(x, y)\right|^{1 / \ell(J)}+\frac{\varepsilon}{2}
$$

for all $\lambda \geq \bar{\lambda}$, for a suitably large $\bar{\lambda}>0$. Finally, since $P_{N}(S,-S)=0$, we can assume that q_{J} vanishes on the diagonal of $K \times K$ (possibly replacing $q_{J}(s, t)$ with $\left.q_{J}(s, t)-q_{J}(s, s)\right)$. Hence, by compactness of K, we also have

$$
C \sum_{1 \leq \ell(J) \leq N}\left|q_{J}(x, y)\right|^{1 / \ell(J)}<\frac{\varepsilon}{2}
$$

whenever $x, y \in K$ are such that $|x-y|<\delta$, for a suitably small $\delta>0$.
We now introduce the vector fields $Y_{1}^{\infty}, \ldots, Y_{r}^{\infty}$ in \mathbb{R}^{n} defined by

$$
Y_{i}^{\infty}(x):=\sum_{j=1}^{n} p_{i j}(x) \frac{\partial}{\partial x_{j}},
$$

and we let $\mathscr{X}^{\infty}=\left\{Y_{1}^{\infty}, \ldots, Y_{r}^{\infty}\right\}$. The vector fields $Y_{1}^{\infty}, \ldots, Y_{r}^{\infty}$ are known as the nilpotent approximation of Y_{1}, \ldots, Y_{r} at the point 0 . By Proposition 2.5 below, the pair $\left(\mathbb{R}^{n}, \mathscr{X}^{\infty}\right)$ is a Carnot-Carathéodory structure. We set $M^{\infty}:=\mathbb{R}^{n}$ and we call $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ a tangent Carnot-Carathéodory structure to (M, \mathscr{X}) at the point $x_{0} \in M$.

Proposition 2.5. The vector fields $Y_{1}^{\infty}, \ldots, Y_{r}^{\infty}$ are pointwise linearly independent and satisfy the Hörmander condition in \mathbb{R}^{n}. Moreover, any iterated commutator $Y_{J}^{\infty}:=\left[Y_{j_{1}}^{\infty},\left[\ldots,\left[Y_{j_{k-1}}^{\infty}, Y_{j_{k}}^{\infty}\right] \ldots\right]\right]$ of length $\ell(J)=k>s$ vanishes identically.

Proof. We claim that Theorem 2.3 implies $Y_{i}^{\infty}=\lim _{\lambda \rightarrow \infty} \lambda^{-1}\left(\delta_{\lambda}\right)_{*} Y_{i}$, for all $i=$ $1, \ldots, r$, in the (local) C^{∞}-topology (the vector field $\lambda^{-1}\left(\delta_{\lambda}\right)_{*} Y_{i}$ being defined on $\left.\delta_{\lambda}(V)\right)$. Indeed, since $Y_{i}(x)=Y_{i}^{\infty}(x)+\sum_{j} r_{i j}(x) \frac{\partial}{\partial x_{j}}$, we have

$$
\lambda^{-1}\left(\left(\delta_{\lambda}\right)_{*} Y_{i}\right)(x)=Y_{i}^{\infty}(x)+\sum_{j=1}^{n} \lambda^{w_{j}-1} r_{i j}\left(\delta_{1 / \lambda}(x)\right) \frac{\partial}{\partial x_{j}},
$$

because $\lambda^{-1}\left(\delta_{\lambda}\right)_{*} Y_{i}^{\infty}=Y_{i}^{\infty}$. By Theorem [2.3, the monomials in the Taylor expansion of $r_{i j}$ have δ-degree greater than $w_{j}-1$. Thus, for any $\alpha \in \mathbb{N}^{n}$,

$$
\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}\left(\lambda^{w_{j}-1} r_{i j}\left(\delta_{1 / \lambda}(x)\right)\right)=\lambda^{w_{j}-1-w_{\alpha}} \frac{\partial^{|\alpha|} r_{i j}}{\partial x^{\alpha}}\left(\delta_{1 / \lambda}(x)\right)
$$

where $w_{\alpha}:=\sum_{\ell} \alpha_{\ell} w_{\ell}$. The monomials in the expansion of $\frac{\partial^{|\alpha|} r_{i j}}{\partial x^{\alpha}}$ have δ-degree greater than $w_{j}-1-w_{\alpha}$, hence $\left|\frac{\partial^{|\alpha|} r_{i j}}{\partial x^{\alpha}}\left(\delta_{1 / \lambda}(x)\right)\right|=o\left(\lambda^{-\left(w_{j}-1-w_{\alpha}\right)}\right)$ and the claim follows.

In particular, we deduce that for any multi-index J

$$
\begin{equation*}
Y_{J}^{\infty}=\lim _{\lambda \rightarrow \infty} \lambda^{-\ell(J)}\left(\delta_{\lambda}\right)_{*} Y_{J} \tag{2.14}
\end{equation*}
$$

in the local C^{∞} topology. Hence, defining the $n \times n$ matrix $D_{\lambda}:=\operatorname{diag}\left[\lambda^{w_{1}}, \ldots, \lambda^{w_{n}}\right]$ and recalling that $\ell\left(J_{p}\right)=w_{p}$, for all $p=1, \ldots, n$ we have

$$
Y_{J_{p}}^{\infty}(x)=\lim _{\lambda \rightarrow \infty} \lambda^{-w_{p}} D_{\lambda} Y_{J_{p}}\left(\delta_{1 / \lambda}(x)\right)
$$

Now the first statement follows from

$$
\begin{aligned}
\operatorname{det}\left(Y_{J_{1}}^{\infty}, \ldots, Y_{J_{n}}^{\infty}\right)(x) & =\lim _{\lambda \rightarrow \infty} \lambda^{-\sum_{i} w_{i}} \operatorname{det}\left(D_{\lambda}\right) \operatorname{det}\left(Y_{J_{1}}, \ldots, Y_{J_{n}}\right)\left(\delta_{1 / \lambda}(x)\right) \\
& =\operatorname{det}\left(Y_{J_{1}}, \ldots, Y_{J_{n}}\right)(0)=\operatorname{det}\left(Y_{1}, \ldots, Y_{n}\right)(0),
\end{aligned}
$$

which is a nonzero constant. This gives the first part of the statement.
In order to prove the last assertion, we use again the fact that $\lambda^{-1}\left(\delta_{\lambda}\right)_{*} Y_{i}^{\infty}=Y_{i}^{\infty}$ for $i=1, \ldots, r$. For any $x \in \mathbb{R}^{n}$ and any J with $\ell(J)>s=w_{n}$ we have, by (2.14),

$$
Y_{J}^{\infty}(x)=\lim _{\lambda \rightarrow \infty} \lambda^{-\ell(J)}\left(\left(\delta_{\lambda}\right)_{*} Y_{J}\right)(x)=\lim _{\lambda \rightarrow \infty} \lambda^{-\ell(J)} D_{\lambda} Y_{J}\left(\delta_{1 / \lambda}(x)\right)
$$

The right-hand side is bounded by $\lambda^{s-\ell(J)}\left|Y_{J}\left(\delta_{1 / \lambda}(x)\right)\right|$ (if $\lambda \geq 1$), which tends to 0 as $\lambda \rightarrow \infty$. This shows that $Y_{J}^{\infty}=0$.

