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Abstract. In this paper we give an explicit sufficient condition for the affine map uλ(x) := λx
to be the global energy minimizer of a general class of elastic stored-energy functionals I(u) =∫

Ω
W (∇u) dx in three space dimensions, where W is a polyconvex function of 3×3 matrices. The

function space setting is such that cavitating (i.e., discontinuous) deformations are admissible. In
the language of the calculus of variations, the condition ensures the quasiconvexity of I(·) at λ1,
where 1 is the 3×3 identity matrix. Our approach relies on arguments involving null Lagrangians
(in this case, affine combinations of the minors of 3× 3 matrices), on the previous work [4], and
on a careful numerical treatment to make the calculation of certain constants tractable. We also
derive a new condition, which seems to depend heavily on the smallest singular value λ1(∇u)
of a competing deformation u, that is necessary for the inequality I(u) < I(uλ), and which, in
particular, does not exclude the possibility of cavitation.

1. Introduction

In this paper we consider an established model of elastic material that is capable of describing
cavitation, that is, of admitting energy minimizers that are discontinuous. This phenomenon was
first analysed in the setting of hyperelasticity by Ball in [2]; since then, a large and sophisticated
literature has developed, including but not limited to [15, 12, 9, 13, 14, 7, 8], part of which
focuses on finding boundary conditions which, when obeyed by all competing deformations,
ensure that cavitation does not occur. It is to the latter body of work that we contribute by
considering the case of purely bulk energy

I(u) =

∫
Ω
W (∇u(x)) dx,

where u : Ω → R3 represents a deformation of an elastic material occupying the domain Ω
in a reference configuration, and where W is a suitable stored-energy function. In the three
dimensional setting, we give an explicit characterization of those affine boundary conditions of
the form

uλ(x) = λx,

where λ > 0 is a parameter, such that the quasiconvexity inequality

I(u) ≥ I(uλ)(1.1)

holds among all suitable maps u agreeing with uλ on ∂Ω. It is by now well established that if
λ is large enough, λ ≥ λcrit, say, then such an inequality cannot hold. Thus we probe λcrit by
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finding λ0 such that (1.1) holds whenever λ ≤ λ0. This question has been addressed in [10] and,
more recently, in [4]. In this paper we use a new approach, involving the addition of a suitable
null Lagrangian (a method sometimes known as calibration), to deduce concrete lower bounds
on λcrit in the three dimensional case.

The analysis centres ostensibly on functions of the singular values of 3 × 3 matrices. Let A
be a 3× 3 matrix. Then the singular values of A are normally written as λj(A), for j = 1, 2, 3,
and their squares are the eigenvalues of ATA. See [6, Chapter 13] or [5, Section 3.2] for useful
introductions to singular values, as well as [1, 2, 12] for an illustration of their use in nonlinear
elasticity. Singular values arise naturally in the stored-energy functions of isotropic elastic
materials, and also in lower bounds which can be derived from them. Such was the case in [4],
where, for 2 < q < 3 and for convex functions Z and h, a stored-energy function very similar to1

W (A) = |A|q + Z(cof A) + h(detA)

was shown to obey the inequality

I(u)− I(uλ) ≥
∫

Ω
κ|∇u−∇uλ|q + h′(λ3)Π3

j=1(λi(∇u)− λ) + λP (∇u) dx.(1.2)

The function P is defined by

(1.3) P (A) =
∑

1≤i<j≤3

λi(A)λj(A)− λ
∑

1≤i≤3

λi(A)

and the constant κ satisfies bounds defined in (3.3) below. By grouping the first two inte-
grands in (1.2) together, it is possible to find conditions on λ such that

∫
Ω κ|∇u − ∇uλ|

q +

h′(λ3)Π3
j=1(λi(∇u)− λ) dx ≥ 0. However, the corresponding inequality for P , namely∫

Ω
P (∇u) dx ≥ 0,(1.4)

which, since P (λ1) = 0, is equivalent to the quasiconvexity of P at λ1, remains an open question.
We show in this paper that P does satisfy a condition necessary for quasiconvexity at λ1 (see
Proposition 2.3, part (a): rank-one convexity at λ1), but that the most tractable sufficient
condition for (1.4) cannot hold (see Proposition 2.3, part (b): polyconvexity at λ1)). Trying
instead to find conditions under which each of∫

Ω
(κ/2)|∇u−∇uλ|q + h′(λ3)Π3

j=1(λi(∇u)− λ) dx ≥ 0∫
Ω

(κ/2)|∇u−∇uλ|q + h′(λ3)P (∇u) dx ≥ 0(1.5)

holds is closer to the right approach, although, for reasons connected with the curvature of P at
λ1, it does not seem to be possible to prove (1.5) without first modifying the integrand. This is
what leads us to introduce the null Lagrangian

N(A) = tr cof A− λtrA,

which has the property that
∫

ΩN(∇u) dx = 0 for any admissible u and is such that there are
conditions on λ under which∫

Ω
(κ/2)|∇u−∇uλ|q + h′(λ3)(P (∇u)−N(∇u)) dx ≥ 0

1The original functional contained an ‘artificial’ quadratic term r|A|2, with r large, to deal with the difficulties
presented by the function P . This is no longer needed thanks to the calibration method we introduce.
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for all admissible u. See Theorem 3.4 and (3.15) in particular. In fact, N is the unique null
Lagrangian for which this method works: see Proposition 2.2. More generally, we remark that P
and G := P −N possess properties that are both interesting in their own right and, at the same
time, highly non-trivial to derive. (See Section 2.) A useful introduction to null Lagrangians
can be found in [3].

The upper bound λ0 given in the right-hand side of (3.15) is investigated in Section 3 using a
careful mixture of analysis and numerical techniques. The partnership between these approaches
seems to be particularly fruitful when applied to G and to functions derived from it. Accordingly,
we find an explicit constant ν1 ≈ 0.4501 such that if

0 ≤ λ3−qh′(λ3) ≤ κ

2
(
√

2)q−3ν2−q
1 ,

then I(u) ≥ I(uλ). See Section 3, Subsection 3.1 and the appendices for details.
In Section 4, a careful analysis of the function

H(A) := Π3
j=1(λj(∇u)− λ) + λG(A)

yields, among other things, what we believe to be new necessary conditions for the inequality
I(u) ≤ I(uλ). A distinguished role seems to be played by the smallest singular value, λ1(∇u):
see Proposition 4.6 in particular.

1.1. Notation. The inner product between two matrices A and B is given by A ·B = trATB,
and, as usual, trA denotes the trace of A. For a function f : R3×3 → R and any 3 × 3 matrix
U , the shorthand

DUf(A) = ∇f(A) · U
D2
Uf(A) = ∇2f(A)[U,U ]

will be used, where as usual ∇2f(A)[U,U ] = f,(ij)(kl)(A)UijUkl with the summation convention
in force. When discussing polyconvexity, which is defined when it next features in the paper,
we use the shorthand notation R19 for the set R3×3 × R3×3 × R containing the list of minors
R(A) := (A, cof A, detA) of any 3 × 3 matrix. The set of 3 × 3 square, orthogonal matrices is
denoted by O(3), and the subset of O(3) consisting of those matrices with determinant equal to
1 will be written SO(3). For any two vectors a and n in R3, the notation a⊗ n will denote the
matrix of rank one whose (i, j) entry is ainj . Our notation for Sobolev spaces is standard.

2. Calibration and the function G(A)

In this section we give some properties of the function P and use them to derive the null
Lagrangian N alluded to above. To start with, two technical results are required.

