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ON TANGENT CONES TO LENGTH MINIMIZERS

IN CARNOT–CARATHÉODORY SPACES

ROBERTO MONTI, ALESSANDRO PIGATI, AND DAVIDE VITTONE

Abstract. We give a detailed proof of some facts about the blow-up of horizontal

curves in Carnot–Carathéodory spaces.

1. Introduction

We give a detailed proof of some facts about the blow-up of horizontal curves in

Carnot–Carathéodory spaces. These results are crucially used in [6, 7, 10]. The proof

of a fraction of these results was already sketched, in a special case, in [13, Section

3.2].

LetM be a connected n-dimensional C∞-smooth manifold and X = {X1, . . . , Xr},

r ≥ 2, a system of C∞-smooth vector fields onM that are pointwise linearly indepen-

dent and satisfy the Hörmander condition introduced below. We call the pair (M,X )

a Carnot–Carathéodory (CC) structure. Given an interval I ⊆ R, a Lipschitz curve

γ : I → M is said to be horizontal if there exist functions h1, . . . , hr ∈ L∞(I) such

that for a.e. t ∈ I we have

γ̇(t) =

r∑

i=1

hi(t)Xi(γ(t)). (1.1)

The function h ∈ L∞(I;Rr) is called the control of γ. Letting |h|:= (h21+ . . .+h
2
r)

1/2,

the length of γ is then defined as

L(γ) :=

∫

I

|h(t)| dt.

Since M is connected, by the Chow–Rashevsky theorem (see e.g. [2, 12, 1]) for any

pair of points x, y ∈M there exists a horizontal curve joining x to y. We can therefore

define a distance function d :M ×M → [0,∞) letting

d(x, y) := inf {L(γ) | γ : [0, T ] →M horizontal with γ(0) = x and γ(T ) = y}. (1.2)
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The resulting metric space (M, d) is a Carnot–Carathéodory space. Since our analysis

is local, our results apply in particular to sub-Riemannian manifolds (M,D , g), where

D ⊂ TM is a completely non-integrable distribution and g is a smooth metric on D .

If the closure of any ball in (M, d) is compact, then the infimum in (1.2) is a

minimum, i.e., any pair of points can be connected by a length-minimizing curve. A

horizontal curve γ : [0, T ] →M is a length minimizer if L(γ) = d(γ(0), γ(T )).

The main contents of the paper are the following:

(i) we define a tangent Carnot–Carathéodory structure (M∞,X ∞) at any point ofM ,

using exponential coordinates of the first kind, see Section 2;

(ii) in Section 3, we define the tangent cone for a horizontal curve, at a given time, as

the set of all possible blow-ups in (M∞,X ∞) of the curve, and we show that this

cone is always nonempty, see Proposition 3.2;

(iii) we show that, if the curve has a right derivative at the given time, the (positive)

tangent cone consists of a single half-line, see Theorem 3.5;

(iv) if the curve is a length minimizer, in Theorem 3.6 we show that all the blow-ups

are length minimizers in (M∞,X ∞), as well;

(v) in Section 4, we show that a tangent Carnot–Carathéodory structure can be lifted

to a free Carnot group, in a way that preserves length minimizers.

2. Nilpotent approximation: definition of a tangent structure

In this section we introduce some basic notions about Carnot–Carathéodory spaces.

Then we describe the structure of a specific frame of vector fields Y1, . . . , Yn (con-

structed below) in exponential coordinates, see Theorem 2.3. We also prove a lemma

describing the infinitesimal behaviour of the Carnot–Carathéodory distance d near 0,

with respect to suitable anisotropic dilations, see Lemma 2.4.

We denote by Lie(X1, . . . , Xr) the real Lie algebra generated by X1, . . . , Xr through

iterated commutators. The evaluation of this Lie algebra at a point x ∈M is a vector

subspace of the tangent space TxM . If, for any x ∈M , we have

Lie(X1, . . . , Xr)(x) = TxM,

we say that the system X = {X1, . . . , Xr} satisfies the Hörmander condition and we

call the pair (M,X ) a Carnot–Carathéodory (CC) structure.

Given a point x0 ∈ M , let ϕ ∈ C∞(U ;Rn) be a chart such that U is an open

neighborhood of x0 and ϕ(x0) = 0. Then V := ϕ(U) is an open neighborhood of

0 ∈ R
n and the system of vector fields Yi := ϕ∗Xi, with i = 1, . . . , r, still satisfies the

Hörmander condition in V .

For a multi-index J = (j1, . . . , jk) with k ≥ 1 and j1, . . . , jk ∈ {1, . . . , r}, define the

iterated commutator

YJ := [Yj1, . . . , Yjk−1
, Yjk ]
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where, here and in the following, for given vector fields V1, . . . , Vq we use the short

notation [V1, . . . , Vq] to denote the commutator [V1, [· · · , [Vq−1, Vq] · · ·]]. We say that

YJ is a commutator of length ℓ(J) := k and we denote by Lj the linear span of

{YJ(0) | ℓ(J) ≤ j}, so that

{0} = L0 ⊆ L1 ⊆ · · · ⊆ Ls = R
n

for some minimal s ≥ 1. We select multi-indices J1 = (1), . . . , Jr = (r), Jr+1, . . . , Jn

such that, for each 1 ≤ j ≤ s,

ℓ(JdimL(j−1)+1) = · · · = ℓ(JdimLj ) = j

and such that, setting Yi := YJi, the vectors Y1(0), . . . , YdimLj(0) form a basis of Lj .

In particular, we have dimL1 = r.

Possibly composing ϕ with a diffeomorphism (and shrinking U and V ), we can

assume that V is convex, that for any point x = (x1, . . . , xn) ∈ V we have

x = exp
( n∑

i=1

xiYi

)
(0) (2.3)

and that Y1, . . . , Yn are linearly independent on V . Such coordinates (x1, . . . , xn) are

called exponential coordinates of the first kind associated with the frame Y1, . . . , Yn.

To each coordinate xi we assign the weight wi := ℓ(Ji) and we define the anisotropic

dilations δλ : Rn → R
n

δλ(x) := (λw1x1, . . . , λ
wnxn), λ > 0. (2.4)

Definition 2.1. A function f : R
n → R is δ-homogeneous of degree w ∈ N if

f(δλ(x)) = λwf(x) for all x ∈ R
n, λ > 0. We will refer to such a w as the δ-degree of

f .

