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Abstract

We study a deterministic version of a one- and two-dimensional
attractor neural network model of hippocampal activity first studied
by Itskov et al 2011. We analyze the dynamics of the system on the
ring and torus domain with an even periodized weight matrix, assum-
ing weak and slow spike frequency adaptation and a weak stationary
input current. On these domains, we find transitions from spatially
localized stationary solutions (“bumps”) to (periodically modulated)
solutions (“sloshers”), as well as constant and non-constant velocity
traveling bumps depending on the relative strength of external input
current and adaptation. The weak and slow adaptation allows for a
reduction of the system from a distributed partial integro-differential
equation to a system of scalar Volterra integro-differential equations
describing the movement of the centroid of the bump solution. Using
this reduction, we show that on both domains, sloshing solutions arise
through an Andronov-Hopf bifurcation and derive a normal form for
the Hopf bifurcation on the ring. We also show existence and stability
of constant velocity solutions on both domains using Evans functions.
In contrast to existing studies, we assume a general weight matrix of
Mexican-hat type in addition to a smooth firing rate function.

1 Introduction

Spatially coherent activity states exist during normal brain function in-
cluding mammalian path integration, head direction tracking, visual hal-
lucination, working memory, spatial object location, and object orientation
[4, 5, 12]. Neural field models (also called continuous attractor neural net-
works) are one way to understand the mechanism underlying such spatially
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coherent phenomena [17, 15, 16]. In neural recordings and field models, these
spatio-temporal dynamics manifest as traveling waves, spirals, or single or
multiple localized “bumps” or “pulses” of activity [4].

Extensive literature exists on the analysis of these behaviors. In particu-
lar, [32] show the existence and stability of traveling bumps using multiple-
layer neural fields. Several other studies use one of or a combination of short
term depression and spike frequency adaptation. In [24], the authors show
that traveling pulses exist in a model with synaptic depression and adap-
tation when synaptic depression is sufficiently weak. For stronger synaptic
depression, the traveling pulse ceases to exist via a saddle-node bifurcation.
In [15] the authors show that spontaneous motion of a bump solution ex-
ists for a neural field with only spike frequency adaptation, and in a similar
neural field model with only short term synaptic depression. The authors in
[28] show the existence of a traveling pulse solution in a neural field model
with spike frequency adaptation. The previous two studies also show the
existence of traveling wavefronts in their respective neural field models.

In addition to the analysis of traveling bumps or wavefronts, rich oscilla-
tory solutions of neural fields are also possible. For example, with spatially
localized input current and spike frequency adaptation, a bump solution
may oscillate in diameter (breathers)[3, 11, 12, 13], which may play a role
in generating epileptiform activity [13] and the processing of sensory stimuli
[12]. There also exist studies of a combination of traveling and breathing
pulses in an inhibitory-excitatory neural field [10]. In addition to breathers,
there exist pulse-emitting neural fields [24, 23], oscillatory wavefronts [2, 3],
and spiral waves [23].

Despite this large body of literature, the analyses often require particular
assumptions. For example, the existence of “sloshing” solutions – bump so-
lutions that oscillate periodically in the centroid – that arise through a Hopf
bifurcation is known under certain assumptions. In early work, sloshers are
shown to exist numerically using a rate model with a threshold nonlinearity
[18]. In recent work, the authors of [6] show the existence of a Hopf bi-
furcation with a cosine kernel and a particular choice of smooth firing rate
function. In [9], Folias computes a normal form for the Hopf bifurcation
using a general kernel, but for a Heaviside firing rate function.

Proving existence of other phenomena also require special assumptions.
In [8], the authors consider a neural field model on the real line with synaptic
depression and prove the existence of a traveling pulse without a Heaviside
assumption, but use the particular choice of a normalized exponential kernel.
In [22], the authors use a center manifold reduction to analyze the existence
of moving bump solutions. They allow the firing rate to be sigmoidal or a
Heaviside, but require a cosine kernel. Similar assumptions are made in [],
where they assume a hyperbolic tangent firing rate function and a cosine
kernel.

The most general of such studies, [28], considers a neural field model
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on the real line with spike frequency adaptation and a singular perturbation
approach to construct a constant velocity traveling pulse on the real line with
a general firing rate function and a general kernel. However, the existence
of other phenomena are not shown.

In this paper, we introduce a method to analyze the dynamics of a neural
field model on a one- and two-dimensional domain with periodic boundary
conditions and assume a smooth firing rate and an even, periodic kernel.
Using our method, with standard numerical and analytical dynamical sys-
tems tools, we show existence and stability of traveling pulse solutions and
oscillatory dynamics. In particular, we analyze sloshing solutions on the
ring and torus.

The neural field we consider in this paper is defined as

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω
K(x− y)f(u(y, t)) dy (1)

+ ε

[
qI(x) +

∫
Ω
w(x,y)f(u(y, t)) dy − gz(x, t)

]
,

∂z(x, t)

∂t
= εβ[−z(x, t) + u(x, t)], (2)

where the parameter ε is small, 0 < ε � 1, and x,y ∈ Rn. For n = 2,
the kernel function K is an even function in the sense that, K(−x, y) =
K(x,−y) = K(x, y), and doubly periodic in the sense that K(x+ 2nπ, y +
2mπ) = K(x, y), for any integers n,m. The function w represents hetero-
geneity of neural connections, and q, g, β are constants. For convenience,
we will denote the domain Ω = [−π, π)m, with m = 1, 2. Thus in one-
dimension the domain is a ring and in two-dimensions a torus. The variable
z(x, t) represents linear adaptation [28] and I(x) an external input to the
network. External inputs represent persistent stimuli that can be used to
entrain the bump and move it to a specific location ([1]. We have chosen to
make both the timescale of adaptation and its magnitude to be small. While
there is good biological justification for the former assumption as there are
many forms of slow adaptation ([20] section 7.4), the assumption that the
adaptation is small is less biological. For the existence of traveling waves,
adaptation need not be small ([28]), but in order to study how the adap-
tation interacts with stimuli, we need both the adaptation and the stimuli
to be the same order of magnitude. The effects of large stimuli to general
neural field models are not easy to analyze, so that by treating them as per-
turbations, we are able to consider the effects in a great deal of detail. Thus,
one can regard this assumption as a starting point for the continuation of
these phenomena to large amplitude stimuli and adaptation.

Our goal in this paper is to analyze Equations (1),(2) when ε is small.
When ε = 0, there is a stable “bump” attractor, u0(x), in the scalar neural
field (1), i.e., a local stationary peak of u(x, t) centered at x = 0. The bump
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attractor satisfies

u0(x) =

∫
Ω
K(x− y)f(u0(y))dy,

where u0 is nonconstant and even.
Although we allow for a general even, doubly periodic kernel in one- and

two-dimensions and a general smooth threshold nonlinearity f , we make
particular choices for numerical simulations. We choose f as

f(x) =
1

exp(−r(x− uth))
,

where r = 15, uth = 0.25. In the one-dimensional case, we choose the kernel
to be K(x) = A + B cos(x) with A = −0.5, B = 3 unless stated otherwise.
In the two-dimensional case, we form the Mexican-hat function,

K̂(r) = Ae−(r/σe)2 −Be−(r/σi)
2
,

where r ≡ r(x, y, n,m) =
√

(x+ 2πn)2 + (y + 2πm)2. We make the the

function K̂ periodic in two dimensions using the definition

K(x, y) =

∞∑
m=−∞

∞∑
n=−∞

K̂(r(x, y, n,m)).

The parameters here are

A =
1√
πσe

, B =
1√
πσi

,

where σe = 2, and σi = 3. For numerical simulations, we find it sufficient
to replace the infinite sum with a finite sum from n,m = −5 to n,m = 5.
This is because the function K̂(r) is a decaying exponential and therefore
negligible for large r. For example, if a bump solution remains close to
the origin, contributions from terms a distance of 10π (i.e., n or m=5) are
negligible because exp

(
−(10π)2

)
≈ 2× 10−429.

To analyze particular dynamics in more detail, we numerically compute
the period kernel above, then take the Fourier truncation of this doubly
periodic kernel,

K(x, y) = k0 + k1(cosx+ cos y) + k2 cosx cos y.

We now outline the organization of the paper, as follows: We reduce
Equations (1),(2) to a set of integro-differential equations for the centroid
of the bump solution on the ring and torus. We study bifurcations of these
equations using numerical and analytical techniques to show existence and
stability of constant velocity traveling bumps and sloshing bumps. Depend-
ing on the parameter values g, q, these traveling bumps may traverse the
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domain periodically or exhibit chaos. Next we turn to the torus domain
and perform similar analyses: we study bifurcations of these equations us-
ing numerical and analytical techniques to show existence and stability of
constant velocity traveling bumps. In addition to the sloshing solutions
found in the one-dimensional model, we also find several types of travel-
ing bumps and modulated traveling bumps that densely fill the torus. We
also find chaotic motion in some cases. We conclude with a discussion and
some contrasts to previous analyses. We remark that all figure generation
code and relevant data files with documentation is available on GitHub at
https://github.com/youngmp/park_and_ermentrout_2017

2 Derivation of the Phase Equation

We start with Equations (1),(2). Let τ = εt be a slow timescale and assume
that both z and u depend only on (x, τ). In this case, we can integrate
equation (2) to obtain:

z(x, τ) = z(x, 0)e−βτ + β

∫ τ

0
e−β(τ−s)u(x, s) ds.

Since we are mainly interested in long term behavior, we can ignore the
first exponentially decaying term. With these assumptions, we obtain the
following scalar integro-differential equation:

ε
∂u(x, τ)

∂τ
= −u(x, τ) +

∫
Ω
K(x− y)f(u(y, τ)) dy (3)

+ ε

[
qI(x) +

∫
Ω
w(x,y)f(u(y, τ)) dy − gβ

∫ τ

0
e−β(τ−s)u(x, s) ds

]
.

We will assume u(x, τ) = U(x, τ, ε) and expand U as a power series in ε to
get an approximate solution. Thus,

U(x, τ, ε) = U0(x, τ) + εU1(x, τ) +O(ε2).

Substituting this power series into (3), we get (with a bit of re-arrangement):

0 = −U0(x, τ) +

∫
Ω
K(x− y)f(U0(y, τ))dy (4)

(LU1)(x, τ) =
∂U0(x, τ)

∂τ
−R1(x, τ), (5)

where

(Lv)(x, τ) = −v(x, τ) +

∫
Ω
K(x− y)f ′(U0(y, τ))v(y, τ) dy,
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and

R1(x, τ) = qI(x) +

∫
Ω
w(x,y)f(U0(y, τ)) dy − gβ

∫ τ

0
e−β(τ−s)U0(x, s) ds.

The equation for U0(x, τ) is the equation for the bump solution and since
it is translation invariant, we see that

U0(x, τ) = u0(x + θ(τ))

where θ(τ) is a τ−dependent phase shift of the bump. Our goal, then is
to determine the dynamics of θ(τ). Figure 1 shows typical examples of the
stationary bump U0(x) for one- and two-dimensions.

Figure 1: Numerically computed stationary bump solutions on the ring A:,
and torus B:. The red circle denotes the centroid of each bump solution. On
the ring, we denote the centroid by θ, while we denote the centroid of the
bump on the torus by (θ1, θ2). Our phase model (Equation (9)) describes
shifts in the centroid.

Before continuing with the perturbation calculation, we establish a few
preliminaries. We define the compact linear operator

(L0v)(x) = −v(x) +

∫
Ω
K(x− y)f ′(u0(y))v(y) dy

and establish several properties of it. Recall that the bump, u0(x) satisfies

−u0(x) +

∫
Ω
K(x− y)f(u0(y)) dy = 0.

By making a change of variables and noting that all functions are periodic
in x (that is, periodic in each of the components of x), then u0(x) satisfies

− u0(x) +

∫
Ω
K(y)f(u0(x− y)) dy = 0. (6)
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Recalling that the domain is Ω = [−π, π)m, with m = 1, 2, we center u0 at
the origin. Thus, u0(x) is an even periodic function of x, component-wise.
Let ∂iu(x) denote the partial derivative of u(x) along the xi direction where
x = (x1, x2). If we differentiate (6) along one of the axes, we see that

−∂iu0(x) +

∫
Ω
K(y)f ′(u0(x− y))∂iu0(x− y) dy = 0.

and changing variables again, we rewrite this as

− ∂iu0(x) +

∫
Ω
K(x− y)f ′(u0(y))∂iu0(y) dy = 0, (7)

so we see that L0∂iu0(x) = 0. In other words, the linear operator, L0 has an
m−dimensional nullspace spanned by the principle directional derivatives of
u0(x). With the natural inner product

〈u(x), v(x)〉 =

∫
Ω
u(x)v(x) dx

the operator L0 has an adjoint

(L∗v)(x) = −v(x) + f ′(u0(x))

∫
Ω
K(x− y)v(y) dy.