Remark 2.6. Setting $Y_{i}^{\infty}:=Y_{J_{i}}^{\infty}$ for $i=1, \ldots, n$, the coordinate functions on $M^{\infty}=$ \mathbb{R}^{n} are exponential coordinates of the first kind for $\left(Y_{1}^{\infty}, \ldots, Y_{n}^{\infty}\right)$, namely

$$
\begin{equation*}
x=\exp \left(\sum_{i=1}^{n} x_{i} Y_{i}^{\infty}\right)(0) \tag{2.15}
\end{equation*}
$$

for any $x \in \mathbb{R}^{n}$. This follows from the fact that, for λ large enough (depending on x), we have $y:=\delta_{\lambda^{-1}}(x) \in V$ and, using (2.3) with y in place of x,

$$
x=\delta_{\lambda}\left(\exp \left(\sum_{i} y_{i} Y_{i}\right)(0)\right)=\exp \left(\sum_{i} x_{i} \lambda^{-w_{i}}\left(\delta_{\lambda}\right)_{*} Y_{i}\right)(0) \rightarrow \exp \left(\sum_{i} x_{i} Y_{i}^{\infty}\right)(0)
$$

as $\lambda \rightarrow \infty$, since (2.14) gives $\lambda^{-w_{i}}\left(\delta_{\lambda}\right)_{*} Y_{i} \rightarrow Y_{i}^{\infty}$ in the local C^{∞} topology.

3. The tangent cone to a horizontal curve

Let (M, \mathscr{X}) be a CC structure and let $\gamma:[-T, T] \rightarrow M$ be a horizontal curve. Given $t \in(-T, T)$, let φ be a chart centered at $x_{0}=\gamma(t)$, as in the previous section, together with the dilations δ_{λ} and the tangent CC structure ($M^{\infty}, \mathscr{X}^{\infty}$) introduced above.

Definition 3.1. The tangent cone $\operatorname{Tan}(\gamma ; t)$ to γ at $t \in(-T, T)$ is the set of all horizontal curves $\kappa: \mathbb{R} \rightarrow M^{\infty}$ such that there exists an infinitesimal sequence $\eta_{i} \downarrow 0$ satisfying, for any $\tau \in \mathbb{R}$,

$$
\lim _{i \rightarrow \infty} \delta_{1 / \eta_{i}} \varphi\left(\gamma\left(t+\eta_{i} \tau\right)\right)=\kappa(\tau)
$$

with uniform convergence on compact subsets of \mathbb{R}.
We remark that any limit curve as above is automatically $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$-horizontal: see e.g. the proof of Theorem 3.6.

The definition of $\operatorname{Tan}(\gamma ; t)$ depends on the choice Y_{1}, \ldots, Y_{n} of linearly independent iterated commutators. When $\gamma:[0, T] \rightarrow M$, the tangent cones $\operatorname{Tan}^{+}(\gamma ; 0)$ and $\operatorname{Tan}^{-}(\gamma ; T)$ can be defined in a similar way: $\operatorname{Tan}^{+}(\gamma ; 0)$ contains curves in M^{∞} defined on $[0, \infty)$, while $\operatorname{Tan}^{-}(\gamma ; T)$ contains curves defined on $(-\infty, 0]$.

When $M=M^{\infty}$ or $M=G$ is a Carnot group, there is already a group of dilations on M itself. In such cases, when $\gamma(t)=0$, we define the tangent cone $\operatorname{Tan}(\gamma ; t)$ as the set of horizontal limit curves of the form $\kappa(t)=\lim _{i \rightarrow \infty} \delta_{1 / \eta_{i}} \gamma\left(t+\eta_{i} \tau\right)$.

The tangent cone is closed under uniform convergence of curves on compact sets.
Proposition 3.2. For any horizontal curve $\gamma:[-T, T] \rightarrow M$ the tangent cone $\operatorname{Tan}(\gamma ; t)$ is nonempty for any $t \in(-T, T)$. The same holds for $\operatorname{Tan}^{+}(\gamma ; 0)$ and $\operatorname{Tan}^{-}(\gamma ; T)$, for a horizontal curve $\gamma:[0, T] \rightarrow M$.

Proof. We prove that $\operatorname{Tan}^{+}(\gamma ; 0) \neq \emptyset$. The other cases are analogous.
We use exponential coordinates of the first kind centered at $\gamma(0)$. By (1.1), we have a.e.

$$
\dot{\gamma}=\sum_{i=1}^{r} h_{i} Y_{i}(\gamma)=\sum_{j=1}^{n} \sum_{i=1}^{r} h_{i} a_{i j}(\gamma) \frac{\partial}{\partial x_{j}},
$$

where $h_{i} \in L^{\infty}([0, T])$ and $a_{i j}=p_{i j}+r_{i j}$, as in Theorem 2.3, Letting $K:=\gamma([0, T])$, we have $|\dot{\gamma}(t)| \leq C$ for some constant depending on $\left\|a_{i j}\right\|_{L^{\infty}(K)}$ and $\|h\|_{L^{\infty}}$. This implies that $|\gamma(t)| \leq C t$ for all $t \in[0, T]$.

By induction on $k \geq 1$, we prove the following statement: for any j satisfying $w_{j} \geq k$ we have $\left|\gamma_{j}(t)\right| \leq C t^{k}$. The base case $k=1$ has already been treated. Now assume that $w_{j} \geq k>1$ and that the statement is true for $1, \ldots, k-1$. Since $r_{i j}$ is smooth, we have $r_{i j}=q_{i j, k}+r_{i j, k}$, where $q_{i j, k}$ is a polynomial containing only terms
with δ-homogeneous degree at least $w_{j}-w_{i}+1=w_{j}$ and $\left|r_{i j, k}(x)\right| \leq C|x|^{k-1}$ on K (here $|x|$ denotes the usual Euclidean norm).

Each monomial $c_{\alpha} x^{\alpha}$ of the polynomial $p_{i j}+q_{i j, k}$ has δ-degree $w_{\alpha} \geq w_{j}-1$. If $\alpha_{m}=0$ whenever $w_{m} \geq k$, then we can estimate

$$
\left|\gamma(t)^{\alpha}\right|=\prod_{m: w_{m} \leq k-1}\left|\gamma_{m}(t)\right|^{\alpha_{m}} \leq C t^{w_{\alpha}} \leq C t^{k-1}
$$

using the inductive hypothesis with k replaced by $w_{m} \leq k-1$. Otherwise, there exists some index m with $w_{m} \geq k$ and $\alpha_{m}>0$, in which case

$$
\left|\gamma(t)^{\alpha}\right| \leq C\left|\gamma_{m}(t)\right| \leq C t^{k-1}
$$

using the inductive hypothesis with k replaced by $k-1$. Thus $\left|p_{i j}(\gamma(t))+q_{i j, k}(\gamma(t))\right| \leq$ $C t^{k-1}$. Combining this with the estimate $\left|r_{i j, k}(\gamma(t))\right| \leq C t^{k-1}$, we obtain $\left|a_{i j}(\gamma(t))\right| \leq$ $C t^{k-1}$. So we finally have

$$
\left|\gamma_{j}(t)\right| \leq\|h\|_{L^{\infty}} \sum_{i=1}^{r} \int_{0}^{t}\left|a_{i j}(\gamma(\tau))\right| d \tau \leq C t^{k}
$$

completing the inductive proof. Applying the above statement with $k=w_{j}$, we obtain

$$
\begin{equation*}
\left|\gamma_{j}(t)\right| \leq C t^{w_{j}} \tag{3.16}
\end{equation*}
$$

for a suitable constant C depending only on K, T and $\|h\|_{L^{\infty}}$.
Now we prove that $\operatorname{Tan}^{+}(\gamma ; 0)$ is nonempty. For $\eta>0$ consider the family of curves $\gamma^{\eta}(t):=\delta_{1 / \eta}(\gamma(\eta t))$, defined for $t \in[0, T / \eta]$. The derivative of γ^{η} is a.e.