We will frequently use the anisotropic (pseudo-)norm

‖x‖ :=
n∑

i=1

|xi|
1/wi, x ∈ R

n. (2.5)

The norm function, x 7→ ‖x‖, is δ-homogeneous of degree 1.

We recall two facts about the exponential map, which are discussed e.g. in [11,

pp. 141–147]. First, for any ψ ∈ C∞(V ), we have the Taylor expansion

ψ
(
exp

( n∑

i=1

siYi

)
(0)

)
∼

(
e
∑

i siYiψ
)
(0) (2.6)

where

• the left-hand side is a function of s ∈ R
n near 0;
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• the right-hand side is a shorthand for the formal series

∞∑

k=0

1

k!
((s1Y1 + · · ·+ snYn)

kψ)(0) =

∞∑

k=0

1

k!

∑

i1,...,ik∈{1,...,n}

si1 · · · sik(Yi1 · · ·Yikψ)(0);

• given a smooth function f(x) and a formal power series S(x), we define the

relation f(x) ∼ S(x) if the formal Taylor series of f(x) at 0 is S(x).

Second, letting S :=
∑n

i=1 siYi and T :=
∑n

i=1 tiYi, the following formal Taylor

expansions hold as well:

ψ
(
exp(S) ◦ exp(T )(0)

)
∼

(
eT eSψ

)
(0) = (eP (T,S)ψ)(0), (2.7)

where

P (T, S) :=

∞∑

p=1

(−1)p+1

p

∑

ki+ℓi≥1

[T k1, Sℓ1 , . . . , T kp, Sℓp]

k1! · · · kp! ℓ1! · · · ℓp! (k1 + ℓ1 + · · ·+ kp + ℓp)
. (2.8)

Above, the notation T k stands for T, . . . , T , k times.

Remark 2.2. The formal power series identity eT eS = eP (T,S) is a purely algebraic

fact which holds in any (noncommutative, graded, complete) associative real algebra,

see e.g. [5, Sec. X.2]: this principle will be used in the proofs of Theorem 2.3 and

Lemma 2.4.

In the case of exponential coordinates of the second kind, the following theorem is

proved in [4].

Theorem 2.3. The vector fields Y1, . . . , Yn are of the form

Yi(x) =
n∑

j=i

aij(x)
∂

∂xj
, x ∈ V, i = 1, . . . , n, (2.9)

where aij ∈ C∞(V ) are functions such that aij = pij + rij and:

(i) for wj ≥ wi, pij are δ-homogeneous polynomials in R
n of degree wj − wi;

(ii) for wj ≤ wi, pij = δij (in particular, pij = 0 for wj < wi);

(iii) rij ∈ C∞(V ) satisfy rij(0) = 0;

(iv) for wj ≥ wi, rij(x) = o(‖x‖wj−wi) as x→ 0.

Proof. Suppose for a moment that

aij(x) = O(‖x‖wj−wi), i, j = 1, . . . , n, wj ≥ wi. (2.10)

Let pij be the sum of all monomials of δ-degree wj − wi in the Taylor expansion of

aij , with the convention that pij = 0 if wj < wi. Statements (i) and (iv) then hold

by construction, while (ii) and (iii) follow from aij(0) = δij , which is a consequence

of (2.3).
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Let us show (2.10). We pullback the identity Yi(x) =
∑

j aij(x)
∂

∂xj
to the origin

using the map exp(−X) (locally defined near x), where X :=
∑

k xkYk, for a fixed

x ∈ V . We have

exp(−X)∗(Yi(x)) =
∑

j

aij(x) exp(−X)∗

( ∂

∂xj
(x)

)
, (2.11)

where the sum ranges from 1 to n. The above equation reads

∑

ℓ

biℓ(x)Yℓ(0) =
∑

j,ℓ

aij(x)cjℓ(x)Yℓ(0)

for suitable smooth coefficients biℓ(x), cjℓ(x). We claim that

biℓ(x) = O(‖x‖wℓ−wi), cjℓ(x) = O(‖x‖wℓ−wj ), and cjℓ(0) = δjℓ.

Then, defining A := (aij), B := (biℓ) and C := 1 − (cjℓ) (1 denoting the identity

matrix), we obtain three n×n matrices satisfying B(x) = A(x)(1−C(x)) and C(0) =

0. In particular, 1−C(x) is invertible for x close to 0 and (1−C(x))−1 =
∑∞

p=0C(x)
p.

This gives

A(x) =

s∑

p=0

B(x)C(x)p + o(|x|s) =
s∑

p=0

B(x)C(x)p + o(‖x‖s)

for any s ∈ N, and (2.10) easily follows.

The proof of cjℓ(0) = δjℓ follows from the definition of cjℓ and from ∂
∂xj

= Yj(0),

which in turn comes from (2.3), as already observed.

We prove the claim biℓ(x) = O(‖x‖wℓ−wi). By (2.3), the left-hand side of (2.11)

satisfies

exp(−X)∗(Yi(x)) =
d

dt
exp(−X) ◦ exp(tYi) ◦ exp(X)(0)

∣∣∣
t=0
.

Using (2.7) and Remark 2.2, for any smooth ψ we obtain

ψ( exp(−X) ◦ exp(tYi) ◦ exp(X)(0)) ∼ eP (P (X,tYi),−X)ψ(0),

the left-hand side being interpreted as a function of (x, t). We now differentiate

this identity at t = 0. Since W (t) := P (P (X, tYi),−X) vanishes at t = 0, one

has d
dt
(eW (t)ψ)(0)

∣∣∣
t=0

= d
dt
(W (t)ψ)(0)

∣∣∣
t=0

and, letting ψ range among the coordinate

functions, we deduce that any finite-order expansion in x of exp(−X)∗(Yi(x)) is a

linear combination of terms of the form

xi1 · · ·xip [Yi1, . . . , Yim, Yi, Yim+1 , . . . , Yip](0)

where p ≥ 1 and 0 ≤ m ≤ p. By Jacobi’s identity, the iterated commutator

[Yi1, . . . , Yim, Yi, Yim+1, . . . , Yip](0) is a linear combination of the vectors YJ(0) with
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ℓ(J) = w :=
∑p

q=1wiq + wi and so, by construction, it is a linear combination of the

vectors Yℓ(0) with wℓ ≤ w. Hence, letting wα :=
∑n

q=1 αqwq for all α ∈ N
n, we have

exp(−X)∗(Yi(x)) ∼
∑

ℓ

∑

α:wα≥wℓ−wi

dαiℓx
αYℓ(0),

for suitable coefficients dαiℓ ∈ R. This gives the required estimate.