Lemma 2.1. Let λ > 0 and let U belong to R3×3. Then the function P : R3×3 → R given by
P (A) =

∑
1≤i<j≤3 λi(A)λj(A)− λ

∑
1≤i≤3 λi(A) admits the expansion

P (λ1 + hU) = λhtrU + h2tr cof U + o(h2)(2.1)

as h → 0. In particular, the first and second derivatives of P at λ1 exist and they satisfy
DUP (λ1) = λtrU and D2

UP (λ1) = 2tr cof U respectively.
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Proof. Let A = λ1 + hU and Vh = 2λUs + hUTU , where Us := (U + UT )/2 is the symmetric
part of U and h is real. Thus ATA = λ21 + hVh. By definition, each z = λi(A) is a root of the
equation det((λ2 − z2)1 + hVh) = 0, i.e. z satisfies

0 = (λ2 − z2)3 + h(λ2 − z2)2trVh + h2(λ2 − z2)tr cof Vh + h3 detVh.

Let h 6= 0, define R(z, h) = λ2−z2

h and note that

0 = R(z, h)3 +R(z, h)2trVh +R(z, h)tr cof Vh + detVh.(2.2)

Since the coefficients trVh, tr cof Vh and detVh vary continuously with h, it follows by standard
arguments that the roots R1(h), R2(h) and R3(h), say, of (2.2), which are all real by construction,
but not necessarily distinct, can be chosen such that they also vary continuously with h and
satisfy Rj(h)→ Rj as h→ 0, where the Rj are roots of the polynomial equation

0 = R3 +R2trV0 +Rtr cof V0 + detV0.(2.3)

The foregoing argument implies that the two sets of roots {R(λ1(A), h), R(λ2(A), h), R(λ3(A), h)}
and {R1(h), R2(h), R3(h)} must be equal. Hence for each i = 1, 2, 3 and each h 6= 0 there is
j(i, h) ∈ {1, 2, 3} such that R(λi(A), h) = Rj(i,h)(h) and such that j(·, h) is a permutation of
{1, 2, 3}. For brevity, let us write j(i) in place of j(i, h). We now have

λ2 − λ2
i (A) = hRj(i)(h)(2.4)

and, from (2.2),

3∑
a=1

Ra(h) = −trVh(2.5)

and ∑
1≤a<b≤3

Ra(h)Rb(h) = tr cof Vh.(2.6)

Rewriting (2.4) gives

λi(A) = λ− h

2λ
Rj(i)(h)− h2

8λ3
(Rj(i)(h))2 + o(h2)

as h→ 0 for i = 1, 2, 3. Substituting this into the expression for P (A) above implies that

P (A) = −h
2

3∑
a=1

Ra(h) +
h2

8λ2

2
∑

1≤a<b≤3

Ra(h)Rb(h)−
3∑

a=1

(Ra(h))2

+ o(h2).

Here the fact that
∑

1≤i<k≤3Rj(i)(h) + Rj(k)(h) = 2
∑3

a=1Ra(h), which is easily deduced from

the fact that j(·) is a bijection, proves useful. Next, the identity

3∑
a=1

R2
a =

(
3∑

a=1

Ra

)2

− 2
∑

1≤a<b≤3

RaRb
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together with (2.5) and (2.6) yields

P (A) = hλtrU +
h2

2
|U |2 +

h2

8λ2
(4tr cof Vh − (trVh)2) + o(h2)

= hλtrU +
h2

2
|U |2 +

h2

2
(4tr cof Us − (trU)2) + o(h2)

= hλtrU +
h2

2
((trU)2 − tr (U2)) + o(h2).

In passing from the second to the final line above we have used the identity

tr cof Us =
(trU)2

2
− |U |

2

4
− trU2

4
,

and in the final line we recognise the coefficient of h2 as tr cof U , concluding the proof of (2.1).
The final assertion of the lemma is now straightforward. �

We note that the precaution of writing R(λi(A), h) = Rj(i,h)(h), where j(·, h) is a suitable
permutation of {1, 2, 3}, is not redundant: the quantities R(λi(A), h) really can ‘switch values’
within the set {R1(h), R2(h), R3(h)}, as the following simple example shows. Suppose λ > 0 and
let U = e1⊗ e1. Then, for h such that |h| < λ, the singular values of A := λ1+hU are λ, λ and
λ+ h, while the solutions Ri(h) to (2.2), which in this case is the equation R2(R+ 2λ+ h) = 0,
can be fixed as R1(h) = 0, R2(h) = 0 and R3(h) = −2λ − h. Now, for h > 0, the ordered
singular values of A are λ1(A) = λ2(A) = λ and λ3(A) = λ + h, while for h < 0, λ1(A) and
λ3(A) exchange places, i.e. λ1(A) = λ + h, λ2(A) = λ3(A) = λ. Therefore the map j(·, h)
corresponds to the identity permutation on {1, 2, 3} when h > 0, whereas it corresponds to the
transposition (13), in cycle notation, when h < 0. The switching comes about because we insist
on working with ordered singular values.

For later use, we also note that the proof of Lemma 2.1 above shows that

P (λ+ hU) = λhtrU + h2tr cof U + h3K(R1, R2, R3) + o(h3).(2.7)

The term K is a symmetric polynomial in R1, R2 and R3, and can therefore be expressed in
terms of the coefficients of the polynomial (2.3). To see (2.7), expand (2.4) to third order in h
and substitute into the expression for P (A). The precise form of K does not matter, so we omit
the proof.

Proposition 2.2. Let C1 and C2 be fixed 3× 3 matrices, let C3 be a real number, and let

N(A) = C1 · (A− λ1) + C2 · (cof A− λ21) + C3(detA− λ3)

for all A ∈ R3×3. Then

DUP (λ1) = DUN(λ1) ∀U ∈ R3×3(2.8)

if and only if C1, C2 and C3 are related by the equation

(λ− λ2C3 − λtrC2)1 = C1 − λCT2 .(2.9)

Moreover,

D2
UP (λ1) = D2

UN(λ1) ∀U ∈ R3×3(2.10)

if and only if C2 and C3 are related by the equation

C2 = (1− λC3)1.(2.11)
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In particular, the unique quadratic null Lagrangian N satisfying both (2.9) and (2.11) is

N(A) = tr cof A− λtrA,(2.12)

and it satisfies ∫
Ω
N(∇u) dx = 0(2.13)

for all u belonging to W 1,2(Ω,R3) such that u = uλ on ∂Ω (in the sense of trace).

Proof. Let A = λ1 + hU and note that

N(A) =
[
U · C1 + λtrUtrC2 − λtr (UC2) + λ2C3trU

]
h+ [C2 · cof U + λC3tr cof U ]h2 + C3h

3 detU.

Comparing terms of order h in this expression with the expansion for P (A) given in (2.1), we
see that DUP (λ1) = DUN(λ1) for all U if and only if (2.9) holds. To prove the equivalence of
(2.10) and (2.11), simply compare terms of order h2 to obtain

(C2 + λC31) · cof U = tr cof U(2.14)

for all U , and then pick U such that cof U = ei ⊗ ej . It is then clear that (2.14) is equivalent to
(2.11).

