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Abstract

In uncertainty quantification, critical parameters of mathematical mod-
els are substituted by random variables. We consider dynamical systems
composed of ordinary differential equations. The unknown solution is
expanded into an orthogonal basis of the random space, e.g., the polyno-
mial chaos expansions. A Galerkin method yields a numerical solution of
the stochastic model. In the linear case, the Galerkin-projected system
may be unstable, even though all realizations of the original system are
asymptotically stable. We derive a basis transformation for the state vari-
ables in the original system, which guarantees a stable Galerkin-projected
system. The transformation matrix is obtained from a symmetric de-
composition of a solution of a Lyapunov equation. In the nonlinear case,
we examine stationary solutions of the original system. Again the ba-
sis transformation preserves the asymptotic stability of the stationary
solutions in the stochastic Galerkin projection. We present results of
numerical computations for both a linear and a nonlinear test example.
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1 Introduction

Uncertainty quantification (UQ) examines the dependence of outputs on vague
input parameters in mathematical models, see [21]. Often the uncertain pa-
rameters are replaced by random variables or random processes, resulting in a
stochastic problem. We consider dynamical systems consisting of ordinary dif-
ferential equations (ODEs) with random parameters. The state variables can
be expanded into a series of orthogonal basis functions, where often polynomials
are applied (polynomial chaos), see [1, 4, 22]. Stochastic Galerkin methods or
stochastic collocation techniques yield numerical solutions of unknown coefficient
functions. We focus on the stochastic Galerkin approach, see [2, 11, 13], in this
paper.

Sonday et al. [19] analyzed the spectrum of a Jacobian matrix of a Galerkin-
projected (nonlinear) system of ODEs. The results indicate that a preservation
of stability is not guaranteed in the Galerkin projection even if the original system
is asymptotically stable. Even though a loss of stability happens rather seldom,
this change in stability leads to unexpected and erroneous results. Therefore, we
derive a technique, which guarantees the asymptotic stability in the Galerkin-
projected system provided that the original system is asymptotically stable.

Prajna [10] designed an approach to preserve stability in a projection-based model
order reduction of a (nonlinear) system of ODEs. Therein, a dynamical system
is reduced to a smaller dynamical system. We apply a similar strategy in the
stochastic Galerkin method, where a random dynamical system is projected to
a larger deterministic dynamical system. The stability-preserving technique em-
ploys a basis transformation of the original parameter-dependent system, where
the transformation matrix is derived from the solution of a Lyapunov equation.

We construct and investigate this transformation for linear dynamical systems in
detail. A proof of the stability preservation is given for the stabilized stochastic
Galerkin method. Furthermore, we consider the asymptotic stability of station-
ary solutions (equilibria) for autonomous nonlinear dynamical systems. In [12],
existence and convergence of stationary solutions was analyzed in the stochastic
Galerkin-projected systems. The Galerkin system exhibits equilibria, which yield
approximations to the random-dependent equilibria of the original system. The
approximations converge in mean square to the exact equilibria. Now we apply
the basis transformation to guarantee the stability of the stationary solutions in
the stochastic Galerkin-projected system.

The paper is organized as follows. The stochastic Galerkin approach is described
for the linear case in Section 2. The stability-preserving projection is derived and
analyzed in Section 3. An analogous stabilization is specified for the nonlinear
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case in Section 4. Finally, Section 5 includes numerical results for both a linear
and a nonlinear test example.

2 Problem definition

The class of linear problems under investigation is described in this section.

2.1 Linear dynamical systems and stability

We consider a linear dynamical system of the form

ẋ(t, p) = A(p)x(t, p) + s(t, p), (1)

where the matrix A : Π → R

n×n and the vector s : [0,∞) × Π → R

n depend
on parameters p ∈ Π for some subset Π ⊆ Rq. Consequently, the state variables
x : [0,∞) × Π → R

n are also parameter-dependent. Initial value problems are
determined by

x(0, p) = x0(p)

with a given function x0 : Π → R

n. Since we are investigating stability properties,
let, without loss of generality, s ≡ 0 in the system (1).

To analyze the stability, we recall some general properties of matrices.

Definition 1 Let A ∈ Rn×n and λ1, . . . , λn ∈ C be its eigenvalues. The spectral
abscissa of the matrix A reads as

α(A) := max {Re(λ1), . . . ,Re(λn)} .