The proof of cjℓ(x) = O(‖x‖wℓ−wj) is analogous to the preceding argument, once

we observe that

exp(−X)∗

( ∂

∂xj
(x)

)
=

d

dt
exp(−X) ◦ exp(X + tYj)(0)

∣∣∣
t=0
.

We can omit the details. �

Lemma 2.4. For any compact set K ⊂ R
n and any ε > 0 there exist δ > 0 and λ > 0

such that λd(δ1/λ(x), δ1/λ(y)) < ε for all x, y ∈ K with |x− y|< δ and all λ ≥ λ.

Proof. Let ψ ∈ C∞(V ) be an arbitrary smooth function. Using (2.6) and Remark

2.2, we have the following identity of formal power series in (s, t) ∈ R
n × R

n: letting

S :=
∑n

i=1 siYi and T :=
∑n

i=1 tiYi,

ψ(exp(S)(0)) ∼ (eSψ)(0) = (eT e−T eSψ)(0) = (eT eP (−T,S)ψ)(0). (2.12)

The truncation PN (−T, S) of the series P (−T, S) up to δ-degree N := wn is

PN(−T, S) =
∑

1≤ℓ(J)≤N

qJ(s, t)YJ , (2.13)

where the sum is over all J such that 1 ≤ ℓ(J) ≤ N and qJ is a homogeneous

polynomial with δ-degree ℓ(J), i.e., qJ (δλs, δλt) = λℓ(J)qJ(s, t). This follows from the

fact that any iterated commutator [Yi1, . . . , Yik ] is a constant linear combination of

the vector fields YJ ’s with ℓ(J) =
∑k

j=1wij (which in turn is a consequence of Jacobi’s

identity).

Moreover, using (2.13) and applying (2.7) with the vector fields YJ in place of

Y1, . . . , Yn, we have the following formal Taylor expansion in (s, t) at 0 ∈ R
2n

ψ( exp(PN(−T, S)) ◦ exp(T )(0)) ∼
(
eT ePN (−T,S)ψ

)
(0),

which, by (2.12), coincides with the one of ψ(exp(S)(0)) up to δ-degree N . Since

this holds for any ψ, we deduce (for instance letting ψ range among the coordinate

functions) that

exp(S)(0) = exp(PN(−T, S)) ◦ exp(T )(0) + o(|s|N+|t|N),

which by (2.3) gives

s = exp(PN(−T, S))(t) + o(|s|N+|t|N) =: f(s, t) + o(|s|N+|t|N).
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Now let s = δ1/λ(x) and t = δ1/λ(y) with x, y ∈ K. Since

qJ(s, t) = λ−ℓ(J)qJ(x, y),

by [11, Theorem 4] we get

d(t, f(s, t)) ≤ C
∑

1≤ℓ(J)≤N

|qJ(s, t)|
1/ℓ(J)= Cλ−1

∑

1≤ℓ(J)≤N

|qJ(x, y)|
1/ℓ(J),

while, by [11, Lemma 2.20(b)],

d(s, f(s, t)) = O(|s− f(s, t)|1/wn) = o(|s|+|t|) = o(λ−1),

provided λ is sufficiently large. Thus, by the triangle inequality,

λd(δ1/λ(x), δ1/λ(y)) = λd(s, t) ≤ C
∑

1≤ℓ(J)≤N

|qJ(x, y)|
1/ℓ(J)+

ε

2

for all λ ≥ λ, for a suitably large λ > 0. Finally, since PN(S,−S) = 0, we can

assume that qJ vanishes on the diagonal of K ×K (possibly replacing qJ (s, t) with

qJ(s, t)− qJ(s, s)). Hence, by compactness of K, we also have

C
∑

1≤ℓ(J)≤N

|qJ(x, y)|
1/ℓ(J)<

ε

2

whenever x, y ∈ K are such that |x− y|< δ, for a suitably small δ > 0. �

We now introduce the vector fields Y ∞
1 , . . . , Y ∞

r in R
n defined by

Y ∞
i (x) :=

n∑

j=1

pij(x)
∂

∂xj
,

and we let X ∞ = {Y ∞
1 , . . . , Y ∞

r }. The vector fields Y ∞
1 , . . . , Y ∞

r are known as the

nilpotent approximation of Y1, . . . , Yr at the point 0. By Proposition 2.5 below, the

pair (Rn,X ∞) is a Carnot–Carathéodory structure. We set M∞ := R
n and we

call (M∞,X ∞) a tangent Carnot–Carathéodory structure to (M,X ) at the point

x0 ∈M .

Proposition 2.5. The vector fields Y ∞
1 , . . . , Y ∞

r are pointwise linearly independent

and satisfy the Hörmander condition in R
n. Moreover, any iterated commutator

Y ∞
J := [Y ∞

j1 , [. . . , [Y
∞
jk−1

, Y ∞
jk
] . . . ]] of length ℓ(J) = k > s vanishes identically.

Proof. We claim that Theorem 2.3 implies Y ∞
i = limλ→∞ λ−1(δλ)∗Yi, for all i =

1, . . . , r, in the (local) C∞-topology (the vector field λ−1(δλ)∗Yi being defined on

δλ(V )). Indeed, since Yi(x) = Y ∞
i (x) +

∑
j rij(x)

∂
∂xj

, we have

λ−1((δλ)∗Yi)(x) = Y ∞
i (x) +

n∑

j=1

λwj−1rij(δ1/λ(x))
∂

∂xj
,
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because λ−1(δλ)∗Y
∞
i = Y ∞

i . By Theorem 2.3, the monomials in the Taylor expansion

of rij have δ-degree greater than wj − 1. Thus, for any α ∈ N
n,

∂|α|

∂xα
(λwj−1rij(δ1/λ(x))) = λwj−1−wα

∂|α|rij
∂xα

(δ1/λ(x)),

where wα :=
∑

ℓ αℓwℓ. The monomials in the expansion of
∂|α|rij
∂xα have δ-degree greater

than wj − 1− wα, hence
∣∣∣∂

|α|rij
∂xα (δ1/λ(x))

∣∣∣ = o(λ−(wj−1−wα)) and the claim follows.