Finally, to prove that N(A) = tr cof A − λtrA is the unique, quadratic null Lagrangian
satisfying (2.9) and (2.11) take C3 = 0 in (2.11) and (2.9). The former gives C2 = 1, and the
latter C1 = −λ1, which together imply (2.12). Equation (2.13) is a standard result about null
Lagrangians; to see it without recourse to general theory, simply observe that, for sufficiently
smooth ϕ, N(∇ϕ) can be written as a divergence. The result then follows from the Green’s
theorem and an approximation argument. (The argument given in [6, Lemma 5.5 (ii)] serves as
a useful template.) �

We remark that this establishes a simple pattern: N(A) can apparently be obtained from P
by noting that if A = Diag (λ1, λ2, λ3) then P (A) = tr cof A− λtrA.

As was pointed out in the introduction, and originally conjectured in [4], it would be very
useful if P were quasiconvex at the matrix λ1. Our results in this direction are somewhat mixed.
We find that P satisfies a condition necessary for quasiconvexity at λ1, but that it does not
satisfy a tractable, sufficient condition for quasiconvexity at λ1. To be precise, (a) P is rank-
one convex at λ1 but (b) P is not polyconvex at that point. These concepts are explained in
more detail below. We note, incidentally, that P is not globally rank-one convex. The latter is
relatively easy to see: one can immediately calculate that, for any rank-one matrix A = a⊗ n,
λ1(A) = λ2(A) = 0 and λ3(A) = |A|. In particular, P (A) = −λ|A|, which is a concave function
of A. The foregoing discussion is summarised in the result below.

Proposition 2.3. Let the function P be defined by (1.3). Then

(a) λ1 is a point of rank-one convexity of P , but
(b) P is not polyconvex at λ1.

Proof. (a): To show (a) we only need to verify that P (λ1+a⊗n) is convex as a function of the
rank-one matrix a⊗n. Let A = λ1+a⊗n and assume without loss of generality that n is a unit
vector. The eigenvalues of ATA do not depend on the particular basis with respect to which A
is represented, so suppose to start with that the vector product a ∧ n 6= 0 and let {n, e2,

a∧n
|a∧n|}
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be an orthonormal basis of R3 in which a = a1n+ a2e2 holds for some a1 and a2. Then

ATA =

 λ2 + 2λa1 + |a|2 λa2 0
λa2 λ2 0
0 0 λ2


with eigenvalues λ2 and σ2

±, where

σ2
± = λ2 +

|a|2

2
+ λa1 ± |a|

√
|a|2
4

+ λa1 + λ2.

We can now calculate

P (A) = λσ+ + λσ− + σ+σ− − λ(σ+ + σ− + λ)

= σ+σ− − λ2

= λ(|λ+ a1| − λ).

This is clearly convex in a⊗ n, which proves part (a) of the lemma in the case that a ∧ n 6= 0.
When a ∧ n = 0 the same proof works with any orthonormal basis {n, e2, e3}.
(b) Assume for a contradiction that λ1 is a point of polyconvexity of P . This means that there
is some point (C1, C2, C3) in R19 such that

P (A) ≥ P (λ1) + C1 · (A− λ1) + C2 · (cof A− λ21) + C3(detA− λ3)(2.15)

for all A in R3×3. Note that C3 has to be zero because P is at most quadratic. Next, take
A = te1⊗ e1 when (C1)11 ≥ 0 and A = −te1⊗ e1 otherwise, where t is a parameter to be chosen
shortly. Recall that, when A is a rank-one matrix, P (A) = −λ|A|. This gives

−(λ+ |(C1)11|)t ≥ −λtrC1 − λ2trC2,

which is easily contradicted by taking t to be sufficiently large and positive. Therefore (2.15) is
impossible, which concludes the proof. �

Next, with N as in Proposition 2.12, we define

G(A) := P (A)−N(A)(2.16)

for all 3×3 matrices A. We know by equation (2.8) in Proposition 2.2 that P and N are tangent
at λ1, so clearly DUG(λ1) = 0 for all U . Moreover, by (2.11), we also have that D2

UG(λ1) = 0
for all U . Thus, by (2.7), the lowest order terms in the Taylor expansion of G about λ1 are
cubic (or higher powers), and this, coupled with the assumption that the exponent q in the
definition of W satisfies q < 3, is a key feature which enables us to find new lower bounds for
λcrit. The technique for doing so is described in the next section. We also record the following
useful property of G, which flows directly from (2.13):∫

Ω
P (∇u) dx =

∫
Ω
G(∇u) dx(2.17)

for all u belonging to W 1,2(Ω,R3) such that u = uλ on ∂Ω (in the sense of trace).
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3. New lower bounds on λcrit

Let the stored-energy function W : R3×3 → [0,+∞] be given by

W (A) = |A|q + Z(cof A) + h(detA)(3.1)

where Z : R3×3 → [0,+∞) is convex and h : R→ [0,+∞] has the following properties:

(H1) h is convex and C1 on (0,+∞);

(H2) limt→0+ h(t) = +∞ and lim inft→+∞
h(t)
t > 0;

(H3) h(t) = +∞ if t ≤ 0.

The exponent q satisfies 2 < q < 3. Let

I(u) =

∫
Ω
W (∇u) dx

and define the class of admissible maps as

Aλ = {u ∈W 1,q(Ω;R3) : u = uλ on ∂Ω, I(u) < +∞}.

The following argument is straightforward and can be found in [4, Section 3]. We include it here
both for completeness and as a means of deriving the function P defined by (1.3). Applying [10,
Lemma A.1] to A 7→ |A|q gives

(3.2) |∇u|q ≥ |λ1|q + q|λ1|q−2λ1 · (∇u− λ1) + κ|∇u− λ1|q,

where

(3.3) 22−q ≤ κ ≤ q21−q.

Therefore, by (3.2) and by appealing to the convexity of Z and h, we obtain

W (∇u) ≥ W (∇uλ) + q|λ1|q−2λ1 · (∇u− λ1) + κ|∇u− λ1|q(3.4)

+ DAZ(cof λ1) · (cof∇u− cof λ1)

+ h′(λ3)(det∇u− λ3),

for any u ∈ Aλ. Integrating (3.4), and using the facts that both ∇u and cof∇u are null
Lagrangians in W 1,q(Ω,R3) for q ≥ 2, we obtain

I(u)− I(uλ) ≥
∫

Ω
κ|∇u− λ1|q + h′(λ3)(λ1λ2λ3 − λ3) dx

=

∫
Ω
κ|∇u− λ1|q + h′(λ3)λ̂1λ̂2λ̂3 dx+ λh′(λ3)

∫
Ω
P (∇u) dx.(3.5)

In deriving this, it may help to recall the identity

λ1λ2λ3 = λ̂1λ̂2λ̂3 + λ
∑

1≤i<j≤3

λiλj − λ2
3∑
i=1

λi + λ3,(3.6)

where the notation λi abbreviates λi(A) and, for each i, λ̂i := λi − λ.
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Continuing from (3.5), we split the first term into two equal parts and recall the property of
G and P given in (2.17), thereby obtaining:

I(u)− I(uλ) ≥
∫

Ω
(κ/2)|∇u− λ1|q+h′(λ3)λ̂1λ̂2λ̂3 dx+

+

∫
Ω

(κ/2)|∇u− λ1|q + λh′(λ3)G(∇u) dx

≥
∫

Ω
(κ/2)|Λ(∇u)− Λ0|q+h′(λ3)λ̂1λ̂2λ̂3 dx+

+

∫
Ω

(κ/2)|∇u− λ1|q + λh′(λ3)G(∇u) dx.

Here, Λ(A) is the 3−vector with entries λi(A) and Λ0 = (λ, λ, λ). We have used the well-known
inequality |A− λ1| ≥ |Λ(A)− Λ0|.