By multiplying equation (7) by f ′(u0(x)), we see that the nullspace of L∗

is spanned by v∗i (x) = f ′(u0(x))∂iu0(x). Since u0(x) is an even periodic
function, componentwise, we note that ∂1u0(x) is even in x2 and odd in x1

where x = (x1, x2); v∗1(x) has the same property, while ∂2u0(x), v∗2(x) are
even in x1 and odd in x2. These properties imply the 〈∂iu0(x), v∗k(x)〉 = 0
when i 6= k. We also have

〈∂iu0(x), v∗i (x)〉 =

∫
Ω
f ′(u0(x))[∂iu0(x)]2 dx = µ > 0.

Finally, the Fredholm alternative holds for L0. That is, for any continuous
periodic function b(x),

(L0v)(x) = b(x)

has a bounded solution if and only if

〈v∗i (x), b(x)〉 = 0

for i = 1, . . . ,m [21].
With these technical issues aside, we turn to equation (5), which we can

rewrite as

(L0U1)(x, τ) = (∂1u0(x + θ(τ)), ∂2u0(x + θ(τ))) · dθ(τ)

dτ
−R1(x, τ)
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Writing θ(τ) = (θ1(τ), θ2(τ)) and applying the m conditions for the Fred-
holm alternative, we arrive at

µ
dθi
dτ

= qJi(θ) +Wi(θ)− gβ
∫ τ

0
e−β(τ−s)Hi(θ(s)− θ(τ))ds (8)

where

µ =

∫
Ω
f ′(u0(x))[∂iu0(x)]2 dx,

Ji(θ) =

∫
Ω
f ′(u0(x + θ))∂iu0(x + θ)I(x) dx,

Wi(θ) =

∫
Ω
f ′(u0(x + θ))∂iu0(x + θ)

∫
Ω
w(x,y)f(u0(y)) dy dx,

Hi(θ) =

∫
Ω
f ′(u0(x))∂iu0(x)u0(x + θ) dx.

We note that because of the symmetry of u0(x), the functions, Hi(θ) have
a similar symmetry which we will exploit in the analysis of Equation (8).
The derivation here has been fairly general and holds in any dimension al-
though we will focus only on one- and two-dimensional bumps in this model.
Since both Wi and Ji have no explicit time dependence and act mainly as
heterogeneities, we will ignore Wi and focus on Ji which is conveniently
parameterized by q. Figure 2 shows the functions H(θ), J(θ) in the one-
dimensional case, while Figure 3 shows the functions Hi(θ), Ji(θ) in the
two-dimensional case.

Figure 2: Numerically computed functions for the one-dimensional phase
model. A: H (black solid), plotted against sine-function approximation
(light blue, dashed). B: J (black solid), plotted against its sine-function
approximation (light blue, dashed). Parameters: I(x) = u0(x) and K(x) =
A+B cos(x), A = −0.5, B = 3.

We have reduced the problem of the bump dynamics to slow timescale
phase shifts of the bump solution, represented as an integro-differential equa-
tion. For simplicity and convenience, we ignore transients by changing the
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Figure 3: Numerically computed functions for the two-dimensional phase
model A: H1, B: H2, C: J1, D: J2. Note that H2(x, y) = H1(y, x). We
always choose I(x) = u0(x). That is, we always use the steady-state bump
as the pinning function. With this choice, Ji = −Hi in 1- and 2-dimensions.

limits of integration in Equation (8) from [0, τ ] to (−∞, τ ], and apply the
change of variables ξ = τ − s, yielding

µ
dθi
dτ

= qJi(θ)− gβ
∫ ∞

0
e−βξHi(θ(τ − ξ)− θ(τ))dξ.

With a trivial change of notation, we arrive at the equations

µ
dθi
dτ

= qJi(θ)− gβ
∫ ∞

0
e−βsHi(θ(τ − s)− θ(τ))ds, i = 1, . . . ,m. (9)

We study stability properties and bifurcations in this form. Note that Hi is
implicitly a function of the kernel K.

To facilitate calculations, we first prove the following statements:
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1. Each function Hi is odd, i.e., Hi(−θ1,−θ2) = −Hi(θ1, θ2). In particu-
lar, H1 is odd in the first coordinate and even in the second coordinate.

2. H1(θ1, θ2) = H2(θ2, θ1).

3. If the input current I(x) is defined as the steady-state bump solution,
then Hi(θ) = −Ji(θ).

For the first statement, fix θ1, θ2 and consider the sum H1(−θ1, θ2) +
H(θ1, θ2). By definition this sum is the sum of integrals∫

Ω
f ′(u0(x))∂1u0(x)[u0(x1 + θ1, x2 + θ2) + u0(x1 − θ1, x2 + θ2)]dx.

Given x2, and for the sake of clarity, consider the temporary function Φ(x1) :=
[u0(x1 + θ1, x2 + θ2) + u0(x1 − θ1, x2 + θ2)]. Φ(x1) is an even function in x1

because

Φ(−x1) ≡ u0(−x1 + θ1, x2 + θ2) + u0(−x1 − θ1, x2 + θ2)

= u0(x1 − θ1, x2 + θ2) + u0(x1 + θ1, x2 + θ2)

≡ Φ(x1).

These lines follow by the even assumption on each coordinate oa:simplifyf
the bump solution u0. The remaining terms in the integrand, ∂1u0(x), and
f ′(u0(x)), are odd and even in x1, respectively. Thus, the integrand is odd in
x1 and the integral evaluates to zero for each x2 (and indeed, for each θ1, θ2).
It follows that H1(−θ1, θ2) + H(θ1, θ2) = 0, i.e., that the first coordinate is
odd.

To show that the second coordinate is even, we use a similar argument.
Again, fix θ1, θ2 and consider the sum H1(θ1,−θ2)−H(θ1, θ2). By definition,
this sum is the sum of integrals∫

Ω
f ′(u0(x))∂1u0(x)[u0(x1 + θ1, x2 − θ2)− u0(x1 + θ1, x2 + θ2)]dx.

Given x1, we redefine our temporary function Φ as Φ(x2) := [u0(x1+θ1, x2−
θ2)− u0(x1 + θ1, x2 + θ2)] and show that it is an odd function in x2.

Φ(−x2) ≡ u0(x1 + θ1,−x2 − θ2)− u0(x1 + θ1,−x2 + θ2)

= u0(x1 + θ1, x2 + θ2)− u0(x1 + θ1, x2 − θ2)

= −[u0(x1 + θ1, x2 − θ2)− u0(x1 + θ1, x2 + θ2)]

≡ −Φ(x2).

Again, these lines follow by the even assmption on each coordinate of the
bump solution u0. The integrand term ∂1u0(x) is even in the second coor-
dinate as is the term f ′(u0(x)). Thus, the integrand is odd in x2 and the
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integral evaluates to zero for each x1 (and indeed, for each θ1, θ2). It follows
that H1(θ1,−θ2)−H(θ1, θ2) = 0, i.e., that the second coordinate is even.

We have shown that H1 is an odd function that is odd in the first co-
ordinate and even in the second coordinate. The proof of H2 being an odd
function that is even in the first coordinate and odd in the second follows
using the same arguments, or by using the second statement, which we prove
next.

To prove the second statement, we proceed by definition.

H1(θ1, θ2) =

∫
Ω
f ′(u0(x1, x2))∂1u0(x1, x2)u0(x1 + θ1, x2 + θ2)dx1dx2.

The steady-state bump solution is invariant under reflections about the unit
line, and due to the radial symmetry of the bump solution, its partial deriva-
tives are related by ∂1u0(x1, x2) = ∂2u0(x2, x1). Thus,

=

∫
Ω
f ′(u0(x2, x1))∂2u0(x2, x1)u0(x1 + θ1, x2 + θ2)dx1dx2.

Next we relabel the coordinates and flip the order of integration

=

∫
Ω
f ′(u0(x1, x2))∂2u0(x1, x2)u0(x2 + θ1, x1 + θ2)dx1dx2.

Then we flip the coordinates of u0, and the resulting integral is by definition
H2(θ2, θ1):

=

∫
Ω
f ′(u0(x1, x2))∂2u0(x1, x2)u0(x1 + θ2, x2 + θ1)dx1dx2

= H2(θ2, θ1).

To prove the third statement, suppose that a function ĥ on a periodic
two-dimensional domain [0, 2π] × [0, 2π] is odd in the first coordinate and
even in the second so that ĥ(x1, x2) = ĥ(x1,−x2) = −ĥ(−x1,−x2). In
particular, it follows that for a given value x2,∫ 2π

0
ĥ(x1, x2)dx1 = 0,

and therefore ∫
Ω
ĥ(x)dx = 0.

This integral property holds when ĥ is even in the first coordinate and odd
in the second with a similar argument.
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If we choose I(x) to be the steady-state bump, then

Ji(θ) =

∫
Ω
f ′(u0(x + θ))∂iu0(x + θ)u0(x) dx

=

∫
Ω
f ′(u0(x))∂iu0(x)u0(x− θ) dx.

Then taking the sum Hi(θ) + Ji(θ) yields

Hi(θ) + Ji(θ) =

∫
Ω
f ′(u0(x))∂iu0(x)[u0(x + θ) + u0(x− θ)] dx.

For a given θ, the term [u0(x+θ)+u0(x−θ)] in the integrand is even in both
coordinates. The remaining term, f ′(u0(x))∂iu0(x), when i = 1 (i = 2), is
odd (even) in the first coordinate and even (odd) in the second. Therefore,
when i = 1 (i = 2), the integrand is an odd function in the first (second)
coordinate and the integral evaluates to zero. It follows trivially that

Hi(θ) = −Ji(θ). (10)

This property remains true on the ring using the same argument.
These statements will come in useful in the sections to follow. We now

proceed with an analysis of the reduced equations on the ring domain.
Remark We have assumed linear adaptation in our derivation

of the reduced model, but, this is not necessary. We could replace
Equation (2) by

∂z(x, t)

∂t
= εβ[−z(x, t) +M(u(x, t))]

where M(u) is an arbitrary monotonically increasing continuously
differentiable function. In this case, we find

Hi(θ) =

∫
Ω
f ′(u0(x))∂iu0(x)M(u0(x + θ)) dx.

The new version of Hi has exactly the same properties as the
linear case since M(u0(x)) is an even function and its derivative
with respect to x is an odd function.

3 The Ring Domain

In this section, we choose the domain Ω to be the ring. First, we thoroughly
analyze the full neural field model through a bifurcation analysis. We then
turn to Equation (9) on the ring and perform the same bifurcation analysis
and through analytical study.
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3.1 Equivalent Neural Field Model on the Ring

To classify the bifurcations of the full neural field model on the ring, we
transform the equations to an equivalent 6-dimensional system of ODEs,
allowing us to use dynamical systems software and techniques to analyze
the model. Recall that for numerical simulations on the ring, we choose a
cosine kernel K(x) = A + B cos(x). This technique and choice of kernel
is the same as that used in [25], where as part of the study they analyze
a rate model similar to the model in the current study, but in contrast,
the adaptation and input current terms are input directly to the firing rate
function. They provide sufficient detail with regards to transforming their
rate model to a system of ODEs, but as the details differ from our model, we
include the derivation of our model here (in particular they include a phase
lag between the peak of the bump activity u and the peak of the adaptation
activity z which results in slightly different equations).

Note that with this choice of kernel, the bump solution is also sinusoidal
and without loss of generality takes the form u0(x) = C + D cos(x). For
simplicity we choose J(x) = u0(x). We are now ready to transform the
equations.

