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Abstract

Let x ∈ Cn be a spectrally sparse signal consisting of r complex sinusoids with or without
damping. We consider the spectral compressed sensing problem, which is about reconstructing
x from its partial revealed entries. By utilizing the low rank structure of the Hankel matrix
corresponding to x, we develop a computationally efficient algorithm for this problem. The
algorithm starts from an initial guess computed via one-step hard thresholding followed by
projection, and then proceeds by applying projected gradient descent iterations to a non-convex
functional. Based on the sampling with replacement model, we prove that O(r2 log(n)) observed
entries are sufficient for our algorithm to achieve the successful recovery of a spectrally sparse
signal. Moreover, extensive empirical performance comparisons show that our algorithm is
competitive with other state-of-the-art spectral compressed sensing algorithms in terms of phase
transitions and overall computational time.

Keywords. Spectral compressed sensing, low rank Hankel matrix completion, non-convex
projected gradient descent.

1 Introduction

1.1 Problem Setup

In this paper, we are interested in the problem of reconstructing a spectrally sparse signal with or
without damping from its nonuniform time-domain samples. Let x(t) be a one-dimensional signal.
We say that x(t) is spectrally sparse if it is superposition of a few complex sinusoids, namely

x(t) =

r
∑

k=1

dke
(2πıfk−τk)t, (1)

where ı =
√
−1, r is the model order, fk is the frequency of each sinusoid, dk is the weight of

each sinusoid, and τk ≥ 0 is a damping factor. Let n > 0 be a natural number. Without loss of
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corresponding author).
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generality, we assume fk ∈ [0, 1) and consider the samples of x(t) at all the integer values from 0
to n− 1, denoted x. That is,

x =
[

x(0) · · · x(n− 1)
]T ∈ C

n. (2)

Spectrally sparse signals of the form (1) and the corresponding sampling model in (2) arise
in many areas of science and engineering including magnetic resonance imaging [32], fluorescence
microscopy [38], radar imaging [36], nuclear magnetic resonance spectroscopy [37], and analog-to-
digital conversion [43]. However, in those real-world applications, full sampling at all the points
on a uniform grid is either time-consuming or technically prohibited. In addition, the signal may
become too weak to be detected after a certain period of time when τk > 0. Therefore, for the
purpose of more efficient data acquisition, nonuniform sampling is typically used in practice. When
restricted to the sampling model in (2), this means that only partial entries of x are known and we
need to estimate the missing ones. Let Ω be subset of {0, · · · , n−1} corresponding to the observed
entries, and let PΩ be the associated sampling operator which acquires only the entries indexed by
Ω. Then the task can be formally expressed as:

Find x subject to PΩ(x) =
∑

a∈Ω

xaea, (3)

where {ea}n−1
a=0 is a canonical basis of Cn. In the sequel, we shall refer to the vector x as a spectrally

sparse signal, and refer to the problem of reconstructing a spectrally sparse signal from its partial
observed entries as spectral compressed sensing or spectrally sparse signal recovery.

1.2 Prior Art and Main Contributions

It is clear that (3) is a task that cannot be achieved if x does not have any intrinsic simple
structures. Fortunately, the signal of interest in this paper is spectrally sparse. Moreover, the
number of degrees of freedom in x is completely determined by the number of Fourier modes in
x(t), which is proportional to r and independent of n. This key observation suggests the possibility
of reconstructing x from its partial revealed entries, which can be further achieved by exploiting
the simplicity of x in different ways.

Note that we are mainly interested in the scenario where x only has a few Fourier components
(i.e., r is small). Thus, one can utilize the sparsity of x in the frequency domain to design recon-
struction algorithms. In particular, if there is no damping in x, spectral compressed sensing can
be recast as a conventional compressed sensing problem [18, 11] after discretization of the Fourier
domain; so many existing algorithms for compressed sensing are available, such as Basis Pursuit
[12], IHT [4, 5, 2, 3, 21], CoSaMP [34] and SP [17]. However, the performance of the compressed
sensing approach for spectrally sparse signal recovery suffers from the mismatch error between the
true frequencies and the discrete frequencies [16, 26]. A grid-free approach was developed in [41]
which exploited the frequency sparsity of x in a continuous manner via the atomic norm minimiza-
tion (ANM). It was shown in [41] that ANM could achieve exact recovery from O(r log(r) log(n))
random time-domain samples under some mild conditions.

By the Vandermonde decomposition, one may easily see that the Hankel matrix computed from a
spectrally sparse signal is low rank when r is small relative to n. Consequently, spectral compressed
sensing can be reformulated as a low rank Hankel matrix completion problem1. Inspired by low rank

1See Section 2.1 for details.
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matrix completion [10], another grid-fee method known as enhanced matrix completion (EMaC)
was developed in [14] by reformulating the non-convex low rank Hankel matrix completion problem
into a convex Hankel matrix nuclear norm minimization problem. EMaC was shown to be able to
reconstruct a spectrally sparse signal with high probability provided the number of observed entries
is O(r log4(n)). The same approach was studied in [7] under the Gaussian random sampling model,
and various first-order methods were discussed in [19] for the regularized Hankel matrix nuclear
norm minimization problem. Alternative to EMaC, there have been several non-convex algorithms
which were designed to solve the low rank Hankel matrix completion directly. Examples include
PWGD [6], IHT and FIHT [8]. Compared to the convex approaches such as ANM and EMaC,
those non-convex algorithms are typically much more efficient, especially for higher dimensional
problems. Moreover, inspired by the guarantee analysis of Riemannian optimization for low rank
matrix reconstruction [46, 45], it was shown in [8] that FIHT with a proper initial guess was
able to reconstruct a spectrally sparse signal with high probability from O(r2 log2(n)) random
observations. For multi-dimensional spectrally sparse signal recovery problems, we can also exploit
the low rank tensor structure of the signal when developing recovery algorithms, see for example
[48] and references therein.

The main contributions of this work are two-fold. Firstly, we present a new non-convex algo-
rithm for spectral compressed sensing via low rank Hankel matrix completion, which we refer to as
Projected Gradient Descent (PGD). Extensive empirical performance comparisons show that PGD
is competitive with other state-of-the-art spectral compressed sensing algorithms both in terms of
the problem size that can be solved and in terms of overall computation time. Secondly, exact
recovery guarantee has been established for PGD, showing that PGD can successfully recover a
spectrally sparse signal from O(r2 log(n)) random observed entries.

Although we focus on spectrally sparse signal recovery in this paper, the proposed PGD algo-
rithm can be easily extended to the general low rank Hankel matrix completion problem. Moreover,
the recovery guarantee analysis equally applies provided the underlying target matrix is incoher-
ent2. Low-rank Toeplitz matrices can also be provably recovered from partial revealed entries by a
slightly modified version of PGD.

1.3 Outline and Notation

The remainder of this paper is organized as follows. We present the details of PGD, along with its
recovery guarantee in Section 2. In Section 3 we evaluate the empirical performance of PGD with a
set of numerical experiments. The proof of the exact recovery guarantee is presented in Section 4.
We conclude the paper with some potential future directions in Section 5.

Throughout the paper we use the following notational conventions. We denote vectors by
bold lowercase letters and matrices by bold uppercase letters, and the numbering of vector and
matrix elements starts at zero. In particular, we fix x, y, and M as the target signal and its
transformations. The individual entries of vectors and matrices are denoted in normal font. We
denote by ‖Z‖∗, ‖Z‖2 and ‖Z‖F the nuclear norm, spectral norm and Frobenius norm of the matrix
Z, respectively. Additionally, we define ‖Z‖2,∞ as the largest ℓ2-norm of its rows. For a vector
z, we use ‖z‖1 and ‖z‖2 to denote its ℓ1-norm and ℓ2-norm, respectively. For both vectors and
matrices, zT and ZT denote their transpose while z∗ and Z∗ denote their conjugate transpose. The
inner product of two matrices Z1 and Z2 is defined as 〈Z1,Z2〉 = trace (Z∗

1Z2). When restricted

2See Definition 2.1.
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to two vectors z1 and z2, the inner product is given by 〈z1,z2〉 = z∗
1z2. For a natural number n,

[n] denotes the set {0, · · · , n− 1}.
Operators are denoted by calligraphic letters. In particular, I denotes the identity operator and

H denotes the linear operator which maps n-dimensional vectors to n1 × n2 Hankel matrices with
n1 + n2 = n+ 1, i.e., for any vector z ∈ C

n, [Hz](i,j) = zi+j for i ∈ [n1] and j ∈ [n2]. The ratio cs
is defined as cs = max{n/n1, n/n2}. We denote the adjoint of H by H∗, which is a linear operator
from n1 × n2 matrices to n-dimensional vectors. For any matrix Z ∈ C

n1×n2 , a simple calculation

yields that H∗Z =
{

∑

i+j=aZ
(i,j)
}n−1

a=0
. Define D2 = H∗H. It is easily verified that D is a linear

operator from vectors to vectors which scales each entry of an n-dimensional vector by
√
wa, where

wa is the number of elements in the a-th skew-diagonal of an n1 × n2 matrix. Define G = HD−1

and let G∗ be the adjoint of G. One can easily see that the following orthogonal property holds:
G∗G = I. Finally, we use c, c1, c2, · · · to denote positive absolute numerical constants whose values
may change from place to place.

2 Algorithm and Main Result

2.1 Expoiting Low Rank Structure

As noted in the introduction, it is impossible to recover a signal from its partial known entries if
there are no hidden simple structures. For a spectrally sparse signal, we can exploit its simplicity
via the low rank structure of the corresponding Hankel matrix. Recall that a Hankel matrix is a
matrix in which each skew-diagonal from left to right is constant. We define H as a linear operator
which maps a vector z ∈ C

n to an n1 × n2 (n1 + n2 − 1 = n) Hankel matrix, denoted Hz, whose
i-th skew-diagonal is equal to the i-th entry of z,

Hz =















z0 z1 z2 · · · · · · zn2−1

z1 z2 · · · · · · · · · zn2

z2 · · · · · · · · · · · · zn2+1
...

...
...

...
...

...
zn1−1 zn1 · · · · · · · · · zn−1















.

Thus, one has [Hz](i,j) = zi+j for i ∈ [n1] and j ∈ [n2]. In particular, the (i, j)-th entry of the
Hankel matrix formed from the spectrally sparse signal x is given by

[Hx](i,j) = xi+j =
r
∑

k=1

dke
(2πıfk−τk)(i+j) =

r
∑

k=1

dke
i(2πıfk−τk)ej(2πıfk−τk).

If we let wk = e(2πıfk−τk) for k = 1, · · · , r, it follows immediately that Hx admits the following
Vandermonde decomposition:

Hx = ELDET
R,

where

EL =











1 1 · · · 1
w1 w2 · · · wr
...

...
...

...

wn1−1
1 wn1−1

2 · · · wn1−1
r











, ER =











1 1 · · · 1
w1 w2 · · · wr
...

...
...

...

wn2−1
1 wn2−1

2 · · · wn2−1
r










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and D = diag(d1, · · · , dr). Moreover, one has rank(Hx) = r provided the frequencies {fk}rk=1 are
different with each other and the diagonal entries of D are all nonzeros.