In keeping with the notation introduced in [4, Lemma 3.2], let

F1(Λ) = (κ/2)|Λ− Λ0|q + h′(λ3)λ̂1λ̂2λ̂3,(3.7)

and, in contrast to the approach of [4], let

F2(A) = (κ/2)|A− λ1|q + λh′(λ3)G(A).

In these terms we then have

I(u)− I(uλ) ≥
∫

Ω
F1(Λ) dx+

∫
Ω
F2(∇u) dx.(3.8)

The sign of the first integral can be controlled by appealing to the following result:

Lemma 3.1. ([4, Lemma 3.3]) The function F1(Λ) defined in (3.7) is pointwise nonnegative on
R+++ := {(x1, x2, x3) : xi > 0 for i = 1, 2, 3} provided h′(λ3) > 0 and

(κ/2)

h′(λ3)λ3−q ≥ (q − 2)(q−2)/2q−q/2.(3.9)

The pointwise nonnegativity of F2, on the other hand, relies primarily on the argument given
in Lemma 3.2 below. In short, the idea is that F2(∇u) is dominated by |∇u−λ|q for both small
and large values of |∇u−λ| provided h′(λ3) is itself not too large. Thus we generate a new upper
bound on λ which must be imposed along with (3.9) in order to guarantee that I(u) ≥ I(uλ).

Lemma 3.2. With G as defined in (2.16) and for any positive constant c0, let

M2(λ, c0) = sup

{
|G(A)|
|A− λ1|2

: |A− λ1| ≥ c0

}
(3.10)

M3(λ, c0) = sup

{
|G(A)|
|A− λ1|3

: 0 < |A− λ1| < c0

}
.(3.11)

Then F2(A) ≥ 0 for all 3× 3 matrices A provided

λh′(λ3) ≤ min
c0

{
(κ/2) max

{
cq−2

0

M2(λ, c0)
,

c0
q−3

M3(λ, c0)

}}
.(3.12)
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Proof. By (2.7), the quantity M3(λ, c0) is finite and, in view of the at most quadratic growth
of G, M3(λ, c0) is uniformly bounded as a function of c0. By (2.11), M2(λ, c0) is finite for all
c0 ≥ 0. Let A 6= λ1 and let c = |A− λ1|. It is immediately clear that

F2(A) ≥ κ

2
|A− λ1|q − λh′(λ3)|G(A)|,

and we express the right-hand side in two ways:

κ

2
|A− λ1|q − λh′(λ3)|G(A)| =

(
κ

2
|A− λ1|q−j − λh′(λ3)

|G(A)|
|A− λ1|j

)
|A− λ1|j ,(3.13)

where j is either 2 or 3. Now let w := 2λh′(λ3)/κ and suppose that (3.12) holds. Then, in
particular,

w ≤ max{cq−2/M2(λ, c), cq−3/M3(λ, c)}.(3.14)

If the maximum in (3.14) is given by cq−2/M2(λ, c) then wM2(λ, c) ≤ cq−2, and hence κ
2 c
q−2 −

λh′(λ3) |G(A)|
cq−2 ≥ 0. Using (3.13) with j = 2, we see that F2(A) ≥ 0. If the maximum in (3.14)

is given by cq−3/M3(λ, c) then we can argue similarly, this time using (3.13) with j = 3, to
conclude that F2(A) ≥ 0. �

Lemma 3.3. Let f1(c0) =
cq−2
0

M2(λ,c0) , f2(c0) =
cq−3
0

M3(λ,c0) and define ξ(c0) = max{f1(c0), f2(c0)}.
Then f1 is nondecreasing, f2 is nonincreasing, and

inf
c0>0

ξ(c0) = M2(λ, c∗)q−3M3(λ, c∗)2−q

where c∗ is the unique fixed point of the function c0 7→ M2(λ,c0)
M3(λ,c0) .

Proof. Let M2(c0) = M2(λ, c0) and M3(c0) = M3(λ, c0) for brevity. It is clear from their
definitions that M2(c0) and M3(c0) are nonincreasing and nondecreasing respectively. From this
and the fact that 2 < q < 3, it follows that f1 is nondecreasing and f2 is nonincreasing. Since
f1(c0)→ +∞ as c0 → +∞ and f2(c0)→ +∞ as c0 → 0+, there is a unique point c∗ such that
f1(c∗) = f2(c∗),

ξ(c0) =

{
f2(c0) if c0 ≤ c∗
f1(c0) if c0 ≥ c∗

and where, moreover, ξ(c∗) is the global minimum of ξ on R+. It is straightforward to see
that the condition f1(c∗) = f2(c∗) is equivalent to the condition c∗ = M2(c∗)/M3(c∗), and that
f1(c∗) = M2(c∗)q−3M3(c∗)2−q. �

We are now in a position to state the main theorem of this section.

Theorem 3.4. Let W be as in (3.1) and suppose that λ is chosen so that

0 ≤ λ3−qh′(λ3) ≤ min{(κ/2)(q − 2)(2−q)/2qq/2, (κ/2)λ2−qM2(λ, c∗)q−3M3(λ, c∗)2−q},(3.15)

where c∗ is the unique fixed point of the function c0 7→M2(λ, c0)/M3(λ, c0). Then I(u) ≥ I(uλ)
for any map u ∈ H1(Ω,R3) whose boundary values agree with those of uλ in the sense of trace.
In particular, the largest possible value λ0 satisfying (3.15) is a lower bound for λcrit. Moreover,
if the rightmost inequality of (3.15) is strict then there is C = C(Ω) > 0 such that

I(u)− I(uλ) ≥ C
∫

Ω
|∇u− λ1|q + |G(∇u)| dx.(3.16)

for all admissible u.
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Proof. Acccording to (3.8), I(u) − I(uλ) is bounded below by the sum of
∫

ΩF1(∇u) dx and∫
ΩF2(∇u) dx. By inequality (3.15) and Lemma 3.1, the first of these integrals is nonnegative,

while Lemmas 3.2 and 3.3 together imply that the second integral is nonnegative. Either way,
it follows that I(u) ≥ I(uλ), as claimed. It is then clear that λ0, as defined above, is not larger
than λcrit.

Now suppose that the rightmost inequality in (3.15) is strict. The proof of [4, Theorem 3.6]

shows that the inequality λ3−qh′(λ3) < κ
2 (q − 2)

2−q
2 q

q
2 implies, for some ε > 0, that

F1(A) ≥ ε|Λ(A)− (λ, λ, λ)|q

for all A in R3×3. Here, Λ(A) = (λ1(A), λ2(A), λ3(A)) is the vector of singular values of the
matrix A. The rigidity argument, with minor modifications, given in [4, Theorem 3.6] then
shows that there is a constant, β(Ω), say, such that∫

Ω
|Λ(∇u)− (λ, λ, λ)|q dx ≥ β(Ω)

∫
Ω
|∇u− λ1|q dx.

Hence ∫
Ω
F1(∇u) dx ≥ εβ(Ω)

∫
Ω
|∇u− λ1|q dx.