Since the functions u(x, t), z(x, t) are periodic in x, we expand them in
a Fourier series,

u(x, t) = â0(t) +

∞∑
n=1

ân(t) cosnx+ b̂n(t) sinnx,

z(x, t) = ĉ0(t) +
∞∑
n=1

ĉn(t) cosnx+ d̂n(t) sinnx.

and plug into equations (1),(2). First, a direct substitution into the dynam-
ics of u yields

â′0+

∞∑
n=1

â′n cos(nx) + b̂n sin(nx)

=− â0 −

[ ∞∑
n=1

ân cosnx+ b̂n sinnx

]

+A

∫
Ω
f(u(y, t))dy

+B cos(x)

∫
Ω

cos(y)f(u(y, t))dy

+B sin(x)

∫
Ω

sin(y)f(u(y, t))dy

+ ε

[
q(C +D cos(x))− g

(
ĉ0(t) +

∞∑
n=1

ĉn(t) cosnx+ d̂n(t) sinnx

)]
.
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We have used the elementary trigonometric identity cos(x−y) = cos(x) cos(y)+
sin(x) sin(y) to separate the kernel into multiple integrals. A direct substi-
tution into the dynamics of z yields

â′0+
∞∑
n=1

â′n cos(nx) + b̂n sin(nx)

=εβ

[
−ĉ0(t)−

∞∑
n=1

ĉn(t) cosnx+ d̂n(t) sinnx

+â0(t) +
∞∑
n=1

ân(t) cosnx+ b̂n(t) sinnx

]
Next, we group like terms in the Fourier basis, starting with the Fourier
coefficients of u:

â′0 = −â0 +A

∫
Ω
f(u(y, t))dy + ε[qC − gĉ0]

â′1 = −â1 +B cos(x)

∫
Ω

cos(y)f(u(y, t))dy + ε[qD − gĉ1]

â′2 = −â2 + ε[−gĉ2]

â′3 = −â3 + ε[−gĉ3]

...

and

b̂′1 = −b̂1 +B sin(x)

∫
Ω

sin(y)f(u(y, t))dy + ε[−gd̂1]

b̂′2 = −b̂2 + ε[−gd̂2]

b̂′3 = −b̂3 + ε[−gd̂3]

...

We repeat this grouping for the Fourier coefficients of z:

ĉ0 = εβ(−ĉ0 + â0)

ĉ1 = εβ(−ĉ1 + â1)

...

and

d̂0 = εβ(−d̂0 + b̂0)

d̂1 = εβ(−d̂1 + b̂1)

...
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The pattern is clear at this point: The coefficients of all Fourier modes
greater than 1 satisfy

a′i = −ai − εgbi,
b′i = εβ(−bi + ai),

where ai are placeholders for the Fourier coefficients of u and bi are place-
holders for the Fourier coefficients of z. Through an elementary stability
analysis, all solutions to these equations decay to zero so they are unneces-
sary to consider. We proceed with the remaining nontrivial terms,

u(x, t) = a0(t) + a1(t) cosx+ a2(t) sinx,

z(x, t) = b0(t) + b1(t) cosx+ b2(t) sinx.

Note that these are still the first two Fourier modes, but we have dropped
the hat notation and relabeled the coefficients. Using this notation, we
have the system

a′0 = −a0 +A

∫
Ω
f(u(y, t))dy + ε(qC − gb0),

a′1 = −a1 +B

∫
Ω

cos(y)f(u(y, t))dy + ε(qD − gb1),

a′2 = −a2 +B

∫
Ω

sin(y)f(u(y, t))dy − εgb2,

b′i = εβ(−bi + ai), i = 0, . . . 2.

Note that we do not need to explicitly write the full Fourier series of f or
extract any of its coefficients. In fact, the Fourier modes of f(u) greater
than 1 vanish as we will now show.

Consider the Fourier series of f(u(x, t)):

f(u(x, t)) = α̂0(t) +

∞∑
n=1

α̂n(t) cos(nx) + β̂n(t) sin(nx)

This expansion exists because f is bounded and integrable on [0, 2π]. We
now evaluate each integral,

∫
Ω f(u(y, t))dy,

∫
Ω cos(y)f(u(y, t))dy, and

∫
Ω sin(y)f(u(y, t))dy

in turn. First,∫
Ω
f(u(y, t))dy =

∫
Ω
α0 +

∞∑
n=1

αn cos(ny) + βn sin(ny)dy

= α0

∫
Ω
dy +

∞∑
n=1

αn

∫
Ω

cos(ny)dy + βn

∫
Ω

sin(ny)dy

= 2πα0.
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Next,∫
Ω

cos(y)f(u(y, t))dy = cosx

∫
Ω

cos(y)

[
α0 +

∞∑
n=1

αn cos(ny) + βn sin(ny)

]
dy

= α0 cosx

∫
Ω

cos(y)dy +
∞∑
n=1

αn

∫
Ω

cos(y) cos(ny)dy + βn

∫
Ω

cos(y) sin(ny)dy

= πα1

and finally,∫
Ω

sin(y)f(u(y, t))dy = sinx

∫
Ω

sin(y)

[
α0 +

∞∑
n=1

αn cos(ny) + βn sin(ny)

]
dy

= α0 sinx

∫
Ω

sin(y)dy +
∞∑
n=1

αn

∫
Ω

sin(y) cos(ny)dy + βn

∫
Ω

sin(y) sin(ny)dy

= πβ1.

Thus, the nonlinearity f in the integrand only appears in the dynamics of the
first few Fourier coefficients. At each time step in the numerics, we compute
the integrals

∫
Ω f(u(y, t))dy,

∫
Ω cos(y)f(u(y, t))dy, and

∫
Ω sin(y)f(u(y, t))dy

using Riemann integration at each time step as it is more straightforward
than extracting the necessary Fourier coefficients.

We focus our numerical studies on the coefficients a1 and a2 because they
produce the most salient features of the bump solution (the a0 coefficient
changes as a function of time, but only up to order O(ε), while the bi terms
represent aggregate behavior of the adaptation variable z). By following the
fixed points and oscillatory behavior in a1 and a2, we produce a bifurcation
diagram of this system in Figure 4.

Figure 4 shows that there are three main solution types: the pinned
or stationary bump, the sloshing bump, and the traveling bump, which
traverses the ring at some finite speed. In addition there are small regions
of bistability between the sloshing bump and the traveling bump.

3.2 Phase Model on the Ring

We now turn to the analysis of the phase dynamics on the ring. The analysis
to follow depends on proving the following statements:

1. H(0) = 0,

2. H ′(0) > 0,

3. If K(x) = A + B cos(x), then H(θ) = A′ sin(θ), A′ > 0, where A′

depends on the parameters A,B.
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Figure 4: 1- and 2-parameter bifurcation diagrams of the neural field model
on the ring. Solid red lines: Stable equilibrium. Solid Green: Stable periodic
solutions. Solid blue: Unstable periodic solutions. Solid black: unstable
equilibrium. (A,B) Bifurcation diagram in a1 and a2 for fixed q = 0.5. As g
increases from 0 to 5, the system undergoes a Hopf bifurcation (HB, orange).
Solutions here slosh with a small deviation from the origin. By increasing
g, we see a region of bistability (shown in the insets with the interval of
bistability marked by vertical dotted black lines), marking the emergence
of large-sloshing solutions alongside sloshing solutions. Next, the system
reaches a limit point (LP, purple) beyond which there exists a traveling bump
solution. For panel B:, the branches of the Hopf bifurcation are symmetric
over the x-axis, thus we only show one branch. C: Two parameter bifurcation
diagram in g and q. To the left of the Hopf bifurcation (HB, dashed orange
line), there is only a stationary bump solution (1.). Motion exists to the
right of this dividing line in the form of sloshes (2.) and a traveling bump
solution (4.).

Recall the scalar version of the functions Hi(θ) and v∗i (x):

H(θ) =

∫
Ω
u∗(y)u0(y + θ)dy

u∗(x) = f ′(u0(x))u′0(x),

Because u0 is even, it follows that f ′(u0) is even, u′0 is odd, and therefore
u∗ is odd. Noting that

H(0) =

∫
Ω
u∗(y)u0(y)dy,

where the function u∗(y)u0(y) is odd, the first statement follows.

17



For the second statement, we follow the definitions to arrive at

H ′(0) =

∫
Ω
f ′(u0(y))u′0(y)u′0(y)dy.

The function f is an increasing sigmoidal, thus f ′ > 0. In addition, u′20 > 0.
Thus, H ′(0) > 0.

Next, we prove the third statement. With the kernel choice K(x) =
A + B cos(x), the steady-state bump solution is some shifted multiple of
cosine, u0(x) = C + D cos(x), where C,D implicitly depend on the kernel
parameters A,B. Plugging this u0 into H(θ) yields

H(θ) =

∫ π

−π
f ′(C +D cos(y))[−D sin(y)][C +D cos(y + θ)]dy.

Let h(y) = f ′(C + D cos(y))[D sin(y)], which is an odd function. Recalling
that cos(y + x) = cos(y) cos(x)− sin(y) sin(x), H simplifies to

H(θ) = −C
∫ π

−π
h(y)dy −

∫ π

−π
h(y)D[cos(y) cos(θ)− sin(y) sin(θ)]dy.

Because h(y) is odd, some integrals cancel, and we are left with

H(θ) = A′ sin(θ),

where A′ = D
∫ π
−π h(y) sin(y)dy.

From these statements, it follows that dJ
dθ

∣∣
θ=θ

< 0 and J(θ) = 0 where

θ represents a steady-state bump peak. WLOG, we let θ = 0 because we
generally choose the center of the steady-state bump to be the origin.

Remark: For the more general adaptation (c.f. above), as long
as M(u) is differentiable and monotonically increasing, we still have
that H ′(0) > 0.

3.2.1 Equivalent Phase Model on the Ring

We next show that there are really only two relevant parameters. We can
rescale time to obtain

µβ
dθ

dτ
= qJ(θ)− g

∫ ∞
0

e−sH(θ(τ − s)− θ(τ))ds,

where we have re-used τ as the now scaled time βτ . Next, divide by µβ to
obtain

dθ

dτ
= q̂J(θ)− ĝ

∫ ∞
0

e−sH(θ(τ − s)− θ(τ))ds, (11)

with q̂ = q
µβ and ĝ = g

µβ . This rearrangement shows that making adaptation
slower by decreasing β is equivalent to increasing the rescaled parameters
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ĝ and q̂. For analytic calculations, we will often reference this equation
without the hats on the parameters.

For numerical studies of bifurcations in this system, we let H(θ) =
A′ sin θ, from which J follows immediately (see Equation (10) and state-
ment 2 above). We once more abuse notation and absorb A′ into ĝ and into
q̂, then drop the hats. So we will now study

dθ

dτ
= −q sin(θ)− g

∫ ∞
0

e−s sin(θ(τ − s)− θ(τ))ds,

To numerically integrate this phase equation, we rewrite this differential
equation as a system of three equations by exploiting basic differentiation
properties of integrals. To begin, we use a trigonometric identity to rewrite
the integral in the right-hand side

dθ

dτ
= −q sin(θ)− g

∫ ∞
0

e−s sin(θ(τ − s)− θ(τ))ds

= −q sin(θ)− g[cos(θ)S(τ)− sin(θ)C(τ)],

where

S(τ) =

∫ ∞
0

e−s sin(θ(τ − s))ds,

C(τ) =

∫ ∞
0

e−s cos(θ(τ − s))ds.

With the change of variables s′ = τ − s, S,C become

S(τ) =

∫ τ

−∞
e−(τ−s′) sin(θ(s′))ds′,

C(τ) =

∫ τ

−∞
e−(τ−s′) cos(θ(s′))ds′.

By differentiating, we rewrite S and C as ODEs:

dS

dτ
= −S(τ) + sin θ,

dC

dτ
= −C(τ) + cos θ.

We have transformed a single integro-differential equation into a system
of three ODEs, simplifying the numerics considerably:

dθ

dτ
= −q sin(θ)− g[cos(θ)S(τ)− sin(θ)C(τ)]

dS

dτ
= −S(τ) + sin θ,

dC

dτ
= −C(τ) + cos θ.
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The bifurcation diagram in Figure 5 summarizes the dynamics of the
phase model on the ring. On the left panel, we fix a parameter value q =
0.5 and as we vary the parameter g, the system transitions from steady-
state to sloshing solutions, then to a co-existence of large-amplitude and
relatively small amplitude sloshing solutions, and eventually to a steady
traveling pulse. On the right panel, we find that the parameter space is
separated into several regions. In particular, for q ≥ 0 arbitrarily small,
there exists a traveling bump for some nonzero g.

In the following sections, we analyze the existence of these bifurcations
including the Hopf bifurcation leading to sloshing solutions, and the saddle-
node bifurcation leads to the constant-velocity traveling bump.