$$
\dot{\gamma}^{\eta}(t)=\sum_{j=1}^{n} \sum_{i=1}^{r} h_{i}(\eta t) \eta^{1-w_{j}} a_{i j}(\gamma(\eta t)) \frac{\partial}{\partial x_{j}},
$$

where, by Theorem 2.3 and the estimates (3.16), we have

$$
\left|a_{i j}(\gamma(\eta t))\right| \leq C\|\gamma(\eta t)\|^{w_{j}-1} \leq C(\eta t)^{w_{j}-1}
$$

This proves that the family of curves $\left(\gamma^{\eta}\right)_{\eta>0}$ is locally Lipschitz equicontinuous. So it has a subsequence $\left(\gamma^{\eta_{i}}\right)_{i}$ that is converging locally uniformly as $\eta_{i} \rightarrow 0$ to a curve $\kappa:[0, \infty) \rightarrow \mathbb{R}^{n}$.

Remark 3.3. The following result was obtained along the proof of Proposition 3.2, Let (M, \mathscr{X}) be a Carnot-Carathéodory structure. Using exponential coordinates of the first kind, we (locally) identify M with \mathbb{R}^{n} and we assign to the coordinate x_{j} the weight w_{j}, as above. Given $T>0$ and K compact, there exists a positive constant $C=C(K, T)$ such that the following holds: for any horizontal curve $\gamma:[0, T] \rightarrow K$ parametrized by arclength and such that $\gamma(0)=0$, one has

$$
\begin{equation*}
\left|\gamma_{j}(t)\right| \leq C t^{w_{j}}, \quad \text { for any } j=1, \ldots, n \text { and } t \in[0, T] \tag{3.17}
\end{equation*}
$$

In Carnot groups, by homogeneity, the constant C is independent of K and T.

Definition 3.4. We say that $v \in \mathbb{R}^{n}$ is a right tangent vector to a curve $\gamma:[0, T] \rightarrow$ \mathbb{R}^{n} at 0 if

$$
\gamma(t)=t v+o(t), \quad \text { as } t \rightarrow 0^{+} .
$$

The definition of a left tangent vector is analogous.
The next result is stated in exponential coordinates of the first kind.
Theorem 3.5. Let $\gamma:[0, T] \rightarrow V$ be a horizontal curve parametrized by arclength, with $\gamma(0)=0$. If γ has a right tangent vector $v \in \mathbb{R}^{n}$ at 0 , then:
(i) $v_{j}=0$ for $j>r$ and $|v| \leq 1$;
(ii) $\operatorname{Tan}^{+}(\gamma ; 0)=\{\kappa\}$, where $\kappa(t)=t v$ for $t \in[0, \infty)$;
(iii) $|v|=1$ if γ is also length minimizing.

A similar statement holds if $\gamma:[-T, 0] \rightarrow V$ has a left tangent vector at 0 .
Proof. (i) Since $Y_{i}(x)=\frac{\partial}{\partial x_{i}}+o(1)$ as $x \rightarrow 0$, we have

$$
\begin{equation*}
\gamma_{j}(t)=\int_{0}^{t} \sum_{i=1}^{r} h_{i}(s) \delta_{i j} d s+o(t) \tag{3.18}
\end{equation*}
$$

We deduce that $v_{j}=0$ for $j>r$ and

$$
|v|=\lim _{t \rightarrow 0^{+}}\left|\frac{\gamma(t)}{t}\right| \leq \lim _{t \rightarrow 0^{+}} \frac{1}{t} \int_{0}^{t}|h(s)| d s=1 .
$$

(ii) Since $\gamma_{j}(t)=v_{j} t+o(t)$ for $j \leq r$, it suffices to show that

$$
\begin{equation*}
\gamma_{j}(t)=o\left(t^{w_{j}}\right), \quad j>r . \tag{3.19}
\end{equation*}
$$

Up to a rotation of the vector fields Y_{1}, \ldots, Y_{r}, which by (2.3) corresponds to a rotation of the first r coordinates, we can assume that $v_{2}=\ldots=v_{r}=0$. Notice that Theorem 2.3 still applies in these new exponential coordinates. From (3.18) we get

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{t} \int_{0}^{t} h_{i}(s) d s= \begin{cases}v_{1} & i=1 \tag{3.20}\\ 0 & i=2, \ldots, r\end{cases}
$$

By Remark 3.3 we have $\|\gamma(t)\|=O(t)$. We now show (3.19) by induction on $j \geq r+1$.
Assume the claim holds for $r+1, \ldots, j-1$. The coordinate γ_{j}, with $j>r$, is

$$
\gamma_{j}(t)=\sum_{i=1}^{r} \int_{0}^{t} h_{i}(s) a_{i j}(\gamma(s)) d s=\int_{0}^{t} h_{1}(s) a_{1 j}(\gamma(s)) d s+\sum_{i=2}^{r} \int_{0}^{t} h_{i}(s) a_{i j}(\gamma(s)) d s
$$

By Theorem 2.3, $a_{i j}=p_{i j}+r_{i j}$ with $r_{i j}(x)=o\left(\|x\|^{w_{j}-1}\right)$, so we deduce that

$$
a_{i j}(\gamma(s))=p_{i j}(\gamma(s))+r_{i j}(\gamma(s))=p_{i j}(\gamma(s))+o\left(s^{w_{j}-1}\right), \quad i=1, \ldots, r
$$

From (2.3) we deduce that for $i=1, \ldots, r$ we have $Y_{i}\left(0, \ldots, x_{i}, \ldots, 0\right)=\frac{\partial}{\partial x_{i}}$, hence

$$
\begin{equation*}
a_{i j}\left(0, \ldots, x_{i}, \ldots, 0\right)=0, \quad j>r . \tag{3.21}
\end{equation*}
$$