Obviously, each observed entry of x corresponds to a revealed skew-diagonal of Hx. With a
slight abuse of notation, denote by Ω the subset of the revealed skew-diagonals of Hx. Given a
vector z ∈ C

n, a simple calculation shows

〈PΩ(Hz −Hx),Hz −Hx〉 =
∑

a∈Ω

∑

i+j=a

(

[Hz](i,j) − [Hx](i,j)
)2

=
∑

a∈Ω

wa(za − xa)
2

= 〈PΩ (D(z − x)) ,D(z − x)〉 ,

where wa in the second line is the number of entries in the a-th skew-diagonal of an n1×n2 matrix,
and D in the last line is a linear map which scales the a-th entry of a vector by a factor of

√
wa for

all a = 0, · · · , n − 1. We have seen that Hx is a rank r matrix. Thus, to reconstruct x, we may
seek a signal z such that rank(Hz) = r and Hz fits the revealed skew-diagonals of Hx as well as
possible by solving a rank constraint weighted least square problem:

min
z∈Cn

〈PΩ (D(z − x)) ,D(z − x)〉 subject to rank(Hz) = r. (4)

For ease of exposition, we will make a change of variables and rewrite (4) using the new variable
y = Dx. Denote by H∗ the adjoint of H, which maps a matrix Z ∈ C

n1×n2 to a vector H∗Z =
{

∑

i+j=aZ
(i,j)
}n−1

a=0
. It is easy to show that H∗H = D2. Letting G = HD−1, we find that G

has the desirable orthogonal property G∗G = I, where I denotes the identity operator. After the
substitution of Dx by y and the substitution of Dz by z, we can rewrite (4) as

min
z∈Cn

〈PΩ (z − y) ,z − y〉 subject to rank(Gz) = r, (5)

which will be our primary focus in this paper. A more direct interpretation of (5) is as follows.
Since y = Dx, PΩ(y) = PΩ(Dx) = DPΩ(x), rank(Gy) = rank(Hx) = r, and D is invertible, one
can instead attempt to reconstruct y from PΩ(y) by seeking a signal that corresponds to a low
rank Hankel matrix and fits the observations as well as possible.

2.2 Algorithm: Projected Gradient Descent

2.2.1 Which Objective Function?

In order to eliminate the rank constraint in (5), we parameterize Gz by a product of two rank r
matrices and write Gz as Gz = ZUZ

∗
V , where ZU ∈ C

n1×r and ZV ∈ C
n2×r. We note that ZUZ

∗
V

is a Hankel matrix if and only if

(I − GG∗)(ZUZ
∗
V ) = 0.

Thus, by further noting that z = G∗(Gz) = G∗(ZUZ
∗
V
), we can rewrite (5) using ZU and ZV as

min
ZU ,ZV

〈

PΩ

(

G∗
(

ZUZ
∗
V

)

− y
)

,G∗
(

ZUZ
∗
V

)

− y
〉

subject to (I − GG∗)(ZUZ
∗
V
) = 0, (6)

5



which is an equality constraint minimization problem. Alternatively, (6) can be interpreted as
follows: we estimate the rank r matrix Gy by a Hankel matrix of the form ZUZ

∗
V
that minimizes

the mismatch in the measurement domain. Once Gy is reconstructed, one can recover y via
y = G∗(Gy).

Putting the constraint and the objective function in (6) together allows us to consider an
optimization problem without the equality constraint by minimizing

f(Z) =
∥

∥(I − GG∗)(ZUZ
∗
V )
∥

∥

2

F
+ p−1

〈

PΩ(G∗(ZUZ
∗
V )− y),G∗(ZUZ

∗
V )− y

〉

,

where

Z =

[

ZU

ZV

]

∈ C
(n+1)×r

denotes the concatenation of ZU and ZV , and the weight p = m/n is the sampling ratio. Let
Gy = UΣV ∗ be the reduced singular value decomposition (SVD) of Gy. Define

M =

[

MU

MV

]

∈ C
(n+1)×r, (7)

where MU = UΣ1/2 and MV = VΣ1/2. It is easily shown that f(Z) = 0 and thus achieves its
minimum for the set of matrices

{[

MUX

MV (X
−1)∗

]

, X ∈ C
r×r is invertible

}

. (8)

Note that (8) is also a set of solutions for the equality constrained problem (6). Among this
set of solutions, there are ones which are highly unbalanced, i.e., these having ‖ZU‖F → 0 and
‖ZV ‖F → ∞, or vice versa. For example, let ZU = αMU and ZV = α−1MV for α being a real
number that approaches either zero or infinity. Those solutions are unfavorable for the purpose of
both computation and analysis. In order to reduce the solution space and avoid the occurrence of
the pathological solutions, we add the regularizer function

g(Z) =
1

2

∥

∥Z∗
UZU −Z∗

V ZV

∥

∥

2

F

to f(Z) and instead consider the minimization problem with respect to

F (Z) = f(Z) + λ · g(Z), (9)

where λ > 0 is to be determined. Here, g(Z) in some sense penalizes the mismatch between the
sizes of ZU and ZV , and it was also used in rectangular low rank matrix recovery, see [44, 50].

Now, the set of solutions that minimizes F (Z) or at which F (Z) = 0 is given by

S =

{[

MUQ

MVQ

]

, Q ∈ C
r×r is unitary

}

. (10)

The distance of a matrix Z ∈ C
(n+1)×r to the solution set, denoted dist(Z,M), is defined as

dist(Z,M) = min
QQ∗=Q∗Q=I

‖Z −MQ‖F .

Let M∗Z = Q1ΛQ∗
2 be the SVD of M∗Z. By the Von Neumann’s trace inequality [33], the above

minimum is achieved at the unitary matrix QZ given by

QZ = Q1Q
∗
2. (11)

6



2.2.2 Which Feasible Set?

As we have already seen, the goal in spectrally sparse signal recovery is in fact to reconstruct a low
rank Hankel matrix matrix Gy from its partial revealed skew-diagonals. In general, it is impossible
to reconstruct a low rank matrix from entry-wise sampling unless its singular vectors are weakly
correlated with the sampling basis. Here, we are interested in µ0-incoherent matrix which was first
introduced in [10] for low rank matrix completion.

Definition 2.1. With Gy = UΣV ∗ being the SVD of Gy, we say Gy is µ0-incoherent if there

exists an absolute numerical constant µ0 > 0 such that

‖U‖2,∞ ≤
√

µ0csr

n
and ‖V ‖2,∞ ≤

√

µ0csr

n
,

where cs = max{n/n1, n/n2}.

A sufficient condition for Gy to be µ0-incoherent can be derived based on the Vandermonde
decomposition of Gy. Assume that

σmin(E
∗
LEL) ≥

n1

µ0
, σmin(E

∗
RER) ≥

n2

µ0
. (12)

Then we have

∥

∥

∥
U (i,:)

∥

∥

∥

2

2
=
∥

∥

∥
e∗iEL(E

∗
LEL)

−1/2
∥

∥

∥

2

2
≤ ‖e∗iEL‖22

∥

∥(E∗
LEL)

−1
∥

∥

2
≤ µ0r

n1
≤ µ0csr

n

and
∥

∥

∥
V (i,:)

∥

∥

∥

2

2
=
∥

∥

∥
e∗iER(E

∗
RER)

−1/2
∥

∥

∥

2

2
≤ ‖e∗iER‖22

∥

∥(E∗
RER)

−1
∥

∥

2
≤ µ0r

n2
≤ µ0csr

n
,

which implies Gy is µ0-incoherent. Moreover, [31, Thm. 2] says that (12) holds for undamping
signals provided the minimum wrap-around distance between each pair of the frequencies of the
spectrally sparse signal is greater than about 2/n.

Let µ and σ be two numerical constants such that µ ≥ µ0 and σ ≥ σ1(Gy). When Gy is
µ0-incoherent, the matrix M constructed in (7) satisfies ‖M‖2,∞ ≤

√

µcsrσ/n. Moreover, letting
C be a convex set defined as

C =

{

Z ∈ C
(n+1)×r | ‖Z‖2,∞ ≤

√

µcsrσ

n

}

, (13)

it is evident that S ⊂ C. Therefore, we can restrict our search on the feasible set C when computing
the minimum or zero value of F (Z).

2.2.3 Algorithm

The discussion above tells us that we can reconstruct the low rank factors MU and MV of the
ground truth matrix Gy by minimizing the function F (Z) on the feasible set C, namely

min
Z∈C

F (Z), (14)

7



Algorithm 1 Projected Gradient Descent (PGD)

Initialization: L0 = p−1Tr(GPΩ(y)) = U0Σ0(V 0)∗, Z̃0 =

[

U0(Σ0)1/2

V 0(Σ0)1/2

]

and Z0 = PC(Z̃
0).

for k = 0, 1, · · · do

1. Z̃k+1 = Zk − η∇F (Zk)
2. Zk+1 = PC(Z̃

k+1)
end for

Output: Zk in the last iteration, yk = G∗(Zk
U
(Zk

V
)∗) and xk = D−1yk.

where F (Z) is defined in (9) and C is defined in (13). We present a simple projected gradient descent
algorithm for this problem, see Algorithm 1. The algorithm consists of two phases: Initialization
and gradient descent with a constant stepsize. The initial guess is computed via one-step hard
thresholding, followed by projection onto the convex set C. The hard thresholding operator Tr(·)
returns the best rank r approximation of a matrix, which can be computed via the partial SVD.
Given a matrix Z ∈ C

(n+1)×r, the projection PC(Z) can be computed by row-wise trimming,

[PC(Z)](i,:) =







Z(i,:) if
∥

∥Z(i,:)
∥

∥

2
≤
√

µcsrσ
n ,

Z(i,:)

‖Z(i,:)‖
2

√

µcsrσ
n otherwise.

In each iteration of the algorithm, the current estimate Zk is updated along the negative gradient
descent direction −∇F (Zk), using a stepsize η, followed by projection onto the convex set C. Since
we are working with complex matrices, the gradient F (Z) of a matrix Z is calculated under the
Wirtinger calculus, given by

∇F (Z) =

[

∇FU(Z)
∇FV (Z)

]

=

[

∇fU(Z) + λ · ∇gU(Z)
∇fV (Z) + λ · ∇gV (Z)

]

,

where

∇fU(Z) =
(

(I − GG∗)(ZUZ
∗
V )
)

ZV + p−1
(

GPΩ(G∗(ZUZ
∗
V )− y)

)

ZV ,

∇fV (Z) =
(

(I − GG∗)(ZUZ
∗
V )
)∗

ZU + p−1
(

GPΩ(G∗(ZUZ
∗
V )− y)

)∗
ZU ,

∇gU(Z) = ZU(Z
∗
UZU −Z∗

VZV ),

∇gV (Z) = ZV (Z
∗
V
ZV −Z∗

U
ZU).