Figure 5: 1- and 2-parameter bifurcation diagrams of the phase equation
on the ring. (A,B) Bifurcation diagram in for fixed q = 0.5. As g increases
from 0 to 5, the system undergoes a Hopf bifurcation (HB, orange) then
produces a limit point (LP 1, black), a branch point (BP, teal), and another
limit point (LP 2, purple), respectively. Between the limit point LP1 and
branch point BP, there is bistability, the interval of which is denoted by
vertical dotted black lines. Beyond the second limit point LP2, there exists
a traveling bump solution. This traveling bump solution is distinct from
the equilibria and periodic solutions denoted by solid lines, thus we label it
with a dashed green line. B: Two parameter bifurcation diagram in g and q.
To the left of the Hopf bifurcation (HB, dashed orange line), there is only
a stationary bump solution (1.). Motion exists to the right of this dividing
line in the form of sloshes (2., 3.) and a traveling bump solution (4.).
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3.3 Constant Velocity Bump Solution on the Ring

To show the existence of a constant velocity traveling bump solution, we
require that q = 0 and g > 0. For the first part of this analysis, we do not
require the kernel to take a particular form. We only require the kernel to
be even and admit a steady-state bump solution to Equation (1). We make
a traveling bump ansatz, θ(τ) = ντ , where ν corresponds to the traveling
bump velocity. We first determine the existence and stability of the zero
velocity bump solution. Plugging the ansatz into Equation (11) yields

ν = −g
∫ ∞

0
e−sH(−νs)ds

= g

∫ ∞
0

e−sH(νs)ds,

(12)

where the last line follows by the oddness of H. Because H(0) = 0, ν = 0 is a
solution. To determine the stability of the zero velocity solution, we consider
a small perturbation, θ(τ) = ντ + εψ. By plugging this perturbation into
Equation (11), we extract the dynamics of the perturbed variable ψ,

dψ

dτ
= −g

∫ ∞
0

e−sH ′(νs)[ψ(τ − s)− ψ(τ)]ds. (13)

Assuming ψ(τ) = eλτ and ν = 0, we obtain the stability equation,

λ = −g
∫ ∞

0
e−sH ′(0)

[
e−λs − 1

]
ds.

We integrate the right-hand side and rearrange to yield

λ = gH ′(0)
λ

1 + λ
.

Thus, either λ = 0, or λ = −1+gH ′(0). Moreover, the zero velocity solution
becomes unstable when g > 1/H ′(0).

In general, we may view the relationship between g and ν by rearranging
Equation (12) into the function

g = Γ(ν) :=
ν∫∞

0 e−sH(νs)ds
. (14)

We show examples of Γ in Figure 6. In the left panel, the relationship be-
tween the adaptation strength g and bump velocity ν is straightforward: as
g increases, there is some critical value ν where a nonzero velocity travel-
ing bump exists. However, the choice of kernel may change the shape of
Γ, and therefore change the relationship between g and ν, as well as the
stability of traveling bump solutions. For example, a kernel of the form
K(x) = a+ b cos(x) + c cos(2x) results in an H function of the form

H(θ) = a′ sin(θ) + b′ sin(2θ).
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Using this H function to plot Γ results in the right panel of Figure 6. The
branch with negative slope represents another traveling bump solution. We
now show that if Γ′(ν) < 0, then the traveling bump with velocity ν is
unstable.

Figure 6: Examples of the function Γ(ν). A: Γ constructed using our usual
H function, H(x) = sin(x). B: Γ constructed using a different H function,
H(x) = sin(x)−0.25 sin(2x), resulting from a different choice of kernel. The
dashed black line represents an unstable traveling bump velocity.

Recall again Equation (13). Assuming ψ(τ) = eλτ and ν 6= 0, we obtain
the stability equation,

f(λ) ≡ 1 + g

∫ ∞
0

e−sH ′(νs)

[
e−λs − 1

λ

]
ds. (15)

To prove the statement, we seek to show that limλ→∞ f(λ) > 0 and limλ→0 f(λ) <
0. Then by continuity of f , there exists a positive root to Equation (15).
We take each limit in turn, starting with the limit as λ→∞.

lim
λ→∞

f(λ) = 1 + g

∫ ∞
0

e−sH ′(νs) lim
λ→∞

[
e−λs − 1

λ

]
ds

= 1 > 0.

Thus, the positive λ limit is positive. For the other limit, we rearrange
Equation (14) into

Γ(ν)D(ν) = ν,

where D(ν) =
∫∞

0 e−βsH(νs)ds, and differentiate with respect to ν to obtain

Γ(ν)D′(ν) + Γ′(ν)D(ν) = 1.

Solving for Γ′(ν) yields

Γ′(ν) =
1− Γ(ν)D′(ν)

D(ν)
.
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Note that D(ν) > 0 at least within a neighborhood of ν = 0 since H(0) = 0
and H ′(0) > 0. In addition, D′(ν) =

∫∞
0 e−sH ′(νs)sds. Using the hypothe-

sis that Γ′(ν) < 0, we have the inequality

1 < Γ(ν)D′(ν).

We use this fact in the next limit

lim
λ→0

f(λ) = 1 + g

∫ ∞
0

e−sH ′(νs) lim
λ→0

[
e−λs − 1

λ

]
ds

= 1− g
∫ ∞

0
e−sH ′(νs)sds

= 1− gD′(ν)

= 1− Γ(ν)D′(ν) < 0.

Thus, the zero λ limit is negative. Because f(0) is negative, and f(λ) is
positive for asymptotically large values of λ, there exists a positive root λ
of f(λ) by continuity. It follows that branches of Γ(ν) with negative slope
indicate an unstable traveling bump at least within a neighborhood of ν = 0.

For the next part of this analysis, we show how to compute a formula for
the velocity of the traveling bump when the kernel is K(x) = A+B cos(x).
With this kernel, the H function is proportional to sin(x), and Equation
(12) becomes explicitly computable. Computing the integral results in a
formula for the nontrivial bump velocity ν,

ν = ±
√
g − 1. (16)

Equation (16) corresponds to the branches of a pitchfork bifurcation in the
velocity of the traveling bump. We show a particular example of a constant-
velocity traveling bump in Figure 7A. We note that any odd H will lead
to a pitchfork bifurcation to a traveling bump. In particular, it is trivial to
derive the following bifurcation equation:

ν2 = (1− gH ′(0))/gH ′′′(0).

This equation tells us that the pitchfork bifurcation is super-critical ifH ′′′(0) <
0 and sub-critical otherwise.

3.4 Andronov-Hopf Bifurcation on the Ring

We now prove the existence of a Hopf bifurcation. For this analysis, we do
not require H or J to take a particular form. However, we do require that H
and J be sufficiently differentiable, along with the properties H(0) = J(0) =
0, H ′(0) > 0,J ′(0) < 0, H odd, and g, q > 0.
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Figure 7: Dynamics of the traveling bump on the ring. Each row represents
the bump solution at a particular time. White represents high activity,
while black represents low or inhibited activity. The numerical centroid
(black solid) is plotted against the analytic prediction (dashed blue). A:
A constant-velocity bump, g = 3.5,q = 0. B: A sloshing bump, g = 3,
q = 1. C: A non-constant velocity bump, g = 5.5, q = 1. For each panel, we
shift the theory along the time axis to show qualitative agreement with the
numerics. Parameter ε = 0.01.

Consider again the simplified phase model, Equation (11). Let us fix q
and absorb the parameter into J . We write J and H as Taylor expansions,

J(θ) = j1θ + j2θ
2 + j3θ

3,

H(θ) = h1θ + h3θ
3.

Then to first order,

dθ

dτ
= j1θ − gh1

∫ ∞
0

e−s[θ(τ − s)− θ(τ)]ds.

Letting θ = eλt and rearranging the resulting equation yields

λ = j1 + gh1 −
gh1

λ+ 1
,

or equivalently,
λ2 + λ(1− j1 − gh1)− j1 = 0.

Since j1 < 0 and h1 > 0, there exists a Hopf bifurcation when

g∗ =
1− j1
h1

.

This bifurcation leads to oscillations in the peak of the bump solution.
We show a particular example of this oscillatory behavior in Figure 7B.
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3.4.1 Normal Form for the Hopf Bifurcation on the Ring

We wish to analyze the bifurcation to a sloshing pulse for the general integral
equation:

dθ

dτ
= −qJ(θ)− g

∫ ∞
0

e−sH(θ(τ − s)− θ(τ)) ds (17)

as g increases. For simplicity, we will assume J(θ) is an odd periodic function
(as is the case for H(θ) and through suitable rescaling of g, q, we will assume:

J(θ) = θ + j3θ
3 + . . .

H(θ) = θ + h3θ
3 + . . . .

We also assume q > 0 so that θ = 0 is stable without adaptation. If, we
use H(θ) = J(θ) = sin(θ), then j3 = h3 = −(1/6). The linearization about
θ = 0 has the form:

θτ = −qθ − g
∫ ∞

0
e−s(θ(τ − s)− θ(τ)) ds

which has the general solution, eλτ . After some simplification, we find that

λ2 + (1 + q − g)λ+ q = 0

so there is an imaginary eigenvalue, i
√
q := iω when g = 1 + q ≡ g0, so we

expect a Hopf bifurcation will occur.
All nonlinearities are odd, so we can assume the multiple timescale ex-

pansion
g = g0 + δ2g2, θ = δθ1(ζ, ξ) + δ3θ3(ζ, ξ),

where δ is the amplitude of the bifurcating solution, ζ = τ is a “fast” time,
and ξ = δ2τ is a “slow” time. We detail the remaining steps of the normal
form analysis in Appendix A and jump to the conclusion,

α
dz

dξ
= z[γ̂0 + γ̂3|z|2] (18)

where

α = 1− g0

1 + 2iω − ω2
=

2

1 + q
(q +

√
qi)

γ̂0 = g2
iω

1 + iω
=

g2

1 + q
(q +

√
qi)

γ̂3 =
3q

4q + 1
[[q(12h3 − 4j3)− j3] + i18h3

√
q] .

To get the actual normal form, we divide (18) by α, to obtain:

dz

dξ
= z(g2/2 + γ3|z|2)
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where

γ3 =
3

8q + 2
[q(12qh3 − 4qj3 − j3 + 6h3) + i

√
q(6qh3 − 4qj3 − j3)] .

If we assume that j3 = h3 as would be the case if the input was the bump,
itself, then

γ3 = h3
3q(8q + 5)

8q + 2
− ih3

3
√
q(2q − 1)

8q + 2
.

We compare the normal form calculation to the numerics in Figure 8. We
use XPPAUTO to compute the numerical bifurcation diagram. As expected,
the normal form approximation is quite accurate near the bifurcation.

Figure 8: Normal form calculation for the neural field model on the ring. A:
Amplitude of oscillations predicted by the normal form calculation (dashed
blue) compared to the actual amplitude (solid black). q = 1. B: Ampli-
tude of oscillations predicted by the normal form calculation (dashed blue)
compared to the actual amplitude (solid black). q = 0.25.

3.5 Non-Constant Velocity Bump Solution on the Ring

When adaptation is made even stronger, the solution breaks free from the os-
cillating state and travels across the periodic domain (Figure 7C. The onset
is shown numerically in the bifurcation diagrams of Figures 4 and 5, purple
LP2). Due to the pinning term, the velocity of the bump is nonconstant.

Remark. As q → 0, we see in figure 5B that all the two-
parameter curves converge to the point g∗ which is the point of
onset of the traveling bumps with no input stimulus.

3.6 Chaos on the Ring

With g, q > 0, there exists a small parameter range in which the neural
field exhibits chaotic movement about the ring. Examples of this behavior
are shown in Figure 9. In both panels, the initial conditions differ by 1e-7.
The solutions in each panel remain nearly identical for a long time (we have
truncated a significant portion of the simulation).
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Figure 9: Chaotic dynamics of the traveling bump in the full neural field
model (left) and the reduced phase model (right) on the ring. Original
solutions are shown in black. Solutions with a different initial condition is
shown in dashed blue. For each panel, initial conditions differ by 1e-7. A:
g = 2.65, q = 0.5. B: g = 2.661, q = 0.5. For all simulations in this figure,
ε = 0.01.

This section completes our analysis of the one-dimensional case. We
have found a good match between the phase-reduced equations and the
full neural model. For a fixed amplitude of the external input, we find
a transition from a stationary bump to “sloshers”, and, finally to bumps
that move completely around the ring, modulated traveling bumps. In the
sections to follow, we repeat the analytical and numerical analysis for the
two-dimensional domain.

4 Torus Domain

In this section, we define the domain Ω as the torus, or the square [−π, π]×
[−π, π] with periodic boundary conditions. We seek to analyze the full neural
field model on this domain using the same bifurcation analysis performed
in the one-dimensional case. We begin by considering simplifications that
allow us to use standard bifurcation analysis tools like XPPAUTO.

4.1 Approximation of the Neural Field Model on the Torus

In order to numerically investigate the full neural field equation (1-2), we
need to either discretize space in two-dimensions or use an approximation of
the kernel that is degenerate. (Since the integral operator is compact, it can
be approximated to arbitrary precision by a degenerate integral operator ;see
section 2.8 [29]). Thus to study the dynamics of the full neural field model
on a two-dimensional domain, we take a Fourier truncation of the kernel to
make the integral in Equation (3) separable. This truncation allows us to
rewrite the infinite dimensional system as a finite system of ODEs and use
traditional dynamical systems tools like XPPAUTO to analyze the system. To
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begin, take the truncated Fourier approximation to the kernel,

K(x, y) = k00 + k10 cos(x) + k01 cos(y) + k11 cos(x) cos(y), (19)

and plug it into Equation (3):

u(x) =

∫
Ω
K(x1 − y1, x2 − y2)f(u(y))dy.