The polynomial $p_{i j}(x)$ is δ-homogeneous of degree $w_{j}-w_{i}=w_{j}-1$ and so it contains no variable x_{k} with $k \geq j$. Condition (3.21) implies that $p_{i j}(x)$ does not contain the monomial $x_{i}^{w_{j}-1}$, either. Thus, when $i=1$ each monomial in $p_{1 j}(x)$ contains at least one of the variables x_{2}, \ldots, x_{j-1}. By the inductive assumption, it follows that $p_{1 j}(\gamma(s))=o\left(s^{w_{j}-1}\right)$, and thus $a_{1 j}(\gamma(s))=o\left(s^{w_{j}-1}\right)$. This implies that

$$
\int_{0}^{t} h_{1}(s) a_{1 j}(\gamma(s)) d s=o\left(t^{w_{j}}\right)
$$

Now we consider the case $i=2, \ldots, r$. Letting $p_{i j}=c_{i j} x_{1}^{w_{j}-1}+\widehat{p}_{i j}$ with $c_{i j} \in \mathbb{R}$ and $\widehat{a}_{i j}:=\widehat{p}_{i j}+r_{i j}$, we have $\widehat{a}_{i j}(\gamma(s))=o\left(s^{w_{j}-1}\right)$ as in the previous case and thus

$$
\int_{0}^{t} h_{i}(s) \widehat{a}_{i j}(\gamma(s)) d s=o\left(t^{w_{j}}\right)
$$

We claim that, for $i=2, \ldots, m$, we also have

$$
\int_{0}^{t} h_{i}(s) \gamma_{1}(s)^{w_{j}-1} d s=o\left(t^{w_{j}}\right)
$$

Indeed, since $v_{i}=0$ we have $H_{i}(s):=\int_{0}^{s} h_{i}\left(s^{\prime}\right) d s^{\prime}=o(s)$, so integration by parts gives

$$
\begin{aligned}
\int_{0}^{t} h_{i}(s) \gamma_{1}(s)^{w_{j}-1} d s & =H_{i}(t) \gamma_{1}(t)^{w_{j}-1}-\left(w_{j}-1\right) \int_{0}^{t} H_{i}(s) \gamma_{1}(s)^{w_{j}-2} \dot{\gamma}_{1}(s) d s \\
& =o\left(t^{w_{j}}\right)+\int_{0}^{t} o\left(s^{w_{j}-1}\right) d s=o\left(t^{w_{j}}\right)
\end{aligned}
$$

This ends the proof of (3.19) and hence of (ii).
(iii) By Theorem 3.6 below, κ is parametrized by arclength. But $\left(v_{1}, \ldots, v_{r}\right)$ equals its (continuous) control $h(t)$ at $t=0$, so $|v|=1$.

For $\lambda>0$, we define the vector fields $Y_{1}^{\lambda}, \ldots, Y_{r}^{\lambda}$ in $\delta_{\lambda}(V)$ by

$$
Y_{i}^{\lambda}(x):=\lambda^{-1}\left(\left(\delta_{\lambda}\right)_{*} Y_{i}\right)(x)=\sum_{j=1}^{n} \lambda^{w_{j}-1} a_{i j}\left(\delta_{1 / \lambda}(x)\right) \frac{\partial}{\partial x_{j}}, \quad x \in \delta_{\lambda}(V)
$$

In the proof of Proposition 2.5 it was shown that

$$
\begin{equation*}
Y_{i}^{\lambda} \rightarrow Y_{i}^{\infty} \tag{3.22}
\end{equation*}
$$

locally uniformly in \mathbb{R}^{n} as $\lambda \rightarrow \infty$, together with all the derivatives.
We denote by d^{λ} the Carnot-Carathéodory metric of $\left(\delta_{\lambda}(V), \mathscr{X}^{\lambda}\right)$, with $\mathscr{X}^{\lambda}:=$ $\left\{Y_{1}^{\lambda}, \ldots, Y_{r}^{\lambda}\right\}$. The distance function d^{λ} is related to the distance function d via the formula

$$
\begin{equation*}
d^{\lambda}(x, y)=\lambda d\left(\delta_{1 / \lambda}(x), \delta_{1 / \lambda}(y)\right) \tag{3.23}
\end{equation*}
$$

for all $x, y \in \delta_{\lambda}(V)$ and $\lambda>0$. Indeed, let $\gamma:[0,1] \rightarrow V$ be a horizontal curve

$$
\begin{equation*}
\gamma(t)=\gamma(0)+\int_{0}^{t} \sum_{i=1}^{r} h_{i}(s) Y_{i}(\gamma(s)) d s, \quad t \in[0,1] \tag{3.24}
\end{equation*}
$$

and define the curve $\gamma^{\lambda}:[0, \lambda] \rightarrow \delta_{\lambda}(V)$

$$
\begin{equation*}
\gamma^{\lambda}(t):=\delta_{\lambda} \gamma(t / \lambda), \quad t \in[0, \lambda] . \tag{3.25}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\gamma^{\lambda}(t)=\gamma^{\lambda}(0)+\int_{0}^{t} \sum_{i=1}^{r} h_{i}(s / \lambda) Y_{i}^{\lambda}\left(\gamma^{\lambda}(s)\right) d s, \quad t \in[0, \lambda], \tag{3.26}
\end{equation*}
$$

and therefore the length of γ^{λ} is

$$
\begin{equation*}
L^{\lambda}\left(\gamma^{\lambda}\right)=\int_{0}^{\lambda}|h(s / \lambda)| d s=\lambda \int_{0}^{1}|h(s)| d s=\lambda L(\gamma) \tag{3.27}
\end{equation*}
$$

If γ is length minimizing, then the curves in $\operatorname{Tan}(\gamma ; t)$ are also locally length minimizing. This is the content of the next theorem.

Theorem 3.6. Let $\gamma:[-T, T] \rightarrow M$ be a length-minimizing curve in (M, \mathscr{X}), parametrized by arclength, and let $\gamma^{\infty} \in \operatorname{Tan}\left(\gamma ; t_{0}\right)$ for some $t_{0} \in(-T, T)$. Then γ^{∞} is horizontal, parametrized by arclength and, when restricted to any compact interval, it is length minimizing in the tangent Carnot-Carathéodory structure $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$.

Proof. We can assume $t_{0}=0$. We use exponential coordinates of the first kind centered at $\gamma(0)$. Given any $\bar{T}>0$, for some sequence $\lambda_{h} \rightarrow \infty$ we have

$$
\begin{equation*}
\gamma^{\lambda_{h}}(t):=\delta_{\lambda_{h}} \gamma\left(t / \lambda_{h}\right) \rightarrow \gamma^{\infty}(t) \text { in } L^{\infty}([-\bar{T}, \bar{T}]) \tag{3.28}
\end{equation*}
$$

Up to a subsequence, we can assume that the functions $h\left(t / \lambda_{h}\right)$ weakly converge in $L^{2}\left([-\bar{T}, \bar{T}] ; \mathbb{R}^{r}\right)$ to some $h^{\infty} \in L^{2}\left([-\bar{T}, \bar{T}] ; \mathbb{R}^{r}\right)$ such that $\left|h^{\infty}\right| \leq 1$ almost everywhere. Then, using (3.26), we have

$$
\gamma^{\infty}(t)=\lim _{h \rightarrow \infty} \int_{0}^{t} \sum_{i=1}^{r} h_{i}\left(s / \lambda_{h}\right) Y_{i}^{\lambda_{h}}\left(\gamma^{\lambda_{h}}(s)\right) d s=\int_{0}^{t} \sum_{i=1}^{r} h_{i}^{\infty} Y_{i}^{\infty}\left(\gamma^{\infty}(s)\right) d s
$$

so γ^{∞} is $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$-horizontal and, denoting by d^{∞} the Carnot-Carathéodory distance on M^{∞} induced by the family \mathscr{X}^{∞}, its length satisfies

$$
\begin{equation*}
d^{\infty}\left(\gamma^{\infty}(-\bar{T}), \gamma^{\infty}(\bar{T})\right) \leq L^{\infty}\left(\left.\gamma^{\infty}\right|_{[-\bar{T}, \bar{T}]}\right)=\int_{-\bar{T}}^{\bar{T}}\left|h^{\infty}\right| d t \leq 2 \bar{T} . \tag{3.29}
\end{equation*}
$$