PGD can be implemented very efficiently and the main computational cost per iteration is
O(r2n + rn log(n)) flops, which lies in the computation of ∇F (Z) in each iteration. Taking the
computation of ∇FU(Z) as an example, we note that

∇FU(Z) = G
(

p−1PΩ(G∗(ZUZ
∗
V
)− y)− G∗(ZUZ

∗
V
)
)

ZV +ZU

(

λZ∗
U
ZU + (1− λ)Z∗

V
ZV

)

.

Clearly, the second term can be computed using O(r2n) flops. Let w = p−1PΩ(G∗(ZUZ
∗
V ) −

y) − G∗(ZUZ
∗
V ). Since we can compute G∗(ZUZ

∗
V ) by r fast convolutions, w can be obtained

using O(rn log(n)) flops. Moreover, (Gw)ZV can be computed via r fast Hankel matrix-vector
multiplications that also cost O(rn log(n)) flops.
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Before proceeding, it is worth noting that non-convex (projected) gradient decent methods have
received intensive investigations for other low rank matrix recovery problems, such as unstructured
low rank matrix recovery and matrix completion [44, 50, 49], phase retrieval [9, 13], robust principle
component analysis [47, 15], and blind deconvolution [29]. In those papers, lower bounds on the
sampling complexity have been established under different random measurement models, showing
that the number of measurements needed for the successful recovery of the target matrices is
essentially determined by the number of degrees of freedom in the matrices. In particular, a
projected gradient descent algorithm was studied in [50] for unstructured rectangular low rank
matrix completion. The convergence analysis of PGD in this paper is directly inspired by [50],
though the technical details are substantially different.

2.3 Main Result

Let Ω = {ak | k = 1, · · · ,m}. We consider the sampling with replacement model in this paper,
where each index ak is drawn independently and uniformly from {0, · · · , n−1}. Under this sampling
model, for a vector z ∈ C

n, the projection PΩ(z) is given by

PΩ(z) =
m
∑

k=1

zakeak , (15)

and for two vectors z, w ∈ C
n, the inner product 〈PΩ(z),w〉 is given by

〈PΩ(z),w〉 =
m
∑

k=1

z̄akwak . (16)

In the guarantee analysis of PGD, we assume µ and σ in (13) are two tuning parameters obeying
µ ≥ µ0 and σ ≥ σ1(Gy) so that M ∈ C. For conciseness, we take σ = σ1(L0)/(1 − ε0) for some
0 < ε0 < 1 and will later show that σ ≥ σ1(Gy) with high probability.

Theorem 2.1 (Exact Recovery). Assume Gy is µ0-incoherent. Let ε0 be a absolute constant

obeying 0 < ε0 ≤ 1/11. Let µ ≥ µ0 and σ = σ1(L0)/(1 − ε0). If we take λ = 1/4 in (9), then with

probability at least 1− c1 · n−2, the sequence
{

Zk
}

k≥1
returned by Algorithm 1 obeys

dist2(Zk,M) ≤ (1− ην)kdist2(Z0,M)

for

η ≤ σr(Gy)
600(µcsr)2σ2

1(Gy)
and ν =

1

10
σr(Gy)

provided m ≥ c2 ε
−2
0 µ2c2sκ

2r2 log(n), where κ = σ1(Gy)/σr(Gy).

Remark. 1). After an approximation of Gy, given by Zk
U
(Zk

V
)∗, is obtained from PGD, we can

estimate y by yk = G∗(Zk
U(Z

k
V )

∗), and in turn estimate x by D−1yk. Recall from (11) that QZk is

a unitary matrix which obeys dist(Zk,M) =
∥

∥Zk −MQZk

∥

∥

F
. A simple calculation yields

∥

∥

∥
xk − x

∥

∥

∥

2
≤
∥

∥

∥
yk − y

∥

∥

∥

2
=
∥

∥

∥
G∗(Zk

U
(Zk

V
)∗)− G∗(Gy)

∥

∥

∥

2
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≤
∥

∥

∥
Zk

U
(Zk

V
)∗ −MUM

∗
V

∥

∥

∥

F
≤ 1√

2

∥

∥

∥
Zk(Zk)∗ −MM∗

∥

∥

∥

F

=
1√
2

∥

∥

∥Z
k(Zk −MQZk)∗ + (Zk −MQZk)(MQZk)∗

∥

∥

∥

F

≤ 1√
2

(

‖Zk‖2 + ‖M‖2
)

dist(Zk,M) → 0, as dist(Zk,M) → 0.

2). After each iteration, Theorem 2.1 implies that the distance between the estimate given
by PGD and M is reduced by at least of a factor of 1 − O(1/(µcsrκ)

2). Thus, after k ≈
O((µcsrκ)

2 log(1/ǫ)) iterations, one has dist2(Zk,M) ≤ ǫ · dist2(Z0,M).
3). It was shown in [8] that FIHT can achieve exact recovery when the number of revealed

entries is of order O(κ6r2 log2(n)). In contrast, the sampling complexity of PGD is only a quadratic
function of κ and a linear function of log(n). Moreover, the exact recovery guarantee of FIHT relies
on a more complicated initialization scheme which requires a partition of the observed entries into
O(log(n)) groups, while the initial guess constructed for the exact recovery guarantee of PGD can
be computed much more easily.

2.4 Extension to Higher Dimension

So far we have restricted our attention to one-dimensional spectrally sparse signal reconstruction
problem. Our algorithm and results can be extended to higher dimensions based on the Hankel
structures of multi-dimensional spectrally sparse signals. Without loss of generality, we discuss the
two-dimensional setting but emphasize that the situation in general d-dimensions is similar.

Let wk = e(2πıf1k−τ1k) and zk = e(2πıf2k−τ2k) for r frequency pairs (f1k, f2k) ∈ [0, 1)2 and r
damping factor pairs (τ1k, τ2k) ∈ R

2
+. A two-dimensional spectrally sparse array X ∈ C

N1×N2 can
be expressed as

X(a,b) =
r
∑

k=1

dkw
a
kz

b
k, (a, b) ∈ [N1]× [N2].

The two-fold Hankel matrix of X is given by

HX =















HX(:,0) HX(:,1) HX(:,2) · · · · · · HX(:,N2−n2)

HX(:,1) HX(:,2) · · · · · · · · · HX(:,N2−n2+1)

HX(:,2) · · · · · · · · · · · · HX(:,N2−n2+2)

...
...

...
...

...
...

HX(:,n2−1) HX(:,n2) · · · · · · · · · HX(:,N2−1)















,

where each block is an n1 × (N1 − n1 + 1) Hankel matrix corresponding to a column of X,

HX(:,b) =















HX(0,b) HX(1,b) HX(2,b) · · · · · · HX(N1−n1,b)

HX(1,b) HX(2,b) · · · · · · · · · HX(N1−n1+1,b)

HX(2,b) · · · · · · · · · · · · HX(N1−n1+2,b)

...
...

...
...

...
...

HX(n1−1,b) HX(n1,b) · · · · · · · · · HX(N1−1,b)















.
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Clearly, HX is an (n1n2) × (N1 − n1 + 1)(N2 − n2 + 1) matrix. Letting i = i1 + i2 · n1 and
j = j1 + j2 · (N1 − n1 + 1), the (i, j)-th entry of HX is given by

HX(i,j) = X(i1+j1,i2+j2) =

r
∑

k=1

dk

(

wi1
k z

i2
k

)(

wj1
k zj2k

)

. (17)

For k = 1, · · · , r, we define the four vectors w
[n1]
k , w

[N1−n1+1]
k , z

[n2]
k , and z

[N2−n2+1]
k as

w
[n1]
k =











1
wk
...

wn1−1
k











, w
[N1−n1+1]
k =











1
wk
...

wN1−n1
k











, z
[n2]
k =











1
zk
...

zn2−1
k











, and z
[N2−n2+1]
k =











1
zk
...

zN2−n2
k











.

Let EL be an (n1n2)×r matrix with the k-th column being given by z
[n2]
k ⊗w

[n1]
k , and let ER be an

(N1−n1+1)(N2−n2+1)× r matrix with the k-th column being given by z
[N2−n2+1]
k ⊗w

[N1−n1+1]
k .

Then it follows from (17) that HX admits the Vandermonde decomposition

HX = ELDET
R,

where D = diag(d1, · · · , dr). Thus, it is self-evident that HX is a rank r matrix.
As in the one-dimensional case, the goal in two-dimensional spectral sparse signal reconstruction

is to reconstruct X from the partial revealed entries of X, denoted PΩ(X), where Ω is a subset of
[N1]× [N2]. Let wa be the number of entires in the a-th skew-diagonal of an n1 × (N1 − n1 + 1)
matrix, and let wb be the number of entires in the b-th skew-diagonal of an n2 × (N2 − n2 + 1)
matrix. Define D as a linear operator from C

N1×N2 to C
N1×N2 which scales the (a, b)-th entry of

an N1 × N2 matrix by
√
wawb. After the change of variables Y = DX and G = HD−1, we can

instead consider the recovery of Y from PΩ(Y ), which is equivalent to a low rank Hankel matrix
completion problem since GY = HX is rank r. Following the route set up in Section 2.2, this task
can be attempted by minimizing

F (Z) =
∥

∥(I − GG∗)(ZUZ
∗
V )
∥

∥

2

F
+ p−1

〈

PΩ(G∗(ZUZ
∗
V )− Y ),G∗(ZUZ

∗
V )− Y

〉

+
λ

2

∥

∥Z∗
UZU −Z∗

V ZV

∥

∥

2

F

subject to a feasible set C, where G∗ is the adjoint of G which obeys G∗G = I,

Z =

[

ZU

ZV

]

is an (n1n2+(N1−n1+1)(N2−n2+1))×r matrix, and C is a convex set similar to the one defined
in (13) but the size of Z is different.

Therefore, a projected gradient descent algorithm can also be developed for the two-dimensional
spectrally sparse signal reconstruction problem. Let GY = UΣV T be the SVD of GY . We say
GY is µ0-incoherent if there exists a numerical constant µ0 > 0 such that

‖U‖2,∞ ≤
√

µ0csr

N1N2
and ‖V ‖2,∞ ≤

√

µ0csr

N1N2
,

11



where cs = max{N1N2/(n1n2), N1N2/((N1 − n1 + 1)(N2 − n2 + 1))}. Based on [30, Theorem 1],
one can show that GY (= HX) is µ0-incoherent if there is no damping in X and the minimum
wrap-around distance between the underlying frequencies {fik}rk=1 is greater than about 2/Ni for
i = 1, 2. Let

M =

[

MU

MV

]

,

where MU = UΣ1/2 and MV = V Σ1/2. If we assume GY is µ0-incoherent and µ and σ in C
are properly tuned such that M ∈ C, then the exact guarantee analysis of PGD for the one-
dimensional case can be extended immediately to the two-dimensional case. It can be established
that O(µ2c2sκ

2r2 log(N1N2)) number of measurements are sufficient for PGD to achieve the suc-
cessful recovery of a two-dimensional spectrally sparse signal.