After expanding the kernel using standard trigonometric identities, we derive
the time-varying solutions

u(x, t) = a00(t) + a10(t) cos(x1) + a01(t) cos(x2)

+ b10(t) sin(x1) + b01(t) sin(x2)

+ a11(t) cos(x1) cos(x2) + b11(t) sin(x1) sin(x2)

+ c1(t) sin(x1) cos(x2) + c2(t) cos(x1) sin(x2).

z(x, t) = E00(t) + E10(t) cos(x1) + E01(t) cos(x2)

+ F10(t) sin(x1) + F01(t) sin(x2)

+ E11(t) cos(x1) cos(x2) + F11(t) sin(x1) sin(x2)

+G1(t) sin(x1) cos(x2) +G2(t) cos(x1) sin(x2).

(20)

where the coefficients satisfy

a′ij = −aij + kijpij(t) + ε(quij − gEij),
b′ij = −bij + kijrij(t)− εgFij ,
c′i = −ci + k11si(t)− εgGi,
ξ′ = εβ(−ξ + ζ),

(21)

where i = 0, 1 and j = 0, 1. The dummy variables ξ, ζ represent each of the
pairs (aij , Eij), (bij , Fij), and (ci, Gi). The time-varying functions pij , rij , si
are defined as

p00(t) =
∫

Ω f(u(y, t))dy p01 =
∫

Ω cos(y2)f(u(y, t))dy
p10(t) =

∫
Ω cos(y1)f(u(y, t))dy p11 =

∫
Ω cos(y1) cos(y2)f(u(y, t))dy

r01(t) =
∫

Ω sin(y2)f(u(y, t))dy r10 =
∫

Ω sin(y1)f(u(y, t))dy
r11(t) =

∫
Ω sin(y1) sin(y2)f(u(y, t))dy

s1(t) =
∫

Ω cos(y1) sin(y2)f(u(y, t))dy s2 =
∫

Ω sin(y1) cos(y2)f(u(y, t))dy,

and the coefficients uij are taken from the truncated Fourier series of the
steady-state solution,

u0(x, y) = u00 + u10 cos(x) + u01 cos(y) + u11 cos(x) cos(y).
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The coefficient values of the kernel and steady-state bump solutions are
shown in Tables 2 and 3, respectively. Details on how we approximate the
spatial integrals of pij , rij , si are in Appendix C.

We show the bifurcation diagram and salient solutions of this system in
Figure 10. The only bifurcations classified by AUTO are a subcritical Hopf
bifurcation (HB, orange) and limit points (limit points occur at each change
in stability of periodic solutions). The Hopf bifurcation leads to small am-
plitude unstable solutions. We attribute the existence of a subcritical Hopf
bifurcation to the coarse discretization of the spatial domain in the param-
eters of Equation (21). Although not shown here, a finer discretization of
the spatial domain using 200 intervals results in a qualitatively supercritical
Hopf bifurcation.

To summarize, we find the usual types of oscillatory solutions in this
truncated neural field model as we found in the neural field model. A stable
limit cycle of this system is shown in the first bottom left panel (A, which
corresponds to the initial conditions taken from the point A in the bifurca-
tion diagram). A large-sloshing solution exists for slightly larger g (B,C),
and eventually, for sufficiently large g, there exist only traveling bump solu-
tions D. Additional non-periodic attractors are shown in panels E–G. The
attractors shown in this figure are simply those with the largest basins of
attraction. Generally, starting random initial conditions with g anywhere in
the range 1.55 < g < 1.95 (the gray shaded area labeled F in the main plot)
results in solutions that qualitatively match panel F. The same holds for
the shaded areas E and F, with their corresponding panels. Indeed, there
exist several attractors not shown in this figure that are more difficult to
find numerically. However, the focus of this study is not the thorough clas-
sification of attractors in the truncated neural field model, so we move on
to the analysis of the phase model on the torus.

4.2 Approximations of the Phase Model on the Torus

We now turn to the analysis of the phase dynamics in two-dimensions and
begin by reducing the number of parameters with the same rescaling used
to obtain Equation (11) in the one dimensional case,

dθi
dτ

= qJi(θ)− g
∫ ∞

0
e−sHi(θ(τ − s)− θ(τ))ds, i = 1, 2, (22)

and recall that

Hi(θ) =

∫
Ω
f ′(u0(x))∂iu0(x)u0(x + θ) dx.

Details on the numerical integration of the integro-differential equation,
Equation (22), are shown in Appendix C.
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Figure 10: Bifurcation diagram of the truncated neural field model on the
torus with g as a bifurcation parameter and q = 0.1. The stable fixed
point (red line) undergoes a subcritical Hopf bifurcation (HB, orange) and
becomes an unstable fixed point (black line). The green and blue lines
represent stable and unstable oscillations, respectively. Thick, solid green
lines represent stable oscillations. Thick, dashed green lines represent stable
oscillations that wrap around the torus. Thin solid blue lines represent
unstable periodic solutions. Stable attractors are shown in panels A–D. In
panels E–G, we show solutions in parameter regimes without stable periodic
attractors. These solutions are displayed in a relatively short time window
after integrating for long times and travel from light to dark. In panel E
(g = 1.4), we integrate for t = 5000 time units and show the last 30%
of the data. In panel F (g = 1.7), we integrate for t = 8000 time units
and show the last 10% of the data. In panel G (g = 2.4), we integrate
for t = 8000 time units and show the last 6% of the data. We initialize
the solutions of panels E–F using standard normally distributed random
variables. Parameter ε = 0.01.

To facilitate the study of existence and stability of solutions, we consider
two approximations to Hi to be used in Equation (22): the first is a high-
accuracy Fourier series of Hi, and the second is a low-accuracy Fourier series
of Hi. We detail these approximations in turn.

For the accurate Fourier series approximation of Hi, we use one of two
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Figure 11: Cartoon of the parameter space of the approximate neural field
model on the torus (Equation (21)). The most salient solutions are shown.
Solutions advance in time from light to dark, thin to thin. For sufficiently
small g or sufficiently large q, the bump solution tends to a stationary solu-
tion. By increasing g or decreasing q to g = 1.2, q = 0.1, the centroid of the
bump solution oscillates about the origin. For larger g, say g = 4, q = 0.5,
the solution begins to traverse chaotically about the domain. When q = 0,
there exists a constant velocity traveling bump solution for g sufficiently
large, e.g., g = 3. Parameter ε = 0.01.

equivalent forms

H1(θ) =
∑
n,m∈Z

anm sin(nθ1) cos(mθ2), (23)

where, due to the odd (even) property of the first (second) coordinate, the
coefficients have the property that an,±m = −a−n,±m. We can then rewrite
this Fourier series into the equivalent form,

H1(θ) =
∑
n,m∈Z

ânm sin(nθ1 +mθ2), (24)

where ânm = 4anm. This equivalent form makes integrals much easier to
compute. We use both forms interchangeably as we see fit, and abuse nota-
tion in Equation (24) by removing the hats from the coefficients. We find
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that 30 Fourier coefficients provides a sufficiently good approximation for
simulations on a 64× 64 domain (the error is on the order of 1e-7).

For the low-accuracy Fourier series, we consider a more substantial trun-
cation of the interaction function using only 3 Fourier coefficients. While this
truncation is drastic, it allows us to analyze Equation (22) more rigorously.
We derive the 3 term Hi-function starting with the same Fourier truncation
of the kernel as above, which leads to the same steady-state bump solution,

u0(x, y) = u00 + u10 cos(x) + u01 cos(y) + u11 cos(x) cos(y),

which in turn leads to a truncated Hi function,

HF
1 (θ1, θ2) = sin(θ1)(h10 + h11 cos(θ2)),

where

h10 = 4u10

∫
Ω

sin2(x)(u10 + 2 cos(y)u11)dxdy,

h11 = 8u11

∫
Ω

cos(y) sin2(x)(u10 + 2 cos(y)u11)dxdy.

For simplicity, analysis of this Hi function uses the simpler form

HF
1 (θ1, θ2) = sin(θ1)(1 + b cos(θ2)), (25)

where we have absorbed h10 into the parameter g of Equation (22), and
relabeled h11/h10 as b. Naturally, it follows that HF

2 (x, y) = HF
1 (y, x) and

HF
i = −JFi .

Using the truncated interaction function HF
1 enables us to use traditional

dynamical systems tools and techniques to identify qualitative dynamics of
Equation (22) through a bifurcation analysis.

Finally, for Hi and all of its approximations, we require the following
properties to hold:

1. ∂H1(0, 0)/∂y = ∂H2(0, 0)/∂x = 0,

2. ∂H1(0, 0)/∂x, ∂H2(0, 0)/∂y > 0,

3. ∂J1(0, 0)/∂x, ∂J2(0, 0)/∂y < 0.

Properties 1 and 2 follow from the evenness of the ε = 0 bump solution and
3 is made WLOG since we could just change the sign of q otherwise.

To summarize, we consider two approximations to Hi:

H1(θ) =

30∑
n,m=1

anm sin(nθ1) cos(mθ2) ∝
30∑

n,m=1

anm sin(nθ1 +mθ2),

HF
1 (θ) = sin(θ1)(1 + b cos(θ2)).

We note that the second approximation, HF
1 , is a result of using the trun-

cated kernel in Equation (19).
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4.2.1 Equivalent Truncated Phase Model on the Torus

For the truncated function HF
i , we transform the delay integro-differential

equations into a system of ordinary differential equations using identical
arguments used to transform the phase equation on the ring from a delay
integro-differential equation into a system of ODEs. The new system is

θ′i = qJFi (θ)− g(ηi1 + ηi2), i = 1, 2

N ′ = −N + P

M ′ = −M +Q

(26)

where

(N,P ) ∈ {(cx, cos θ1), (cy, cos θ2), (sx, sin θ1), (sy, sin θ2)}
(M,Q) ∈ {(sxsy, sin(θ1) sin(θ2)), (sxcy, sin(θ1) cos(θ2)),

(cxsy, cos(θ1) sin(θ2)), (cxcy, cos(θ1) cos(θ2))}
η11 = sx cos(θ1)− cx sin(θ1)

η12 = b[cos(θ1) cos(θ2)sxcy − sin(θ1) cos(θ2)cxcy

+ cos(θ1) sin(θ2)sxsy − sin(θ1) sin(θ2)cxsy].

The function η21 (η22) is the same as η12 (η11) with θ1 and θ2 flipped and
each x and y flipped in the notation (for example, sxcy and cos(θ2) in η12

become sycx and cos(θ1) in η21, respectively).
We show the many bifurcations and salient solutions of this system in

Figure 12. We find that there exists a stable sloshing bump solution that
arises from a Hopf bifurcation (solution A, bifurcation HB). Due to the sym-
metry of the system, there is also an unstable sloshing solution in an axial
direction (G) that arises from the same Hopf bifurcation. For slightly larger
parameter values, there is bistability of large-sloshing solutions (H and B),
and an even larger-sloshing solution (F) that loses stability through a torus
bifurcation (TR). For this choice of q = 0.1, the solutions are chaotic for pa-
rameter values between the first torus bifurcation (TR1) and the first period
doubling bifurcation (PD1). The multitude of period doubling bifurcations
beyond this point represents the onset of chaotic behavior of the system due
to the Fourier truncation, the error of which is proportional to g. This error
is more apparent beyond limit point LP2 where there are no more travel-
ing bump solutions, which qualitatively disagrees with the original system
where traveling bump solutions exist for even relatively large g.