In particular, we deduce that for any multi-index J

Y ∞
J = lim

λ→∞
λ−ℓ(J)(δλ)∗YJ , (2.14)

in the local C∞ topology. Hence, defining the n× n matrix Dλ :=diag[λw1, . . . , λwn]

and recalling that ℓ(Jp) = wp, for all p = 1, . . . , n we have

Y ∞
Jp (x) = lim

λ→∞
λ−wpDλYJp(δ1/λ(x)).

Now the first statement follows from

det(Y ∞
J1 , . . . , Y

∞
Jn )(x) = lim

λ→∞
λ−

∑
i wi det(Dλ) det(YJ1, . . . , YJn)(δ1/λ(x))

= det(YJ1, . . . , YJn)(0) = det(Y1, . . . , Yn)(0),

which is a nonzero constant. This gives the first part of the statement.

In order to prove the last assertion, we use again the fact that λ−1(δλ)∗Y
∞
i = Y ∞

i

for i = 1, . . . , r. For any x ∈ R
n and any J with ℓ(J) > s = wn we have, by (2.14),

Y ∞
J (x) = lim

λ→∞
λ−ℓ(J)((δλ)∗YJ)(x) = lim

λ→∞
λ−ℓ(J)DλYJ(δ1/λ(x)).

The right-hand side is bounded by λs−ℓ(J)|YJ(δ1/λ(x))| (if λ ≥ 1), which tends to 0 as

λ→ ∞. This shows that Y ∞
J = 0. �

Remark 2.6. Setting Y ∞
i := Y ∞

Ji
for i = 1, . . . , n, the coordinate functions onM∞ =

R
n are exponential coordinates of the first kind for (Y ∞

1 , . . . , Y∞
n ), namely

x = exp
( n∑

i=1

xiY
∞
i

)
(0). (2.15)

for any x ∈ R
n. This follows from the fact that, for λ large enough (depending on x),

we have y := δλ−1(x) ∈ V and, using (2.3) with y in place of x,

x = δλ

(
exp

(∑

i

yiYi

)
(0)

)
= exp

(∑

i

xiλ
−wi(δλ)∗Yi

)
(0) → exp

(∑

i

xiY
∞
i

)
(0)

as λ→ ∞, since (2.14) gives λ−wi(δλ)∗Yi → Y ∞
i in the local C∞ topology.
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3. The tangent cone to a horizontal curve

Let (M,X ) be a CC structure and let γ : [−T, T ] → M be a horizontal curve.

Given t ∈ (−T, T ), let ϕ be a chart centered at x0 = γ(t), as in the previous section,

together with the dilations δλ and the tangent CC structure (M∞,X ∞) introduced

above.

Definition 3.1. The tangent cone Tan(γ; t) to γ at t ∈ (−T, T ) is the set of all

horizontal curves κ : R → M∞ such that there exists an infinitesimal sequence ηi ↓ 0

satisfying, for any τ ∈ R,

lim
i→∞

δ1/ηiϕ(γ(t + ηiτ)) = κ(τ),

with uniform convergence on compact subsets of R.

We remark that any limit curve as above is automatically (M∞,X ∞)-horizontal:

see e.g. the proof of Theorem 3.6.

The definition of Tan(γ; t) depends on the choice Y1, . . . , Yn of linearly independent

iterated commutators. When γ : [0, T ] → M , the tangent cones Tan+(γ; 0) and

Tan−(γ;T ) can be defined in a similar way: Tan+(γ; 0) contains curves inM∞ defined

on [0,∞), while Tan−(γ;T ) contains curves defined on (−∞, 0].

When M =M∞ or M = G is a Carnot group, there is already a group of dilations

on M itself. In such cases, when γ(t) = 0, we define the tangent cone Tan(γ; t) as

the set of horizontal limit curves of the form κ(t) = lim
i→∞

δ1/ηiγ(t + ηiτ).

The tangent cone is closed under uniform convergence of curves on compact sets.

Proposition 3.2. For any horizontal curve γ : [−T, T ] → M the tangent cone

Tan(γ; t) is nonempty for any t ∈ (−T, T ). The same holds for Tan+(γ; 0) and

Tan−(γ;T ), for a horizontal curve γ : [0, T ] →M .

Proof. We prove that Tan+(γ; 0) 6= ∅. The other cases are analogous.

We use exponential coordinates of the first kind centered at γ(0). By (1.1), we

have a.e.

γ̇ =
r∑

i=1

hiYi(γ) =
n∑

j=1

r∑

i=1

hiaij(γ)
∂

∂xj
,

where hi ∈ L∞([0, T ]) and aij = pij + rij , as in Theorem 2.3. Letting K := γ([0, T ]),

we have |γ̇(t)|≤ C for some constant depending on ‖aij‖L∞(K) and ‖h‖L∞ . This

implies that |γ(t)|≤ Ct for all t ∈ [0, T ].

By induction on k ≥ 1, we prove the following statement: for any j satisfying

wj ≥ k we have |γj(t)|≤ Ctk. The base case k = 1 has already been treated. Now

assume that wj ≥ k > 1 and that the statement is true for 1, . . . , k − 1. Since rij is

smooth, we have rij = qij,k + rij,k, where qij,k is a polynomial containing only terms
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with δ-homogeneous degree at least wj − wi + 1 = wj and |rij,k(x)|≤ C|x|k−1 on K

(here |x| denotes the usual Euclidean norm).

Each monomial cαx
α of the polynomial pij + qij,k has δ-degree wα ≥ wj − 1. If

αm = 0 whenever wm ≥ k, then we can estimate

|γ(t)α|=
∏

m:wm≤k−1

|γm(t)|
αm≤ Ctwα ≤ Ctk−1,

using the inductive hypothesis with k replaced by wm ≤ k−1. Otherwise, there exists

some index m with wm ≥ k and αm > 0, in which case

|γ(t)α|≤ C|γm(t)|≤ Ctk−1,

using the inductive hypothesis with k replaced by k−1. Thus |pij(γ(t))+qij,k(γ(t))|≤

Ctk−1. Combining this with the estimate |rij,k(γ(t))|≤ Ctk−1, we obtain |aij(γ(t))|≤

Ctk−1. So we finally have

|γj(t)|≤ ‖h‖L∞

r∑

i=1

∫ t

0

|aij(γ(τ))| dτ ≤ Ctk,

completing the inductive proof. Applying the above statement with k = wj, we obtain

|γj(t)|≤ Ctwj , (3.16)

for a suitable constant C depending only on K, T and ‖h‖L∞ .