3 Numerical Experiments

In this section, we conduct numerical experiments to evaluate the performance of PGD3. The ex-
periments are executed from MATLAB R2017a on a 64-bit Linux machine with multi-core Intel
Xeon CPU E5-2667 v3 at 3.20GHz and 64GB of RAM. In Section 3.1, we investigate the largest
number of Fourier components that can be successfully recovered by PGD. The tests are conducted
on one-dimensional signals in large part due to the high computational cost of this type of simula-
tions. Then we evaluate PGD against computational efficiency, robustness to additive noise, and
sensitivity to mis-specification of model order on three-dimensional signals in Sections 3.2, 3.3, and
3.4, respectively. The initial guess of PGD is computed using the PROPACK package [28], and the
parameters µ and σ used in the projection are estimated from the initialization. Instead of using
the constant stepsize suggested in the main result which appears to be conservative, we choose the
stepsize via a backtracking line search in the implementation.

3.1 Empirical Phase Transition

We evaluate the recovery ability of PGD in the framework of phase transition and compare it with
ANM [41], EMaC [14] and FIHT [8]. ANM and EMaC are implemented using CVX [25] with
default parameters. The test spectrally sparse signals of length n with r frequency components are
formed in the following way: each frequency fk is randomly generated from [0, 1), and the argument
of each complex coefficient dk is uniformly sampled from [0, 2π) while the amplitude is selected to
be 1 + 100.5ck with ck being uniformly distributed on [0, 1]. We test two different settings for the
frequencies: a) no separation condition is imposed on {fk}rk=1, and b) the wrap-around distances
between each pair of the randomly drawn frequencies are guaranteed to be greater than 1.5/n. After
a signal is formed, m of its entries are sampled uniformly at random. For a given triple (n, r,m),
50 random tests are conducted. We consider an algorithm to have successfully reconstructed a test
signal if the root mean squared error (RMSE) is less than 10−3,

‖xrec − x‖2/‖x‖ ≤ 10−3.

3In our random simulations, we didn’t find much difference between the performance of PGD and the performance
of the gradient descent algorithm applied to f(Z) directly. However, since the extra cost incurred by computing the
gradient of g(Z) and the projection PC(Z) is marginal, it is appealing to run PGD for its recovery guarantee.
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The tests are conducted with n = 127 and p = m/n taking 18 equispaced values from 0.1 to
0.95. For a fixed pair of (n,m), we start with r = 1 and then increase the value of r by one
until it reaches a value such that the tested algorithm fails all the 50 random tests. FIHT is
terminated when ‖xk+1 −xk‖2/‖xk‖2 ≤ 10−6 or a maximum number of iteration is reached. PGD
is terminated when one of the following three conditions is met: ‖xk+1 − xk‖2/‖xk‖2 ≤ 10−7,
|F (Z̃k+1)− F (Zk)|/F (Zk) ≤ 10−5, or a maximum number of iteration is reached.

We plot in Figure 1 the empirical recovery phase transition curves that identify the 80% success
rate for each tested algorithm under the two different frequency settings. When the frequencies are
separated by at least 1.5/n, the right plot shows that ANM has the highest phase transition curve,
and the phase transition curve of PGD closely tracks that of ANM. The performance of ANM
degrades severely when there is no frequency separation requirement. In both of the frequency
settings, the recovery phase transition curves of PGD are overall higher than that of EMaC. In
the region of greatest interest where p ≤ 0.5, the recovery phase transition curves of PGD are
substantially higher than that of FIHT.
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Figure 1: 80% phase transition curves: x-axis is p = m/n and y-axis is r. Left: signals are formed
by random frequencies without separation enforcement; Right: signals are formed by random fre-
quencies separated by at least 1.5/n.

3.2 Computational Efficiency

PGD has the same leading-order computational complexity as FIHT, and both of them are able to
handle large and high-dimensional signals. We compare the computational performance of these
two algorithms on undamped and damped three-dimensional spectrally sparse signals of size n =
64× 128× 512. Tests are conducted with r ∈ {20, 30} and m ≈ 130 log(n) in the undamped setting
while m ≈ 0.03n in the damped setting, and we test signals which obey the frequency separation
condition as well as signals which are fully random. As to the damping factors, for 1 ≤ k ≤ r, 1/τ1k
is uniformly sampled from [8 16], 1/τ2k is uniformly sampled from [16 32], and 1/τ3k is uniformly
sampled from [64 128]. For each triple of (r,undamped/damped, with/without separation), 10
random problem instances are tested. FIHT is terminated when ‖xk+1 − xk‖2/‖xk‖2 ≤ 10−3 or
‖xk+1 − xk‖2/‖xk‖2 ≥ 2 which usually implies divergence. PGD is terminated when ‖xk+1 −
xk‖2/‖xk‖2 ≤ 2 × 10−4. The average computational time (referred to as TIME) and average
number of iterations (referred to as ITER) of FIHT and PGD over tests of successful recovery are

13



Table 1: Average SR, RMSE, ITER and TIME values of FIHT and PGD over 10 random problem
instances in the undamped case with m ≈ 130 log(n).

r 20 30

SR RMSE ITER TIME (s) SR RMSE ITER TIME (s)

with separation

FIHT 1 3.6e-4 18.7 256 0.5 4.8e-4 123 2278

PGD 1 1.4e-4 33.6 490 1 2.7e-4 48.3 1049

without separation

FIHT 1 3.5e-4 18.6 250 0.2 4.8e-4 66.5 1275

PGD 1 1.7e-4 33.6 492 1 3.0e-4 54.6 1186

Table 2: Average SR, RMSE, ITER and TIME values of FIHT and PGD over 10 random problem
instances in the damped case with m ≈ 0.03n.

r 20 30

SR RMSE ITER TIME (s) SR RMSE ITER TIME (s)

with separation

FIHT 1 2.9e-4 12.7 170 0.2 3.2e-4 16.5 321

PGD 1 3.3e-4 21.8 321 1 4.8e-4 41.5 1028

without separation

FIHT 1 2.4e-4 10.9 152 0.1 4.1e-4 16 325

PGD 1 2.6e-4 17.4 258 1 4.5e-4 37.4 863

summarized in Tables 1 and 2 for the undamped and damped signals, respectively. For the sake of
completeness, we also include the ratio of successful recovery out of the 10 random tests (referred
to as SR) for each algorithm in the tables.

First it is worth noting that PGD succeeded in all the 10 random tests under each test setting
when r = 30, whereas FIHT only succeeded in a small fraction of the tests. Thus, Tables 1 and 2
show that PGD is able to more reliably recover signals that consist of a larger number of Fourier
components, which coincides with our observations on one-dimensional signals in Section 3.1. The
tables also show that FIHT requires fewer number of iterations and less computational time than
PGD to achieve convergence for easier problem instances when r = 20, while PGD is faster when
r = 30 and the test signals are undamped.

3.3 Robustness to Additive Noise

We demonstrate the performance of PGD under additive noise by conducting tests on 3D signals
of the same size as in Section 3.2 but with measurements corrupted by the vector

e = θ · ‖PΩ(x)‖2 ·
w

‖w‖2
,
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where x is a reshaped three-dimensional spectrally sparse signal to be reconstructed, the entries of
w are i.i.d. standard complex Gaussian random variables, and θ is referred to as the noise level.

Tests are conducted with 7 different values of θ from 10−3 to 1, corresponding to 7 equispaced
signal-to-noise ratios (SNR) from 60 to 0 dB. For each value of θ, 10 random instances are tested.
PGD is terminated when ‖xk+1 − xk‖2/‖xk‖2 ≤ 10−5. In our simulations, we fix r = 20 and
choose m ∈ {130 log(n), 195 log(n)} in the undamped setting while m ∈ {0.03n, 0.045n} in the
damped setting. The frequencies of the test signals are randomly generated from [0, 1) without the
separation requirement and the damping factors are generated in the same fashion as in Section
3.2. The average RMSE of the reconstructed signals (measured in negative dB) plotted against
the input SNR values of the samples is presented in Figure 2. The plots display a desirable linear
scaling between the relative reconstruction error and the noise level for both the undamped and
damped signals. Moreover, the relative reconstruction error decreases linearly on a log-log scale as
the number of measurements increases.
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Figure 2: Performance of PGD under additive noise. Left: no damping in the test signals; Right:
signals are generated with damping.

3.4 Sensitivity to Model Order

In practice, we may not know the exact model order of a spectrally sparse signal but only have
an estimation of it. Thus, it is of great interest to examine the performance of PGD when the
model order is under- or over- estimated. The experiments are conducted for three-dimensional
signals of the same size as in Section 3.2. Here the true model order is r = 20, and we observe
m = 130 log(n) entries for undamped signals while m = 0.03n entries for damped signals. The
frequencies are generated randomly and the damping factors are generated in the same way as in
Section 3.2. Three noise levels are investigated: SNR= ∞ (noise-free), SNR= 20 (light noise) and
SNR= 0 (heavy noise), and tests are conducted under the same additive noise model as in Section
3.3. For a fixed noise level, we test PGD starting from r = 5 and then increase the value of r by 5
each time until the maximum value 40 is reached. For each pair of (SNR, r), 10 random problem
instances are tested, and PGD is terminated when ‖xk+1−xk‖2/‖xk‖2 ≤ 10−5. The median values
of ITER and SNR when convergence is attained are reported in Tables 3 and 4 for undamped and
damped signals, respectively. As expected, PGD achieves the best SNR when the input value of
r is equal to 20 (the true model order). The SNR of the estimation is usually very low when r is
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Table 3: Median values of ITER and SNR over 10 random problem instances with 5 ≤ r ≤ 40 and
SNR ∈ {∞, 20, 0} for undamped signals. The true model order is r = 20.

Test Rank 5 10 15 20 25 30 35 40

SNR= ∞
ITER 18.5 18.5 23.5 45 798 1047 1209 1343

SNR 2.093 4.844 8.293 99.63 69.43 67.08 65.00 63.72

SNR= 20

ITER 17.5 23 28.5 40.5 1524 1969 1964 2514

SNR 2.040 4.848 8.277 29.05 26.70 25.58 24.55 23.75

SNR= 0

ITER 19.5 25 218.5 427.5 589 569.5 638 787.5

SNR 1.812 3.952 5.807 6.407 5.464 4.438 3.773 3.234

Table 4: Median values of ITER and SNR over 10 random problem instances with 5 ≤ r ≤ 40 and
SNR ∈ {∞, 20, 0} for damped signals. The true model order is r = 20.

Test Rank 5 10 15 20 25 30 35 40

SNR= ∞
ITER 43.5 40.5 48.5 24 679.5 942.5 1014 1130

SNR 2.224 4.873 9.000 96.62 64.54 61.20 59.57 59.00

SNR= 20

ITER 46 40.5 52.5 26 3852 4213 6048 5608

SNR 2.223 4.872 8.999 46.23 44.55 43.36 42.46 41.65

SNR= 0

ITER 57.5 74 52.5 36.5 2025 1566 2431 3281

SNR 2.217 4.857 8.904 26.26 24.40 23.18 22.29 21.52

smaller than 20 due to the systematic truncation error. On the other hand, even when r is twice
as large as the true model order, the SNR of the estimation is still desirable though it requires
dramatically more number of iterations for PGD to converge.

