ON TANGENT CONES TO LENGTH MINIMIZERS IN CARNOT–CARATHÉODORY SPACES

ROBERTO MONTI, ALESSANDRO PIGATI, AND DAVIDE VITTONE

ABSTRACT. We give a detailed proof of some facts about the blow-up of horizontal curves in Carnot–Carathéodory spaces.

1. INTRODUCTION

We give a detailed proof of some facts about the blow-up of horizontal curves in Carnot–Carathéodory spaces. These results are crucially used in [6, 7, 10]. The proof of a fraction of these results was already sketched, in a special case, in [13, Section 3.2].

Let M be a connected n-dimensional C^{∞} -smooth manifold and $\mathscr{X} = \{X_1, \ldots, X_r\}$, $r \geq 2$, a system of C^{∞} -smooth vector fields on M that are pointwise linearly independent and satisfy the Hörmander condition introduced below. We call the pair (M, \mathscr{X}) a *Carnot–Carathéodory (CC) structure*. Given an interval $I \subseteq \mathbb{R}$, a Lipschitz curve $\gamma : I \to M$ is said to be *horizontal* if there exist functions $h_1, \ldots, h_r \in L^{\infty}(I)$ such that for a.e. $t \in I$ we have

$$\dot{\gamma}(t) = \sum_{i=1}^{r} h_i(t) X_i(\gamma(t)).$$
(1.1)

The function $h \in L^{\infty}(I; \mathbb{R}^r)$ is called the *control* of γ . Letting $|h| := (h_1^2 + \ldots + h_r^2)^{1/2}$, the length of γ is then defined as

$$L(\gamma) := \int_{I} |h(t)| \, dt.$$

Since M is connected, by the Chow–Rashevsky theorem (see e.g. [2, 12, 1]) for any pair of points $x, y \in M$ there exists a horizontal curve joining x to y. We can therefore define a distance function $d: M \times M \to [0, \infty)$ letting

 $d(x,y) := \inf \{ L(\gamma) \mid \gamma : [0,T] \to M \text{ horizontal with } \gamma(0) = x \text{ and } \gamma(T) = y \}.$ (1.2)

²⁰¹⁰ Mathematics Subject Classification. 53C17, 49K30, 28A75.

Key words and phrases. Length minimizers, Carnot-Carathéodory spaces, sub-Riemannian geometry, Carnot groups.

R. M. and D. V. are supported by MIUR (Italy) and University of Padova. D. V. is supported by INdAM-GNAMPA Project 2017 "Campi vettoriali, superfici e perimetri in geometrie singolari".

The resulting metric space (M, d) is a Carnot-Carathéodory space. Since our analysis is local, our results apply in particular to sub-Riemannian manifolds (M, \mathcal{D}, g) , where $\mathcal{D} \subset TM$ is a completely non-integrable distribution and g is a smooth metric on \mathcal{D} .

If the closure of any ball in (M, d) is compact, then the infimum in (1.2) is a minimum, i.e., any pair of points can be connected by a length-minimizing curve. A horizontal curve $\gamma : [0, T] \to M$ is a *length minimizer* if $L(\gamma) = d(\gamma(0), \gamma(T))$.

The main contents of the paper are the following:

- (i) we define a tangent Carnot–Carathéodory structure $(M^{\infty}, \mathscr{X}^{\infty})$ at any point of M, using exponential coordinates of the first kind, see Section 2;
- (ii) in Section 3, we define the tangent cone for a horizontal curve, at a given time, as the set of all possible blow-ups in $(M^{\infty}, \mathscr{X}^{\infty})$ of the curve, and we show that this cone is always nonempty, see Proposition 3.2;
- (iii) we show that, if the curve has a right derivative at the given time, the (positive) tangent cone consists of a single half-line, see Theorem 3.5;
- (iv) if the curve is a length minimizer, in Theorem 3.6 we show that all the blow-ups are length minimizers in $(M^{\infty}, \mathscr{X}^{\infty})$, as well;
- (v) in Section 4, we show that a tangent Carnot–Carathéodory structure can be lifted to a free Carnot group, in a way that preserves length minimizers.

2. NILPOTENT APPROXIMATION: DEFINITION OF A TANGENT STRUCTURE

In this section we introduce some basic notions about Carnot–Carathéodory spaces. Then we describe the structure of a specific frame of vector fields Y_1, \ldots, Y_n (constructed below) in exponential coordinates, see Theorem 2.3. We also prove a lemma describing the infinitesimal behaviour of the Carnot–Carathéodory distance d near 0, with respect to suitable anisotropic dilations, see Lemma 2.4.

We denote by $\text{Lie}(X_1, \ldots, X_r)$ the real Lie algebra generated by X_1, \ldots, X_r through iterated commutators. The evaluation of this Lie algebra at a point $x \in M$ is a vector subspace of the tangent space $T_x M$. If, for any $x \in M$, we have

$$\operatorname{Lie}(X_1,\ldots,X_r)(x)=T_xM,$$

we say that the system $\mathscr{X} = \{X_1, \ldots, X_r\}$ satisfies the Hörmander condition and we call the pair (M, \mathscr{X}) a Carnot-Carathéodory (CC) structure.

Given a point $x_0 \in M$, let $\varphi \in C^{\infty}(U; \mathbb{R}^n)$ be a chart such that U is an open neighborhood of x_0 and $\varphi(x_0) = 0$. Then $V := \varphi(U)$ is an open neighborhood of $0 \in \mathbb{R}^n$ and the system of vector fields $Y_i := \varphi_* X_i$, with $i = 1, \ldots, r$, still satisfies the Hörmander condition in V.

For a multi-index $J = (j_1, \ldots, j_k)$ with $k \ge 1$ and $j_1, \ldots, j_k \in \{1, \ldots, r\}$, define the iterated commutator

$$Y_J := [Y_{j_1}, \dots, Y_{j_{k-1}}, Y_{j_k}]$$

where, here and in the following, for given vector fields V_1, \ldots, V_q we use the short notation $[V_1, \ldots, V_q]$ to denote the commutator $[V_1, [\cdots, [V_{q-1}, V_q] \cdots]]$. We say that Y_J is a commutator of *length* $\ell(J) := k$ and we denote by L^j the linear span of $\{Y_J(0) \mid \ell(J) \leq j\}$, so that

$$\{0\} = L^0 \subseteq L^1 \subseteq \dots \subseteq L^s = \mathbb{R}^n$$

for some minimal $s \ge 1$. We select multi-indices $J_1 = (1), \ldots, J_r = (r), J_{r+1}, \ldots, J_n$ such that, for each $1 \le j \le s$,

$$\ell(J_{\dim L^{(j-1)}+1}) = \dots = \ell(J_{\dim L^j}) = j$$

and such that, setting $Y_i := Y_{J_i}$, the vectors $Y_1(0), \ldots, Y_{\dim L^j}(0)$ form a basis of L^j . In particular, we have dim $L^1 = r$.

Possibly composing φ with a diffeomorphism (and shrinking U and V), we can assume that V is convex, that for any point $x = (x_1, \ldots, x_n) \in V$ we have

$$x = \exp\left(\sum_{i=1}^{n} x_i Y_i\right)(0) \tag{2.3}$$

and that Y_1, \ldots, Y_n are linearly independent on V. Such coordinates (x_1, \ldots, x_n) are called *exponential coordinates of the first kind* associated with the frame Y_1, \ldots, Y_n . To each coordinate x_i we assign the weight $w_i := \ell(J_i)$ and we define the anisotropic dilations $\delta_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$

$$\delta_{\lambda}(x) := (\lambda^{w_1} x_1, \dots, \lambda^{w_n} x_n), \qquad \lambda > 0.$$
(2.4)

Definition 2.1. A function $f : \mathbb{R}^n \to \mathbb{R}$ is δ -homogeneous of degree $w \in \mathbb{N}$ if $f(\delta_{\lambda}(x)) = \lambda^w f(x)$ for all $x \in \mathbb{R}^n$, $\lambda > 0$. We will refer to such a w as the δ -degree of f.

We will frequently use the anisotropic (pseudo-)norm

$$||x|| := \sum_{i=1}^{n} |x_i|^{1/w_i}, \qquad x \in \mathbb{R}^n.$$
(2.5)

The norm function, $x \mapsto ||x||$, is δ -homogeneous of degree 1.

We recall two facts about the exponential map, which are discussed e.g. in [11, pp. 141–147]. First, for any $\psi \in C^{\infty}(V)$, we have the Taylor expansion

$$\psi\Big(\exp\Big(\sum_{i=1}^{n} s_i Y_i\Big)(0)\Big) \sim \left(\mathrm{e}^{\sum_i s_i Y_i}\psi\right)(0) \tag{2.6}$$

where

• the left-hand side is a function of $s \in \mathbb{R}^n$ near 0;

• the right-hand side is a shorthand for the formal series

$$\sum_{k=0}^{\infty} \frac{1}{k!} ((s_1 Y_1 + \dots + s_n Y_n)^k \psi)(0) = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i_1,\dots,i_k \in \{1,\dots,n\}} s_{i_1} \cdots s_{i_k} (Y_{i_1} \cdots Y_{i_k} \psi)(0);$$

• given a smooth function f(x) and a formal power series S(x), we define the relation $f(x) \sim S(x)$ if the formal Taylor series of f(x) at 0 is S(x).