We will see that, in fact, the converse inequality $d^{\infty}\left(\gamma^{\infty}(-\bar{T}), \gamma^{\infty}(\bar{T})\right) \geq 2 \bar{T}$ holds as well, thus proving that γ^{∞} is length minimizing on $[-\bar{T}, \bar{T}]$ and parametrized by arclength (with control h^{∞}).

Let $\kappa^{\infty}:[-\bar{T}, \bar{T}] \rightarrow \mathbb{R}^{n}$ be an $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$-horizontal curve such that $\kappa^{\infty}(\pm \bar{T})=$ $\gamma^{\infty}(\pm \bar{T})$, with control $k^{\infty} \in L^{\infty}\left([-\bar{T}, \bar{T}] ; \mathbb{R}^{n}\right)$. For all h large enough, the ordinary differential equation

$$
\begin{equation*}
\dot{\kappa}^{\lambda_{h}}(t)=\sum_{i=1}^{r} k_{i}^{\infty}(t) Y_{i}^{\lambda_{h}}\left(\kappa^{\lambda_{h}}(t)\right) \tag{3.30}
\end{equation*}
$$

with initial condition $\kappa^{\lambda_{h}}(-\bar{T})=\kappa^{\infty}(-\bar{T})$ has a (unique) solution defined on $[-\bar{T}, \bar{T}]$. Indeed, let K be a compact neighborhood of $\kappa^{\infty}([-\bar{T}, \bar{T}])$. For any $\varepsilon>0$ we have $\left\|Y_{i}^{\lambda_{h}}-Y_{i}^{\infty}\right\|_{L^{\infty}(K)} \leq \varepsilon$ eventually. If $-\bar{T} \in I \subseteq[-\bar{T}, \bar{T}]$ is the maximal (compact) subinterval such that $\kappa^{\lambda_{h}}$ is defined on I and $\kappa^{\lambda_{h}}(I) \subseteq K$, we have

$$
\left|\dot{\kappa}^{\lambda_{h}}-\dot{\kappa}^{\infty}\right| \leq C \varepsilon+C \sum_{i}\left|Y_{i}^{\infty}\left(\kappa^{\lambda_{h}}\right)-Y_{i}^{\infty}\left(\kappa^{\infty}\right)\right| \leq C \varepsilon+C\left|\kappa^{\lambda_{h}}-\kappa^{\infty}\right|
$$

on I, for some C depending on $\left\|k^{\infty}\right\|_{L^{\infty}}$ and $\left\|\nabla Y_{i}^{\infty}\right\|_{L^{\infty}(K)}$. Hence, by Gronwall's inequality, $\left|\kappa^{\lambda_{h}}-\kappa^{\infty}\right| \leq C \varepsilon$ on I. If ε is small enough, we deduce that $\kappa^{\lambda_{h}}(\max I)$ belongs to the interior of K, so $I=[-\bar{T}, \bar{T}]$. Since ε was arbitrary, we also get

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \kappa^{\lambda_{h}}(\pm \bar{T})=\kappa^{\infty}(\pm \bar{T})=\gamma^{\infty}(\pm \bar{T})=\lim _{h \rightarrow \infty} \gamma^{\lambda_{h}}(\pm \bar{T}) \tag{3.31}
\end{equation*}
$$

From the length minimality of $\gamma^{\lambda_{h}}$ in $\left(\delta_{\lambda_{h}}(V), \mathscr{X}^{\lambda_{h}}\right)$ it follows that

$$
\begin{aligned}
2 \bar{T}=L^{\lambda_{h}}\left(\left.\gamma^{\lambda_{h}}\right|_{[-\bar{T}, \bar{T}]}\right) \leq & L^{\lambda_{h}}\left(\kappa^{\lambda_{h}}\right)+d^{\lambda_{h}}\left(\kappa^{\lambda_{h}}(-\bar{T}), \gamma^{\lambda_{h}}(-\bar{T})\right)+d^{\lambda_{h}}\left(\kappa^{\lambda_{h}}(\bar{T}), \gamma^{\lambda_{h}}(\bar{T})\right) \\
= & \int_{-\bar{T}}^{T}\left|k^{\infty}(t)\right| d t+\lambda_{h} d\left(\delta_{1 / \lambda_{h}} \kappa^{\lambda_{h}}(-\bar{T}), \delta_{1 / \lambda_{h}} \gamma^{\lambda_{h}}(-\bar{T})\right) \\
& +\lambda_{h} d\left(\delta_{1 / \lambda_{h}} \kappa^{\lambda_{h}}(\bar{T}), \delta_{1 / \lambda_{h}} \gamma^{\lambda_{h}}(\bar{T})\right) .
\end{aligned}
$$

By Lemma 2.4 and (3.31), we have

$$
\lim _{h \rightarrow \infty} \lambda_{h} d\left(\delta_{1 / \lambda_{h}} \kappa^{\lambda_{h}}(\pm \bar{T}), \delta_{1 / \lambda_{h}} \gamma^{\lambda_{h}}(\pm \bar{T})\right)=0 .
$$

Hence, $2 \bar{T} \leq \int_{-\bar{T}}^{\bar{T}}\left|k^{\infty}(t)\right| d t=L^{\infty}\left(\kappa^{\infty}\right)$. Since κ^{∞} was arbitrary, we conclude that $d^{\infty}\left(\gamma^{\infty}(-\bar{T}), \gamma^{\infty}(\bar{T})\right) \geq 2 \bar{T}$.

The following fact is a special case of the general principle according to which the tangent to the tangent is (contained in the) tangent.

Proposition 3.7. Let $\gamma:[-T, T] \rightarrow M$ be a horizontal curve and $t \in(-T, T)$. If $\kappa \in \operatorname{Tan}(\gamma ; t)$ and $\widehat{\kappa} \in \operatorname{Tan}(\kappa ; 0)$, then $\widehat{\kappa} \in \operatorname{Tan}(\gamma ; t)$.