Now we prove that Tan+(γ; 0) is nonempty. For η > 0 consider the family of curves

γη(t) := δ1/η(γ(ηt)), defined for t ∈ [0, T/η]. The derivative of γη is a.e.

γ̇η(t) =

n∑

j=1

r∑

i=1

hi(ηt)η
1−wjaij(γ(ηt))

∂

∂xj
,

where, by Theorem 2.3 and the estimates (3.16), we have

|aij(γ(ηt))|≤ C‖γ(ηt)‖wj−1≤ C(ηt)wj−1.

This proves that the family of curves (γη)η>0 is locally Lipschitz equicontinuous. So

it has a subsequence (γηi)i that is converging locally uniformly as ηi → 0 to a curve

κ : [0,∞) → R
n. �

Remark 3.3. The following result was obtained along the proof of Proposition 3.2.

Let (M,X ) be a Carnot–Carathéodory structure. Using exponential coordinates of

the first kind, we (locally) identify M with R
n and we assign to the coordinate xj the

weight wj, as above. Given T > 0 and K compact, there exists a positive constant

C = C(K, T ) such that the following holds: for any horizontal curve γ : [0, T ] → K

parametrized by arclength and such that γ(0) = 0, one has

|γj(t)|≤ Ctwj , for any j = 1, . . . , n and t ∈ [0, T ]. (3.17)

In Carnot groups, by homogeneity, the constant C is independent of K and T .
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Definition 3.4. We say that v ∈ R
n is a right tangent vector to a curve γ : [0, T ] →

R
n at 0 if

γ(t) = tv + o(t), as t→ 0+.

The definition of a left tangent vector is analogous.

The next result is stated in exponential coordinates of the first kind.

Theorem 3.5. Let γ : [0, T ] → V be a horizontal curve parametrized by arclength,

with γ(0) = 0. If γ has a right tangent vector v ∈ R
n at 0, then:

(i) vj = 0 for j > r and |v|≤ 1;

(ii) Tan+(γ; 0) = {κ}, where κ(t) = tv for t ∈ [0,∞);

(iii) |v|= 1 if γ is also length minimizing.

A similar statement holds if γ : [−T, 0] → V has a left tangent vector at 0.

Proof. (i) Since Yi(x) =
∂
∂xi

+ o(1) as x→ 0, we have

γj(t) =

∫ t

0

r∑

i=1

hi(s)δij ds+ o(t). (3.18)

We deduce that vj = 0 for j > r and

|v|= lim
t→0+

∣∣∣γ(t)
t

∣∣∣ ≤ lim
t→0+

1

t

∫ t

0

|h(s)| ds = 1.

(ii) Since γj(t) = vjt+ o(t) for j ≤ r, it suffices to show that

γj(t) = o(twj), j > r. (3.19)

Up to a rotation of the vector fields Y1, . . . , Yr, which by (2.3) corresponds to a rotation

of the first r coordinates, we can assume that v2 = . . . = vr = 0. Notice that Theorem

2.3 still applies in these new exponential coordinates. From (3.18) we get

lim
t→0+

1

t

∫ t

0

hi(s) ds =

{
v1 i = 1

0 i = 2, . . . , r.
(3.20)

By Remark 3.3 we have ‖γ(t)‖= O(t). We now show (3.19) by induction on j ≥ r+1.

Assume the claim holds for r + 1, . . . , j − 1. The coordinate γj, with j > r, is

γj(t) =

r∑

i=1

∫ t

0

hi(s)aij(γ(s)) ds =

∫ t

0

h1(s)a1j(γ(s)) ds+

r∑

i=2

∫ t

0

hi(s)aij(γ(s)) ds.

By Theorem 2.3, aij = pij + rij with rij(x) = o(‖x‖wj−1), so we deduce that

aij(γ(s)) = pij(γ(s)) + rij(γ(s)) = pij(γ(s)) + o(swj−1), i = 1, . . . , r.

From (2.3) we deduce that for i = 1, . . . , r we have Yi(0, . . . , xi, . . . , 0) =
∂
∂xi

, hence

aij(0, . . . , xi, . . . , 0) = 0, j > r. (3.21)



12 R. MONTI, A. PIGATI, AND D. VITTONE

The polynomial pij(x) is δ-homogeneous of degree wj−wi = wj−1 and so it contains

no variable xk with k ≥ j. Condition (3.21) implies that pij(x) does not contain

the monomial x
wj−1
i , either. Thus, when i = 1 each monomial in p1j(x) contains at

least one of the variables x2, . . . , xj−1. By the inductive assumption, it follows that

p1j(γ(s)) = o(swj−1), and thus a1j(γ(s)) = o(swj−1). This implies that

∫ t

0

h1(s)a1j(γ(s)) ds = o(twj).

Now we consider the case i = 2, . . . , r. Letting pij = cijx
wj−1
1 + p̂ij with cij ∈ R

and âij := p̂ij + rij , we have âij(γ(s)) = o(swj−1) as in the previous case and thus

∫ t

0

hi(s)âij(γ(s)) ds = o(twj).

We claim that, for i = 2, . . . , m, we also have
∫ t

0

hi(s)γ1(s)
wj−1 ds = o(twj).

Indeed, since vi = 0 we have Hi(s) :=
∫ s

0
hi(s

′) ds′ = o(s), so integration by parts

gives
∫ t

0

hi(s)γ1(s)
wj−1 ds = Hi(t)γ1(t)

wj−1 − (wj − 1)

∫ t

0

Hi(s)γ1(s)
wj−2γ̇1(s) ds

= o(twj ) +

∫ t

0

o(swj−1) ds = o(twj ).

This ends the proof of (3.19) and hence of (ii).