Next, we suggest a rank increasing heuristic for PGD when the underlying model order is not
known a priori. Starting from a sufficiently small r, we run PGD until convergence is reached (i.e.,
when ‖xk+1 − xk‖2/‖xk‖2 ≤ 10−5). Then we compute and compare the relative residuals over
the observed entries for the two successive testing values of r. If the relative residual is improved
significantly, we increase the value of r; otherwise the algorithm is terminated. To validate the
potential effectiveness of this heuristic, we test PGD for problem instances with SNR= 20 for both
undamped and damped signals, and with the values of r increasing from 1 to 40. The computational
results are presented in Figure 3, where we show the relative residual plotted against the values
of r, as well as the change of the relative residual when r is increased by one. The figure shows
that when r is greater than 20, the improvement of the relative residuals becomes very marginal
for both undamped and damped signals.

16



0 5 10 15 20 25 30 35 40

Rank

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
re

si
du

al

Undamped/SNR=20

0 5 10 15 20 25 30 35 40

Rank

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
re

si
du

al

Damped/SNR=20

Figure 3: Demonstration of rank increasing heuristic for problem instances with SNR = 20 for
undamped (left) and damped (right) signals.

4 Proof of Theorem 2.1

The structure of the proof for Theorem 2.1 follows the typical two-step strategy in the convergence
analysis of non-convex optimization algorithms: a basin of attraction is firstly established, in which
the algorithm converges linearly to the true solution; and then it can be shown that the initial
guess constructed in the algorithm lies inside the basin of attraction. We begin our presentation of
the proof with a proposition about the initialization.

Proposition 4.1 (Initialization Error). Suppose Gy is µ0-incoherent. If m ≥ cε−2
0 µcsκ

2r2 log(n),
then one has M ∈ C and

dist2(Z0,M) ≤ 3ε20σr(Gy) (18)

with probability at least 1− n−2.

Proof. By Lemma A.1, one has

‖L0 − Gy‖2 .
√

µ0csr log(n)

m
‖Gy‖2 ≤

√

µcsr log(n)

m
‖Gy‖2 (19)

with probability at least 1 − n−2, where in the second inequality we use the assumption µ0 ≤ µ.
Together with the assumption on m, it follows immediately that

σ1(Gy) ≤
σ1(L

0)

1− ε0
.

Consequently, one has M ∈ C since ‖M‖2,∞ ≤
√

σ1(Gy) max{‖U‖2,∞ , ‖V ‖2,∞}. Moreover, one
can easily see that MQ ∈ C for all r by r unitary matrices Q.

Since Z0 = PC(Z̃
0) and MQ

Z̃
0 ∈ C, one has

dist(Z0,M) ≤
∥

∥Z0 −MQ
Z̃
0

∥

∥

F
≤
∥

∥

∥
Z̃0 −MQ

Z̃
0

∥

∥

∥

F
= dist(Z̃0,M). (20)
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Therefore, in order to show (18), it suffices to bound dist(Z̃0,M). By Lemma A.2, one has

dist2(Z̃0,M) ≤ 1

2(
√
2− 1)σ2

r (M)

∥

∥

∥Z̃
0(Z̃0)∗ −MM∗

∥

∥

∥

2

F

=
1

4(
√
2− 1)σr(Gy)

∥

∥

∥
Z̃0(Z̃0)∗ −MM∗

∥

∥

∥

2

F
. (21)

Let A, B, C, and D be four s× r complex matrices with s ≥ r. A simple calculation yields

〈AA∗,BB∗〉+ 〈CC∗,DD∗〉 =
〈

r
∑

i=1

aia
∗
i ,

r
∑

i=1

bb∗

〉

+

〈

r
∑

i=1

cic
∗
i ,

r
∑

i=1

did
∗
i

〉

=

r
∑

i,j=1

(〈

aia
∗
i , bjb

∗
j

〉

+
〈

cic
∗
i ,djd

∗
j

〉)

=
r
∑

i,j=1

(〈a∗
i bj ,a

∗
i bj〉+ 〈c∗idj , c

∗
idj〉)

≥ 2
∑

i,j=1

Re 〈a∗
i bj , c

∗
idj〉

= 2
∑

i,j=1

Re
〈

aic
∗
i , bjd

∗
j

〉

= 2Re 〈AC∗,BD∗〉 , (22)

where ai, bi, ci and di are the i-th columns of A, B, C and D respectively. Then it follows that

∥

∥

∥
Z̃0(Z̃0)∗ −MM∗

∥

∥

∥

2

F
= 2

∥

∥U0Σ0(V 0)∗ −UΣV ∗
∥

∥

2

F
+
∥

∥U0Σ0(U0)∗ −UΣU∗
∥

∥

2

F

+
∥

∥V 0Σ(V 0)∗ − V ΣV ∗
∥

∥

2

F

≤ 4
∥

∥U0Σ0(V 0)∗ −UΣV ∗
∥

∥

2

F
= 4

∥

∥L0 − Gy
∥

∥

2

F
(23)

where the inequality follows from

∥

∥U0Σ0(U0)∗ −UΣU∗
∥

∥

2

F
+
∥

∥V 0Σ0(V 0)∗ − V ΣV ∗
∥

∥

2

F
≤ 2

∥

∥U0Σ0(V 0)∗ −UΣV ∗
∥

∥

2

F
,

which can be easily verified using (22). Substituting (23) into (21) gives

dist2(Z̃0,M) ≤ 1

(
√
2− 1)σr(Gy)

∥

∥L0 − Gy
∥

∥

2

F
.

Since

∥

∥L0 − Gy
∥

∥

F
.

√

µcsr2 log(n)

m
‖Gy‖2 ≤ ε0σr(Gy),

we finally have

dist2(Z0,M) ≤ dist2(Z̃0,M) ≤ 3ε20σr(Gy),

which completes the proof of (18).
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With Proposition 4.1 in place, the proof of Theorem 2.1 is complete if we can establish the local
contraction property of Algorithm 1, as stated in the following proposition.

Proposition 4.2 (Local Contraction). Assume M ∈ C. Let ε0 be an absolute constant obeying

0 < ε0 ≤ 1
11 . For any matrix Z ∈ C, define

Z̃ = Z − η∇F (Z) and Z+ = PC(Z̃).

There exists a numerical constant ν = 1
10σr(Gy) such that with probability at least 1− c1 · n−2,

dist2(Z+,M) ≤ (1− ην)dist2(Z,M)

holds for all Z obeying dist2(Z,M) ≤ 3ε20σr(Gy) provided

m ≥ c2 ε
−2
0 µ2c2sκ

2r2 log(n) and η ≤ σr(Gy)
600(µcsr)2σ2

1(Gy)

Based on the same argument as in (20), one has dist(Z+,M) ≤ dist(Z̃,M). Hence, it suffices
to show that

dist2(Z̃,M) ≤ (1− ην)dist2(Z,M) (24)

holds for all matrices Z within a small neighborhood of M . Let H = Z − MQZ. We follow a
similar route as in [50] and instead establish the regularity condition

Re 〈∇F (Z),H〉 ≥ η

2
‖∇F (Z)‖2F +

ν

2
‖H‖2F (25)

for all matrices Z that are sufficiently close to M . The notation of regularity condition was first
introduced in [9] to show the convergence of a non-convex gradient descent algorithm for phase
retrieval and since then has been extended to many other problems, see [50] and references therein.
Once (25) is established, a little algebra yields

dist2(Z̃,M) =
∥

∥

∥Z̃ −MQZ̃

∥

∥

∥

2

F
≤
∥

∥

∥Z̃ −MQZ

∥

∥

∥

2

F

= ‖H‖2F + η2 ‖∇F (Z)‖2F − 2ηRe 〈∇F (Z),H〉
≤ (1− ην) ‖H‖2F
= (1− ην)dist2(Z,M).

The proof of the regularity condition will occupy the remainder of this section. Even though the
proof follows a well-established route, especially that in [50], the details of the proof are nevertheless
quite involved and technical. Firstly, our objective function involves a transformation from the
matrix domain to the vector domain, and an extra regularizer is also included to preserve the
Hankel structure of the matrix. Secondly, we need to establish a key lemma which is closely related
to the second largest eigenvalue of a special random graph, as presented in the next subsection.
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4.1 A Key Ingredient

The following lemma will play a key role in the proof of the regularity condition.

Lemma 4.1. Suppose Ω = {ak}mk=1, where each ak is sampled from {0, · · · , n − 1} independently

and uniformly with replacement. Then for all z ∈ R
n1 and w ∈ R

n2,

p−1
m
∑

k=1

∑

i+j=ak

ziwj ≤ ‖z‖1 ‖w‖1 +
√

24n log(n)

p
‖z‖2 ‖w‖2

holds with probability at least 1− 2n−2 provided m ≥ 8
3 log(n).

Proof. Let Ha, a = 0, · · · , n − 1, be an n1 × n2 matrix with the a-th skew-diagonal entries being
equal to one and all the other entries being equal to zero. Notice that p−1

∑m
k=1

∑

i+j=ak
ziwj can

be written as

p−1
m
∑

k=1

∑

i+j=ak

ziwj = p−1
m
∑

k=1

zTHakw = zT

(

n

m

m
∑

k=1

Hak

)

w

= zT
(

1n11
T
n2

)

w + zT

(

n

m

m
∑

k=1

Hak − 1n11
T
n2

)

w

≤ ‖z‖1 ‖w‖1 +
∥

∥

∥

∥

∥

m
∑

k=1

(

n

m
Hak − 1

m
1n11

T
n2

)

∥

∥

∥

∥

∥

2

‖z‖2 ‖w‖2 . (26)

Let Zk = n
mHak − 1

m1n11
T
n2
. One can easily see that E [Zk] = 0 and

‖Zk‖2 ≤
∥

∥

∥

n

m
Hak

∥

∥

∥

2
+

∥

∥

∥

∥

1

m
1n11

T
n2

∥

∥

∥

∥

2

≤ 2n

m
.

Moreover, one has

E
[

ZkZ
T
k

]

= E

[(

n

m
Hak −

1

m
1n11

T
n2

)(

n

m
HT

ak
− 1

m
1n21

T
n1

)]

=
n2

m2
E
[

HakH
T
ak

]

− n

m2

(

1n11
T
n2

)

E [Hak ]−
n

m2
E [Hak ]

(

1n21n1
T
)

+
n2

m2
1n11

T
n1

=
n

m2

n−1
∑

a=1

HaH
T
a − n2

m2
1n11

T
n1

=
n2

m2

(

nIn1 − 1n11
T
n1

)

,

so
∥

∥E
[

ZkZ
T
k

]∥

∥

2
≤ 2n2

m2 . Similarly, one also has
∥

∥E
[

ZT
k Zk

]∥

∥

2
≤ 2n2

m2 . Consequently,

max

{∥

∥

∥

∥

∥

m
∑

k=1

E
[

ZkZ
T
k

]

∥

∥

∥

∥

∥

2

,

∥

∥

∥

∥

∥

m
∑

k=1

E
[

ZT
k Zk

]

∥

∥

∥

∥

∥

2

}

≤ 2n2

m
.
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Thus, the application of the Bernstein’s inequality (see for example [42, Theorem 1.6]) yields

P

{∥

∥

∥

∥

∥

m
∑

k=1

Zk

∥

∥

∥

∥

∥

2

> t

}

≤ (n1 + n2) exp

( −t2/2

2n2/m+ 2nt/3m

)

.