Proof. We can assume without loss of generality that $t=0$. We use exponential coordinates of the first kind centered at $\gamma(0)$. Let $N>0$ be fixed. Since $\widehat{\kappa} \in \operatorname{Tan}(\kappa ; 0)$, there exists an infinitesimal sequence $\xi_{k} \downarrow 0$ such that, for all $t \in[-N, N]$ and $k \in \mathbb{N}$, we have

$$
\left\|\widehat{\kappa}(t)-\delta_{1 / \xi_{k}} \kappa\left(\xi_{k} t\right)\right\| \leq \frac{1}{2^{k}} .
$$

Since $\kappa \in \operatorname{Tan}(\gamma ; 0)$, there exists an infinitesimal sequence $\eta_{k} \downarrow 0$ such that, for all $t \in[-N, N]$ and $k \in \mathbb{N}$, we have

$$
\left\|\kappa\left(\xi_{k} t\right)-\delta_{1 / \eta_{k}} \gamma\left(\eta_{k} \xi_{k} t\right)\right\| \leq \frac{\xi_{k}}{2^{k}} .
$$

It follows that for the infinitesimal sequence $\sigma_{k}:=\xi_{k} \eta_{k}$ we have, for all $t \in[-N, N]$,

$$
\left\|\widehat{\kappa}(t)-\delta_{1 / \sigma_{k}} \kappa\left(\sigma_{k} t\right)\right\| \leq\left\|\widehat{\kappa}(t)-\delta_{1 / \xi_{k}} \kappa\left(\xi_{k} t\right)\right\|+\left\|\delta_{1 / \xi_{k}} \kappa\left(\xi_{k} t\right)-\delta_{1 / \sigma_{k}} \gamma\left(\sigma_{k} t\right)\right\| \leq \frac{1}{2^{k-1}}
$$

The thesis now follows by a diagonal argument.
When $\gamma:[0, T] \rightarrow M$, there are analogous versions of Propositions 3.6 and 3.7 for $\operatorname{Tan}^{+}(\gamma ; 0)$ and $\operatorname{Tan}^{-}(\gamma ; T)$.

Proposition 3.8. Let $\kappa: \mathbb{R} \rightarrow M^{\infty}$ be a horizontal curve in $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$. The following statements are equivalent:
(i) there exist $c_{1}, \ldots, c_{r} \in \mathbb{R}$ such that $\dot{\kappa}=\sum_{i=1}^{r} c_{i} Y_{i}^{\infty}(\kappa)$ and $\kappa(0)=0$;
(ii) there exists $x_{0} \in M^{\infty}$ such that $\kappa(t)=\delta_{t}\left(x_{0}\right)$ (here δ_{t} is defined by (2.4) also for $t<0$).

Proof. We prove (i) $\Rightarrow\left(\right.$ ii). Since $\left(\delta_{\lambda}\right)_{*} Y_{i}^{\infty}=\lambda Y_{i}^{\infty}$ for $\lambda \neq 0$, the curve $\delta_{\lambda} \circ \kappa(\cdot / \lambda)$ satisfies the same differential equation, so $\delta_{\lambda} \circ \kappa(t / \lambda)=\kappa(t)$; choosing $\lambda=t$ we get $\kappa(t)=\delta_{t}(\kappa(1))$.

We check $(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Up to rescaling time, we can assume that $\dot{\kappa}(1)$ exists and is a linear combination of $Y_{1}^{\infty}(\kappa(1)), \ldots, Y_{r}^{\infty}(\kappa(1))$, so $\dot{\kappa}(1)=\sum_{i} \bar{h}_{i} Y_{i}^{\infty}(\kappa(1))$ for some $\bar{h} \in \mathbb{R}^{r}$. If h is the control of κ, for a.e. s we have

$$
\sum_{i=1}^{r} \bar{h}_{i} Y_{i}^{\infty}(\kappa(1))=\dot{\kappa}(1)=\left.s \frac{d}{d t} \kappa(t / s)\right|_{t=s}=\left.s \frac{d}{d t}\left(\delta_{1 / s} \circ \kappa(t)\right)\right|_{t=s}=\sum_{i=1}^{r} h_{i}(s) Y_{i}^{\infty}(\kappa(1))
$$

again because $s\left(\delta_{1 / s}\right)_{*} Y_{i}^{\infty}=Y_{i}^{\infty}$. Since $Y_{1}^{\infty}, \ldots, Y_{r}^{\infty}$ are pointwise linearly independent (see Proposition 2.5), we get $h=\bar{h}$ a.e.

Definition 3.9. We say that a horizontal curve κ in $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ is a horizontal line (through 0) if one of the conditions (i)-(ii) of Proposition 3.8 holds.

The definition of positive and negative half-line is similar, the formulas above being required to hold for $t \geq 0$ and $t \leq 0$, respectively.

Remark 3.10. Let us observe the following fact. Let $\gamma:[-T, T] \rightarrow M$ be a length minimizer parametrized by arclength with control $h=\left(h_{1}, \ldots, h_{r}\right)$ and let $t \in(-T, T)$ be fixed. Then, the tangent cone $\operatorname{Tan}(\gamma ; t)$ contains a horizontal line κ in M^{∞} if and only if there exist an infinitesimal sequence $\eta_{i} \downarrow 0$ and a constant unit vector $c \in S^{r-1}$ such that

$$
h\left(t+\eta_{i} \cdot\right) \rightarrow c \quad \text { in } L_{l o c}^{2}(\mathbb{R})
$$

As usual, an analogous version holds for $\operatorname{Tan}^{+}(\gamma ; 0)$ and $\operatorname{Tan}^{-}(\gamma ; T)$ in case γ is a length minimizer parametrized by arclength on the interval $[0, T]$.

Let us prove our claim; we can set $t=0$. Assume that there exists a sequence $\eta_{i} \downarrow 0$ such that the curves $\gamma^{i}(\tau):=\delta_{1 / \eta_{i}} \varphi\left(\gamma\left(\eta_{i} \tau\right)\right)$ converge locally uniformly to a horizontal line κ in the tangent CC structure $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$; we have

$$
\gamma^{i}(\tau)=\int_{0}^{\tau} \sum_{j=1}^{r} h_{j}\left(\eta_{i} s\right) Y_{j}^{1 / \eta_{i}}\left(\gamma^{i}(s)\right) d s
$$

Up to subsequences we have $h\left(\eta_{i} \cdot\right) \rightharpoonup h_{\infty}$ in $L_{l o c}^{2}(\mathbb{R})$, with $\left\|h_{\infty}\right\|_{L^{\infty}} \leq 1$. Since $Y_{j}^{1 / \eta_{i}} \rightarrow$ Y_{j}^{∞} locally uniformly, we obtain

$$
\kappa(\tau)=\int_{0}^{\tau} \sum_{j=1}^{r} h_{\infty}(s) Y_{j}^{\infty}(\kappa(s)) d s
$$

By Proposition [3.6, κ is parametrized by arclength. So $\left|h_{\infty}\right|=1$ a.e. and, since κ is a horizontal line, h_{∞} is constant. Finally, for any compact set $K \subset \mathbb{R}$, we trivially have $\left\|h\left(\eta_{i} \cdot\right)\right\|_{L^{2}(K)} \rightarrow\left\|h_{\infty}\right\|_{L^{2}(K)}$, which gives $h\left(\eta_{i} \cdot\right) \rightarrow h_{\infty}$ in $L^{2}(K)$. The reverse implication (if $h\left(t+\eta_{i} \cdot\right) \rightarrow c$ in $L_{l o c}^{2}(\mathbb{R})$, then $\operatorname{Tan}(\gamma ; t)$ contains a horizontal line) follows a similar argument.