(iii) By Theorem 3.6 below, κ is parametrized by arclength. But (v1, . . . , vr) equals

its (continuous) control h(t) at t = 0, so |v|= 1. �

For λ > 0, we define the vector fields Y λ
1 , . . . , Y

λ
r in δλ(V ) by

Y λ
i (x) := λ−1((δλ)∗Yi)(x) =

n∑

j=1

λwj−1aij(δ1/λ(x))
∂

∂xj
, x ∈ δλ(V ).

In the proof of Proposition 2.5 it was shown that

Y λ
i → Y ∞

i (3.22)

locally uniformly in R
n as λ→ ∞, together with all the derivatives.

We denote by dλ the Carnot–Carathéodory metric of (δλ(V ),X λ), with X λ :=

{Y λ
1 , . . . , Y

λ
r }. The distance function dλ is related to the distance function d via the

formula

dλ(x, y) = λd(δ1/λ(x), δ1/λ(y)), (3.23)
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for all x, y ∈ δλ(V ) and λ > 0. Indeed, let γ : [0, 1] → V be a horizontal curve

γ(t) = γ(0) +

∫ t

0

r∑

i=1

hi(s)Yi(γ(s)) ds, t ∈ [0, 1], (3.24)

and define the curve γλ : [0, λ] → δλ(V )

γλ(t) := δλγ(t/λ), t ∈ [0, λ]. (3.25)

Then we have

γλ(t) = γλ(0) +

∫ t

0

r∑

i=1

hi(s/λ)Y
λ
i (γ

λ(s)) ds, t ∈ [0, λ], (3.26)

and therefore the length of γλ is

Lλ(γλ) =

∫ λ

0

|h(s/λ)| ds = λ

∫ 1

0

|h(s)| ds = λL(γ). (3.27)

If γ is length minimizing, then the curves in Tan(γ; t) are also locally length mini-

mizing. This is the content of the next theorem.

Theorem 3.6. Let γ : [−T, T ] → M be a length-minimizing curve in (M,X ),

parametrized by arclength, and let γ∞ ∈ Tan(γ; t0) for some t0 ∈ (−T, T ). Then γ∞

is horizontal, parametrized by arclength and, when restricted to any compact interval,

it is length minimizing in the tangent Carnot–Carathéodory structure (M∞,X ∞).

Proof. We can assume t0 = 0. We use exponential coordinates of the first kind

centered at γ(0). Given any T > 0, for some sequence λh → ∞ we have

γλh(t) := δλh
γ(t/λh) → γ∞(t) in L∞([−T , T ]). (3.28)

Up to a subsequence, we can assume that the functions h(t/λh) weakly converge in

L2([−T , T ];Rr) to some h∞ ∈ L2([−T , T ];Rr) such that |h∞|≤ 1 almost everywhere.

Then, using (3.26), we have

γ∞(t) = lim
h→∞

∫ t

0

r∑

i=1

hi(s/λh)Y
λh

i (γλh(s)) ds =

∫ t

0

r∑

i=1

h∞i Y
∞
i (γ∞(s)) ds,

so γ∞ is (M∞,X ∞)-horizontal and, denoting by d∞ the Carnot–Carathéodory dis-

tance on M∞ induced by the family X ∞, its length satisfies

d∞(γ∞(−T ), γ∞(T )) ≤ L∞
(
γ∞|[−T,T ]

)
=

∫ T

−T

|h∞| dt ≤ 2T . (3.29)

We will see that, in fact, the converse inequality d∞(γ∞(−T ), γ∞(T )) ≥ 2T holds

as well, thus proving that γ∞ is length minimizing on [−T , T ] and parametrized by

arclength (with control h∞).
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Let κ∞ : [−T , T ] → R
n be an (M∞,X ∞)-horizontal curve such that κ∞(±T ) =

γ∞(±T ), with control k∞ ∈ L∞([−T , T ];Rn). For all h large enough, the ordinary

differential equation

κ̇λh(t) =

r∑

i=1

k∞i (t)Y λh

i (κλh(t)) (3.30)

with initial condition κλh(−T ) = κ∞(−T ) has a (unique) solution defined on [−T , T ].

Indeed, let K be a compact neighborhood of κ∞([−T , T ]). For any ε > 0 we have

‖Y λh

i − Y ∞
i ‖L∞(K)≤ ε eventually. If −T ∈ I ⊆ [−T , T ] is the maximal (compact)

subinterval such that κλh is defined on I and κλh(I) ⊆ K, we have

|κ̇λh − κ̇∞|≤ Cε+ C
∑

i

|Y∞
i (κλh)− Y ∞

i (κ∞)|≤ Cε+ C|κλh − κ∞|

on I, for some C depending on ‖k∞‖L∞ and ‖∇Y ∞
i ‖L∞(K). Hence, by Gronwall’s

inequality, |κλh − κ∞|≤ Cε on I. If ε is small enough, we deduce that κλh(max I)

belongs to the interior of K, so I = [−T , T ]. Since ε was arbitrary, we also get

lim
h→∞

κλh(±T ) = κ∞(±T ) = γ∞(±T ) = lim
h→∞

γλh(±T ). (3.31)

From the length minimality of γλh in (δλh
(V ),X λh) it follows that

2T = Lλh

(
γλh

∣∣
[−T ,T ]

)
≤ Lλh(κλh) + dλh

(
κλh(−T ), γλh(−T )

)
+ dλh

(
κλh(T ), γλh(T )

)

=

∫ T

−T

|k∞(t)| dt+ λhd
(
δ1/λh

κλh(−T ), δ1/λh
γλh(−T )

)

+ λhd
(
δ1/λh

κλh(T ), δ1/λh
γλh(T )

)
.

By Lemma 2.4 and (3.31), we have

lim
h→∞

λhd(δ1/λh
κλh(±T ), δ1/λh

γλh(±T )) = 0.

Hence, 2T ≤
∫ T

−T
|k∞(t)| dt = L∞(κ∞). Since κ∞ was arbitrary, we conclude that

d∞(γ∞(−T ), γ∞(T )) ≥ 2T . �

The following fact is a special case of the general principle according to which the

tangent to the tangent is (contained in the) tangent.

Proposition 3.7. Let γ : [−T, T ] → M be a horizontal curve and t ∈ (−T, T ). If

κ ∈ Tan(γ; t) and κ̂ ∈ Tan(κ; 0), then κ̂ ∈ Tan(γ; t).