Second, letting $S := \sum_{i=1}^{n} s_i Y_i$ and $T := \sum_{i=1}^{n} t_i Y_i$, the following formal Taylor expansions hold as well:

$$\psi\Big(\exp(S)\circ\exp(T)(0)\Big)\sim\left(\mathrm{e}^{T}\mathrm{e}^{S}\psi\right)(0)=(\mathrm{e}^{P(T,S)}\psi)(0),\qquad(2.7)$$

where

$$P(T,S) := \sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{p} \sum_{k_i+\ell_i \ge 1} \frac{[T^{k_1}, S^{\ell_1}, \dots, T^{k_p}, S^{\ell_p}]}{k_1! \cdots k_p! \, \ell_1! \cdots \ell_p! \, (k_1+\ell_1+\dots+k_p+\ell_p)}.$$
 (2.8)

Above, the notation T^k stands for T, \ldots, T, k times.

Remark 2.2. The formal power series identity $e^T e^S = e^{P(T,S)}$ is a purely algebraic fact which holds in any (noncommutative, graded, complete) associative real algebra, see e.g. [5, Sec. X.2]: this principle will be used in the proofs of Theorem 2.3 and Lemma 2.4.

In the case of exponential coordinates of the second kind, the following theorem is proved in [4].

Theorem 2.3. The vector fields Y_1, \ldots, Y_n are of the form

$$Y_i(x) = \sum_{j=i}^n a_{ij}(x) \frac{\partial}{\partial x_j}, \qquad x \in V, \quad i = 1, \dots, n,$$
(2.9)

where $a_{ij} \in C^{\infty}(V)$ are functions such that $a_{ij} = p_{ij} + r_{ij}$ and:

- (i) for $w_j \ge w_i$, p_{ij} are δ -homogeneous polynomials in \mathbb{R}^n of degree $w_j w_i$;
- (ii) for $w_j \leq w_i$, $p_{ij} = \delta_{ij}$ (in particular, $p_{ij} = 0$ for $w_j < w_i$);
- (iii) $r_{ij} \in C^{\infty}(V)$ satisfy $r_{ij}(0) = 0$;
- (iv) for $w_j \ge w_i$, $r_{ij}(x) = o(||x||^{w_j w_i})$ as $x \to 0$.

Proof. Suppose for a moment that

$$a_{ij}(x) = O(||x||^{w_j - w_i}), \qquad i, j = 1, \dots, n, \ w_j \ge w_i.$$
 (2.10)

Let p_{ij} be the sum of all monomials of δ -degree $w_j - w_i$ in the Taylor expansion of a_{ij} , with the convention that $p_{ij} = 0$ if $w_j < w_i$. Statements (i) and (iv) then hold by construction, while (ii) and (iii) follow from $a_{ij}(0) = \delta_{ij}$, which is a consequence of (2.3).

Let us show (2.10). We pullback the identity $Y_i(x) = \sum_j a_{ij}(x) \frac{\partial}{\partial x_j}$ to the origin using the map $\exp(-X)$ (locally defined near x), where $X := \sum_k x_k Y_k$, for a fixed $x \in V$. We have

$$\exp(-X)_*(Y_i(x)) = \sum_j a_{ij}(x) \exp(-X)_*\left(\frac{\partial}{\partial x_j}(x)\right), \qquad (2.11)$$

where the sum ranges from 1 to n. The above equation reads

$$\sum_{\ell} b_{i\ell}(x) Y_{\ell}(0) = \sum_{j,\ell} a_{ij}(x) c_{j\ell}(x) Y_{\ell}(0)$$

for suitable smooth coefficients $b_{i\ell}(x), c_{j\ell}(x)$. We claim that

$$b_{i\ell}(x) = O(||x||^{w_\ell - w_i}), \quad c_{j\ell}(x) = O(||x||^{w_\ell - w_j}), \text{ and } c_{j\ell}(0) = \delta_{j\ell}.$$

Then, defining $A := (a_{ij}), B := (b_{i\ell})$ and $C := 1 - (c_{j\ell})$ (1 denoting the identity matrix), we obtain three $n \times n$ matrices satisfying B(x) = A(x)(1 - C(x)) and C(0) = 0. In particular, 1 - C(x) is invertible for x close to 0 and $(1 - C(x))^{-1} = \sum_{p=0}^{\infty} C(x)^p$. This gives

$$A(x) = \sum_{p=0}^{s} B(x)C(x)^{p} + o(|x|^{s}) = \sum_{p=0}^{s} B(x)C(x)^{p} + o(||x||^{s})$$

for any $s \in \mathbb{N}$, and (2.10) easily follows.

The proof of $c_{j\ell}(0) = \delta_{j\ell}$ follows from the definition of $c_{j\ell}$ and from $\frac{\partial}{\partial x_j} = Y_j(0)$, which in turn comes from (2.3), as already observed.

We prove the claim $b_{i\ell}(x) = O(||x||^{w_\ell - w_i})$. By (2.3), the left-hand side of (2.11) satisfies

$$\exp(-X)_*(Y_i(x)) = \frac{d}{dt} \exp(-X) \circ \exp(tY_i) \circ \exp(X)(0)\Big|_{t=0}$$

Using (2.7) and Remark 2.2, for any smooth ψ we obtain

$$\psi(\exp(-X) \circ \exp(tY_i) \circ \exp(X)(0)) \sim e^{P(P(X,tY_i),-X)}\psi(0),$$

the left-hand side being interpreted as a function of (x, t). We now differentiate this identity at t = 0. Since $W(t) := P(P(X, tY_i), -X)$ vanishes at t = 0, one has $\frac{d}{dt}(e^{W(t)}\psi)(0)\Big|_{t=0} = \frac{d}{dt}(W(t)\psi)(0)\Big|_{t=0}$ and, letting ψ range among the coordinate functions, we deduce that any finite-order expansion in x of $\exp(-X)_*(Y_i(x))$ is a linear combination of terms of the form

$$x_{i_1}\cdots x_{i_p}[Y_{i_1},\ldots,Y_{i_m},Y_i,Y_{i_{m+1}},\ldots,Y_{i_p}](0)$$

where $p \geq 1$ and $0 \leq m \leq p$. By Jacobi's identity, the iterated commutator $[Y_{i_1}, \ldots, Y_{i_m}, Y_i, Y_{i_{m+1}}, \ldots, Y_{i_p}](0)$ is a linear combination of the vectors $Y_J(0)$ with

 $\ell(J) = \overline{w} := \sum_{q=1}^{p} w_{i_q} + w_i$ and so, by construction, it is a linear combination of the vectors $Y_{\ell}(0)$ with $w_{\ell} \leq \overline{w}$. Hence, letting $w_{\alpha} := \sum_{q=1}^{n} \alpha_q w_q$ for all $\alpha \in \mathbb{N}^n$, we have

$$\exp(-X)_*(Y_i(x)) \sim \sum_{\ell} \sum_{\alpha: w_\alpha \ge w_\ell - w_i} d_{\alpha i\ell} x^\alpha Y_\ell(0),$$

for suitable coefficients $d_{\alpha i\ell} \in \mathbb{R}$. This gives the required estimate.

The proof of $c_{j\ell}(x) = O(||x||^{w_{\ell}-w_j})$ is analogous to the preceding argument, once we observe that

$$\exp(-X)_*\left(\frac{\partial}{\partial x_j}(x)\right) = \frac{d}{dt}\exp(-X)\circ\exp(X+tY_j)(0)\Big|_{t=0}.$$

We can omit the details.

Lemma 2.4. For any compact set $K \subset \mathbb{R}^n$ and any $\varepsilon > 0$ there exist $\delta > 0$ and $\overline{\lambda} > 0$ such that $\lambda d(\delta_{1/\lambda}(x), \delta_{1/\lambda}(y)) < \varepsilon$ for all $x, y \in K$ with $|x - y| < \delta$ and all $\lambda \ge \overline{\lambda}$.