A is called a stable matrix, if it holds that α(A) < 0.

A linear dynamical system ẋ = Ax is asymptotically stable if and only if the
included matrix A is stable. We assume that the matrices A(p) in the system (1)
are stable for all p ∈ Π in the following.

2.2 Stochastic modeling and orthogonal expansions

Now we assume that the parameters in equation (1) are affected by uncertain-
ties. In uncertainty quantification, the parameters are replaced by independent
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random variables p : Ω → Π on some probability space (Ω,A , µ). Let a joint
probability density function ρ : Π → R be given. Without loss of generality,
we assume Π = supp(ρ), because the parameter space Π can be restricted to the
support of ρ otherwise. For a measurable function f : Π → R, the expected value
reads as

E [f ] :=

∫

Ω

f(p(ω)) dµ(ω) =

∫

Π

f(p)ρ(p) dp (2)

provided that the integral exists. The Hilbert space

L
2(Π, ρ) :=

{

f : Π → R : f measurable and E
[

f 2
]

< ∞
}

is equipped with the inner product

〈f, g〉 =

∫

Π

f(p)g(p)ρ(p) dp for f, g ∈ L
2(Π, ρ).

Let a complete orthonormal system (Φi)i∈N be given. Thus the basis functions
Φi : Π → R satisfy

〈Φi,Φj〉 =

{

0 for i 6= j,

1 for i = j.
(3)

Assuming xk(t, ·) ∈ L 2(Π, ρ) for each component k = 1, . . . , n and each time
point t, the state variables of the system (1) can be expanded into a series

x(t, p) =

∞
∑

i=1

vi(t)Φi(p). (4)

The coefficient functions vi : [0,∞) → R

n are defined by

vi,k = 〈xk(t, ·),Φi(·)〉 for k = 1, . . . , n. (5)

The series (4) converges in the norm of L 2(Π, ρ) point-wise for each t. Often
polynomials are used as basis functions following the concepts of the generalized
polynomial chaos (gPC). More details can be found in [22].

2.3 Galerkin projection of linear dynamical systems

Stochastic Galerkin methods and stochastic collocation techniques yield approx-
imations of the coefficient functions (5) in the expansion (4), see [2, 11, 13, 15].
We apply the stochastic Galerkin approach, where Equation (1) is projected onto
a finite subset {Φ1, . . . ,Φm} of basis functions. The stochastic process (4) is
approximated by a truncated expansion

x̂(m)(t, p) =
m
∑

i=1

v̂i(t)Φi(p).
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The Galerkin projection of the dynamical system (1), neglecting the term s,
results in the larger linear dynamical system

˙̂v(t) = Âv̂(t), (6)

whose solution v̂ = (v̂⊤1 , . . . , v̂
⊤
m)

⊤ represents an approximation of the exact coeffi-
cient functions (5). The matrix Â ∈ Rmn×mn is defined by its minors Âij ∈ Rn×n

with
Âij = E [AΦiΦj ] for i, j = 1, . . . , m

using the matrix A from (1). Therein, the expected value, see (2), is applied
componentwise. If the matrix A(p) is symmetric for almost all p, then the matrix
Â is also symmetric. Otherwise, the matrix Â is unsymmetric, which is the case
in many situations.

The convergence properties of the stochastic Galerkin approach are not inves-
tigated in this paper. Alternatively, we examine the stability properties. The
analysis in [19] shows that the matrix Â may be unstable even though A(p) is
stable for strictly all p with respect to Definition 1. Yet the stability is guaranteed
in the case of normal matrices A(p) for almost all p. Even though stability can be
lost for non-normal matrices, the stochastic Galerkin method is still convergent
on compact time intervals under usual assumptions.

2.4 Basis transformations

We consider a transformation of the linear dynamical system (1), with s ≡ 0, to
an equivalent system

ẏ(t, p) = B(p)y(t, p) (7)

with y(t, p) := T (p)x(t, p) and transformation matrices T : Π → R

n×n being
point-wise non-singular. It holds that

B(p) = T (p)A(p)T (p)−1 (8)

for each p ∈ Π. The operation (8) represents a similarity transformation, i.e., the
spectra of the matrices A(p) and B(p) coincide.