Proof. We can assume without loss of generality that t = 0. We use exponential

coordinates of the first kind centered at γ(0). Let N > 0 be fixed. Since κ̂ ∈ Tan(κ; 0),

there exists an infinitesimal sequence ξk ↓ 0 such that, for all t ∈ [−N,N ] and k ∈ N,

we have

‖κ̂(t)− δ1/ξkκ(ξkt)‖≤
1

2k
.
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Since κ ∈ Tan(γ; 0), there exists an infinitesimal sequence ηk ↓ 0 such that, for all

t ∈ [−N,N ] and k ∈ N, we have

‖κ(ξkt)− δ1/ηkγ(ηkξkt)‖≤
ξk
2k
.

It follows that for the infinitesimal sequence σk := ξkηk we have, for all t ∈ [−N,N ],

‖κ̂(t)− δ1/σk
κ(σkt)‖≤ ‖κ̂(t)− δ1/ξkκ(ξkt)‖+‖δ1/ξkκ(ξkt)− δ1/σk

γ(σkt)‖≤
1

2k−1
.

The thesis now follows by a diagonal argument. �

When γ : [0, T ] → M , there are analogous versions of Propositions 3.6 and 3.7 for

Tan+(γ; 0) and Tan−(γ;T ).

Proposition 3.8. Let κ : R → M∞ be a horizontal curve in (M∞,X ∞). The

following statements are equivalent:

(i) there exist c1, . . . , cr ∈ R such that κ̇ =
∑r

i=1 ciY
∞
i (κ) and κ(0) = 0;

(ii) there exists x0 ∈ M∞ such that κ(t) = δt(x0) (here δt is defined by (2.4) also

for t < 0).

Proof. We prove (i)⇒(ii). Since (δλ)∗Y
∞
i = λY ∞

i for λ 6= 0, the curve δλ ◦ κ(·/λ)

satisfies the same differential equation, so δλ ◦ κ(t/λ) = κ(t); choosing λ = t we get

κ(t) = δt(κ(1)).

We check (ii)⇒(i). Up to rescaling time, we can assume that κ̇(1) exists and is

a linear combination of Y ∞
1 (κ(1)), . . . , Y ∞

r (κ(1)), so κ̇(1) =
∑

i hiY
∞
i (κ(1)) for some

h ∈ R
r. If h is the control of κ, for a.e. s we have

r∑

i=1

hiY
∞
i (κ(1)) = κ̇(1) = s

d

dt
κ(t/s)

∣∣∣
t=s

= s
d

dt
(δ1/s ◦ κ(t))

∣∣∣
t=s

=
r∑

i=1

hi(s)Y
∞
i (κ(1)),

again because s(δ1/s)∗Y
∞
i = Y ∞

i . Since Y ∞
1 , . . . , Y ∞

r are pointwise linearly indepen-

dent (see Proposition 2.5), we get h = h a.e. �

Definition 3.9. We say that a horizontal curve κ in (M∞,X ∞) is a horizontal line

(through 0) if one of the conditions (i)–(ii) of Proposition 3.8 holds.

The definition of positive and negative half-line is similar, the formulas above being

required to hold for t ≥ 0 and t ≤ 0, respectively.

Remark 3.10. Let us observe the following fact. Let γ : [−T, T ] → M be a length

minimizer parametrized by arclength with control h = (h1, . . . , hr) and let t ∈ (−T, T )

be fixed. Then, the tangent cone Tan(γ; t) contains a horizontal line κ in M∞ if and

only if there exist an infinitesimal sequence ηi ↓ 0 and a constant unit vector c ∈ Sr−1

such that

h(t + ηi ·) → c in L2
loc(R).
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As usual, an analogous version holds for Tan+(γ; 0) and Tan−(γ;T ) in case γ is a

length minimizer parametrized by arclength on the interval [0, T ].

Let us prove our claim; we can set t = 0. Assume that there exists a sequence

ηi ↓ 0 such that the curves γi(τ) := δ1/ηiϕ(γ(ηiτ)) converge locally uniformly to a

horizontal line κ in the tangent CC structure (M∞,X ∞); we have

γi(τ) =

∫ τ

0

r∑

j=1

hj(ηis)Y
1/ηi
j (γi(s)) ds.

Up to subsequences we have h(ηi ·)⇀ h∞ in L2
loc(R), with ‖h∞‖L∞≤ 1. Since Y

1/ηi
j →

Y ∞
j locally uniformly, we obtain

κ(τ) =

∫ τ

0

r∑

j=1

h∞(s)Y ∞
j (κ(s)) ds.

By Proposition 3.6, κ is parametrized by arclength. So |h∞|= 1 a.e. and, since κ is

a horizontal line, h∞ is constant. Finally, for any compact set K ⊂ R, we trivially

have ‖h(ηi ·)‖L2(K)→ ‖h∞‖L2(K), which gives h(ηi ·) → h∞ in L2(K). The reverse

implication (if h(t + ηi ·) → c in L2
loc(R), then Tan(γ; t) contains a horizontal line)

follows a similar argument.

4. Lifting the tangent structure to a free Carnot group

In this section we show how a tangent CC structure (M∞,X ∞) can be lifted to

a free Carnot group F , by means of a desingularization process. We also show that

length minimizers in M∞ lift to length minimizers in F .

Let (M∞,X ∞) be a tangent CC structure as in Section 2. The Lie algebra g

generated by X ∞ = (Y ∞
1 , . . . , Y ∞

r ) is nilpotent because, by Proposition 2.5, any

iterated commutator of length greater than s vanishes. The identity (δλ)∗Y
∞
i = λY ∞

i

implies that (δλ)∗X → 0 pointwise as λ→ 0, for any X ∈ g. We deduce that the j-th

component of X is a polynomial function depending only on the previous variables. It

follows that the flow (x, t) 7→ exp(tX)(x) is a polynomial function in (x, t) ∈M∞×R

and X is therefore complete.

Let f be the free Lie algebra of rank r and step s, with generators W1, . . . ,Wr.