Proof. Let $\psi \in C^{\infty}(V)$ be an arbitrary smooth function. Using (2.6) and Remark 2.2, we have the following identity of formal power series in $(s,t) \in \mathbb{R}^n \times \mathbb{R}^n$: letting $S := \sum_{i=1}^n s_i Y_i$ and $T := \sum_{i=1}^n t_i Y_i$,

$$\psi(\exp(S)(0)) \sim (e^S \psi)(0) = (e^T e^{-T} e^S \psi)(0) = (e^T e^{P(-T,S)} \psi)(0).$$
 (2.12)

The truncation $P_N(-T, S)$ of the series P(-T, S) up to δ -degree $N := w_n$ is

$$P_N(-T,S) = \sum_{1 \le \ell(J) \le N} q_J(s,t) Y_J,$$
(2.13)

where the sum is over all J such that $1 \leq \ell(J) \leq N$ and q_J is a homogeneous polynomial with δ -degree $\ell(J)$, i.e., $q_J(\delta_{\lambda s}, \delta_{\lambda t}) = \lambda^{\ell(J)}q_J(s, t)$. This follows from the fact that any iterated commutator $[Y_{i_1}, \ldots, Y_{i_k}]$ is a constant linear combination of the vector fields Y_J 's with $\ell(J) = \sum_{j=1}^k w_{i_j}$ (which in turn is a consequence of Jacobi's identity).

Moreover, using (2.13) and applying (2.7) with the vector fields Y_J in place of Y_1, \ldots, Y_n , we have the following formal Taylor expansion in (s, t) at $0 \in \mathbb{R}^{2n}$

$$\psi(\exp(P_N(-T,S)) \circ \exp(T)(0)) \sim \left(e^T e^{P_N(-T,S)}\psi\right)(0),$$

which, by (2.12), coincides with the one of $\psi(\exp(S)(0))$ up to δ -degree N. Since this holds for any ψ , we deduce (for instance letting ψ range among the coordinate functions) that

$$\exp(S)(0) = \exp(P_N(-T,S)) \circ \exp(T)(0) + o(|s|^N + |t|^N),$$

which by (2.3) gives

$$s = \exp(P_N(-T,S))(t) + o(|s|^N + |t|^N) =: f(s,t) + o(|s|^N + |t|^N).$$

Now let $s = \delta_{1/\lambda}(x)$ and $t = \delta_{1/\lambda}(y)$ with $x, y \in K$. Since

$$q_J(s,t) = \lambda^{-\ell(J)} q_J(x,y),$$

by [11, Theorem 4] we get

$$d(t, f(s, t)) \le C \sum_{1 \le \ell(J) \le N} |q_J(s, t)|^{1/\ell(J)} = C\lambda^{-1} \sum_{1 \le \ell(J) \le N} |q_J(x, y)|^{1/\ell(J)},$$

while, by [11, Lemma 2.20(b)],

$$d(s, f(s, t)) = O(|s - f(s, t)|^{1/w_n}) = o(|s| + |t|) = o(\lambda^{-1}),$$

provided λ is sufficiently large. Thus, by the triangle inequality,

$$\lambda d(\delta_{1/\lambda}(x), \delta_{1/\lambda}(y)) = \lambda d(s, t) \le C \sum_{1 \le \ell(J) \le N} |q_J(x, y)|^{1/\ell(J)} + \frac{\varepsilon}{2}$$

for all $\lambda \geq \overline{\lambda}$, for a suitably large $\overline{\lambda} > 0$. Finally, since $P_N(S, -S) = 0$, we can assume that q_J vanishes on the diagonal of $K \times K$ (possibly replacing $q_J(s,t)$ with $q_J(s,t) - q_J(s,s)$). Hence, by compactness of K, we also have

$$C\sum_{1\leq\ell(J)\leq N} |q_J(x,y)|^{1/\ell(J)} < \frac{\varepsilon}{2}$$

whenever $x, y \in K$ are such that $|x - y| < \delta$, for a suitably small $\delta > 0$.

We now introduce the vector fields $Y_1^{\infty}, \ldots, Y_r^{\infty}$ in \mathbb{R}^n defined by

$$Y_i^{\infty}(x) := \sum_{j=1}^n p_{ij}(x) \frac{\partial}{\partial x_j},$$

and we let $\mathscr{X}^{\infty} = \{Y_1^{\infty}, \ldots, Y_r^{\infty}\}$. The vector fields $Y_1^{\infty}, \ldots, Y_r^{\infty}$ are known as the *nilpotent approximation* of Y_1, \ldots, Y_r at the point 0. By Proposition 2.5 below, the pair $(\mathbb{R}^n, \mathscr{X}^{\infty})$ is a Carnot–Carathéodory structure. We set $M^{\infty} := \mathbb{R}^n$ and we call $(M^{\infty}, \mathscr{X}^{\infty})$ a *tangent* Carnot–Carathéodory structure to (M, \mathscr{X}) at the point $x_0 \in M$.

Proposition 2.5. The vector fields $Y_1^{\infty}, \ldots, Y_r^{\infty}$ are pointwise linearly independent and satisfy the Hörmander condition in \mathbb{R}^n . Moreover, any iterated commutator $Y_J^{\infty} := [Y_{j_1}^{\infty}, [\ldots, [Y_{j_{k-1}}^{\infty}, Y_{j_k}^{\infty}] \ldots]]$ of length $\ell(J) = k > s$ vanishes identically.

Proof. We claim that Theorem 2.3 implies $Y_i^{\infty} = \lim_{\lambda \to \infty} \lambda^{-1}(\delta_{\lambda})_* Y_i$, for all $i = 1, \ldots, r$, in the (local) C^{∞} -topology (the vector field $\lambda^{-1}(\delta_{\lambda})_* Y_i$ being defined on $\delta_{\lambda}(V)$). Indeed, since $Y_i(x) = Y_i^{\infty}(x) + \sum_j r_{ij}(x) \frac{\partial}{\partial x_i}$, we have

$$\lambda^{-1}((\delta_{\lambda})_*Y_i)(x) = Y_i^{\infty}(x) + \sum_{j=1}^n \lambda^{w_j - 1} r_{ij}(\delta_{1/\lambda}(x)) \frac{\partial}{\partial x_j},$$

because $\lambda^{-1}(\delta_{\lambda})_* Y_i^{\infty} = Y_i^{\infty}$. By Theorem 2.3, the monomials in the Taylor expansion of r_{ij} have δ -degree greater than $w_j - 1$. Thus, for any $\alpha \in \mathbb{N}^n$,

$$\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}(\lambda^{w_j-1}r_{ij}(\delta_{1/\lambda}(x))) = \lambda^{w_j-1-w_{\alpha}}\frac{\partial^{|\alpha|}r_{ij}}{\partial x^{\alpha}}(\delta_{1/\lambda}(x)),$$

where $w_{\alpha} := \sum_{\ell} \alpha_{\ell} w_{\ell}$. The monomials in the expansion of $\frac{\partial^{|\alpha|} r_{ij}}{\partial x^{\alpha}}$ have δ -degree greater than $w_j - 1 - w_{\alpha}$, hence $\left| \frac{\partial^{|\alpha|} r_{ij}}{\partial x^{\alpha}} (\delta_{1/\lambda}(x)) \right| = o(\lambda^{-(w_j - 1 - w_{\alpha})})$ and the claim follows.

In particular, we deduce that for any multi-index J

$$Y_J^{\infty} = \lim_{\lambda \to \infty} \lambda^{-\ell(J)} (\delta_{\lambda})_* Y_J, \qquad (2.14)$$

in the local C^{∞} topology. Hence, defining the $n \times n$ matrix $D_{\lambda} := \operatorname{diag}[\lambda^{w_1}, \ldots, \lambda^{w_n}]$ and recalling that $\ell(J_p) = w_p$, for all $p = 1, \ldots, n$ we have

$$Y_{J_p}^{\infty}(x) = \lim_{\lambda \to \infty} \lambda^{-w_p} D_{\lambda} Y_{J_p}(\delta_{1/\lambda}(x)).$$

Now the first statement follows from

$$\det(Y_{J_1}^{\infty},\ldots,Y_{J_n}^{\infty})(x) = \lim_{\lambda \to \infty} \lambda^{-\sum_i w_i} \det(D_\lambda) \det(Y_{J_1},\ldots,Y_{J_n})(\delta_{1/\lambda}(x))$$
$$= \det(Y_{J_1},\ldots,Y_{J_n})(0) = \det(Y_1,\ldots,Y_n)(0),$$

which is a nonzero constant. This gives the first part of the statement.

In order to prove the last assertion, we use again the fact that $\lambda^{-1}(\delta_{\lambda})_* Y_i^{\infty} = Y_i^{\infty}$ for $i = 1, \ldots, r$. For any $x \in \mathbb{R}^n$ and any J with $\ell(J) > s = w_n$ we have, by (2.14),

$$Y_J^{\infty}(x) = \lim_{\lambda \to \infty} \lambda^{-\ell(J)}((\delta_{\lambda})_* Y_J)(x) = \lim_{\lambda \to \infty} \lambda^{-\ell(J)} D_{\lambda} Y_J(\delta_{1/\lambda}(x))$$

The right-hand side is bounded by $\lambda^{s-\ell(J)}|Y_J(\delta_{1/\lambda}(x))|$ (if $\lambda \ge 1$), which tends to 0 as $\lambda \to \infty$. This shows that $Y_J^{\infty} = 0$.