Letting t =

√

24n2 log(n)
m gives

P

{∥

∥

∥

∥

∥

m
∑

k=1

Zk

∥

∥

∥

∥

∥

2

> t

}

≤ 2n−2

provided m ≥ 8
3 log(n). Substituting this result into (26) concludes the proof.

Remark. Suppose n is odd and n1 = n2 = (n + 1)/2. Let H be an n1 × n1 random Hankel
matrix, each skew-diagonal of which takes the value 1 with probability p and the value 0 with
probability 1− p. Then H can be viewed as the adjacency matrix corresponding a special random
graph. Without rigorous justification, we can see that the largest eigenvalue of H, denoted λ1, is
of order about n1p as E [H] = p1n11

T
n1
. Let λ2 be the second largest (in magnitude) eigenvalue of

H. Roughly speaking, Lemma 4.1 says that |λ2| ≈
√

n1p log(n1) since |λ2| can be approximated
by
∥

∥H − 1n11
T
n1

∥

∥

2
. Let G be an n1 × n1 adjacency matrix of a random graph with n1 vertex

and every edge of which is connected with probability p. That is, each entry of G takes the value
1 with probability p and the value 0 with probability 1 − p. It was shown in [20] the second
largest (in magnitude) eigenvalue of G is of order at most

√
n1p, which has also been extended to

singular values in [27]. Thus, our analysis looses a
√

log(n1) factor compared to the result for G.
However, we want to emphasize that the extra

√

log(n) factor in Lemma (4.1) does not affect our
final result as a log factor will also appear in other place. That being said, we conjecture that the
extra

√

log(n) factor for H is just an artifact of our analysis framework which uses the Bernstein’s
inequality under the sampling with replacement model, and it can be eliminated by the spectral
techniques used in [20] under the Bernoulli model. We leave this for future work.

4.2 Proof of the Regularity Condition

The goal of this subsection is to show that the regularity condition (25) holds with high probability.
Before proceeding to the formal proof, we first consider the expectation of Re 〈∇F (Z),H〉 and see
what lower bound can be anticipated. With a slight abuse of notation, we denote MQZ by M

throughout this subsection for ease of presentation. Since there exists a close solution for QZ, as
presented in (11), one can easily verify that

H∗M = M∗H and M∗Z = Z∗M � 0. (27)

By noting that E
[

p−1PΩ

]

= I, the expectation of E [Re 〈∇f(Z),H〉] can be bounded below as

E [Re 〈∇f(Z),H〉]
= Re

〈

ZUZ
∗
V −MUM

∗
V ,HUZ

∗
V +ZUH

∗
V

〉

= Re
〈

MUH
∗
V +HUM

∗
V +HUH

∗
V ,MUH

∗
V +HUM

∗
V + 2HUH

∗
V

〉

=
∥

∥MUH
∗
V +HUM

∗
V

∥

∥

2

F
+ 3Re

〈

MUH
∗
V +HUM

∗
V ,HUH

∗
V

〉

+ 2
∥

∥HUH
∗
V

∥

∥

2

F
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≥
∥

∥MUH
∗
V +HUM

∗
V

∥

∥

2

F
− 3

∥

∥MUH
∗
V +HUM

∗
V

∥

∥

∥

∥HUH
∗
V

∥

∥+ 2
∥

∥HUH
∗
V

∥

∥

2

F

≥ 1

2

∥

∥MUH
∗
V
+HUM

∗
V

∥

∥

2

F
− 5

2

∥

∥HUH
∗
V

∥

∥

2

F

=
1

2

(

∥

∥MUH
∗
V

∥

∥

2

F
+
∥

∥HUM
∗
V

∥

∥

2

F

)

− 5

2

∥

∥HUH
∗
V

∥

∥

2

F
+Re

〈

H∗
UMU ,M

∗
VHV

〉

, (28)

where in the second line we use Z = M +H, and in the third line we use the inequality a2− 3ab+
2b2 ≥ 1

2a
2 − 5

2b
2.

Before continuing to bound E [Re 〈∇F (Z),H〉] by adding λRe 〈∇g(Z),H〉 to E [Re 〈∇f(Z),H〉],
it might be better to examine the role of g(Z) by studying a special case. Suppose HU = δ ·MU

and HV = −δ ·MV , where δ > 0 is a small numerical constant. Then one has

E [Re 〈∇f(Z),H〉] = 2
∥

∥HUH
∗
V

∥

∥

2

F
= 2δ4

∥

∥MUM
∗
V

∥

∥

2

F
= 2δ4 ‖Σ‖2F ,

where the last equality follows from the fact MUM
∗
V = UΣV ∗. Since ‖H‖2F = δ2 ‖M‖2F =

2δ2 ‖Σ‖∗, the regularity condition (25) cannot be true for f(Z) without the regularization function
g(Z). In this case, one can observe that the mismatch between Z∗

UZU andZ∗
V ZV increases compared

with the mismatch between M∗
UMU andM∗

VMV which is equal to zero. Because g(Z) penalizes the
mismatch between Z∗

UZU and Z∗
V ZV , one may intuitively expect that it can control the occurrence

of this case so that F (Z) = f(Z) + λg(Z) could obey the regularity condition.

Let D =

[

In1 0

0 −In2

]

. We can bound Re 〈∇g(Z),H〉 from below as

Re 〈∇g(Z),H〉
= Re 〈DZ(Z∗DZ),H〉 = Re 〈Z∗DZ,Z∗DH〉
= Re 〈M∗DH +H∗DM +H∗DH,M∗DH +H∗DH〉
= ‖M∗DH‖2F + 3Re 〈M∗DH,H∗DH〉 + ‖H∗DH‖2F +Re 〈M∗DH,H∗DM〉

=
1

2
‖M∗DH‖2F +

1

2
‖M∗DH + 3H∗DH‖2F − 7

2
‖H∗DH‖2F

+Re 〈M∗DH,H∗DM〉

=
1

2
‖M∗DH‖2F +

1

2
‖M∗DH + 3H∗DH‖2F − 7

2
‖H∗DH‖2F

+Re 〈M∗H,H∗M〉 − 4Re
〈

H∗
U
MU ,M

∗
V
HV

〉

≥ 1

2
‖M∗DH‖2F − 7

2
‖H∗DH‖2F

− 4Re
〈

H∗
UMU ,M

∗
VHV

〉

, (29)

where the third equality follows from M∗DM = 0, the fourth equality follows from

Re 〈H∗DM ,H∗DH〉 = Re 〈M∗DH,H∗DH〉 = Re 〈H∗DH,M∗DH〉 ,

the last equality follows from

Re
〈

H∗
UMU ,M

∗
V HV

〉

= Re
〈

M∗
VHV ,H

∗
UMU

〉

= Re
〈

M∗
UHU ,H

∗
V MV

〉

,

and the inequality follows from H∗M = M∗H, see (27).
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If we take λ = 1
4 , then combining (28) and (29) together implies

E [Re 〈∇F (Z),H〉] ≥ 1

2

(

∥

∥MUH
∗
V

∥

∥

2

F
+
∥

∥HUM
∗
V

∥

∥

2

F

)

− 5

2

∥

∥HUH
∗
V

∥

∥

2

F
− 7

8
‖H∗DH‖2F

+
1

8
‖M∗DH‖2F

&
(

σr(Gy) − ‖H‖2F
)

‖H‖2F + ‖M∗DH‖2F . (30)

That is, we have established a lower bound for the expectation of Re 〈∇F (Z),H〉. As we will show
later, Re 〈∇F (Z),H〉 obeys a similar lower bound with high probability. Moreover, the right hand
side of (25) can be bounded from above by a similar bound. Therefore, F (Z) obeys the regularity
condition for sufficiently small H. Specifically, we are going to show the following two bounds,

Re 〈∇F (Z),H〉 ≥ 1

10
σr(Gy) ‖H‖2F +

1

8
‖M∗DH‖2F , (31)

‖∇F (Z)‖2F ≤ 60(µcsr)
2σ2

1(Gy) ‖H‖2F +
1

2
σ1(Gy) ‖M∗DH‖2F , (32)

hold with high probability provided ‖H‖2F ≤ 3ε20σr(Gy) and m & ε−2
0 µ2c2sκ

2r2 log(n) for ε0 ≤ 1
11 .

The above two inequalities are typically referred to as the local curvature property and the local

smooth property of the function F (Z) in the literature, see for example [9, 50]. Once they are
established, one can easily see that F (Z) obeys the regularity condition (25) with

η ≤ σr(Gy)
600(µcsr)2σ2

1(Gy)
and ν =

1

10
σr(Gy).

4.2.1 Proof of (31)

Since Re 〈∇g(Z),H〉 is deterministic and we have already obtained its lower bound in (29), it only
remains to work out the lower bound for Re 〈∇f(Z),H〉 and then combine it together with that
for Re 〈∇g(Z),H〉. Note that

Re 〈∇f(Z),H〉
= Re

〈

(I − GG∗)(ZUZ
∗
V
) + p−1GPΩG∗(ZUZ

∗
V
−MUM

∗
V
),HUZ

∗
V
+ZUH

∗
V

〉

= Re
〈

(I − GG∗)(ZUZ
∗
V −MUM

∗
V ) + p−1GPΩG∗(ZUZ

∗
V −MUM

∗
V ),HUZ

∗
V +ZUH

∗
V

〉

= Re
〈

(I − GG∗)(HUM
∗
V +MUH

∗
V +HUH

∗
V ),HUM

∗
V +MUH

∗
V + 2HUH

∗
V

〉

+Re
〈

p−1GPΩG∗(HUM
∗
V
+MUH

∗
V
+HUH

∗
V
),HUM

∗
V
+MUH

∗
V
+ 2HUH

∗
V

〉

:= I1 + I2, (33)

where the second equality follows from the fact (I − GG∗)(MUM
∗
V ) = 0.

Lower bound for I1. The first term I1 can be bounded directly as follows:

I1 = Re
〈

(I − GG∗)(HUM
∗
V +MUH

∗
V +HUH

∗
V ), (I − GG∗)(HUM

∗
V +MUH

∗
V + 2HUH

∗
V )
〉

≥
∥

∥(I − GG∗)(HUM
∗
V +MUH

∗
V )
∥

∥

2

F

− 3
∥

∥(I − GG∗)(HUM
∗
V +MUH

∗
V )
∥

∥

F

∥

∥(I − GG∗)(HUH
∗
V )
∥

∥

F
+ 2

∥

∥(I − GG∗)(HUH
∗
V )
∥

∥

2

F
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≥ 11

20

∥

∥(I − GG∗)(HUM
∗
V
+MUH

∗
V
)
∥

∥

2

F
− 3

∥

∥(I − GG∗)(HUH
∗
V
)
∥

∥

2

F
,

where the first equality follows from that GG∗ is a projection operator, and the second inequality
follows from a2 − 3ab+ 2b2 ≥ 11

20a
2 − 3b2.