The connected, simply connected Lie group F with Lie algebra f can be constructed

explicitly as follows: we let F := f and we endow F with the group operation A ·B :=

P (A,B), where

P (A,B) =

s∑

p=1

(−1)p+1

p

∑

1≤ki+ℓi≤s

[Ak1 , Bℓ1, . . . , Akp, Bℓp]

k1! · · · kp! ℓ1! · · · ℓp!
∑

i(ki + ℓi)
. (4.32)

This is a finite truncation of the series in (2.8): the omitted terms vanish by the

nilpotency of f. One readily checks that P (A, 0) = P (0, A) = A and P (A,−A) =
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P (−A,A) = 0, while the associativity identity P (P (A,B), C) = P (A, P (B,C)) is

shown in [5, Sec. X.2] for free Lie algebras and can be deduced for f by truncation.

For any A ∈ F , t 7→ tA is a one-parameter subgroup. From this, it is straightforward

to check that f identifies with the Lie algebra of F , with exp : f → F given by the

identity map. In particular, exp : f → F is a diffeomorphism and we have

exp(A) exp(B) = exp(P (A,B)), A, B ∈ f. (4.33)

The group F is a Carnot group, which means that it is a connected, simply con-

nected and nilpotent Lie group whose Lie algebra is stratified, i.e., it has an assigned

decomposition f = f1 ⊕ · · · ⊕ fs satisfying [f1, fi−1] = fi and [f, fs] = {0} (in this case

f1 is the linear span of W1, . . . ,Wr). The group F just constructed is called the free

Carnot group of rank r and step s.

Proposition 4.1. The group F is generated by exp(f1).

Proof. See [3, Lemma 1.40]. �

By the nilpotency of g, there exists a unique homomorphism ψ : f → g such that

ψ(Wi) = Y ∞
i ∈ g for i = 1, . . . , r. The group F acts on M∞ on the right. The action

M∞ × F → M∞ is given by (x, f) 7→ x · f := exp(ψ(A))(x), where f = exp(A). In

fact, by (4.33), for any f ′ = exp(B) we have

x · (ff ′) = exp(P (ψ(A), ψ(B)))(x) = exp(ψ(B)) ◦ exp(ψ(A))(x) = (x · f) · f ′. (4.34)

The second equality is a consequence of the formula exp(P (tY, tX))(x) = exp(tX) ◦

exp(tY )(x) for X, Y ∈ g (with P given by (4.32)), which holds since both sides are

polynomial functions in t, with the same Taylor expansion (by (2.7)). We define the

map

π∞ : F → M∞, π∞(f) := 0 · f,

where the dot stands for the right action of F on M∞.

Let W := {W1, . . . ,Wr} and extend W to a basis W1, . . . ,WN of f adapted to

the stratification. Via the exponential map exp : f → F , the one-parameter group

of automorphisms of f defined by Wk 7→ λiWk if and only if Wk ∈ fi induces a

one-parameter group of automorphisms (δ̂λ)λ>0 of F , called dilations.

If A ∈ f1, for any λ > 0 and x ∈M∞ we have the identity

exp(λψ(A))(δλ(x)) = δλ( exp(ψ(A))(x)), (4.35)

which follows from (δλ)∗ψ(A) = λψ(A).

Definition 4.2. We call the CC structure (F,W ) the lifting of (M∞,X ∞) with

projection π∞ : F →M∞.

Proposition 4.3. The lifting (F,W ) of (M∞,X ∞) has the following properties:
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(i) for any f ∈ F and i = 1, . . . , r we have π∞
∗ (Wi(f)) = Y ∞

i (π∞(f));

(ii) the dilations of F and M∞ commute with the projection: namely, for any

λ > 0 we have

π∞ ◦ δ̂λ = δλ ◦ π
∞.

Proof. (i) Using the action property (4.34), we find

π∞
∗ (Wi(f)) =

d

dt
π∞(f exp(tWi))

∣∣∣∣
t=0

=
d

dt
0 · (f exp(tWi))

∣∣∣∣
t=0

=
d

dt
π∞(f) · exp(tWi)

∣∣∣∣
t=0

= ψ(Wi)(π
∞(f)) = Y ∞

i (π∞(f)).

(ii) Let λ > 0 and x ∈M∞. By (4.35), for any W ∈ f1 we have

δλ(x)·exp(λW ) = exp(λψ(W ))(δλ(x)) = δλ( exp(ψ(W ))(x)) = δλ(x·exp(W )). (4.36)

We deduce that the claim holds for any f = exp(W ) with W ∈ f1, because

π∞(δ̂λ(f)) = π∞(exp(λW )) = δλ(0) · exp(λW ) = δλ(0 · exp(W )) = δλ(π
∞(f)).

By Proposition 4.1, any f ∈ F is of the form f = f1f2 . . . fk with each fi ∈ exp(f1).

Assume by induction that the claim holds for f̂ = f1f2 . . . fk−1. By (4.36), letting

fk = exp(W ) we have

π∞(δ̂λ(f)) = π∞(δ̂λ(f̂) exp(λW )) = π∞(δ̂λ(f̂)) · exp(λW )

= δλ(π
∞(f̂)) · exp(λW ) = δλ(π

∞(f̂) · exp(W )) = δλ(π
∞(f)). �

Let κ : I →M∞ be a horizontal curve in (M∞,X ∞), with control h ∈ L∞(I,Rr).

A horizontal curve κ : I → F such that

κ = π∞ ◦ κ and κ̇(t) =
r∑

i=1

hi(t)Wi(κ(t)) for a.e. t ∈ I

is called a lift of κ to (F,W ).

Proposition 4.4. Let (F,W ) be the lifting of (M∞,X ∞) with projection π∞ : F →

M∞. Then the following facts hold:

(i) If κ is length minimizing in (M∞,X ∞), then any horizontal lift κ of κ is

length minimizing in (F,W ).

(ii) If κ is a horizontal (half-)line in F , then π∞ ◦ κ is a horizontal (half-)line in

(M∞,X ∞).

Proof. Claim (i) follows from L(κ) = L(κ) and from the inequality L(κ′) = L(κ′) ≥

L(κ), whenever κ′ is horizontal with the same endpoints as κ and κ′ = π∞ ◦ κ′. We

now turn to Claim (ii). Let κ(t) = exp(tW ) for some W ∈ f1. The projection π∞ ◦ κ

is horizontal by part (i) of Proposition 4.3. The thesis follows from characterization

(i) for horizontal lines, contained in Proposition 3.8.

�
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