Remark 2.6. Setting $Y_i^{\infty} := Y_{J_i}^{\infty}$ for i = 1, ..., n, the coordinate functions on $M^{\infty} = \mathbb{R}^n$ are exponential coordinates of the first kind for $(Y_1^{\infty}, ..., Y_n^{\infty})$, namely

$$x = \exp\left(\sum_{i=1}^{n} x_i Y_i^{\infty}\right)(0).$$
(2.15)

for any $x \in \mathbb{R}^n$. This follows from the fact that, for λ large enough (depending on x), we have $y := \delta_{\lambda^{-1}}(x) \in V$ and, using (2.3) with y in place of x,

$$x = \delta_{\lambda} \Big(\exp\Big(\sum_{i} y_{i} Y_{i}\Big)(0) \Big) = \exp\Big(\sum_{i} x_{i} \lambda^{-w_{i}} (\delta_{\lambda})_{*} Y_{i}\Big)(0) \to \exp\Big(\sum_{i} x_{i} Y_{i}^{\infty}\Big)(0)$$

as $\lambda \to \infty$, since (2.14) gives $\lambda^{-w_i}(\delta_\lambda)_* Y_i \to Y_i^\infty$ in the local C^∞ topology.

3. The tangent cone to a horizontal curve

Let (M, \mathscr{X}) be a CC structure and let $\gamma : [-T, T] \to M$ be a horizontal curve. Given $t \in (-T, T)$, let φ be a chart centered at $x_0 = \gamma(t)$, as in the previous section, together with the dilations δ_{λ} and the tangent CC structure $(M^{\infty}, \mathscr{X}^{\infty})$ introduced above.

Definition 3.1. The tangent cone $\operatorname{Tan}(\gamma; t)$ to γ at $t \in (-T, T)$ is the set of all horizontal curves $\kappa : \mathbb{R} \to M^{\infty}$ such that there exists an infinitesimal sequence $\eta_i \downarrow 0$ satisfying, for any $\tau \in \mathbb{R}$,

$$\lim_{i \to \infty} \delta_{1/\eta_i} \varphi(\gamma(t + \eta_i \tau)) = \kappa(\tau),$$

with uniform convergence on compact subsets of \mathbb{R} .

We remark that any limit curve as above is automatically $(M^{\infty}, \mathscr{X}^{\infty})$ -horizontal: see e.g. the proof of Theorem 3.6.

The definition of $\operatorname{Tan}(\gamma; t)$ depends on the choice Y_1, \ldots, Y_n of linearly independent iterated commutators. When $\gamma : [0, T] \to M$, the tangent cones $\operatorname{Tan}^+(\gamma; 0)$ and $\operatorname{Tan}^-(\gamma; T)$ can be defined in a similar way: $\operatorname{Tan}^+(\gamma; 0)$ contains curves in M^{∞} defined on $[0, \infty)$, while $\operatorname{Tan}^-(\gamma; T)$ contains curves defined on $(-\infty, 0]$.

When $M = M^{\infty}$ or M = G is a Carnot group, there is already a group of dilations on M itself. In such cases, when $\gamma(t) = 0$, we define the tangent cone $\operatorname{Tan}(\gamma; t)$ as the set of horizontal limit curves of the form $\kappa(t) = \lim_{i \to \infty} \delta_{1/\eta_i} \gamma(t + \eta_i \tau)$.

The tangent cone is closed under uniform convergence of curves on compact sets.

Proposition 3.2. For any horizontal curve $\gamma : [-T,T] \to M$ the tangent cone $\operatorname{Tan}(\gamma;t)$ is nonempty for any $t \in (-T,T)$. The same holds for $\operatorname{Tan}^+(\gamma;0)$ and $\operatorname{Tan}^-(\gamma;T)$, for a horizontal curve $\gamma : [0,T] \to M$.

Proof. We prove that $\operatorname{Tan}^+(\gamma; 0) \neq \emptyset$. The other cases are analogous.

We use exponential coordinates of the first kind centered at $\gamma(0)$. By (1.1), we have a.e.

$$\dot{\gamma} = \sum_{i=1}^{r} h_i Y_i(\gamma) = \sum_{j=1}^{n} \sum_{i=1}^{r} h_i a_{ij}(\gamma) \frac{\partial}{\partial x_j}$$

where $h_i \in L^{\infty}([0,T])$ and $a_{ij} = p_{ij} + r_{ij}$, as in Theorem 2.3. Letting $K := \gamma([0,T])$, we have $|\dot{\gamma}(t)| \leq C$ for some constant depending on $||a_{ij}||_{L^{\infty}(K)}$ and $||h||_{L^{\infty}}$. This implies that $|\gamma(t)| \leq Ct$ for all $t \in [0,T]$.

By induction on $k \ge 1$, we prove the following statement: for any j satisfying $w_j \ge k$ we have $|\gamma_j(t)| \le Ct^k$. The base case k = 1 has already been treated. Now assume that $w_j \ge k > 1$ and that the statement is true for $1, \ldots, k - 1$. Since r_{ij} is smooth, we have $r_{ij} = q_{ij,k} + r_{ij,k}$, where $q_{ij,k}$ is a polynomial containing only terms

with δ -homogeneous degree at least $w_j - w_i + 1 = w_j$ and $|r_{ij,k}(x)| \leq C|x|^{k-1}$ on K (here |x| denotes the usual Euclidean norm).

Each monomial $c_{\alpha}x^{\alpha}$ of the polynomial $p_{ij} + q_{ij,k}$ has δ -degree $w_{\alpha} \geq w_j - 1$. If $\alpha_m = 0$ whenever $w_m \geq k$, then we can estimate

$$|\gamma(t)^{\alpha}| = \prod_{m:w_m \le k-1} |\gamma_m(t)|^{\alpha_m} \le Ct^{w_{\alpha}} \le Ct^{k-1},$$

using the inductive hypothesis with k replaced by $w_m \leq k-1$. Otherwise, there exists some index m with $w_m \geq k$ and $\alpha_m > 0$, in which case

$$|\gamma(t)^{\alpha}| \le C |\gamma_m(t)| \le C t^{k-1},$$

using the inductive hypothesis with k replaced by k-1. Thus $|p_{ij}(\gamma(t)) + q_{ij,k}(\gamma(t))| \le Ct^{k-1}$. Combining this with the estimate $|r_{ij,k}(\gamma(t))| \le Ct^{k-1}$, we obtain $|a_{ij}(\gamma(t))| \le Ct^{k-1}$. So we finally have

$$|\gamma_j(t)| \le ||h||_{L^{\infty}} \sum_{i=1}^r \int_0^t |a_{ij}(\gamma(\tau))| \, d\tau \le Ct^k,$$

completing the inductive proof. Applying the above statement with $k = w_i$, we obtain

$$|\gamma_j(t)| \le C t^{w_j},\tag{3.16}$$

for a suitable constant C depending only on K, T and $||h||_{L^{\infty}}$.

Now we prove that $\operatorname{Tan}^+(\gamma; 0)$ is nonempty. For $\eta > 0$ consider the family of curves $\gamma^{\eta}(t) := \delta_{1/\eta}(\gamma(\eta t))$, defined for $t \in [0, T/\eta]$. The derivative of γ^{η} is a.e.

$$\dot{\gamma}^{\eta}(t) = \sum_{j=1}^{n} \sum_{i=1}^{r} h_i(\eta t) \eta^{1-w_j} a_{ij}(\gamma(\eta t)) \frac{\partial}{\partial x_j},$$

where, by Theorem 2.3 and the estimates (3.16), we have

$$|a_{ij}(\gamma(\eta t))| \le C ||\gamma(\eta t)||^{w_j - 1} \le C(\eta t)^{w_j - 1}.$$

This proves that the family of curves $(\gamma^{\eta})_{\eta>0}$ is locally Lipschitz equicontinuous. So it has a subsequence $(\gamma^{\eta_i})_i$ that is converging locally uniformly as $\eta_i \to 0$ to a curve $\kappa : [0, \infty) \to \mathbb{R}^n$.

Remark 3.3. The following result was obtained along the proof of Proposition 3.2. Let (M, \mathscr{X}) be a Carnot-Carathéodory structure. Using exponential coordinates of the first kind, we (locally) identify M with \mathbb{R}^n and we assign to the coordinate x_j the weight w_j , as above. Given T > 0 and K compact, there exists a positive constant C = C(K,T) such that the following holds: for any horizontal curve $\gamma : [0,T] \to K$ parametrized by arclength and such that $\gamma(0) = 0$, one has

$$|\gamma_j(t)| \le Ct^{w_j}, \quad \text{for any } j = 1, \dots, n \text{ and } t \in [0, T].$$

$$(3.17)$$

In Carnot groups, by homogeneity, the constant C is independent of K and T.

Definition 3.4. We say that $v \in \mathbb{R}^n$ is a *right tangent vector* to a curve $\gamma : [0, T] \to \mathbb{R}^n$ at 0 if

$$\gamma(t) = tv + o(t), \quad \text{as } t \to 0^+.$$

The definition of a *left tangent vector* is analogous.

The next result is stated in exponential coordinates of the first kind.