Lower bound for I2. Recall from Section 2.1 that wa, a = 0, · · · , n − 1, denotes the number
of entries in the skew-diagonal of an n1×n2 matrix. Let Ga, a = 0, · · · , n−1, be an n1×n2 matrix
with the a-th skew-diagonal entries being equal to 1/

√
wa and all the other entries being equal to

zero. Then,

G∗(HUM
∗
V +MUH

∗
V ) =

{〈

Ga,HUM
∗
V +MUH

∗
V

〉}n−1

a=0

and

G∗(HUH
∗
V ) =

{〈

Ga,HUH
∗
V

〉}n−1

a=0
.

It follows that

Re
〈

GPΩG∗(HUM
∗
V
+MUH

∗
V
+HUH

∗
V
),HUM

∗
V
+MUH

∗
V
+ 2HUH

∗
V

〉

= Re
〈

PΩG∗(HUM
∗
V
+MUH

∗
V
+HUH

∗
V
),G∗(HUM

∗
V
+MUH

∗
V
+ 2HUH

∗
V
)
〉

=
〈

PΩG∗(HUM
∗
V +MUH

∗
V ),G∗(HUM

∗
V +MUH

∗
V )
〉

+ 3Re
〈

PΩG∗(HUM
∗
V +MUH

∗
V ),G∗(HUH

∗
V )
〉

+ 2
〈

PΩG∗(HUH
∗
V ),G∗(HUH

∗
V )
〉

=

m
∑

k=1

∣

∣

〈

Gak ,HUM
∗
V +MUH

∗
V

〉∣

∣

2
+ 3Re

(

m
∑

k=1

〈

Gak ,HUM
∗
V +MUH

∗
V

〉〈

Gak ,HUH
∗
V

〉

)

+ 2

m
∑

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2

≥
m
∑

k=1

∣

∣

〈

Gak ,HUM
∗
V +MUH

∗
V

〉∣

∣

2 − 3

√

√

√

√

m
∑

k=1

∣

∣

〈

Gak ,HUM
∗
V +MUH

∗
V

〉∣

∣

2

√

√

√

√

m
∑

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2

+ 2

m
∑

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2

≥ 11

20

m
∑

k=1

∣

∣

〈

Gak ,HUM
∗
V +MUH

∗
V

〉∣

∣

2 − 3

m
∑

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2

=
11

20

〈

PΩG∗(HUM
∗
V +MUH

∗
V ),G∗(HUM

∗
V +MUH

∗
V )
〉

− 3

m
∑

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2
,

where the third equality and the last equality follow from (16), the first inequality follows from the
Hölder inequality, and the second inequality follows from a2−3ab+2b2 ≥ 11

20a
2−3b2. Consequently,

I2 ≥
11

20

〈

p−1PΩG∗(HUM
∗
V +MUH

∗
V ),G∗(HUM

∗
V +MUH

∗
V )
〉

− 3p−1
m
∑

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2
. (34)
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We can bound p−1
∑m

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2
from above by Lemma 4.1 as follows:

p−1
m
∑

k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2

= p−1
m
∑

k=1

∣

∣

∣

∣

∣

∣

1
√
wak

∑

i+j=ak

〈

eie
T
j ,HUH

∗
V

〉

∣

∣

∣

∣

∣

∣

2

≤ p−1
m
∑

k=1

∑

i+j=ak

∣

∣

〈

eie
T
j ,HUH

∗
V

〉∣

∣

2

≤ p−1
m
∑

k=1

∑

i+j=ak

∥

∥

∥
H

(i,:)
U

∥

∥

∥

2

2

∥

∥

∥
H

(j,:)
V

∥

∥

∥

2

2

≤ ‖HU‖2F ‖HV ‖2F +

√

24n log(n)

p

√

√

√

√

n1
∑

i=1

∥

∥

∥H
(i,:)
U

∥

∥

∥

4

2

√

√

√

√

n2
∑

j=1

∥

∥

∥H
(j,:)
V

∥

∥

∥

4

2

≤ ‖HU‖2F ‖HV ‖2F +

√

24n log(n)

p

(

‖HU‖2,∞ ‖HU‖F
)(

‖HV ‖2,∞ ‖HV ‖F
)

≤ ‖HU‖2F ‖HV ‖2F +

√

24n log(n)

p

(

4µcsr

n
σ

)

‖HU‖F ‖HV ‖F

≤ 1

4
‖H‖4F +

√

96µ2c2sr
2 log(n)

m

σ1(L
0)

1− ε0
‖H‖2F

≤
(

3ε20
4

+
ε0(1 + ε0)

1− ε0

)

σr(Gy) ‖H‖2F ,

where the fourth line follows from Lemma 4.1, the sixth line follows from

max
{

‖HU‖2,∞ , ‖HV ‖2,∞
}

= ‖H‖2,∞ ≤ ‖M‖2,∞ + ‖Z‖2,∞ ≤ 2

√

µcsr

n
σ,

and the last line follows from (19) and the assumptions on ‖H‖2F and m.
Lower bound for Re 〈∇f(Z),H〉. Before finally showing the lower bound for Re 〈∇f(Z),H〉,

we need to define the tangent space of the rank r matrix manifold at Gy, denoted T . Given the
SVD Gy = UΣV ∗, we define T as

T = {UC∗ +DV ∗ | C ∈ C
n2×r, D ∈ C

n1×r}.

One can easily see thatHUM
∗
V
+MUH

∗
V
∈ T . Substituting the bound for p−1

∑m
k=1

∣

∣

〈

Gak ,HUH
∗
V

〉∣

∣

2

into (34) and then combining the lower bounds for I1 and I2 together yields

Re 〈∇f(Z),H〉

≥ 11

20

∥

∥(I − GG∗)(HUM
∗
V +MUH

∗
V )
∥

∥

2

F
− 3

∥

∥(I − GG∗)(HUH
∗
V )
∥

∥

2

F

+
11

20

〈

p−1PΩG∗(HUM
∗
V
+MUH

∗
V
),G∗(HUM

∗
V
+MUH

∗
V
)
〉
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−
(

9ε20
4

+
3ε0(1 + ε0)

1− ε0

)

σr(Gy) ‖H‖2F

≥ 11

20

∥

∥HUM
∗
V
+MUH

∗
V

∥

∥

2

F
− 3

∥

∥HUH
∗
V

∥

∥

2

F
−
(

9ε20
4

+
3ε0(1 + ε0)

1− ε0

)

σr(Gy) ‖H‖2F

− 11

20

〈

G(I − p−1PΩ)G∗(HUM
∗
V +MUH

∗
V ),HUM

∗
V +MUH

∗
V

〉

=
11

20

∥

∥HUM
∗
V +MUH

∗
V

∥

∥

2

F
− 3

∥

∥HUH
∗
V

∥

∥

2

F
−
(

9ε20
4

+
3ε0(1 + ε0)

1− ε0

)

σr(Gy) ‖H‖2F

− 11

20

〈

PTG(I − p−1PΩ)G∗PT (HUM
∗
V
+MUH

∗
V
),HUM

∗
V
+MUH

∗
V

〉

≥ 11

20
(1− ε0)

∥

∥HUM
∗
V
+MUH

∗
V

∥

∥

2

F
−
(

9ε20
2

+
3ε0(1 + ε0)

1− ε0

)

σr(Gy) ‖H‖2F

≥ 1

2

∥

∥HUM
∗
V
+MUH

∗
V

∥

∥

2

F
−
(

9ε20
2

+
3ε0(1 + ε0)

1− ε0

)

σr(Gy) ‖H‖2F

≥ 1

8
σr(Gy) ‖H‖2F +Re

〈

H∗
UMU ,M

∗
VHV

〉

, (35)

where the second inequality follows from the fact GG∗ is a projection operator, the third inequality
holds with probability at least 1 − n−2 (see Lemma A.3) under the assumption on m and ‖H‖2F ,
and the last inequality follows from

∥

∥HUM
∗
V

∥

∥

F
≥ σr(MV ) ‖HU‖F ,

∥

∥MUH
∗
V

∥

∥

F
≥ σr(MU) ‖HV ‖F ,

and the assumption ε0 ≤ 1
11 .

Lower bound for Re 〈∇F (Z),H〉. Let λ = 1
4 . Combining the lower bound in (35) for

Re 〈∇f(Z),H〉 and the lower bound in (29) for Re 〈∇g(Z),H〉 together gives

Re 〈∇F (Z),H〉 ≥ 1

8
σr(Gy) ‖H‖2F − 7

8
‖H∗DH‖2F +

1

8
‖M∗DH‖2F

≥ 1

10
σr(Gy) ‖H‖2F +

1

8
‖M∗DH‖2F ,

where the second inequality follows from

‖H∗DH‖2F ≤ ‖H‖4F ≤ 3ε20σr(Gy) ‖H‖2F

and the assumption ε0 ≤ 1
11 . This concludes the proof of (31).

4.2.2 Proof of (32)

Since

‖∇F (Z)‖2F ≤ 2 ‖∇f(Z)‖2F + 2λ2 ‖∇g(Z)‖2F , (36)

it suffices to bound ‖∇f(Z)‖2F and ‖∇g(Z)‖2F separately.
Upper bound for ‖∇g(Z)‖2F . We begin with the upper bound for ‖∇g(Z)‖2F , which can be

obtained in a straightforward way,

‖∇g(Z)‖2F = ‖DZZ∗DZ‖2F = ‖D(ZZ∗ −MM∗)DZ +DMM∗DZ‖2F
≤ 2 ‖D(ZZ∗ −MM∗)DZ‖2F + 2 ‖DMM∗DZ‖2F
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≤ 2 ‖Z‖22 ‖ZZ∗ −MM∗‖2F + 2 ‖M‖22 ‖M∗D(M +H)‖2F
= 2 ‖Z‖22 ‖MH∗ +HM∗ +HH∗‖2F + 2 ‖M‖22 ‖M∗DH‖2F
≤ 6 ‖Z‖22

(

2 ‖M‖22 ‖H‖2F + ‖H‖4F
)

+ 2 ‖M‖22 ‖M∗DH‖2F

≤ 6

(

√

3ε20σr(Gy) +
√

2σ1(Gy)
)2
(

4σ1(Gy) + 3ε20σr(Gy)
)

‖H‖2F

+ 4σ1(Gy) ‖M∗DH‖2F
≤ 60σ2

1(Gy) ‖H‖2F + 4σ1(Gy) ‖M∗DH‖2F , (37)

where the third equality follows from Z = M +H and M∗DM = 0, the fourth inequality follows
from ‖M‖2 =

√

2σ1(Gy) and

‖Z‖2 ≤ ‖Z −M‖2 + ‖M‖2 ≤ ‖Z −M‖F + ‖M‖2 ,

and the last line follows from the assumption ε0 ≤ 1
11 .