Finally, we deal with the term involving F2(A). Fix A in R3×3 and let c0 = |A−λ1|. According
to the proof of Lemma 3.2,

F2(A) ≥ κ

2

(
|A− λ1|q−j − 2λh′(λ3)

κ

|G(A)|
|A− λ1|j

)
|A− λ1|j(3.17)

for j = 2 and 3. Reusing the notation w = 2λh′(λ3)/κ, and still assuming that the rightmost
inequality of (3.15) is strict, there is ε′ > 0, which is independent of c0, such that

w + ε′ ≤ max{cq−2
0 /M2(λ, c0), cq−3

0 /M3(λ, c0)}.(3.18)

By rewriting (3.17), we obtain

F2(A) ≥ κ

2

(
cq−j0 − (w + ε′)Mj(λ, c0)

)
cj0 +

κε′

2
|G(A)|

for j = 2 and 3. Thanks to (3.18), the term in brackets is nonnegative, which leaves F2(A) ≥
κε′|G(A)|/2. Both terms in the right-hand side of inequality (3.16) are now accounted for. �

Remark 3.5. The goal of Theorem 3.4 is to give the largest possible bound on λ such that
I(u) ≥ I(uλ). A careful look at the proof of Lemma 3.2 shows that one could replace |G(A)| by
G−(A) = −min{G(A), 0} and that the same conclusions would result, but with

M−2 (λ, c0) = sup

{
G−(A)

|A− λ1|2
: |A− λ1| ≥ c0

}
M−3 (λ, c0) = sup

{
G−(A)

|A− λ1|3
: 0 < |A− λ1| < c0

}
in place of M2(λ, c0) and M3(λ, c0) respectively. Since M−j (λ, c0) ≤ Mj(λ, c0) for j = 2 and 3,

it follows that the upper bound involving c∗ in (3.15) would not decrease. Numerical evidence
suggests that it does, in fact, increase, and thus provides a better (lower) bound for λcrit. See
Remark 3.11 and Section A.3 for further details.
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3.1. Calculations leading to a concrete upper bound. The upper bound (3.15) given in
the statement of Theorem 3.4 contains two terms, one of which is explicitly given in terms of the
exponent q and one which depends on the fixed point c∗ of the function c0 7→M2(λ, c0)/M3(λ, c0).
While it does not seem to be possible to find c∗ purely analytically, one can nevertheless make
progress using a mixture of analysis and a careful numerical calculation, as we now describe.

Proposition 3.6. With M2(λ, c0) as defined by (3.10), limc0→∞M2(λ, c0) =
√

2.

Proof. First, note that the limit in the statement exists because M2(c) is nonincreasing and
bounded below. Now

G(A)

|A− λ1|2
= K(Â) +

λ(2trA− 3λ)

|A− λ1|2
K(Â)− λ

|A− λ1|2

(
3∑
i=1

λi(A)− trA

)
where Â = A/|A| and

K(Â) =
∑

1≤i<j≤3

λi(Â)λj(Â)− tr cof Â.

Let c0 > 0. Since K is bounded and the term
∑3

i=1 λi(A) − trA has at most linear growth in
A, it is clear that there are constants α1 and α2, depending only on λ, such that

|K(Â)|+ α1

c0
≤ |G(A)|
|A− λ1|2

≤ |K(Â)|+ α2

c0
(3.19)

whenever |A−λ1| ≥ c0. We now prove that (a) max{K(Â)} =
√

2, where the maximum is taken

over all unit matrices Â, and (b) that given any c > 0 there is A(c) such that |A(c) − λ1| ≥ c

and K(Â(c)) =
√

2. The proposition then follows from this and (3.19).

To simplify the notation we replace Â by A in the following. By the polar factorization
theorem (see [5, Theorem 3.2-2]), there is a positive semidefinite and symmetric matrix U and
a matrix R ∈ O(3) such that A = RU . The eigenvalues of U are the singular values λi(A),
i = 1, 2, 3, and one has

K(A) =
∑

1≤i,j≤3

λi(A)λj(A)− tr (cof R cof U)

=
∑

1≤i,j≤3

λi(A)λj(A)− tr ((detR)RQT cof DQ),

where the well-known decomposition U = QTDQ has been used, withD = diag(λ1(A), λ2(A), λ3(A))
and Q in O(3). Note that detR = ±1. It follows that

K(A) =
∑

1≤i,j≤3

λi(A)λj(A)− tr (P diag(λ2λ3, λ1λ3, λ1λ2)),

where P := QdetRRQT belongs to SO(3). The term involving the trace satisfies

tr (P diag(λ2λ3, λ1λ3, λ1λ2)) = P11λ2λ3 + P22λ1λ3 + P33λ1λ2.

The term
∑

1≤i,j≤3 λi(A)λj(A) is independent of P , so we can vary P in order to minimize

the term involving the trace given above. Since P belongs to SO(3), its rows and columns are
orthogonal unit vectors. In particular, |P11| ≤ 1, so to make P11λ2λ3 minimal we should take
P11 = −1. (Here we have used the ordering λ3 ≥ λ2 ≥ λ1.) Hence row 1 of P is (−1, 0, 0),
forcing the second and third rows to take the form (0, P22, P33) and (0, P32, P33) respectively. In
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particular, detP = −(P22P33−P23P32) = 1. Without loss of generality, we may take P22 = cosα,
P32 = P23 = sinα, P33 = − cosα for some α, in which case

P11λ2λ3 + P22λ1λ3 + P33λ1λ2 ≥ −λ2λ3 + cosα(λ1λ3 − λ1λ2)

≥ −λ2λ3 − λ1(λ3 − λ2)

by choosing α = π. Hence

K(A) ≤ 2λ3(λ1 + λ2)

where the matrix P yielding this upper bound is given by P = diag(−1,−1, 1). Bearing in mind

that |A|2 =
∑3

i=1 λ
2
i = 1, it can be shown that 2λ3(λ1 +λ2) ≤

√
2, and that a maximizing choice

of singular values is λ1 = λ2 = 1/2, λ3 = 1/
√

2. A suitable choice for a maximizing A would
therefore be A0 = P diag(1/2, 1/2, 1/

√
2) = diag (−1/2,−1/2, 1/

√
2), and one can check that

K(A0) =
√

2. To conclude the proof, it is enough to choose A(c) := rA0 for any r = r(c) large
enough that |A(c)− λ1| ≥ c. �

Since D2G(λ1) = 0, it can easily be shown that M2(λ, c0) is constant as a function of
c0 for all sufficiently small and positive c0. We are therefore justified in writing M2(λ, 0) :=
limc0→0M2(c0), and in fact

M2(λ, 0) = sup

{
|G(A)|
|A− λ1|2

: A 6= λ1

}
.

According to Proposition 3.6, we must have

M2(λ, 0) ≥M2(λ, c0) ≥
√

2 for all c0 > 0.(3.20)

Using a ‘brute force’ approach, which we describe in the appendix, we find that
√

2−M2(λ, 0) ≈
2.7 × 10−9, independently of λ in the range [1, 2]. Thus, in view of (3.20), it seems that
M2(λ, c0) ≡

√
2 for all c0 and λ, and we record this as:

Conjecture 3.7. For all λ > 0 and c0 > 0, M2(λ, c0) =
√

2.