Theorem 3.5. Let $\gamma : [0,T] \to V$ be a horizontal curve parametrized by arclength, with $\gamma(0) = 0$. If γ has a right tangent vector $v \in \mathbb{R}^n$ at 0, then:

- (i) $v_j = 0$ for j > r and $|v| \le 1$;
- (ii) $\operatorname{Tan}^+(\gamma; 0) = \{\kappa\}$, where $\kappa(t) = tv$ for $t \in [0, \infty)$;
- (iii) |v|=1 if γ is also length minimizing.

A similar statement holds if $\gamma: [-T, 0] \to V$ has a left tangent vector at 0.

Proof. (i) Since $Y_i(x) = \frac{\partial}{\partial x_i} + o(1)$ as $x \to 0$, we have

$$\gamma_j(t) = \int_0^t \sum_{i=1}^r h_i(s) \delta_{ij} \, ds + o(t). \tag{3.18}$$

We deduce that $v_j = 0$ for j > r and

$$|v| = \lim_{t \to 0^+} \left| \frac{\gamma(t)}{t} \right| \le \lim_{t \to 0^+} \frac{1}{t} \int_0^t |h(s)| \, ds = 1.$$

(ii) Since $\gamma_j(t) = v_j t + o(t)$ for $j \leq r$, it suffices to show that

$$\gamma_j(t) = o(t^{w_j}), \quad j > r.$$
 (3.19)

Up to a rotation of the vector fields Y_1, \ldots, Y_r , which by (2.3) corresponds to a rotation of the first r coordinates, we can assume that $v_2 = \ldots = v_r = 0$. Notice that Theorem 2.3 still applies in these new exponential coordinates. From (3.18) we get

$$\lim_{t \to 0^+} \frac{1}{t} \int_0^t h_i(s) \, ds = \begin{cases} v_1 & i = 1\\ 0 & i = 2, \dots, r. \end{cases}$$
(3.20)

By Remark 3.3 we have $\|\gamma(t)\| = O(t)$. We now show (3.19) by induction on $j \ge r+1$.

Assume the claim holds for $r + 1, \ldots, j - 1$. The coordinate γ_j , with j > r, is

$$\gamma_j(t) = \sum_{i=1}^r \int_0^t h_i(s) a_{ij}(\gamma(s)) \, ds = \int_0^t h_1(s) a_{1j}(\gamma(s)) \, ds + \sum_{i=2}^r \int_0^t h_i(s) a_{ij}(\gamma(s)) \, ds.$$

By Theorem 2.3, $a_{ij} = p_{ij} + r_{ij}$ with $r_{ij}(x) = o(||x||^{w_j-1})$, so we deduce that

$$a_{ij}(\gamma(s)) = p_{ij}(\gamma(s)) + r_{ij}(\gamma(s)) = p_{ij}(\gamma(s)) + o(s^{w_j - 1}), \quad i = 1, \dots, r$$

From (2.3) we deduce that for i = 1, ..., r we have $Y_i(0, ..., x_i, ..., 0) = \frac{\partial}{\partial x_i}$, hence

$$a_{ij}(0, \dots, x_i, \dots, 0) = 0, \quad j > r.$$
 (3.21)

The polynomial $p_{ij}(x)$ is δ -homogeneous of degree $w_j - w_i = w_j - 1$ and so it contains no variable x_k with $k \geq j$. Condition (3.21) implies that $p_{ij}(x)$ does not contain the monomial $x_i^{w_j-1}$, either. Thus, when i = 1 each monomial in $p_{1j}(x)$ contains at least one of the variables x_2, \ldots, x_{j-1} . By the inductive assumption, it follows that $p_{1j}(\gamma(s)) = o(s^{w_j-1})$, and thus $a_{1j}(\gamma(s)) = o(s^{w_j-1})$. This implies that

$$\int_0^t h_1(s) a_{1j}(\gamma(s)) \, ds = o(t^{w_j}).$$

Now we consider the case i = 2, ..., r. Letting $p_{ij} = c_{ij}x_1^{w_j-1} + \hat{p}_{ij}$ with $c_{ij} \in \mathbb{R}$ and $\hat{a}_{ij} := \hat{p}_{ij} + r_{ij}$, we have $\hat{a}_{ij}(\gamma(s)) = o(s^{w_j-1})$ as in the previous case and thus

$$\int_0^t h_i(s)\widehat{a}_{ij}(\gamma(s))\,ds = o(t^{w_j}).$$

We claim that, for $i = 2, \ldots, m$, we also have

$$\int_0^t h_i(s)\gamma_1(s)^{w_j-1} \, ds = o(t^{w_j}).$$

Indeed, since $v_i = 0$ we have $H_i(s) := \int_0^s h_i(s') ds' = o(s)$, so integration by parts gives

$$\int_0^t h_i(s)\gamma_1(s)^{w_j-1} ds = H_i(t)\gamma_1(t)^{w_j-1} - (w_j-1)\int_0^t H_i(s)\gamma_1(s)^{w_j-2}\dot{\gamma}_1(s) ds$$
$$= o(t^{w_j}) + \int_0^t o(s^{w_j-1}) ds = o(t^{w_j}).$$

This ends the proof of (3.19) and hence of (ii).

(iii) By Theorem 3.6 below, κ is parametrized by arclength. But (v_1, \ldots, v_r) equals its (continuous) control h(t) at t = 0, so |v| = 1.

For $\lambda > 0$, we define the vector fields $Y_1^{\lambda}, \ldots, Y_r^{\lambda}$ in $\delta_{\lambda}(V)$ by

$$Y_i^{\lambda}(x) := \lambda^{-1}((\delta_{\lambda})_* Y_i)(x) = \sum_{j=1}^n \lambda^{w_j - 1} a_{ij}(\delta_{1/\lambda}(x)) \frac{\partial}{\partial x_j}, \quad x \in \delta_{\lambda}(V).$$

In the proof of Proposition 2.5 it was shown that

$$Y_i^{\lambda} \to Y_i^{\infty} \tag{3.22}$$

locally uniformly in \mathbb{R}^n as $\lambda \to \infty$, together with all the derivatives.

We denote by d^{λ} the Carnot–Carathéodory metric of $(\delta_{\lambda}(V), \mathscr{X}^{\lambda})$, with $\mathscr{X}^{\lambda} := \{Y_1^{\lambda}, \ldots, Y_r^{\lambda}\}$. The distance function d^{λ} is related to the distance function d via the formula

$$d^{\lambda}(x,y) = \lambda d(\delta_{1/\lambda}(x), \delta_{1/\lambda}(y)), \qquad (3.23)$$

for all $x, y \in \delta_{\lambda}(V)$ and $\lambda > 0$. Indeed, let $\gamma : [0, 1] \to V$ be a horizontal curve

$$\gamma(t) = \gamma(0) + \int_0^t \sum_{i=1}^r h_i(s) Y_i(\gamma(s)) \, ds, \quad t \in [0, 1], \tag{3.24}$$

and define the curve $\gamma^{\lambda} : [0, \lambda] \to \delta_{\lambda}(V)$

$$\gamma^{\lambda}(t) := \delta_{\lambda} \gamma(t/\lambda), \quad t \in [0, \lambda].$$
 (3.25)

Then we have

$$\gamma^{\lambda}(t) = \gamma^{\lambda}(0) + \int_0^t \sum_{i=1}^r h_i(s/\lambda) Y_i^{\lambda}(\gamma^{\lambda}(s)) \, ds, \quad t \in [0,\lambda], \tag{3.26}$$

and therefore the length of γ^{λ} is

$$L^{\lambda}(\gamma^{\lambda}) = \int_{0}^{\lambda} |h(s/\lambda)| \, ds = \lambda \int_{0}^{1} |h(s)| \, ds = \lambda L(\gamma). \tag{3.27}$$

If γ is length minimizing, then the curves in $Tan(\gamma; t)$ are also locally length minimizing. This is the content of the next theorem.

Theorem 3.6. Let $\gamma : [-T,T] \to M$ be a length-minimizing curve in (M, \mathscr{X}) , parametrized by arclength, and let $\gamma^{\infty} \in \operatorname{Tan}(\gamma; t_0)$ for some $t_0 \in (-T,T)$. Then γ^{∞} is horizontal, parametrized by arclength and, when restricted to any compact interval, it is length minimizing in the tangent Carnot–Carathéodory structure $(M^{\infty}, \mathscr{X}^{\infty})$.