The most salient bifurcations are captured in the two-parameter bifur-
cation in Figure 13. There are several qualitative similarities to the two
parameter bifurcation diagram of the phase model on the ring. In particu-
lar the transition from the stationary bump to the sloshing bump, and from
sloshing to large-sloshing. However, for the two-dimensional domain, there
are much larger regions of chaotic solutions.
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Figure 12: Bifurcation diagram of the equivalent truncated phase model on
the torus over varying values of g with q = 0.1. Some branches refined using
XPPY[26]. Sample solutions (labeled A–H in the bifurcation diagram) are
shown in the subplots to the bottom and right of the diagram. Bifurcations
are labeled according to the type: Hopf (HB), limit point (LP), torus (TR),
period-doubling (PD), and branch point (BP). The number following each
bifurcation type correspond to the same bifurcation type and number in the
two parameter bifurcation in Figure 13. Panels A–E show stable attractors.
In panels F–H, we show solutions in parameter regimes without stable pe-
riodic attractors. These solutions are displayed in a relatively short time
window after integrating for long times and travel from light to dark. In
panel F (g = 1.05), we integrate for t = 500 time units and show the last
9% of the data. In panel F (g = 1.5), we integrate for t = 500 time units
and show the last 7% of the data. In panel G (g = 2.15), we integrate for
t = 500 time units and show the last 5% of the data. We initialize the solu-
tions of panels F–H using standard normally distributed random variables.
Parameter ε = 0.01.
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Figure 13: Two parameter bifurcation diagram of the equivalent truncated
phase model on the torus. The parameter regions are separated into sta-
tionary solutions (1.), sloshing solutions (2.), large-sloshing solutions (3.),
and generally chaotic solutions (4.). To the right of the curve LP2 (purple
dashed) for g ≥ 1.5, the qualitative behavior breaks down as this bifurcation
point marks the end of traveling bump solutions. Parameter b = 0.8.

In the following sections, we study the dynamics of the original phase
model and the truncated phase model and repeat most of the analysis as
completed in the ring domain. In particular, using a combination of nu-
merical and analytical methods, we analyze the existence and stability of
traveling bump solutions, and the existence of a Hopf bifurcation.

4.3 Constant Velocity Bump Solution on the Torus

In this section, we analyze the existence and stability of constant velocity
bump solutions on the torus for q = 0, the only case in which there can be
constant velocity traveling bumps. Figure 14 shows the type of solutions we
analyze in this section: constant velocity traveling bump solutions in the full
neural field model (panel A), the reduced model with the accurate Fourier
approximation (panel B), and the truncated reduced model (panel C).
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Figure 14: Constant velocity dynamics of the traveling bump on the torus.
The curve that goes from light to dark and thin to thick represents the
movement of the centroid over time. A: Full neural field model on the torus,
q = 0, g = 3, simulated for t = 7000 time units with the last 60% of the
data shown. B: Phase model on the torus with the accurate Fourier series
of Hi, q = 0, g = 2.2, simulated for t = 6, 700 time units with the last 10%
of the data shown. C: Phase model on the torus with the truncated Fourier
series HF

i , q = 0, g = 2.5, simulated for t = 3, 500 time units with the last
20% of the data shown. For these parameter choices, the axial directions are
unstable and over long times converge to non-axial directions. Parameter
ε = 0.01.

4.3.1 Existence

To show existence of solutions in the axial directions, we only need to show
existence of the solution θ1(τ) = ντ and θ2(τ) = 0. We plug this ansatz into
(22) and rearrange to yield

g = Γ(ν) ≡ ν∫∞
0 e−sH1(νs, 0)ds

. (27)

The analysis of this equation is identical to the one-dimensional case, Equa-
tion (14). By varying ν from zero, we can find the values of g where there
are solutions. Values of g for which ν is nonzero imply there exists a trav-
eling bump solution. In the case of the truncated H function, we compute
this integral explicitly to derive the velocity ν as a function of adaptation
strength g:

Γ(ν) =
1 + ν2

1 + b
.

To determine the critical value for the existence of axial constant velocity
bump solutions, we take the limit limν→0 Γ(ν):

g∗ = lim
ν→0

Γ(ν) =
1

1 + b
.
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Figure 15: Existence of traveling bump solutions using the accurate approx-
imation to the interaction function Hi. Left: After a first critical value (g∗)
of the bifurcation parameter g (red plane), there exist traveling bumps in
the axial directions. After a second critical value (g∗∗) (marked by a green
plane), off-diagonal solutions form and continue to persist for large g. The
dark to light color gradient and thin to thick thickness gradient corresponds
to increasing values of g. Right: The projection of the branches on the
left onto the g = 1.6 plane. A given point on one of these branches marks
the magnitude and direction of a traveling bump. If necessary, one can ap-
proximate the parameter value g of this traveling bump by looking at the
thickness and color of the chosen point and looking back at the branches in
the left panel.

To show existence of non-axial solutions, we use the ansatz θ1(τ) = ν1τ
and θ2(τ) = ν2τ where ν1, ν2 6= 0. There exist non-axial traveling bump
solutions if ν1, ν2 simultaneously satisfy

0 = −ν1 + gG(ν1, ν2),

0 = −ν2 + gG(ν2, ν1),
(28)

where

G(ν1, ν2) =

∫ ∞
0

e−sH1(ν1s, ν2s)ds.

We can not compute the velocities ν1, ν2 explicitly as a function of g, but
we can exploit the Fourier series of Hi to compute G explicitly, allowing
us to use XPPAUTO to follow the velocities as a function of the adaptation
parameter g. The existence of traveling solutions using the accurate Fourier
series is shown in Figure 15, and the existence of traveling solutions using
the truncated Fourier series is shown in Figure 16.

In these figures, we find that the truncated model (Figure 16) exhibits
a similar set of traveling bump solutions as the full phase model (Figure
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Figure 16: Existence of traveling bump solutions using the truncated inter-
action function HF

i (q = 0, b = 0.8). Left: After a first critical value (g∗)
of the bifurcation parameter g (red plane), there exist traveling bumps in
the axial directions. After a second critical value (g∗∗) (marked by a green
plane), off-diagonal solutions form and continue to persist for large g. The
dark to light color gradient and thin to thick thickness gradient corresponds
to increasing values of g. Right: The projection of the branches on the
left onto the g = 4 plane. A given point on one of these branches marks
the magnitude and direction of a traveling bump. If necessary, one can ap-
proximate the parameter value g of this traveling bump by looking at the
thickness and color of the chosen point and looking back at the branches in
the left panel.

15). In particular, each system at a critical value g∗, bifurcates into two
axial solutions and one diagonal solution. For larger g, the system bifurcates
again at another critical value g∗∗, giving rise to two non-axial, non-diagonal
constant velocity directions. Indeed, negative velocity solutions exist, but as
these solutions are symmetric up to multiples of a 90-degree rotation about
the g-axis, we only show the positive directions. The “mixed” solutions
that branch off for g > g∗∗ are, in general, not rationally related so that
the resulting traveling bumps will densely cover the torus. As such quasi-
periodic solutions are often not structurally stable, we expect to see complex
and possibly chaotic behavior when q > 0. Indeed, looking at Figure 13, we
see that most of the complex behavior occurs for a small value of q and g
sufficiently large.

Now that we have shown existence of traveling bump solutions, we pro-
ceed with a stability analysis.
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4.3.2 Stability

We begin this section with stability of traveling bump solutions in the axial
directions. We perturb off the axial solution, θ1(τ) = ντ+εeλ1τ and θ2(τ) =
0 + εeλ2τ , with Re(λi) > −1. The first order terms yield two independent
eigenvalue problems

λ1 = −g
∫ ∞

0
e−s

∂H1

∂x
(νs, 0)[e−λ1s − 1]ds,

λ2 = −g
∫ ∞

0
e−s

∂H1

∂x
(0, νs)[e−λ2s − 1]ds,

which we combine with Equation (27) to yield two independent eigenvalue
equations,

λ1 = − ν∫∞
0 e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(νs, 0)[e−λ1s − 1]ds,

λ2 = − ν∫∞
0 e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(0, νs)[e−λ2s − 1]ds.

Using these equations, we may determine stability of a traveling bump so-
lution as a function of its velocity. We rephrase this problem and consider
the independent scalar valued functions

Λ1(ν, λ) = λ+
ν∫∞

0 e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(νs, 0)

(
e−λs − 1

)
ds, (29)

Λ2(ν, λ) = λ+
ν∫∞

0 e−sH1(νs, 0)ds

∫ ∞
0

e−s
∂H1

∂x
(0, νs)

(
e−λs − 1

)
ds. (30)

For a given Λi, the zero level curves in (ν, λ) space determine stability prop-
erties of traveling bump solutions.

We begin the analysis of these equations using the accurate Fourier series
of Hi and compute the integrals explicitly. The zero level set of the resulting
function is shown in Figure 17. On the left panel, find that for any velocity,
the x-direction is always stable. On the right, we find that for sufficiently
small velocities, θ2(τ) = 0 is a stable solution. Thus, constant velocity
traveling solutions in this parameter regime will converge to the x-axis.
Finally, for greater traveling bump velocities, the vertical direction loses
stability, giving rise to non-axial solutions.

With the truncated Hi, which we recall to be HF
i (θ1, θ2) = sin(θ1)(1 +

b cos(θ2)), we may compute the equations Λi = 0 explicitly as polynomials,

0 = λ2
1 + λ1 + 2ν2

0 = λ3
2 + c2λ

2
2 + c1λ2 + c0,
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Figure 17: Stability of solutions in the horizontal axial direction (calculated
using the phase model with the accurate Fourier series). Both plots show
the level curves where Re(Λi) = 0 (black) and Im(Λi) = 0 (gray). For small
velocities ν, both components are stable. For larger velocities, the horizontal
velocity remains stable, but the vertical velocity loses stability. The dashed
gray line shows where λi = 0.

where

c0 =
(2b− 1)ν2 − ν4

b+ 1
,

c1 =

(
1 + b+ (2b− 1)ν2

)
b+ 1

,

c2 =

(
2(b+ 1)− ν2

)
b+ 1

.

(31)

The coefficients of Equation (31) determine the stability of the horizontal
traveling solution. Note that for ν sufficiently small, all coefficients are
positive and the product c1c2 dominates the coefficient c0. Thus, for small
velocities, the coefficients have the properties c1c2 > c0 and c2, c0 > 0, which
implies stability by the Routh Hurwitz criterion. When ν∗ = ±

√
2b− 1, the

coefficient c0 is no longer positive and the stability condition fails.
We have found that horizontal traveling bump solutions lose stability at

some critical velocity ν∗, giving rise to non-axial traveling bump solutions.
By symmetry, this argument holds for vertical traveling bump solutions:
after the same critical ν∗, constant velocity traveling bumps in the vertical
direction lose stability and become non-axial solutions.

Now that we understand the existence of and stability of axial constant
velocity traveling solutions, we turn our attention to the stability of non-
axial traveling bump solutions.

To determine the stability of non-axial directions, we consider the solu-
tion, θ1(τ) = ντ + φ1e

λτ and θ2(τ) = ντ + φ2e
λτ . This ansatz results in the
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equations,

λφ1 = −gφ1

∫ ∞
0

Q1(s)
(
e−λs − 1

)
ds− gφ2

∫ ∞
0

Q2(s)
(
e−λs − 1

)
ds,

λφ2 = −gφ1

∫ ∞
0

Q3(s)
(
e−λs − 1

)
ds− gφ2

∫ ∞
0

Q4(s)
(
e−λs − 1

)
ds,

where

Q1(s) =

∫ ∞
0

e−s
∂H1

∂x
(−ν1s,−ν2s), Q2(s) =

∫ ∞
0

e−s
∂H1

∂y
(−ν1s,−ν2s),

Q3(s) =

∫ ∞
0

e−s
∂H1

∂y
(−ν2s,−ν1s), Q2(s) =

∫ ∞
0

e−s
∂H1

∂x
(−ν2s,−ν1s).

By rewriting the integrals in the more compact form,

λφ1 = −gφ1Q̂1(λ)− gφ2Q̂2(λ),

λφ2 = −gφ1Q̂3(λ)− gφ2Q̂4(λ),

where Q̂i =
∫∞

0 Qi(s)(e
−λs − 1)ds, the problem reduces to finding an eigen-

vector (φ1, φ2)T with corresponding eigenvalue −λ:

g

(
Q̂1(λ) Q̂2(λ)

Q̂3(λ) Q̂4(λ)

)(
φ1

φ2

)
= −λ

(
φ1

φ2

)
. (32)

This condition holds if and only if the determinant

E(λ) =

∣∣∣∣g(Q̂1(λ) Q̂2(λ)

Q̂3(λ) Q̂4(λ)

)
+ λI2

∣∣∣∣ (33)

is zero. This determinant is the Evans function, and we use its roots to
determine stability properties of the constant velocity solutions.

Using the accurate Fourier series of Hi, the integrals of the eigenvalue
problem (32) are explicitly computable. Given a value g, it is straightforward
to compute the contours of E = 0 using a standard contour plot routine. In
panels A and B of Figure 18, we show the Evans function when g = 1.5, and
g = 3, respectively.

The domain values where the real part of the Evans function is zero is
shown as a black contour, while the domain values where the imaginary part
is zero is shown in gray. Intersections of these contours show roots of the
Evans function. Generally, there exists a root of the Evans function at the
origin due to translation invariance of the underlying bump solution. Thus
we ignore this root and consider only those nontrivial roots with real part
sufficiently greater than −1. These nontrivial roots are marked with red
dots.