In order to bound ‖∇f(Z)‖2F , we consider |〈∇f(Z),X〉|2 for matrices X =
[

XU XV

]T
with

unit Frobenius norm (i.e., ‖XU‖2F + ‖XV ‖2F = 1). Note that

|〈∇f(Z),X〉|2 =
∣

∣

〈

(I − GG∗)(ZUZ
∗
V
) + p−1GPΩG∗(ZUZ

∗
V
−MUM

∗
V
),XUZ

∗
V
+ZUX

∗
V

〉∣

∣

2

=
∣

∣

〈

(I − GG∗)(ZUZ
∗
V
−MUM

∗
V
) + p−1GPΩG∗(ZUZ

∗
V
−MUM

∗
V
),XUZ

∗
V
+ZUX

∗
V

〉∣

∣

2

≤ 2
∣

∣

〈

(I − GG∗)(ZUZ
∗
V
−MUM

∗
V
),XUZ

∗
V
+ZUX

∗
V

〉∣

∣

2

+ 2
∣

∣

〈

p−1GPΩG∗(ZUZ
∗
V
−MUM

∗
V
),XUZ

∗
V
+ZUX

∗
V

〉∣

∣

2

= 2
∣

∣

〈

(I − GG∗)(ZUH
∗
V +HUM

∗
V ),XUZ

∗
V +ZUX

∗
V

〉∣

∣

2

+ 2
∣

∣

〈

p−1GPΩG∗(ZUH
∗
V +HUM

∗
V ),XUZ

∗
V +ZUX

∗
V

〉∣

∣

2

:= 2 · I3 + 2 · I4. (38)

Upper bound for I3. Since

‖ZU‖2 ≤ ‖MU‖2 + ‖HU‖2 ≤ ‖MU‖2 + ‖H‖F ≤ (1 +
√
3ε0)

√

σ1(Gy),
‖ZV ‖2 ≤ ‖MV ‖2 + ‖HV ‖2 ≤ ‖MU‖2 + ‖H‖F ≤ (1 +

√
3ε0)

√

σ1(Gy).

one has

∥

∥ZUH
∗
V +HUM

∗
V

∥

∥

2

F
≤ 2

(

∥

∥ZUH
∗
V

∥

∥

2

F
+
∥

∥HUM
∗
V

∥

∥

2

F

)

≤ 2
(

‖ZU‖22 ‖HV ‖2F + ‖MV ‖22 ‖HU‖2F
)

≤ 2(1 +
√
3ε0)

2σ1(Gy) ‖H‖2F

and

∥

∥XUZ
∗
V +ZUX

∗
V

∥

∥

2

F
≤ 2

(

∥

∥XUZ
∗
V

∥

∥

2

F
+
∥

∥ZUX
∗
V

∥

∥

2

F

)

≤ 2
(

‖ZV ‖22 ‖XU‖2F + ‖ZU‖22 ‖XV ‖2F
)
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≤ 2(1 +
√
3ε0)

2σ1(Gy),

where in the last line we have utilized ‖XU‖2F + ‖XV ‖2F = 1. Because I − GG∗ is a projection
operator, I3 can be bounded as follows:

I3 ≤
∥

∥ZUH
∗
V +HUM

∗
V

∥

∥

2

F
·
∥

∥XUZ
∗
V +ZUX

∗
V

∥

∥

2

F
≤ 4(1 +

√
3ε0)

4σ2
1(Gy) ‖H‖2F .

Upper bound for I4. Notice that

∣

∣

〈

p−1GPΩG∗(ZUH
∗
V
+HUM

∗
V
),XUZ

∗
V
+ZUX

∗
V

〉∣

∣

≤
∣

∣

〈

p−1GPΩG∗(ZUH
∗
V ),XUZ

∗
V

〉∣

∣+
∣

∣

〈

p−1GPΩG∗(ZUH
∗
V ),ZUX

∗
V

〉∣

∣

+
∣

∣

〈

p−1GPΩG∗(HUM
∗
V
),XUZ

∗
V

〉∣

∣+
∣

∣

〈

p−1GPΩG∗(HUM
∗
V
),ZUX

∗
V

〉∣

∣ . (39)

We can bound
∣

∣

〈

p−1GPΩG∗(ZUH
∗
V
),XUZ

∗
V

〉∣

∣ as follows:

∣

∣

〈

p−1GPΩG∗(ZUH
∗
V ),XUZ

∗
V

〉∣

∣

= p−1
∣

∣

〈

PΩG∗(ZUH
∗
V
),G∗(XUZ

∗
V
)
〉∣

∣

≤ p−1
m
∑

k=1

{∣

∣

〈

Gak ,ZUH
∗
V

〉∣

∣

∣

∣

〈

Gak ,XUZ
∗
V

〉∣

∣

}

= p−1
m
∑

k=1







∣

∣

∣

∣

∣

∣

1
√
wak

∑

i+j=ak

〈

eie
T
j ,ZUH

∗
V

〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
√
wak

∑

i+j=ak

〈

eie
T
j ,XUZ

∗
V

〉

∣

∣

∣

∣

∣

∣







≤ p−1
m
∑

k=1







1
√
wak

∑

i+j=ak

∣

∣

〈

eie
T
j ,ZUH

∗
V

〉∣

∣

1
√
wak

∑

i+j=ak

∣

∣

〈

eie
T
j ,XUZ

∗
V

〉∣

∣







= p−1
m
∑

k=1











√

√

√

√

√





1
√
wak

∑

i+j=ak

∣

∣

∣

〈

eie
T
j ,ZUH

∗
V

〉∣

∣

∣





2
√

√

√

√

√





1
√
wak

∑

i+j=ak

∣

∣

∣

〈

eie
T
j ,XUZ

∗
V

〉∣

∣

∣





2










≤ p−1
m
∑

k=1















∑

i+j=ak

∣

∣

〈

eie
T
j ,ZUH

∗
V

〉∣

∣

2





1/2



∑

i+j=ak

∣

∣

〈

eie
T
j ,XUZ

∗
V

〉∣

∣

2





1/2










≤ p−1
m
∑

k=1















∑

i+j=ak

∥

∥

∥
Z

(i,:)
U

∥

∥

∥

2

2

∥

∥

∥
H

(j,:)
V

∥

∥

∥

2

2





1/2



∑

i+j=ak

∥

∥

∥
X

(i,:)
U

∥

∥

∥

2

2

∥

∥

∥
Z

(j,:)
V

∥

∥

∥

2

2





1/2










≤ p−1
m
∑

k=1

{(

‖Z‖2,∞ ‖HV ‖F
)(

‖Z‖2,∞ ‖XU‖F
)}

≤ µcsrσ ‖HV ‖F ‖XU‖F ,

where in the last line, we utilize ‖Z‖22,∞ ≤ µcsrσ/n. Similar upper bounds can be established for
the other three terms in (39). That is,

∣

∣

〈

p−1GPΩG∗(ZUH
∗
V ),ZUX

∗
V

〉∣

∣ ≤ µcsrσ ‖HV ‖F ‖XV ‖F ,
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∣

∣

〈

p−1GPΩG∗(HUM
∗
V
),XUZ

∗
V

〉∣

∣ ≤ µcsrσ ‖HU‖F ‖XU‖F ,
∣

∣

〈

p−1GPΩG∗(HUM
∗
V ),ZUX

∗
V

〉∣

∣ ≤ µcsrσ ‖HU‖F ‖XV ‖F .

Combining these four upper bounds together yields

I4 ≤ (µcsrσ)
2
(

‖HV ‖F ‖XU‖F + ‖HV ‖F ‖XV ‖F + ‖HU‖F ‖XU‖F + ‖HU‖F ‖XV ‖F
)2

= (µcsrσ)
2
(

‖HU‖F + ‖HV ‖F
)2 (‖XU‖F + ‖XV ‖F

)2

≤ 4(µcsrσ)
2 ‖H‖2F

where in the last line we have used the fact ‖XU‖2F + ‖XV ‖2F = 1.

Upper bound for ‖∇f(Z)‖2F . Substituting the upper bounds for I3 and I4 into (38) give the
upper bound for ‖∇f(Z)‖2F ,

‖∇f(Z)‖2F ≤ 8
(

(1 +
√
3ε0)

4σ2
1(Gy) + (µcsrσ)

2
)

‖H‖2F .

Upper bound for ‖∇F (Z)‖2F . Noting λ = 1/4, σ ≤ (1 + ε0)σ1(Gy)/(1 − ε0), and ε0 ≤ 1/11,
after substituting the upper bounds for ‖∇f(Z)‖2F and ‖∇g(Z)‖2F into (36), we get

‖∇F (Z)‖2F ≤ 16

(

(1 +
√
3ε0)

4σ2
1(Gy) + (µcsrσ)

2 +
60

128
σ2
1(Gy)

)

‖H‖2F +
1

2
σ1(Gy) ‖M∗DH‖2F

≤ 60(µcsr)
2σ2

1(Gy) ‖H‖2F +
1

2
σ1(Gy) ‖M∗DH‖2F ,

which completes the proof of (32).

5 Discussion

We have proposed a novel algorithm for spectral compressed sensing by applying projected gradi-
ent descent updates to a non-convex functional. Exact recovery guarantee has been established,
showing that O(r2 log(n)) random observations are sufficient for the algorithm to achieve the suc-
cessful recovery. Additionally, empirical evaluation shows that our algorithm is competitive with
other state-of-the-art algorithms. In particular, our algorithm is superior to FIHT, a non-convex
algorithm for spectral compressed sensing with provable recovery guarantees, in terms of phase
transitions when the number of observations is small.

For future work, recovery stability of the proposed algorithm to additive noise will be inves-
tigated. The proofs presented in this paper should extend easily to bounded noise with a small
magnitude. It remains to address whether or not our algorithm can achieve some statistically
optimal rates under a stochastic noise model.

Recently, a line of research work has been devoted to the geometric analysis of non-convex opti-
mization problems including dictionary learning [39], phase retrieval [40], low rank matrix sensing
and matrix completion [1, 35, 24, 23], tensor completion [22] and robust PCA [23]. It has been
shown that the non-convex functionals for those problems have well-behaved landscape: all local
minima are also globally optimal. Preliminary numerical results show that our projected gradi-
ent descent algorithm works equally well with random initialization, which suggests the geometric
landscape of the objective function F (Z) introduced in this paper may be similarly well-behaved.

29



A Supplementary Lemmas

Here we list three technical lemmas from the literature that have been used in the analysis of PGD.

Lemma A.1 ([8], Lemma 2). Assume Gy is µ0-incoherent and let L0 = TrG(p−1PΩ(y)). Then,

‖L0 − Gy‖2 .

√

µ0csr log(n)

m
‖Gy‖2

holds with probability at least 1− n−2.

Lemma A.2 ([44, Lemma 5.4]). For any Z, X ∈ C
(n+1)×r, one has

dist2(Z,X) ≤ 1

2(
√
2− 1)σ2

r (X)
‖ZZ∗ −XX∗‖2F .

Lemma A.3 ([14], Lemma 3). Assume Gy is µ0-incoherent, and let T be the tangent space of the

rank r matrix manifold at Gy. Then,

‖PTG(I − p−1PΩ)G∗PT ‖2 ≤
√

32µ0csr log(n)

m

holds with probability at least 1− n−2.
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