4. Lifting the tangent structure to a free Carnot group

In this section we show how a tangent CC structure $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ can be lifted to a free Carnot group F, by means of a desingularization process. We also show that length minimizers in M^{∞} lift to length minimizers in F.

Let $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ be a tangent CC structure as in Section 2. The Lie algebra \mathfrak{g} generated by $\mathscr{X}^{\infty}=\left(Y_{1}^{\infty}, \ldots, Y_{r}^{\infty}\right)$ is nilpotent because, by Proposition [2.5, any iterated commutator of length greater than s vanishes. The identity $\left(\delta_{\lambda}\right)_{*} Y_{i}^{\infty}=\lambda Y_{i}^{\infty}$ implies that $\left(\delta_{\lambda}\right)_{*} X \rightarrow 0$ pointwise as $\lambda \rightarrow 0$, for any $X \in \mathfrak{g}$. We deduce that the j-th component of X is a polynomial function depending only on the previous variables. It follows that the flow $(x, t) \mapsto \exp (t X)(x)$ is a polynomial function in $(x, t) \in M^{\infty} \times \mathbb{R}$ and X is therefore complete.

Let \mathfrak{f} be the free Lie algebra of rank r and step s, with generators W_{1}, \ldots, W_{r}. The connected, simply connected Lie group F with Lie algebra \mathfrak{f} can be constructed explicitly as follows: we let $F:=\mathfrak{f}$ and we endow F with the group operation $A \cdot B:=$ $P(A, B)$, where

$$
\begin{equation*}
P(A, B)=\sum_{p=1}^{s} \frac{(-1)^{p+1}}{p} \sum_{1 \leq k_{i}+\ell_{i} \leq s} \frac{\left[A^{k_{1}}, B^{\ell_{1}}, \ldots, A^{k_{p}}, B^{\ell_{p}}\right]}{k_{1}!\cdots k_{p}!\ell_{1}!\cdots \ell_{p}!\sum_{i}\left(k_{i}+\ell_{i}\right)} \tag{4.32}
\end{equation*}
$$

This is a finite truncation of the series in (2.8): the omitted terms vanish by the nilpotency of \mathfrak{f}. One readily checks that $P(A, 0)=P(0, A)=A$ and $P(A,-A)=$
$P(-A, A)=0$, while the associativity identity $P(P(A, B), C)=P(A, P(B, C))$ is shown in [5, Sec. X.2] for free Lie algebras and can be deduced for \mathfrak{f} by truncation. For any $A \in F, t \mapsto t A$ is a one-parameter subgroup. From this, it is straightforward to check that \mathfrak{f} identifies with the Lie algebra of F, with $\exp : \mathfrak{f} \rightarrow F$ given by the identity map. In particular, exp : $\mathfrak{f} \rightarrow F$ is a diffeomorphism and we have

$$
\begin{equation*}
\exp (A) \exp (B)=\exp (P(A, B)), \quad A, B \in \mathfrak{f} \tag{4.33}
\end{equation*}
$$

The group F is a Carnot group, which means that it is a connected, simply connected and nilpotent Lie group whose Lie algebra is stratified, i.e., it has an assigned decomposition $\mathfrak{f}=\mathfrak{f}_{1} \oplus \cdots \oplus \mathfrak{f}_{s}$ satisfying $\left[\mathfrak{f}_{1}, \mathfrak{f}_{i-1}\right]=\mathfrak{f}_{i}$ and $\left[\mathfrak{f}, \mathfrak{f}_{s}\right]=\{0\}$ (in this case \mathfrak{f}_{1} is the linear span of W_{1}, \ldots, W_{r}). The group F just constructed is called the free Carnot group of rank r and step s.

Proposition 4.1. The group F is generated by $\exp \left(\mathfrak{f}_{1}\right)$.
Proof. See [3, Lemma 1.40].
By the nilpotency of \mathfrak{g}, there exists a unique homomorphism $\psi: \mathfrak{f} \rightarrow \mathfrak{g}$ such that $\psi\left(W_{i}\right)=Y_{i}^{\infty} \in \mathfrak{g}$ for $i=1, \ldots, r$. The group F acts on M^{∞} on the right. The action $M^{\infty} \times F \rightarrow M^{\infty}$ is given by $(x, f) \mapsto x \cdot f:=\exp (\psi(A))(x)$, where $f=\exp (A)$. In fact, by (4.33), for any $f^{\prime}=\exp (B)$ we have

$$
\begin{equation*}
x \cdot\left(f f^{\prime}\right)=\exp (P(\psi(A), \psi(B)))(x)=\exp (\psi(B)) \circ \exp (\psi(A))(x)=(x \cdot f) \cdot f^{\prime} \tag{4.34}
\end{equation*}
$$

The second equality is a consequence of the formula $\exp (P(t Y, t X))(x)=\exp (t X) \circ$ $\exp (t Y)(x)$ for $X, Y \in \mathfrak{g}$ (with P given by (4.32)), which holds since both sides are polynomial functions in t, with the same Taylor expansion (by (2.7)). We define the map

$$
\pi^{\infty}: F \rightarrow M^{\infty}, \quad \pi^{\infty}(f):=0 \cdot f,
$$

where the dot stands for the right action of F on M^{∞}.
Let $\mathscr{W}:=\left\{W_{1}, \ldots, W_{r}\right\}$ and extend \mathscr{W} to a basis W_{1}, \ldots, W_{N} of \mathfrak{f} adapted to the stratification. Via the exponential map exp : $\mathfrak{f} \rightarrow F$, the one-parameter group of automorphisms of \mathfrak{f} defined by $W_{k} \mapsto \lambda^{i} W_{k}$ if and only if $W_{k} \in \mathfrak{f}_{i}$ induces a one-parameter group of automorphisms $\left(\widehat{\delta}_{\lambda}\right)_{\lambda>0}$ of F, called dilations.

If $A \in \mathfrak{f}_{1}$, for any $\lambda>0$ and $x \in M^{\infty}$ we have the identity

$$
\begin{equation*}
\exp (\lambda \psi(A))\left(\delta_{\lambda}(x)\right)=\delta_{\lambda}(\exp (\psi(A))(x)) \tag{4.35}
\end{equation*}
$$

which follows from $\left(\delta_{\lambda}\right)_{*} \psi(A)=\lambda \psi(A)$.
Definition 4.2. We call the CC structure (F, \mathscr{W}) the lifting of $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ with projection $\pi^{\infty}: F \rightarrow M^{\infty}$.