In order to explain the method used to approximate M2(λ, 0), we introduce the notation

ml(A, λ) :=
|G(A)|
|A− λ1|l

for l = 2 and 3, and we restrict attention to λ in the range [1, 2]. Choose a random starting
matrix A1, compute g1 := ∇m2(A1, λ) and find the scalar σ1, say, which maximises m2(A1+σg1).
Let the maximising value of σ be σ1; then we set A2 = A1 + σ1g1. Proceeding iteratively, we
compute a sequence of matrices Ai. It turns out that m2(Ai, λ) tends to

√
2 as i increases,

regardless of λ.
Supposing that Conjecture 3.7 is right, we are now required to findM2(λ, c∗)q−3M3(λ, c∗)q−2 =

2
q−3

2 M3(λ, c∗), where c∗ satisfies c∗ =
√

2/M3(λ, c∗). We begin by recalling that c0 7→M3(λ, c0)
is nondecreasing, and that, thanks to the at most quadratic growth of the function G(A), there
is c1(λ) such that M3(λ, c0) = M3(λ, c1) for all c0 ≥ c1. We are therefore justified in defining
M3(λ,∞) := M3(λ, c1). Appealing again to numerical techniques, which we describe in the
appendix, we find that, for λ in the range [1, 2], there is very good agreement between c1(λ) and
the expression ν3λ + ν2, where ν2 ≈ 1.764 × 10−3 and and ν3 ≈ 1.842. Moreover, for the same
range of λ, there is strong numerical evidence for the approximation M3(λ,∞) ≈ ν1/λ, where
ν1 ≈ 0.4501. See Fig. 1.

This leads naturally to the following:
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Figure 1. Left: plot of ν1/λ = 0.4501/λ (continuous curve) fitted to a series of
values of M3(λ,∞) (filled circles). Right: plot of c1(λ) versus λ. The error bars,
which are almost too narrow to see, show the maximum and minimum values of
c1 from among the fifteen top-ranking matrices. (See the appendix for details.)

Conjecture 3.8. M3(λ, c0) = M3(λ, c1) = ν1/λ for all c0 ≥ c1(λ) and for λ in the range [1, 2],
where c1(λ) = ν3λ+ ν2 and the values of ν1, ν2 and ν3 are given above.

Let us now suppose that Conjectures 3.7 and 3.8 are correct. Note that then the function
p : c 7→ M2(λ, c)/M3(λ, c) =

√
2λ/ν1 is independent of c for all c ≥ c1. There are thus

two possibilties for the fixed point c∗ of p: either c∗ =
√

2λ/ν1 or c∗ < c1. Suppose for a
contradiction that c∗ < c1. Then M3(λ, c∗) ≤ M3(λ, c1), and so p(c∗) ≥ p(c1). But p(c∗) = c∗

and p(c1) =
√

2λ/ν1, which gives c∗ ≥
√

2λ/ν1. By hypothesis, c1 > c∗, which when combined
with the preceding inequality implies c1 >

√
2λ/ν1. Applying Conjecture 3.8 and rearranging,

we see that this is equivalent to ν1ν2 ≥ (
√

2− ν3ν1)λ, which can only hold if λ ≤ 1.357× 10−3.
But we supposed that λ ≥ 1, which is a contradiction. In summary, we have shown the following
result.

Proposition 3.9. Let λ belong to the interval [1, 2] and suppose that Conjectures 3.7 and 3.8
are correct. Then the unique fixed point of the function p(c) := M2(λ, c)/M3(λ, c) is given by
c∗ =

√
2λ/ν1, and

M2(λ, c∗)q−3M3(λ, c∗)2−q =
1√
2

(√
2λ

ν1

)q−2

.

Referring back to the upper bound given in (3.15), we now have the following:

Corollary 3.10. Let the assumptions of Proposition 3.9 hold. Then I(u) ≥ I(uλ) provided

0 ≤ λ3−qh′(λ3) ≤ (κ/2)(
√

2)q−3ν1
2−q.(3.21)

Proof. It is enough to show that

min{(q − 2)(2−q)/2qq/2, λ2−qM2(λ, c∗)q−3M3(λ, c∗)2−q} = (
√

2)q−3ν1
2−q.

By Proposition 3.9, we clearly have λ2−qM2(λ, c∗)q−3M3(λ, c∗)2−q = (
√

2)q−3ν1
2−q. Therefore it

remains to show that (q− 2)(2−q)/2qq/2 > (
√

2)q−3ν1
2−q for 2 < q < 3. Let z(q) = (

√
2)q−3ν1

2−q
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and y(q) = (q − 2)(2−q)/2qq/2. Note that z is convex, while a short calculation reveals that y is
concave on the interval (2, 3). Therefore the inequality z(q) < y(q) will follow from the pair of
inequalities z(2) < y(2+) and z(3) < y(3), both of which are easy to check. This concludes the
proof. �

Remark 3.11. Corollary 3.10 suggests that the bound is not the best possible: we would really
expect both terms in the bound given in (3.15) to play a role. One way to achieve this might be to
use the quantities M−j in place of Mj for j = 2, 3. Indeed, we find, again numerically, that there

is very good agreement between M−3 (λ,∞) and ν ′1/λ for λ in the range [1, 2], where ν ′1 = 0.1923.
Interestingly, if we then replace M3 by M−3 everywhere in the preceding calculations, we find
that z(3) < y(3) no longer holds. In other words, both terms in the upper bound given by (3.15)
appear to contribute. This observation comes with some caveats, however; see Section A.3 in
the appendix.

4. A condition for the inequality I(u) ≤ I(uλ)

The results in the previous sections provide conditions on λ under which the inequality
I(u) ≥ I(uλ) holds for admissible maps. It is natural to ask what information results from
supposing that I(u) ≤ I(uλ), and, of our results, Theorem 3.4 is the first place to look. Now, if
the rightmost inequality of (3.15) is strict, then uλ sits in a ‘potential well’, as expressed by the
estimate (3.16), which we recall here for the reader’s convenience:

I(u)− I(uλ) ≥ C
∫

Ω
|∇u− λ1|q + |G(∇u)| dx.

Thus, in these circumstances, I(u) ≤ I(uλ) is impossible. If (3.15) holds with equality then a
similar remark applies, but with the additional possibility of losing one or both terms in the
right-hand side of (3.16). And when (3.15) fails, the preceding analysis tells us nothing about
those u whose energy satisfies I(u) ≤ I(uλ). Therefore a different approach is called for.

Consider the following simplified model, in which we set the function Z appearing in (3.1) to
zero. Thus we let

W (A) = |A|q + h(detA) for A ∈ R3×3,(4.1)

where, as before, 2 < q < 3. Let λ > 1 and note that, by the convexity of h,

I(u)− I(uλ) ≥
∫

Ω
h′(λ3)(det∇u− λ3) + |∇u|q − |∇uλ|q dx

≥
∫

Ω
h′(λ3)(det∇u− λ3) + κ|∇u−∇uλ|q dx,(4.2)

where we have used (3.2) and (3.4) with Z = 0, and where the constant κ obeys the bounds
specified in inequality (3.3). Using identity (3.6) and the definition (1.3) of P , write

det∇u− λ3 = λ̂1λ̂2λ̂3 + λP (∇u),(4.3)

where λ̂i := λi−λ and λi := λi(∇u). Finally, recall that the function G defined in (2.16) satisfies∫
Ω
G(∇u) dx =

∫
Ω
P (∇u) dx
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whenever u is admissible. Combining this with (4.2) and (4.3), we have

I(u)− I(uλ) ≥
∫

Ω
h′(λ3)(λ̂1λ̂2λ̂3 + λG(∇u)) + κ|∇u−∇uλ|q dx.(4.4)

It will be useful to have a shorthand for the function with prefactor h′(λ3) appearing in (4.4);
accordingly, let

H(A) = λ̂1(A)λ̂2(A)λ̂3(A) + λG(A).(4.5)

We now give a series of results which allow us to find a lower bound on the function H.