We follow these roots using XPPAUTO and generate the bifurcation di-
agram shown in the right panel of Figure 18. The real part of the root
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Figure 18: Evans function for the accurate Fourier series H. Left panels
A and B: roots of the real (black) and imaginary (gray) parts of the evans
function for g = 1.5 and g = 3, respectively. Intersections of the gray and
black lines denote zeros of the Evans function. We use α and β to denote
the real and imaginary part of the Evans function, respectively. Right panel:
The real and imaginary parts of the nontrivial root(s) of the Evans function
for various choice of g. The horizontal red dashed line denotes the real axis.

remains negative for the range of g that we consider, thus the constant trav-
eling bump solution remains stable for a large range of adaptation strengths.

We repeat the analysis of the Evans function using the truncated Fourier
interaction function, HF . Once again, the integrals of the eigenvalue prob-
lem (32) are explicitly computable and we follow the roots of the Evans
function using XPPAUTO in two parameters, b and g, the Fourier coefficient,
and adaptation strength, respectively. The right panel of Figure 19 shows
the result of this continuation: within the unstable region (marked in light
blue), constant velocity solutions are unstable, as demonstrated by the lower
inset showing θ1 as a function of time. Because the instability arises through
a Hopf bifurcation, the traveling bumps begin to “wobble”. In the stable
region, bump solutions travel with constant velocity, as demonstrated by
the upper inset showing θ1 as a function of time.

The left panels (A and B) of Figure 19 demonstrates the existence of
a Hopf bifurcation on the boundary between stable and unstable regions.
These panels correspond to points labeled A and B on the right panel. In
each case, we find a complex conjugate pair of eigenvalues that cross the
imaginary axis.

In this section, we analyzed the reduced neural field model with nonzero
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Figure 19: Evans function for the truncated interaction function HF . Left
panels A and B: roots of the real (black, g = 3.1, b = 2.28) and imaginary
(gray, g = 4.84, b = 0.65) parts of the evans function demonstrating a loss
of stability through a Hopf bifurcation. Intersections of the gray and black
lines denote zeros of the Evans function. Right panel: the black line denotes
where the real part of the Evans function is zero in b and g parameter space
(i.e., where the bump solution loses stability). The points labeled A and
B correspond to panels A and B, respectively. The horizontal dashed gray
line shows our usual choice of the parameter value b = 0.8.Two insets with
example solutions of θ1(τ) over slow time τ are shown, corresponding to
the blue star in parameter space. In the stable region, the traveling bump
solution moves with constant velocity (inset parameter values g = 15,b = 1.3
integrated over t = 20000 time units with the last 7.5% of the data shown).
In the unstable region, the traveling bump solution loses stability through
a Hopf bifurcation and begins to travel with nonconstant velocity (inset
parameter values g = 3,b = 0.9 integrated over t = 20000 time units with
the last 2.5% of the data shown). Parameter: ε = 0.01.

adaptation strength (g > 0) and no input current (q = 0). We now explore
the dynamics arising from activating the time-invariant input current.

4.4 Hopf Bifurcation on the Torus

We have seen in Figures 13, 10 that for nonzero g and q, the system may
produce a traveling bump solution that oscillates about the origin-centered
input. For a fixed parameter value q, the origin is stable for g = 0, and
with increasing g eventually becomes unstable through a Hopf bifurcation.
We study this phenomenon with Equation (22), using the same technique
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as used on the ring: linearization about the origin.

Figure 20: Limit cycle dynamics of the traveling bump on the torus. The
curve that goes from light to dark and thin to thick represents the movement
of the centroid over time. A: Full neural field model on the torus, q = 2,
g = 5, period of t = 805 time units. B: Phase model on the torus with the
accurate Fourier series approximation of Hi, q = 1, g = 3, period of t = 187
time units. C: Phase model on the torus with the truncated Fourier series
HF
i , q = 0.2, g = 1, period of t = 370 time units. Parameter ε = 0.01.

Let (θ1(τ), θ2(τ)) = (eλτ , eλτ ). Plugging into Equation (22) results in a
system of two decoupled equations,

λ = qĴ0
i − gĤ0

i

∫ ∞
0

e−s(e−λs − 1)ds,

where

Ĵ0
i =

∂Ji
∂x

(0, 0) +
∂Ji
∂y

(0, 0),

Ĥ0
i =

∂Hi

∂x
(0, 0) +

∂Hi

∂y
(0, 0).

Evaluating the integral and solving for λ yields

2λ = −(1− qĴ0
i − gĤ0

i )±
√

(1− qĴ0
i − gĤ0

i )2 + 4qĴ0
i .

Thus, as in the case of the ring, for a fixed q and given g sufficiently large,
there exists a Hopf bifurcation at the critical value

g =
1− qĴ0

i

Ĥ0
i

.

For the truncated interaction function HF
i , the critical value is

g =
1 + q(1 + b)

1 + b
.
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4.5 Non-Constant Velocity Bump Solution on the Torus

As we have seen in earlier sections, stable oscillating solutions exist for
particular choices of input current strength and adaptation on both the ring
and torus. The similarities of solutions on the ring and torus continue as
adaptation strength increases. On the ring, the oscillating solution gives way
to a bump solution that travels around the ring with non-constant velocity.
Similarly, with sufficiently large adaptation g, the bump solution on the
torus also breaks free from the oscillating solution and traverses the domain
with non-constant velocity. Figure 21 shows examples of these solutions in
the full model (panel A), the phase model with the accurate Fourier series
(panel B), and the phase model with the truncated Fourier series (panel C).

Figure 21: Non-constant velocity dynamics of the traveling bump on the
torus. The curve that goes from light to dark and thin to thick represents
the movement of the centroid over time. A: Full neural field model on the
torus, q = 1, g = 5, simulated for t = 5, 000 time units with the last 60%
of the data shown. B: Phase model on the torus with the accurate Fourier
series of Hi, q = 1, g = 5, simulated for t = 6, 700 time units with the last
8% of the data shown. C: Phase model on the torus with the truncated
Fourier series HF

i , q = .5, g = 4.5, simulated for t = 6, 700 time units with
the last 7% of the data shown. Parameter: ε = 0.01.

There are plenty of other examples of these types of solutions (Figures
12,11,10) that are in fact chaotic. To demonstrate the existence of chaos nu-
merically, we use the truncated phase model and a Poincaré section through
cy = 0, as we find that generically the variable cy consistently crosses zero
throughout simulations.

4.5.1 Chaos on the Torus

For a given g, we simulate the truncated phase model (Equation (26)) for t =
150000 time units and ignore the first 7000 time units to remove transients.
By plotting the appropriate state variables, we are able to determine whether
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a system is aperiodic (and possibly chaotic) or periodic. The top panel of
Figure 22 shows one example of one such plot, where for each g value we plot
all cy values for the duration of the simulation. The black regions of Figure
22 correspond to the gray regions of Figure 12: the approximate range 0.85 <
g < 1.1 corresponds to region F, the approximate range 1.18 < g < 1.61
corresponds to region G, and the approximate range g > 2.05 corresponds
to region H, respectively.

Figure 22: Chaotic attractors. Top panel: crude bifurcation diagram of cy
as a function of parameter g. Black regions correspond to aperiodic and
possibly chaotic behavior, while regions with dots correspond to periodic
solutions. Parameter: q = 0.1.

We show sample solutions of the chaotic attractors in regions F,G,H in
the bottom three panels of Figure 22. The vertical red line in the top panel
denotes the parameter value corresponding to each attractor.

5 Discussion

Our motivation for this work was to understand the behavior of the model
presented in [19] where the authors showed that heterogeneities in a re-
current network with adaptation produced a seemingly randomly moving
bump of activity. Similar moving bump dynamics was also found in a ho-
mogeneous bump model with adaptation in [14]; here the authors report
only axially moving bumps with no external inputs. The neural field
model considered in this paper (Equations (1),(2)) is also capable of pro-
ducing a rich variety of solutions on the ring and torus. On the ring, the
centroid of the bump solution exhibits sloshing and large-sloshing behaviors
(for moderate strengths of input current and adaptation) that, for stronger
adaptation, lead to non-constant velocity traveling bump solutions. With
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no input current and sufficient adaptation, the system generates a constant
velocity traveling bump solution. We also observe chaotic solutions for a
narrow range of adaptation strengths.

On the torus, the qualitative solutions are similar to those on the ring:
Stationary bump solutions give rise to sloshing solutions (for moderate
strengths of input current and adaptation), as well as non-constant velocity
traveling bump solutions (with sufficient adaptation) and constant velocity
traveling solutions (with no input current and sufficient adaptation). In this
system, we do not see pulses that change in diameter with a fixed centroid
(breathers) on the ring or torus.

Neural fields with nonsmooth firing rate functions (i.e., the Heaviside
or rectifying nonlinearity) reproduce many of these qualitative behaviors.
The existence and bifurcation of sloshing solutions on the ring are analyzed
in [9, 6], and constant velocity solutions are shown to exist on the ring
([31, 6]), the real line ([24]), and the plane ([15]). Nonconstant velocity bump
solutions are shown to exist in [6]. However, there are no studies showing
the existence of aperiodic attractors on the torus (assuming a deterministic
system with an even kernel), or the existence of chaos on the ring.

In this study, we contributed to the analysis of the known behaviors by
using a smooth firing rate function and a caveat of weak and slow adaptation.
This assumption on the adaptation variable allowed us to reduce the neural
field model, which is a distributed partial integro-differential equation, to a
system of scalar delay integro-differential equations describing the centroid
of the bump solution. Moreover, our only restriction on the kernel is of
Mexican-hat type. Put together, these assumptions and our results are
more general than what currently exists in literature.

In one spatial dimension, for example, we derived the normal form for the
Hopf bifurcation in the one-dimensional neural field model and determined
the conditions for super- and sub-criticality. Although normal form calcula-
tions exist for neural field models on the ring or the real line, our calculation
allows for a general choice of kernel and a smooth firing rate function (as
opposed to a particular choice of kernel or a non-smooth Heaviside firing
rate function [6, 9]).

As mentioned previously, existing studies require particular choices of
kernels or Heaviside firing rate functions where a smooth firing rate func-
tion would be desirable ([2] note that a smooth firing rate function allows
for a straightforward normal form analysis). Although these assumptions
are restrictive, these studies have advantages that the current study does
not address. In particular, our analysis requires that adaptation is weak
and slow and that the input current is weak. As a result, we can only study
phenomena that evolve on a slow timescale. These weak and slow assump-
tions are well-suited for studying long-lasting sequences of spatially coherent
activity in the absence of changing external stimuli [27, 19], but may not be
as well suited to study phenomena on a faster timescale, like the effects of
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weak modulatory interactions mediated by the reciprocal, long-range patchy
connections in primary visual cortex [9].

Generally speaking, one might ask why we need the adaptation to be
both slow and weak. For example, in [28], the adaptation was slow but
not weak. One could imagine doing a perturbation analysis for a weak
stimulus such as in [7] where a weak slowly moving stimulus is applied to a
system that has a stable traveling bump. However, strong adaptation, will
alway induce movement in a bump so that we can never pin the bump with
weak inputs. Furthermore, by keeping the adaptation O(1), one needs to
compute the adjoint solution to a two-variable traveling bump, a difficult
task in one spatial dimension, and impossible (as far as we can tell) in
two spatial dimensions. Thus, by working with weak inputs and weak/slow
adaptation, we have hit a sweet spot from which many of the interesting
dynamics emerges.

One type of behavior that has been observed in this class of models
that does not occur in our analysis is the so-called breathing solutions [11].
Breathers are periodic solutions to the neural field equations that occur
when the bump solution loses stability via a symmetric mode. In contrast,
sloshers appear when there is a Hopf bifurcation to an anti-symmetric mode.
In the breather case, the centroid of the bump does not change, so our re-
duced equations cannot detect such a bifurcation. In contrast, sloshers lead
to modulation of the centroid and thus our analysis can capture that. To
further explore this, we were able to induce bifurcation to a breathing solu-
tion in equations (1,2) but only when ε is sufficiently large. We find that it is
possible to continue this bifurcation in ε and make ε quite small, but only if
we increase both the strength of adaptation g and the heterogeneity, q such
that εq, εg remain O(1). That is, breathers can only occur when the adap-
tation and input magnitudes are large compared to the rate of adaptation.
Our analysis, therefore, cannot include the appearance of breathers.