Proof. We can assume $t_0 = 0$. We use exponential coordinates of the first kind centered at $\gamma(0)$. Given any $\overline{T} > 0$, for some sequence $\lambda_h \to \infty$ we have

$$\gamma^{\lambda_h}(t) := \delta_{\lambda_h} \gamma(t/\lambda_h) \to \gamma^{\infty}(t) \text{ in } L^{\infty}([-\overline{T},\overline{T}]).$$
(3.28)

Up to a subsequence, we can assume that the functions $h(t/\lambda_h)$ weakly converge in $L^2([-\overline{T},\overline{T}];\mathbb{R}^r)$ to some $h^{\infty} \in L^2([-\overline{T},\overline{T}];\mathbb{R}^r)$ such that $|h^{\infty}| \leq 1$ almost everywhere. Then, using (3.26), we have

$$\gamma^{\infty}(t) = \lim_{h \to \infty} \int_0^t \sum_{i=1}^r h_i(s/\lambda_h) Y_i^{\lambda_h}(\gamma^{\lambda_h}(s)) \, ds = \int_0^t \sum_{i=1}^r h_i^{\infty} Y_i^{\infty}(\gamma^{\infty}(s)) \, ds,$$

so γ^{∞} is $(M^{\infty}, \mathscr{X}^{\infty})$ -horizontal and, denoting by d^{∞} the Carnot–Carathéodory distance on M^{∞} induced by the family \mathscr{X}^{∞} , its length satisfies

$$d^{\infty}(\gamma^{\infty}(-\overline{T}),\gamma^{\infty}(\overline{T})) \le L^{\infty}\left(\gamma^{\infty}|_{[-\overline{T},\overline{T}]}\right) = \int_{-\overline{T}}^{\overline{T}} |h^{\infty}| \, dt \le 2\overline{T}.$$
(3.29)

We will see that, in fact, the converse inequality $d^{\infty}(\gamma^{\infty}(-\overline{T}), \gamma^{\infty}(\overline{T})) \geq 2\overline{T}$ holds as well, thus proving that γ^{∞} is length minimizing on $[-\overline{T}, \overline{T}]$ and parametrized by arclength (with control h^{∞}). Let $\kappa^{\infty} : [-\overline{T}, \overline{T}] \to \mathbb{R}^n$ be an $(M^{\infty}, \mathscr{X}^{\infty})$ -horizontal curve such that $\kappa^{\infty}(\pm \overline{T}) = \gamma^{\infty}(\pm \overline{T})$, with control $k^{\infty} \in L^{\infty}([-\overline{T}, \overline{T}]; \mathbb{R}^n)$. For all *h* large enough, the ordinary differential equation

$$\dot{\kappa}^{\lambda_h}(t) = \sum_{i=1}^r k_i^{\infty}(t) Y_i^{\lambda_h}(\kappa^{\lambda_h}(t))$$
(3.30)

with initial condition $\kappa^{\lambda_h}(-\overline{T}) = \kappa^{\infty}(-\overline{T})$ has a (unique) solution defined on $[-\overline{T},\overline{T}]$. Indeed, let K be a compact neighborhood of $\kappa^{\infty}([-\overline{T},\overline{T}])$. For any $\varepsilon > 0$ we have $\|Y_i^{\lambda_h} - Y_i^{\infty}\|_{L^{\infty}(K)} \leq \varepsilon$ eventually. If $-\overline{T} \in I \subseteq [-\overline{T},\overline{T}]$ is the maximal (compact) subinterval such that κ^{λ_h} is defined on I and $\kappa^{\lambda_h}(I) \subseteq K$, we have

$$|\dot{\kappa}^{\lambda_h} - \dot{\kappa}^{\infty}| \le C\varepsilon + C\sum_i |Y_i^{\infty}(\kappa^{\lambda_h}) - Y_i^{\infty}(\kappa^{\infty})| \le C\varepsilon + C|\kappa^{\lambda_h} - \kappa^{\infty}$$

on I, for some C depending on $||k^{\infty}||_{L^{\infty}}$ and $||\nabla Y_i^{\infty}||_{L^{\infty}(K)}$. Hence, by Gronwall's inequality, $|\kappa^{\lambda_h} - \kappa^{\infty}| \leq C\varepsilon$ on I. If ε is small enough, we deduce that $\kappa^{\lambda_h}(\max I)$ belongs to the interior of K, so $I = [-\overline{T}, \overline{T}]$. Since ε was arbitrary, we also get

$$\lim_{h \to \infty} \kappa^{\lambda_h}(\pm \overline{T}) = \kappa^{\infty}(\pm \overline{T}) = \gamma^{\infty}(\pm \overline{T}) = \lim_{h \to \infty} \gamma^{\lambda_h}(\pm \overline{T}).$$
(3.31)

From the length minimality of γ^{λ_h} in $(\delta_{\lambda_h}(V), \mathscr{X}^{\lambda_h})$ it follows that

$$2\overline{T} = L^{\lambda_h} \left(\gamma^{\lambda_h} \big|_{[-\overline{T},\overline{T}]} \right) \leq L^{\lambda_h}(\kappa^{\lambda_h}) + d^{\lambda_h} \left(\kappa^{\lambda_h}(-\overline{T}), \gamma^{\lambda_h}(-\overline{T}) \right) + d^{\lambda_h} \left(\kappa^{\lambda_h}(\overline{T}), \gamma^{\lambda_h}(\overline{T}) \right)$$
$$= \int_{-\overline{T}}^{\overline{T}} |k^{\infty}(t)| \, dt + \lambda_h d \left(\delta_{1/\lambda_h} \kappa^{\lambda_h}(-\overline{T}), \delta_{1/\lambda_h} \gamma^{\lambda_h}(-\overline{T}) \right)$$
$$+ \lambda_h d \left(\delta_{1/\lambda_h} \kappa^{\lambda_h}(\overline{T}), \delta_{1/\lambda_h} \gamma^{\lambda_h}(\overline{T}) \right).$$

By Lemma 2.4 and (3.31), we have

$$\lim_{h \to \infty} \lambda_h d(\delta_{1/\lambda_h} \kappa^{\lambda_h}(\pm \overline{T}), \delta_{1/\lambda_h} \gamma^{\lambda_h}(\pm \overline{T})) = 0.$$

Hence, $2\overline{T} \leq \int_{-\overline{T}}^{\overline{T}} |k^{\infty}(t)| dt = L^{\infty}(\kappa^{\infty})$. Since κ^{∞} was arbitrary, we conclude that $d^{\infty}(\gamma^{\infty}(-\overline{T}), \gamma^{\infty}(\overline{T})) \geq 2\overline{T}$.

The following fact is a special case of the general principle according to which the tangent to the tangent is (contained in the) tangent.

Proposition 3.7. Let $\gamma : [-T,T] \to M$ be a horizontal curve and $t \in (-T,T)$. If $\kappa \in \operatorname{Tan}(\gamma;t)$ and $\widehat{\kappa} \in \operatorname{Tan}(\kappa;0)$, then $\widehat{\kappa} \in \operatorname{Tan}(\gamma;t)$.

Proof. We can assume without loss of generality that t = 0. We use exponential coordinates of the first kind centered at $\gamma(0)$. Let N > 0 be fixed. Since $\hat{\kappa} \in \text{Tan}(\kappa; 0)$, there exists an infinitesimal sequence $\xi_k \downarrow 0$ such that, for all $t \in [-N, N]$ and $k \in \mathbb{N}$, we have

$$\|\widehat{\kappa}(t) - \delta_{1/\xi_k} \kappa(\xi_k t)\| \le \frac{1}{2^k}.$$

Since $\kappa \in \operatorname{Tan}(\gamma; 0)$, there exists an infinitesimal sequence $\eta_k \downarrow 0$ such that, for all $t \in [-N, N]$ and $k \in \mathbb{N}$, we have

$$\|\kappa(\xi_k t) - \delta_{1/\eta_k} \gamma(\eta_k \xi_k t)\| \le \frac{\xi_k}{2^k}.$$

It follows that for the infinitesimal sequence $\sigma_k := \xi_k \eta_k$ we have, for all $t \in [-N, N]$,

$$\|\widehat{\kappa}(t) - \delta_{1/\sigma_k}\kappa(\sigma_k t)\| \le \|\widehat{\kappa}(t) - \delta_{1/\xi_k}\kappa(\xi_k t)\| + \|\delta_{1/\xi_k}\kappa(\xi_k t) - \delta_{1/\sigma_k}\gamma(\sigma_k t)\| \le \frac{1}{2^{k-1}}.$$

e thesis now follows by a diagonal argument.

The thesis now follows by a diagonal argument.

When $\gamma: [0,T] \to M$, there are analogous versions of Propositions 3.6 and 3.7 for $\operatorname{Tan}^+(\gamma; 0)$ and $\operatorname{Tan}^-(\gamma; T)$.

Proposition 3.8. Let $\kappa : \mathbb{R} \to M^{\infty}$ be a horizontal curve in $(M^{\infty}, \mathscr{X}^{\infty})$. The following statements are equivalent:

- (i) there exist $c_1, \ldots, c_r \in \mathbb{R}$ such that $\dot{\kappa} = \sum_{i=1}^r c_i Y_i^{\infty}(\kappa)$ and $\kappa(0) = 0$;
- (ii) there exists $x_0 \in M^{\infty}$ such that $\kappa(t) = \delta_t(x_0)$ (here δ_t is defined by (2.4) also for t < 0).