Lemma 4.1. Let A be a 3 × 3 matrix such that detA > 0 and whose singular values obey
λ1(A) ≤ λ2(A) ≤ λ3(A). Then there is R in SO(3) such that

G(A) = (1−R11)α+ (1−R22)β + (1−R33)γ,(4.6)

where α := λ2λ3−λλ1, β := λ1λ3−λλ2 and γ := λ1λ2−λλ3 satisfy α ≥ β ≥ γ, and λj = λj(A)
for j = 1, 2, 3.

Proof. For brevity, write λj in place of λj(A) for j = 1, 2, 3. Note that P (A) = α + β + γ by
definition, and that, by polar decomposition, there are matrices Q1 and Q2, belonging to O(3),
such that A = Q2Q

T
1 DQ1 and where D is a diagonal matrix with entries λ1, λ2 and λ3. (See [5,

Theorem 3.2-2].) Since detA > 0, Q2 must belong to SO(3). We see that

N(A) = tr cof (Q2Q
T
1 DQ1)− λtrQ2Q

T
1 DQ1

= tr (R(cof D − λD)),

where R := Q1Q2Q
T
1 belongs to SO(3). Hence N(A) = R11α+R22β +R33γ, and (4.6) follows.

Finally, since λ3(A) ≥ λ2(A) ≥ λ1(A), the inequalities α ≥ β ≥ γ must hold. �

Our aim is to minimize G(A) by allowing R to vary in SO(3). To that end, consider the
following.

Lemma 4.2. Let R belong to SO(3) and suppose that it minimizes

g(R) := (1−R11)α+ (1−R22)β + (1−R33)γ.

Then

αR12 − βR21 = 0(4.7)

αR13 − γR31 = 0(4.8)

βR23 − γR32 = 0.(4.9)

If none of α, β, γ is zero then((
α

β

)2

− 1

)
R2

12 +

((
α

γ

)2

− 1

)
R2

13 = 0(4.10) ((
β

γ

)2

− 1

)
R2

23 −

((
α

β

)2

− 1

)
R2

12 = 0.(4.11)

Moreover, if exactly one of α, β, γ is zero, then either R2
11 = 1 or R2

22 = 1 or R2
33 = 1. The

same is true if none of α, β and γ is zero, provided at least one of α > β and β > γ holds.
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Proof. We first show that (4.7)-(4.9) hold. It is well known that the tangent space to SO(3) at
R consists of those ρ in R3×3 such that RTρ is antisymmetric. From this, it easily follows that
there are real numbers a, b and c such that

ρ11 = −bR13 − aR12

ρ22 = aR21 − cR23

ρ33 = bR31 + cR32.

Now suppose that R(ε) is a smooth path of matrices belonging to SO(3), and satisfying R(0) = R

and Ṙ(0) = ρ. We then have

∂ε|ε=0g(R(ε)) = a(R12α−R21β) + b(R13α−R31γ) + c(R23β −R32γ),

so that, by varying a, b and c independently, the stationarity conditions (4.7)-(4.9) follow. If α,
β and γ are all nonzero then equation (4.10) follows by solving (4.7) and (4.8) for R21 and R31

respectively and then using the fact that R2
12 +R2

13 = R2
21 +R2

31. Equation (4.11) follows from
a similar argument.

To prove the last part of the statement, we consider cases as follows.

Case (i): α = 0 > β ≥ γ.
Using (4.7) and (4.8), we see that R21 = R31 = 0. Hence, since the first column of R is a unit
vector, we must have R2

11 = 1.

Case (ii): α > 0 = β > γ.
Using (4.7) and (4.9), we see that R12 = 0 and R32 = 0. Since the second column of R is a unit
vector, we must have R2

22 = 1.

Case (iii): α ≥ β > γ = 0.
Equations (4.8) and (4.9) imply respectively that R13 = 0 and R23 = 0. Hence R2

33 = 1.

Case (iv): α > β > γ;α 6= 0, β 6= 0, γ 6= 0. In this case, (4.10) implies that R12 = R13 = 0,
and so R2

11 = 1.

Case (v): α = β > γ;α 6= 0, β 6= 0, γ 6= 0. Now (4.10) implies that R13 = 0 and (4.11) that
R23 = 0. Hence R2

33 = 1.

Case (vi): α > β = γ;α 6= 0, β 6= 0, γ 6= 0. Equations (4.10) and (4.11) imply that R12 =
R13 = 0, and hence R2

11 = 1. �

The next result will enable us to deal with the case α = β = γ.

Lemma 4.3. Let R belong to SO(3) and suppose that R is symmetric. Then 3 ≥ trR ≥ −1.

Proof. If R is a symmetric, orthogonal matrix then R2 = 1, from which it follows that any
eigenvalue µi of R must satisfy µ2

i = 1. Moreover, µ1µ2µ3 = 1, from which it follows that
3 ≥ trR = µ1 + µ2 + µ3 ≥ −1. �

Lemma 4.4. Let R belong to SO(3). Then

g(R) = (1−R11)α+ (1−R22)β + (1−R33)γ

satisfies

g(R) ≥ min{2(β + γ), 0}.(4.12)

Proof. If two or more of α, β and γ are zero then the lower bound g(R) ≥ 2(β + γ) is trivial.
Thus, to minimize g, we may begin by supposing that the conditions of Lemma 4.2 apply, so
that, in all cases except α = β = γ, we have either that R2

11 = 1 or R2
22 = 1 or R2

33 = 1. First
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suppose that R2
11 = 1. Then the diagonal elements of R are either of the form 1, cosσ, cosσ for

some σ, or else of the form −1, cosσ,− cosσ. In the former case,

g(R) = (1− cosσ)(β + γ).

If β + γ ≥ 0 then clearly g(R) ≥ 0. If β + γ < 0 then to minimize g we take cosσ = −1 and the
claimed lower bound follows. If R11 = −1, then

g(R) = 2α+ β + γ + (γ − β) cosσ,

which, since γ ≤ β, implies that we should take cosσ = 1 in order to minimize g. Hence

g(R) ≥ 2(α+ γ) ≥ 2(β + γ).

If R2
33 = 1 or R2

22 = 1 then the argument needed is similar. Finally, let us suppose that
α = β = γ. Then

g(R) = (3− trR)γ.

If γ < 0 then g is minimized when trR = −1, according to Lemma 4.3. Hence, in this case,
g(R) ≥ 4γ = 2(β + γ). Otherwise, g(R) ≥ 0 because trR ≤ 3 by Lemma 4.3. This completes
the proof. �

Proposition 4.5. Let λ > 0, let H be given by (4.5) and let λ1 ≤ λ2 ≤ λ3 be the singular values
of A. Then

H(A) ≥
{

(λ1 − λ)(λ2 − λ)(λ3 − λ) if λ1 ≥ λ
(λ1 − λ)(λ2 + λ)(λ3 + λ) if λ1 ≤ λ.

Proof. First suppose that λ1 ≥ λ. Note that β+ γ = (λ1−λ)(λ2 +λ3) is then nonnegative, and
so, by inequality (4.12) in Lemma 4.4, we have G(A) = g(R) ≥ 0. Hence H(A) = (λ1− λ)(λ2−
λ)(λ3 − λ) + λG(A) ≥ (λ1 − λ)(λ2 − λ)(λ3 − λ).

Now suppose that λ1 ≤ λ. Then the lower bound in (4.12) is 2(β + γ) ≤ 0, and so

H(A) ≥ (λ1 − λ)(λ2 − λ)(λ3 − λ) + 2λ(λ1 − λ)(λ2 + λ3)

= (λ1 − λ)(λ2 + λ)(λ3 + λ).