Proposition 4.3. The lifting (F, \mathscr{W}) of $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ has the following properties:
(i) for any $f \in F$ and $i=1, \ldots, r$ we have $\pi_{*}^{\infty}\left(W_{i}(f)\right)=Y_{i}^{\infty}\left(\pi^{\infty}(f)\right)$;
(ii) the dilations of F and M^{∞} commute with the projection: namely, for any $\lambda>0$ we have

$$
\pi^{\infty} \circ \widehat{\delta}_{\lambda}=\delta_{\lambda} \circ \pi^{\infty}
$$

Proof. (i) Using the action property (4.34), we find

$$
\begin{aligned}
\pi_{*}^{\infty}\left(W_{i}(f)\right) & =\left.\frac{d}{d t} \pi^{\infty}\left(f \exp \left(t W_{i}\right)\right)\right|_{t=0}=\left.\frac{d}{d t} 0 \cdot\left(f \exp \left(t W_{i}\right)\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} \pi^{\infty}(f) \cdot \exp \left(t W_{i}\right)\right|_{t=0}=\psi\left(W_{i}\right)\left(\pi^{\infty}(f)\right)=Y_{i}^{\infty}\left(\pi^{\infty}(f)\right)
\end{aligned}
$$

(ii) Let $\lambda>0$ and $x \in M^{\infty}$. By (4.35), for any $W \in \mathfrak{f}_{1}$ we have

$$
\begin{equation*}
\delta_{\lambda}(x) \cdot \exp (\lambda W)=\exp (\lambda \psi(W))\left(\delta_{\lambda}(x)\right)=\delta_{\lambda}(\exp (\psi(W))(x))=\delta_{\lambda}(x \cdot \exp (W)) \tag{4.36}
\end{equation*}
$$

We deduce that the claim holds for any $f=\exp (W)$ with $W \in \mathfrak{f}_{1}$, because

$$
\pi^{\infty}\left(\widehat{\delta}_{\lambda}(f)\right)=\pi^{\infty}(\exp (\lambda W))=\delta_{\lambda}(0) \cdot \exp (\lambda W)=\delta_{\lambda}(0 \cdot \exp (W))=\delta_{\lambda}\left(\pi^{\infty}(f)\right)
$$

By Proposition 4.1, any $f \in F$ is of the form $f=f_{1} f_{2} \ldots f_{k}$ with each $f_{i} \in \exp \left(\mathfrak{f}_{1}\right)$. Assume by induction that the claim holds for $\widehat{f}=f_{1} f_{2} \ldots f_{k-1}$. By (4.36), letting $f_{k}=\exp (W)$ we have

$$
\begin{aligned}
\pi^{\infty}\left(\widehat{\delta}_{\lambda}(f)\right) & =\pi^{\infty}\left(\widehat{\delta}_{\lambda}(\widehat{f}) \exp (\lambda W)\right)=\pi^{\infty}\left(\widehat{\delta}_{\lambda}(\widehat{f})\right) \cdot \exp (\lambda W) \\
& =\delta_{\lambda}\left(\pi^{\infty}(\widehat{f})\right) \cdot \exp (\lambda W)=\delta_{\lambda}\left(\pi^{\infty}(\widehat{f}) \cdot \exp (W)\right)=\delta_{\lambda}\left(\pi^{\infty}(f)\right)
\end{aligned}
$$

Let $\kappa: I \rightarrow M^{\infty}$ be a horizontal curve in $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$, with control $h \in L^{\infty}\left(I, \mathbb{R}^{r}\right)$. A horizontal curve $\bar{\kappa}: I \rightarrow F$ such that

$$
\kappa=\pi^{\infty} \circ \bar{\kappa} \quad \text { and } \quad \dot{\bar{\kappa}}(t)=\sum_{i=1}^{r} h_{i}(t) W_{i}(\bar{\kappa}(t)) \quad \text { for a.e. } t \in I
$$

is called a lift of κ to (F, \mathscr{W}).
Proposition 4.4. Let (F, \mathscr{W}) be the lifting of $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$ with projection $\pi^{\infty}: F \rightarrow$ M^{∞}. Then the following facts hold:
(i) If κ is length minimizing in $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$, then any horizontal lift $\bar{\kappa}$ of κ is length minimizing in (F, \mathscr{W}).
(ii) If $\bar{\kappa}$ is a horizontal (half-)line in F, then $\pi^{\infty} \circ \bar{\kappa}$ is a horizontal (half-)line in $\left(M^{\infty}, \mathscr{X}^{\infty}\right)$.
Proof. Claim (i) follows from $L(\bar{\kappa})=L(\kappa)$ and from the inequality $L\left(\bar{\kappa}^{\prime}\right)=L\left(\kappa^{\prime}\right) \geq$ $L(\kappa)$, whenever $\bar{\kappa}^{\prime}$ is horizontal with the same endpoints as $\bar{\kappa}$ and $\kappa^{\prime}=\pi^{\infty} \circ \bar{\kappa}^{\prime}$. We now turn to Claim (ii). Let $\bar{\kappa}(t)=\exp (t W)$ for some $W \in \mathfrak{f}_{1}$. The projection $\pi^{\infty} \circ \bar{\kappa}$ is horizontal by part (i) of Proposition 4.3. The thesis follows from characterization (i) for horizontal lines, contained in Proposition 3.8.

References

[1] C. CarathÉOdory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67 (1909), 355-386.
[2] W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1939), 98-105.
[3] G. B. Folland \& E. M. Stein, Hardy spaces on homogeneous groups. Mathematical Notes, 28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.
[4] H. Hermes, Nilpotent and High-Order Approximations of Vector Field Systems. SIAM Rev. 33 (1991), no. 2, 238-264.
[5] G. P. Hochschild, The structure of Lie groups. Holden-Day series in mathematics. HoldenDay Inc., San Francisco, London, Amsterdam, 1965.
[6] E. Hakavuori \& E. Le Donne, Non-minimality of corners in subriemannian geometry. Invent. math. 206 (2016), no. 3, 693-704.
[7] G. P. Leonardi \& R. Monti, End-point equations and regularity of sub-Riemannian geodesics. Geom. Funct. Anal. 18 (2008), no. 2, 552-582.
[8] G. A. Margulis \& G. D. Mostow, Some remarks on the definition of tangent cones in a Carnot-Carathéodory space. J. Anal. Math. 80 (2000), no. 1, 299-317.
[9] J. Mitchell, On Carnot-Carathéodory metrics. J. Differ. Geom. 21 (1985), 35-45.
[10] R. Monti, A. Pigati \& D. Vittone, Existence of tangent lines to Carnot-Carathéodory geodesics. Preprint available at cvgmt.sns.it 2016.
[11] A. Nagel, E. M. Stein \& S. Wainger, Balls and metrics defined by vector fields I: Basic properties. Acta Math. 155 (1985), no. 1, 103-147.
[12] P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. 2 (1938) 83-94.
[13] L. RIfford, Singulières minimisantes en géométrie sous-riemannienne. Séminaire Bourbaki, Mars 2016, 68ème année, 2015-2016, n. 1113.
E-mail address: monti@math.unipd.it
E-mail address: alessandro.pigati@math.ethz.ch
E-mail address: vittone@math.unipd.it
(Monti and Vittone) Università di Padova, Dipartimento di Matematica "T. LeviCivita", via Trieste 63, 35121 Padova, Italy
(Pigati) ETH Zürich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, SWITZERLAND

[^0]: 2010 Mathematics Subject Classification. 53C17, 49K30, 28A75.
 Key words and phrases. Length minimizers, Carnot-Carathéodory spaces, sub-Riemannian geometry, Carnot groups.
 R. M. and D. V. are supported by MIUR (Italy) and University of Padova. D. V. is supported by INdAM-GNAMPA Project 2017 "Campi vettoriali, superfici e perimetri in geometrie singolari".