Proof. We prove (i) \Rightarrow (ii). Since $(\delta_{\lambda})_*Y_i^{\infty} = \lambda Y_i^{\infty}$ for $\lambda \neq 0$, the curve $\delta_{\lambda} \circ \kappa(\cdot/\lambda)$ satisfies the same differential equation, so $\delta_{\lambda} \circ \kappa(t/\lambda) = \kappa(t)$; choosing $\lambda = t$ we get $\kappa(t) = \delta_t(\kappa(1)).$

We check (ii) \Rightarrow (i). Up to rescaling time, we can assume that $\dot{\kappa}(1)$ exists and is a linear combination of $Y_1^{\infty}(\kappa(1)), \ldots, Y_r^{\infty}(\kappa(1)),$ so $\dot{\kappa}(1) = \sum_i \overline{h_i} Y_i^{\infty}(\kappa(1))$ for some $\overline{h} \in \mathbb{R}^r$. If h is the control of κ , for a.e. s we have

$$\sum_{i=1}^{r} \overline{h}_i Y_i^{\infty}(\kappa(1)) = \dot{\kappa}(1) = s \frac{d}{dt} \kappa(t/s) \Big|_{t=s} = s \frac{d}{dt} (\delta_{1/s} \circ \kappa(t)) \Big|_{t=s} = \sum_{i=1}^{r} h_i(s) Y_i^{\infty}(\kappa(1)),$$

again because $s(\delta_{1/s})_*Y_i^{\infty} = Y_i^{\infty}$. Since $Y_1^{\infty}, \ldots, Y_r^{\infty}$ are pointwise linearly independent (see Proposition 2.5), we get $h = \overline{h}$ a.e.

Definition 3.9. We say that a horizontal curve κ in $(M^{\infty}, \mathscr{X}^{\infty})$ is a horizontal line (through 0) if one of the conditions (i)–(ii) of Proposition 3.8 holds.

The definition of *positive and negative half-line* is similar, the formulas above being required to hold for $t \ge 0$ and $t \le 0$, respectively.

Remark 3.10. Let us observe the following fact. Let $\gamma: [-T,T] \to M$ be a length minimizer parametrized by arclength with control $h = (h_1, \ldots, h_r)$ and let $t \in (-T, T)$ be fixed. Then, the tangent cone $Tan(\gamma; t)$ contains a horizontal line κ in M^{∞} if and only if there exist an infinitesimal sequence $\eta_i \downarrow 0$ and a constant unit vector $c \in S^{r-1}$ such that

$$h(t + \eta_i \cdot) \to c$$
 in $L^2_{loc}(\mathbb{R})$.

As usual, an analogous version holds for $\operatorname{Tan}^+(\gamma; 0)$ and $\operatorname{Tan}^-(\gamma; T)$ in case γ is a length minimizer parametrized by arclength on the interval [0, T].

Let us prove our claim; we can set t = 0. Assume that there exists a sequence $\eta_i \downarrow 0$ such that the curves $\gamma^i(\tau) := \delta_{1/\eta_i} \varphi(\gamma(\eta_i \tau))$ converge locally uniformly to a horizontal line κ in the tangent CC structure $(M^{\infty}, \mathscr{X}^{\infty})$; we have

$$\gamma^{i}(\tau) = \int_{0}^{\tau} \sum_{j=1}^{r} h_{j}(\eta_{i}s) Y_{j}^{1/\eta_{i}}(\gamma^{i}(s)) \, ds.$$

Up to subsequences we have $h(\eta_i \cdot) \rightharpoonup h_{\infty}$ in $L^2_{loc}(\mathbb{R})$, with $||h_{\infty}||_{L^{\infty}} \leq 1$. Since $Y_j^{1/\eta_i} \rightarrow Y_j^{\infty}$ locally uniformly, we obtain

$$\kappa(\tau) = \int_0^\tau \sum_{j=1}^r h_\infty(s) Y_j^\infty(\kappa(s)) \, ds.$$

By Proposition 3.6, κ is parametrized by arclength. So $|h_{\infty}| = 1$ a.e. and, since κ is a horizontal line, h_{∞} is constant. Finally, for any compact set $K \subset \mathbb{R}$, we trivially have $||h(\eta_i \cdot)||_{L^2(K)} \to ||h_{\infty}||_{L^2(K)}$, which gives $h(\eta_i \cdot) \to h_{\infty}$ in $L^2(K)$. The reverse implication (if $h(t + \eta_i \cdot) \to c$ in $L^2_{loc}(\mathbb{R})$, then $\operatorname{Tan}(\gamma; t)$ contains a horizontal line) follows a similar argument.

4. LIFTING THE TANGENT STRUCTURE TO A FREE CARNOT GROUP

In this section we show how a tangent CC structure $(M^{\infty}, \mathscr{X}^{\infty})$ can be lifted to a free Carnot group F, by means of a desingularization process. We also show that length minimizers in M^{∞} lift to length minimizers in F.

Let $(M^{\infty}, \mathscr{X}^{\infty})$ be a tangent CC structure as in Section 2. The Lie algebra \mathfrak{g} generated by $\mathscr{X}^{\infty} = (Y_1^{\infty}, \ldots, Y_r^{\infty})$ is nilpotent because, by Proposition 2.5, any iterated commutator of length greater than s vanishes. The identity $(\delta_{\lambda})_*Y_i^{\infty} = \lambda Y_i^{\infty}$ implies that $(\delta_{\lambda})_*X \to 0$ pointwise as $\lambda \to 0$, for any $X \in \mathfrak{g}$. We deduce that the *j*-th component of X is a polynomial function depending only on the previous variables. It follows that the flow $(x, t) \mapsto \exp(tX)(x)$ is a polynomial function in $(x, t) \in M^{\infty} \times \mathbb{R}$ and X is therefore complete.

Let \mathfrak{f} be the free Lie algebra of rank r and step s, with generators W_1, \ldots, W_r . The connected, simply connected Lie group F with Lie algebra \mathfrak{f} can be constructed explicitly as follows: we let $F := \mathfrak{f}$ and we endow F with the group operation $A \cdot B := P(A, B)$, where

$$P(A,B) = \sum_{p=1}^{s} \frac{(-1)^{p+1}}{p} \sum_{1 \le k_i + \ell_i \le s} \frac{[A^{k_1}, B^{\ell_1}, \dots, A^{k_p}, B^{\ell_p}]}{k_1! \cdots k_p! \,\ell_1! \cdots \ell_p! \sum_i (k_i + \ell_i)}.$$
(4.32)

This is a finite truncation of the series in (2.8): the omitted terms vanish by the nilpotency of \mathfrak{f} . One readily checks that P(A, 0) = P(0, A) = A and P(A, -A) =

P(-A, A) = 0, while the associativity identity P(P(A, B), C) = P(A, P(B, C)) is shown in [5, Sec. X.2] for free Lie algebras and can be deduced for \mathfrak{f} by truncation. For any $A \in F$, $t \mapsto tA$ is a one-parameter subgroup. From this, it is straightforward to check that \mathfrak{f} identifies with the Lie algebra of F, with $\exp : \mathfrak{f} \to F$ given by the identity map. In particular, $\exp : \mathfrak{f} \to F$ is a diffeomorphism and we have

$$\exp(A)\exp(B) = \exp(P(A, B)), \quad A, B \in \mathfrak{f}.$$
(4.33)

The group F is a *Carnot group*, which means that it is a connected, simply connected and nilpotent Lie group whose Lie algebra is stratified, i.e., it has an assigned decomposition $\mathfrak{f} = \mathfrak{f}_1 \oplus \cdots \oplus \mathfrak{f}_s$ satisfying $[\mathfrak{f}_1, \mathfrak{f}_{i-1}] = \mathfrak{f}_i$ and $[\mathfrak{f}, \mathfrak{f}_s] = \{0\}$ (in this case \mathfrak{f}_1 is the linear span of W_1, \ldots, W_r). The group F just constructed is called the *free Carnot group of rank r and step s*.

Proposition 4.1. The group F is generated by $\exp(\mathfrak{f}_1)$.

Proof. See [3, Lemma 1.40].

By the nilpotency of \mathfrak{g} , there exists a unique homomorphism $\psi : \mathfrak{f} \to \mathfrak{g}$ such that $\psi(W_i) = Y_i^\infty \in \mathfrak{g}$ for $i = 1, \ldots, r$. The group F acts on M^∞ on the right. The action $M^\infty \times F \to M^\infty$ is given by $(x, f) \mapsto x \cdot f := \exp(\psi(A))(x)$, where $f = \exp(A)$. In fact, by (4.33), for any $f' = \exp(B)$ we have

$$x \cdot (ff') = \exp(P(\psi(A), \psi(B)))(x) = \exp(\psi(B)) \circ \exp(\psi(A))(x) = (x \cdot f) \cdot f'.$$
(4.34)

The second equality is a consequence of the formula $\exp(P(tY, tX))(x) = \exp(tX) \circ \exp(tY)(x)$ for $X, Y \in \mathfrak{g}$ (with P given by (4.32)), which holds since both sides are polynomial functions in t, with the same Taylor expansion (by (2.7)). We define the map

$$\pi^{\infty}: F \to M^{\infty}, \quad \pi^{\infty}(f) := 0 \cdot f,$$

where the dot stands for the right action of F on M^{∞} .