�

The main result of this subsection is the following.

Proposition 4.6. Suppose h′(λ3) ≥ 0 and let W be given by (4.1). Then any admissible map
u 6= uλ is such that:

I(u)− I(uλ) ≥
∫

Ω
κ|∇u−∇uλ|q + h′(λ3)H(∇u) dx.

In particular, if
∫

ΩH(∇u) dx ≥ 0 then I(u) > I(uλ), while if I(u) ≤ I(uλ) then∫
{x∈Ω: λ1(∇u(x))≥λ}

h′(λ3)(λ1 − λ)(λ2 − λ)(λ3 − λ)+κ|∇u−∇uλ|q dx

≤
∫
{x∈Ω: λ1(∇u(x))≤λ}

h′(λ3)(λ− λ1)(λ+ λ2)(λ+ λ3) dx.(4.13)

Proof. This follows from (4.4) and Proposition 4.5. �
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We remark that the results of Section 3 imply that inequality (4.13) ought not to be possible
for λ such that λ3−qh′(λ3) is sufficiently small (see (3.15)). It is not immediately obvious from
(4.13) why this should be so; nor is it clear why such a prominent role is played by the smallest
singular value λ1(∇u). This surely warrants further investigation.
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Appendix

Two different algorithms have been used to compute the quantityM3(λ,∞) := limc→∞M3(λ, c),
as defined in Subsection 3.1. We recall the notation

ml(A, λ) =
|G(A)|
|A− λ1|l

for l = 2, 3. The algorithms are also brought to bear on the problem of calculating M−3 (λ,∞),
and we summarise the results below.

A.1. Algorithm A: conjugate gradient. This is a ‘brute force’ approach, which consists of

• Choosing a value of λ ∈ [1, 2];
• Generating matrices A with all elements aij being uniformly distributed random numbers

over the interval [−α, α], for given α;
• Using the Polak-Ribiere variant of the Fletcher-Reeves algorithm [11], one of the so-called

conjugate gradient methods for maximisation of smooth functions, starting from each of
these matrices, in order to find a candidate matrix for A∗l (λ), which is an approximate
maximiser of m3(·, λ).

We choose α = 5, the justification for which is as follows. Five thousand matrices were generated
and those which gave the 15 largest values of m3(·, λ) were saved as the computation proceeded.
Of these, none had an element whose modulus exceeded 3.1, hence reassuring us that the choice
α = 5 is ‘safe’ for λ in the range [1, 2].

Since the algorithm is iterative, a stopping condition is required, and this is that

(A.1) |m(i+1) −m(i)| ≤ ε

2

(
|m(i+1)|+ |m(i)|

)
,

where m(i) is the value of m3(Ai, λ) at the i-th iteration and ε = 10−9.
Various data are saved as the computation progresses, including the current maximising

matrix, which is the latest approximation to A∗l (λ). For half the simulations, the initial random
matrix is symmetric, and for the other half it is not — we do not know, a priori, whether A∗l (λ)
will be symmetric or not. The numerics strongly indicated that A∗3(λ) is indeed symmetric, at
least for λ in the range [1, 2].

All computations were carried out using 40 significant figures. Algorithm A leads the ap-
proximation M3(λ,∞) ≈ νA1 /λ, where νA1 = 0.4501 —see Table 1; the algorithm also produces
the approximation to c1(λ) shown in Fig. 2 and summarised in Table 2 below.
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λ 1.01 1.1 1.2 1.3 1.4 1.5

M3(λ,∞) 0.44566175 0.40919852 0.37509864 0.34624489 0.32151312 0.30007890
νA1 /λ 0.44566173 0.40919850 0.37509862 0.34624488 0.32151311 0.30007890

λ 1.6 1.7 1.8 1.9 2.0

M3(λ,∞) 0.28132398 0.26477551 0.25006575 0.23690440 0.22505900
νA1 /λ 0.28132397 0.26477550 0.25006575 0.23690439 0.22505917

Table 1. Computed values of M3(λ,∞) compared with the approximation
νA1 /λ, for various values of λ. Least squares was used to find νA1 . The largest
absolute deviation, 1.72× 10−7, occurs at λ = 2.

λ 1.01 1.1 1.2 1.3 1.4 1.5
|A∗3 − λ1| 1.86212 2.02791 2.21231 2.39673 2.58098 2.76509
c1(λ) 1.86240 2.02820 2.21242 2.39664 2.58087 2.76509

λ 1.6 1.7 1.8 1.9 2.0
|A∗3 − λ1| 2.94943 3.13421 3.31866 3.50261 3.68432
c1(λ) 2.94931 3.13353 3.31775 3.50197 3.68619

Table 2. Computed values of |A∗3− λ1| compared with the approximation ν2 +
ν3λ, for various values of λ.

A.2. Algorithm B: pointwise supremum. This is based on a different idea, although a
Monte Carlo approach it is still at its heart. We start by fixing an interval for λ, Λ = [λ−, λ+],
which is not necessarily [1, 2] — the computation time is, at one level, independent of the
interval. We then define Np equally-spaced points in Λ, these points being λi = λ− + iδλ with
δλ = (λ+ − λ−)/Np and i = 0, . . . , Np.

Next, as before, a large number, N , of random matrices Ai are generated. As can be seen
from its definition,

ml(Ai, λ) =
|a1 + a2λ|

(b1 + b2λ+ b3λ2)l/2

where the coefficients a1, . . . b3 are functions of the elements of Ai that we compute numerically.
We define fl,i(λ) := ml(Ai, λ), and clearly, once the coefficients have been computed, fl,i(λ) can
easily be found for any λ.

We then compute

Fl,j = sup {fl,i(λj), i = 1, . . . , N}
for j = 0, . . . , Np; Fl,j is then a discrete approximation to Ml(λj ,∞). The convergence to
M3(λ,∞) is quite slow, but nonetheless, choosing N large enough gives reasonable agreement
with results produced by Algorithm A, thereby providing an independent check. Compare Fig. 1
with Fig. 2.

A.3. CalculatingM−3 (λ,∞). Using Algorithm A, the methodology is the same as forM3(λ,∞),
with the same number of random matrices generated, whose elements have the same bounds.
The investigations lead us to conjecture that

M−3 (λ,∞) ≈ νA,−1 /λ,
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Figure 2. Left: approximation from Algorithm B to M3(λ,∞) and, for com-
parison, νB1 /λ, where νB1 = 0.4492. Right: the difference between the two curves
in the left-hand figure.

Figure 3. Left: The result of using Algorithm A to estimate M−3 (λ,∞) versus
λ, for λ = 1.0, 1.1, . . . , 2.0, circles, where the data has been obtained from the

maximum of several computations. The curve shows νA,−1 /λ for νA,−1 = 0.1923.
Right: Algorithm B used to estimate M−3 (λ,∞) versus λ, (continuous line),

compared with the model νB,−1 /λ with νB,−1 = 0.1925 (dashed line).

where νA,−1 ≈ 0.1923. See Figure 3.
Recall that in the case of M3(λ,∞) it was possible to compute and then model the quantity

c1(λ) accurately on the interval 1 ≤ λ ≤ 2 using an affine function of λ. The same cannot be
said of the corresponding quantity c−1 (λ), and indeed this seems to behave somewhat erratically
as a function of λ. Thus the analysis leading up to Proposition 3.9 does not apply, and hence
the caveat regarding the substitution of M−3 (λ,∞) ≈ ν ′1/λ promised in Remark 3.11.
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