The effects of noise on the phase equations is one possible direction for fu-
ture study. Several cited papers analyze the movement of bump solutions in
the presence of noise. Near the drift bifurcation for traveling bump solutions
with sufficiently strong linear adaptation, it is possible to derive a stochastic
amplitude equation when the adaptation strength and stochastic forcing are
similar in magnitude [22]. Sufficiently far from the bifurcation, the stochas-
tic forcing leads to diffusive wandering of the bump solution. Other studies
analyze the diffusive behavior of solutions to neural field models and how
pinning eliminates diffusive behavior [30]. In [25], the authors compute the
effects of adding noise to the normal form of the pitchfork bifurcation. As
mentioned previously, these studies assume either a particular firing rate
function or kernel. The general case remains unexplored.
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A Normal Form for the Hopf Bifurcation on the
Ring

Recall that we analyze the bifurcation to sloshing pulses for the general
integral equation,

dθ

dτ
= −qJ(θ)− g

∫ ∞
0

e−sH(θ(τ − s)− θ(τ)) ds (34)

as g increases. For simplicity, we assume the expansions

J(θ) = θ + j3θ
3 + . . .

H(θ) = θ + h3θ
3 + . . . ,

and q > 0. Based on the eigenvalue equation,

λ2 + (1 + q − g)λ+ q = 0

we expect a Hopf bifurcation to occur.
To analyze the Hopf bifurcation, we use a multiple time scale expansion.

We assume that θ(τ) is a function of a “fast” time ζ = τ and a “slow” time
ξ = δ2τ where δ measures the amplitude of the bifurcating solution. As the
nonlinearities are all odd, we can assume that

g = g0 + δ2g2, θ = δθ1(ζ, ξ) + δ3θ3(ζ, ξ)

to order δ3. We develop a perturbation expansion to obtain the normal form.
Before continuing, we need to briefly describe how the integral equation gets
expanded in multiple scales. If f(ζ, ξ) is a function of the fast and slow time-
like variable, then, clearly

df

dτ
=
∂f

∂ζ
+ δ2∂f

∂ξ

and ∫ ∞
0

e−sf(τ − s) ds =

∫ ∞
0

e−sf(ζ − s, ξ − δ2s) ds.

We expand this expression to order δ2 to get:∫ ∞
0

e−sf(τ − s) ds ≈
∫ ∞

0
e−sf(ζ − s, ξ) ds− δ2

∫ ∞
0

se−s
∂f(ζ − s, ξ)

∂ξ
ds.

(35)
Let

(Lu)(ζ) :=
∂u

∂ζ
+ qu+ g0

∫ ∞
0

e−s[u(ζ − s)− u(ζ)] ds.
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By our choice of g0, L has a nullspace e±iωζ and since it is a scalar, so does
the adjoint operator under the usual inner product

〈u, v〉 :=

∫ 2π/ω

0
ū(s)v(s) ds.

We plug in all the expansions and find to first order that

θ1 = z(ξ)eiωζ + c.c

where z(ξ) is a complex function of ξ and c.c means complex conjugates.
Our goal is to derive equations for z. To cubic order, we obtain:

(Lθ3)(ζ) = zξe
iωζ

(
−1 +

g0

1 + 2iω − ω2

)
+ c.c

+ g2ze
iωζ iω

1 + iω
+ c.c

+−qj3
[
zeiωζ + z̄e−iωζ

]3

+−gh3

∫ ∞
0

[
z(ξ)eiωζ(e−iωs − 1) + z̄(ξ)e−iωζ(eiωs − 1)

]3
ds.

The first line comes from applying equation (35). Taking the inner product
of this equation with exp(iωζ) (essentially, the Fredholm alternative), yields
the equation for z(ξ):

α
dz

dξ
= z[γ̂0 + γ̂3|z|2] (36)

where

α = 1− g0

1 + 2iω − ω2
=

2

1 + q
(q +

√
qi)

γ̂0 = g2
iω

1 + iω
=

g2

1 + q
(q +

√
qi)

γ̂3 =
3q

4q + 1
[[q(12h3 − 4j3)− j3] + i18h3

√
q] .

B Computation of Functions Hi and Ji

To numerically integrate the phase models on the ring or torus, we require
an approximation to the functions Hi, and Ji. These functions depend on
and use lookup tables for the steady state bump u0 (u0ss), the derivative
of the firing rate evaluated at the steady state bump f ′(u0) (df u0b), and
the partial derivatives of the steady state bump, ∂u0/∂x, ∂u0/∂y (ux,uy).
On the toroidal domain, each lookup table has N ×N entries, where for the
coefficients below, we choose N = 64.

To compute Hi in Equation (9),we use the following procedure
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H1 = zeros(N,N)

H2 = zeros(N,N)

for i=1:N

for j=1:N

temp1 = 0

temp2 = 0

for n=1:N

for m=1:N

xn = mod(n+i+N/2,N)

xm = mod(m+j+N/2,N)

temp1+=ux[n,m]*df_u0b[n,m]*u0ss[xn,xm]

temp2+=uy[n,m]*df_u0b[n,m]*u0ss[xn,xm]

end

end

H1[i,j] = temp1

H2[i,j] = temp2

end

end

H1 *= (2*pi)^2/N^2

H2 *= (2*pi)^2/N^2

To compute Ji in Equation (9), we use the following procedure

J1 = zeros(N,N)

J2 = zeros(N,N)

for i=1:N

for j=1:N

temp1 = 0

temp2 = 0

for n=1:N

for m=1:N

xn = mod(n+i+N/2,N)

xm = mod(m+j+N/2,N)

temp1+=ux[xi,xj]*df_u0b[xn,xm]*I[n,m]

temp2+=uy[xi,xj]*df_u0b[xn,xm]*I[n,m]

end

end

J1[i,j] = temp1

J2[i,j] = temp2

end

end

J1 *= (2*pi)^2/N^2

J2 *= (2*pi)^2/N^2

On the torus, taking the difference Ji − (−Hi) results in a negligible
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error, revealing that Ji = −Hi. Thus, for all phase computations involving
Ji, we use the same Fourier approximations for Hi and Ji.

On the ring, the computations are virtually identical with the obvious
exception of array shapes.

B.1 Fourier Approximations

After creating the lookup tables H1,H2, we perform a Fourier approxima-
tion to make numerical integration easier. The following function and cor-
responding coefficients and frequencies (Table 1) provide an excellent ap-
proximation to the lookup tables H1,H2. A basic error analysis shows that
the supremum norm difference between the lookup tables H1,H2 and their
Fourier approximations,H1, H2, is ‖H1−H1‖∞ ≈ 3.354e−7.

H1(x, y) = −
26∑
k=1

ak
N2

sin(xnk + ymk). (37)

The coefficients in Table 1 are computed using Python with Numpy by
taking the Fourier transform of the lookup tables H1,H2.

C Numerical Integration

In this section, we detail the various numerical methods used to evaluate
the many integro-delay-differential equations of this paper.

C.1 Truncated Neural Field Model on the Torus

The integration of Equation (21) requires the approximation of several dou-
ble integrals. In the interest of reducing computation time, we use Riemann
integrals and a relatively coarse discretization of the spatial domain. For
example, for a given time t, the coefficient p10(t) is approximated as

p10(t) ≈
N∑
n=1

N∑
m=1

cos(ym)f(u(xn, ym, t))
(2π)2

N2
.

Because a linear increase in N leads to a quadratic increase in the total
number of operations, we keep N = 100, which is an acceptable compromise
between speed and accuracy for this problem. All other double sums that
appear in pij , rij , and si are computed this way.

When computing the bifurcation diagram using this system, we use
XPPAUTO and the numerical options shown in Table 4. The most impor-
tant options are Ntst and Dsmin. If Ntst is less than 1000, XPPAUTO is
unreliable in determining the stability of periodic solutions. If Dsmin is too
large, XPPAUTO will skip bifurcation points.
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Table 1: Fourier Coefficients of H1 for N = 64. The maximum point-
wise difference between this approximation of H1 and the original H1 is
3.53733478176e-07

k ak (nk,mk)

0 -0.299041640592 (1,0)
1 -0.0123427222227 (2,0)
2 -2.92404662557e-07 (3,0)
3 2.92404662711e-07 (-3,0)
4 0.0123427222227 (-2,0)
5 0.299041640592 (-1,0)
6 -0.110662059947 (1,1)
7 -0.00255677958311 (2,1)
8 -1.30119169782e-07 (3,1)
9 1.30119169839e-07 (-3,1)
10 0.00255677958311 (-2,1)
11 0.110662059947 (-1,1)
12 -0.00134078962566 (1,2)
13 -8.78193375763e-06 (2,2)
14 -1.40550932909e-07 (3,2)
15 1.40550932908e-07 (-3,2)
16 8.78193375764e-06 (-2,2)
17 0.00134078962566 (-1,2)
18 -0.00134078962566 (1,-2)
19 -8.78193375764e-06 (2,-2)
20 -1.40550932907e-07 (3,-2)
21 1.4055093291e-07 (-3,-2)
22 8.78193375763e-06 (-2,-2)
23 0.00134078962566 (-1,-2)
24 -0.110662059947 (1,-1)
25 -0.00255677958311 (2,-1)
26 -1.30119169783e-07 (3,-1)
27 1.30119169839e-07 (-3,-1)
28 0.00255677958311 (-2,-1)
29 0.110662059947 (-1,-1)
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Table 2: Fourier Coefficients of the steady-state coefficients. Plotting
u00 + 2u10 cos(x) + 2u01 cos(y) + 4u11 cos(x) cos(y) gives a reasonable ap-
proximation to the numerically computed steady-state bump solution.

k uk (nk,mk)

0 -2.17382490474 (0, 0)
1 -0.74563470929 (0, 1)
5 -0.74563470929 (1, 0)
6 0.338867473649 (1, 1)
7 0.340507108446 (1, -1)
10 -0.74563470929 (-1, 0)
11 0.340507108446 (-1, 1)
12 0.338867473649 (-1, -1)

Table 3: Fourier Coefficients of the kernel. Plotting k00 + 2k10 cos(x) +
2k01 cos(y)+4k11 cos(x) cos(y) gives a reasonable approximation to the orig-
inal periodix kernel.

k kk (nk,mk)

0 -0.473945684407 (0, 0)
1 0.19095061386 (0, 1)
4 0.19095061386 (0, -1)
5 0.19095061386 (1, 0)
6 0.108965377668 (1, 1)
7 0.111033925698 (1, -1)
10 0.19095061386 (-1, 0)
11 0.111033925698 (-1, 1)
12 0.108965377668 (-1, -1)
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Table 4: XPPAUTO parameters for the bifurcation diagram Figure 10.
XPPAUTO version 8 has a third column of numerics options, which we left
at default values.

AUTO Option Value

Ntst 1000
Nmax 200
NPr 2
Ds 0.01
Dsmin 0.0001
Ncol 4
EPSL 0.0001
Dsmax 0.1
Par Min 0
Par Max 5
Norm Min 0
Norm Max 1000
EPSU 0.0001
EPSS 0.0001

C.2 Delay Integro-Differential Equations

We implement the right hand side of the integro-differential in Equation
(22) as

f

 tk
~xM
~yM

 =

(
−g

(
M−1∑
n=0

e−ndtH1[xk−n − xk, yk−n − yk]

)
dt+ qJ1(xk, yk)

)

h

 tk
~xM
~yM

 =

(
−g

(
M−1∑
n=0

e−ndtH2[xk−n − xk, yk−n − yk]

)
dt+ qJ2(xk, yk)

)
,

where dt is the time step and

~xM =

 xk
...

xk−(M−1)

 , ~yM =

 yk
...

yk−(M−1)


are the arrays containing solution values for M previous time steps. The
functions Hi and Ji are either the accurate Fourier approximation (Equa-
tions (23),(24)), or the truncated Fourier series (Equation (25)). The time
step dt is the same as the discretization of the integral.

The algorithm is a straightforward Euler method. For a given time step
i,
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th1[i+1] = th1[i] + dt*f(t[i],th1[i],..,th1[i-(M-1)],

th2[i],..,th2[i-(M-1)])

th2[i+1] = th2[i] + dt*h(t[i],th1[i],..,th1[i-(M-1)],

th2[i],..,th2[i-(M-1)])

The initial condition for this algorithm requires an array of M time steps.
If the parameters are chosen such that a limit cycle exists, then we initialize
in an arc:

r0 = 1

n0 = linspace(0,-.01,M)

for k = 0:M-1

th1[k] = r0*cos(n0[k])

th2[k] = r0*sin(n0[k]).

If the parameters are chosen such that a constant-velocity bump exists, then
we initialize in a line:

x_line = linspace(0,1,M)

y_line = linspace(2,3,M)

for k = 0:M-1

th1[k] = x[k]

th2[k] = y[k].

When plotting solutions, we disregard at least the first M entries of the
solution vector.
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