Let $\mathscr{W} := \{W_1, \ldots, W_r\}$ and extend \mathscr{W} to a basis W_1, \ldots, W_N of \mathfrak{f} adapted to the stratification. Via the exponential map $\exp : \mathfrak{f} \to F$, the one-parameter group of automorphisms of \mathfrak{f} defined by $W_k \mapsto \lambda^i W_k$ if and only if $W_k \in \mathfrak{f}_i$ induces a one-parameter group of automorphisms $(\widehat{\delta}_{\lambda})_{\lambda>0}$ of F, called *dilations*.

If $A \in \mathfrak{f}_1$, for any $\lambda > 0$ and $x \in M^\infty$ we have the identity

$$\exp(\lambda\psi(A))(\delta_{\lambda}(x)) = \delta_{\lambda}(\exp(\psi(A))(x)), \qquad (4.35)$$

which follows from $(\delta_{\lambda})_*\psi(A) = \lambda\psi(A)$.

Definition 4.2. We call the CC structure (F, \mathscr{W}) the *lifting* of $(M^{\infty}, \mathscr{X}^{\infty})$ with projection $\pi^{\infty} : F \to M^{\infty}$.

Proposition 4.3. The lifting (F, \mathscr{W}) of $(M^{\infty}, \mathscr{X}^{\infty})$ has the following properties:

- (i) for any $f \in F$ and i = 1, ..., r we have $\pi^{\infty}_{*}(W_{i}(f)) = Y^{\infty}_{i}(\pi^{\infty}(f));$
- (ii) the dilations of F and M^{∞} commute with the projection: namely, for any $\lambda > 0$ we have

$$\pi^{\infty} \circ \widehat{\delta}_{\lambda} = \delta_{\lambda} \circ \pi^{\infty}$$

Proof. (i) Using the action property (4.34), we find

$$\pi^{\infty}_{*}(W_{i}(f)) = \left. \frac{d}{dt} \pi^{\infty}(f \exp(tW_{i})) \right|_{t=0} = \left. \frac{d}{dt} 0 \cdot (f \exp(tW_{i})) \right|_{t=0}$$
$$= \left. \frac{d}{dt} \pi^{\infty}(f) \cdot \exp(tW_{i}) \right|_{t=0} = \psi(W_{i})(\pi^{\infty}(f)) = Y^{\infty}_{i}(\pi^{\infty}(f)).$$

(ii) Let $\lambda > 0$ and $x \in M^{\infty}$. By (4.35), for any $W \in \mathfrak{f}_1$ we have

$$\delta_{\lambda}(x) \cdot \exp(\lambda W) = \exp(\lambda \psi(W))(\delta_{\lambda}(x)) = \delta_{\lambda}(\exp(\psi(W))(x)) = \delta_{\lambda}(x \cdot \exp(W)).$$
(4.36)

We deduce that the claim holds for any $f = \exp(W)$ with $W \in \mathfrak{f}_1$, because

$$\pi^{\infty}(\widehat{\delta}_{\lambda}(f)) = \pi^{\infty}(\exp(\lambda W)) = \delta_{\lambda}(0) \cdot \exp(\lambda W) = \delta_{\lambda}(0 \cdot \exp(W)) = \delta_{\lambda}(\pi^{\infty}(f)).$$

By Proposition 4.1, any $f \in F$ is of the form $f = f_1 f_2 \dots f_k$ with each $f_i \in \exp(\mathfrak{f}_1)$. Assume by induction that the claim holds for $\widehat{f} = f_1 f_2 \dots f_{k-1}$. By (4.36), letting $f_k = \exp(W)$ we have

$$\pi^{\infty}(\widehat{\delta}_{\lambda}(f)) = \pi^{\infty}(\widehat{\delta}_{\lambda}(\widehat{f}) \exp(\lambda W)) = \pi^{\infty}(\widehat{\delta}_{\lambda}(\widehat{f})) \cdot \exp(\lambda W)$$
$$= \delta_{\lambda}(\pi^{\infty}(\widehat{f})) \cdot \exp(\lambda W) = \delta_{\lambda}(\pi^{\infty}(\widehat{f}) \cdot \exp(W)) = \delta_{\lambda}(\pi^{\infty}(f)). \qquad \Box$$

Let $\kappa : I \to M^{\infty}$ be a horizontal curve in $(M^{\infty}, \mathscr{X}^{\infty})$, with control $h \in L^{\infty}(I, \mathbb{R}^r)$. A horizontal curve $\overline{\kappa} : I \to F$ such that

$$\kappa = \pi^{\infty} \circ \overline{\kappa}$$
 and $\dot{\overline{\kappa}}(t) = \sum_{i=1}^{r} h_i(t) W_i(\overline{\kappa}(t))$ for a.e. $t \in I$

is called a *lift* of κ to (F, \mathscr{W}) .

Proposition 4.4. Let (F, \mathscr{W}) be the lifting of $(M^{\infty}, \mathscr{X}^{\infty})$ with projection $\pi^{\infty} : F \to M^{\infty}$. Then the following facts hold:

- (i) If κ is length minimizing in $(M^{\infty}, \mathscr{X}^{\infty})$, then any horizontal lift $\overline{\kappa}$ of κ is length minimizing in (F, \mathscr{W}) .
- (ii) If $\overline{\kappa}$ is a horizontal (half-)line in F, then $\pi^{\infty} \circ \overline{\kappa}$ is a horizontal (half-)line in $(M^{\infty}, \mathscr{X}^{\infty})$.

Proof. Claim (i) follows from $L(\overline{\kappa}) = L(\kappa)$ and from the inequality $L(\overline{\kappa}') = L(\kappa') \ge L(\kappa)$, whenever $\overline{\kappa}'$ is horizontal with the same endpoints as $\overline{\kappa}$ and $\kappa' = \pi^{\infty} \circ \overline{\kappa}'$. We now turn to Claim (ii). Let $\overline{\kappa}(t) = \exp(tW)$ for some $W \in \mathfrak{f}_1$. The projection $\pi^{\infty} \circ \overline{\kappa}$ is horizontal by part (i) of Proposition 4.3. The thesis follows from characterization (i) for horizontal lines, contained in Proposition 3.8.

18

References

- C. CARATHÉODORY, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67 (1909), 355–386.
- W. L. CHOW, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1939), 98–105.
- [3] G. B. FOLLAND & E. M. STEIN, *Hardy spaces on homogeneous groups*. Mathematical Notes, 28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.
- [4] H. HERMES, Nilpotent and High-Order Approximations of Vector Field Systems. SIAM Rev. 33 (1991), no. 2, 238–264.
- [5] G. P. HOCHSCHILD, The structure of Lie groups. Holden-Day series in mathematics. Holden-Day Inc., San Francisco, London, Amsterdam, 1965.
- [6] E. HAKAVUORI & E. LE DONNE, Non-minimality of corners in subriemannian geometry. Invent. math. 206 (2016), no. 3, 693–704.
- [7] G. P. LEONARDI & R. MONTI, End-point equations and regularity of sub-Riemannian geodesics. Geom. Funct. Anal. 18 (2008), no. 2, 552–582.
- [8] G. A. MARGULIS & G. D. MOSTOW, Some remarks on the definition of tangent cones in a Carnot-Carathéodory space. J. Anal. Math. 80 (2000), no. 1, 299–317.
- [9] J. MITCHELL, On Carnot-Carathéodory metrics. J. Differ. Geom. 21 (1985), 35–45.
- [10] R. MONTI, A. PIGATI & D. VITTONE, Existence of tangent lines to Carnot-Carathéodory geodesics. Preprint available at cvgmt.sns.it, 2016.
- [11] A. NAGEL, E. M. STEIN & S. WAINGER, Balls and metrics defined by vector fields I: Basic properties. Acta Math. 155 (1985), no. 1, 103–147.
- [12] P. K. RASHEVSKY, Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. 2 (1938) 83–94.
- [13] L. RIFFORD, Singulières minimisantes en géométrie sous-riemannienne. Séminaire Bourbaki, Mars 2016, 68ème année, 2015–2016, n. 1113.

E-mail address: monti@math.unipd.it

E-mail address: alessandro.pigati@math.ethz.ch

E-mail address: vittone@math.unipd.it

(Monti and Vittone) UNIVERSITÀ DI PADOVA, DIPARTIMENTO DI MATEMATICA "T. LEVI-CIVITA", VIA TRIESTE 63, 35121 PADOVA, ITALY

(Pigati) ETH ZÜRICH, DEPARTMENT OF MATHEMATICS, RÄMISTRASSE 101, 8092 ZÜRICH, SWITZERLAND