If the stochastic Galerkin system (6) is unstable, then our aim is to identify a
basis transformation given by a matrix T : Π → R

n×n such that the Galerkin
projection of the dynamical system (7) yields a stable system. The following
properties of the basis transformation are required:

1. T has to be non-constant in the variable p. The Galerkin approach is invari-
ant with respect to constant basis transformations and thus the stability
properties cannot be changed.
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2. If A ∈ C ℓ(Π)n×n, then T ∈ C ℓ(Π)n×n is required to guarantee B ∈
C ℓ(Π)n×n and thus y(t, ·) ∈ C ℓ(Π)n for each t. The convergence rate of
orthogonal (gPC) expansions depends on the order of differentiability in
the random-dependent functions, see [1, p. 154] and [22, p. 33].

3 Stability preservation

We derive a concept to guarantee the stability of the dynamical system obtained
by the stochastic Galerkin projection.

3.1 General results

In this subsection, a constant matrix A ∈ Rn×n is considered. If the matrix A is
unsymmetric, then the following definition allows for further investigations.

Definition 2 The symmetric part of a matrix A ∈ Rn×n reads as

Asym := 1
2
(A+ A⊤).

The symmetric part of A is negative definite if and only if A + A⊤ is negative
definite. We will apply the following well-known property later.

Lemma 1 If the symmetric part of A ∈ Rn×n is negative definite, then A is a
stable matrix.

Proof:

The spectral abscissa is bounded by α(A) ≤ µ(A) for an arbitrary logarithmic
norm µ. The logarithmic norm associated with the Euclidean vector norm reads
as µ(A) = α(Asym), see [8, p. 61]. The negative definiteness of the symmetric
part implies α(Asym) < 0. It follows that α(A) < 0. �

Assuming that the symmetric part of a given matrix A is not negative definite,
we construct a transformation matrix T such that the symmetric part of the
similarity-transformed matrix B = TAT−1 becomes negative definite.
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Theorem 1 Let A ∈ Rn×n be a stable matrix and Q ∈ Rn×n be a symmetric
positive definite matrix. The Lyapunov equation

A⊤M +MA +Q = 0 (9)

has a unique symmetric positive definite solution M ∈ Rn×n. For a symmetric
decomposition M = LL⊤ with L ∈ Rn×n, a similarity transformation yields the
matrix

B := L⊤AL−⊤, (10)

which features a negative definite symmetric part.

Proof:

The stability of the matrix A guarantees existence and uniqueness of a solutionM

for the Lyapunov equation (9), see [7, p. 303]. The symmetric matrixM is positive
definite, because Q is positive definite. The symmetric part of the matrix (10)
becomes (neglecting the factor 1

2
)

B +B⊤ = L⊤AL−⊤ + L−1A⊤L

= L−1(MA + A⊤M)L−⊤

= −L−1QL−⊤.

The matrix −L−1QL−⊤ is negative definite due to the positive-definiteness of Q,
since

z⊤(−L−1QL−⊤)z = −(L−⊤z)⊤Q(L−⊤z) < 0

for all z ∈ Rn\{0}. �

The proof of Theorem 1 follows mainly the steps in [10, Thm. 5]. However, a

symmetric decomposition M = M
1

2M
1

2 is assumed in [10], which requires the
computation of all eigenvalues and eigenvectors. Furthermore, this decomposi-
tion is not unique in the case of multiple eigenvalues. Theorem 1 holds true
for arbitrary symmetric decompositions of M . In particular, we may apply the
Cholesky factorization M = LL⊤, where L becomes a unique lower triangular
matrix with strictly positive diagonal elements, see [20, p. 204]. Efficient al-
gorithms are available to compute the Cholesky factor without first finding M ,
see [7]. More details on Lyapunov equations can be found in [5], for example.

3.2 Stability-preserving transformation

The linear dynamical system (1) is assumed to involve stable matrices A(p) for
all p ∈ Π. In view of (9), we use the parameter-dependent Lyapunov equations

A(p)⊤M(p) +M(p)A(p) +Q(p) = 0 for each p ∈ Π. (11)
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Let the matrices Q(p) be symmetric positive definite for all p. Constant choices
Q(p) ≡ Q0 are admissible. Consequently, the system (11) has a unique symmetric
positive definite solution M(p) for each p. We require a symmetric decomposition
of M(p) for each p. Concerning the smoothness, we demonstrate a property of
the Cholesky factorization. The proof follows the steps in [16, p. 295], where the
continuity of this decomposition is shown.

Lemma 2 If A ∈ C ℓ(Π)n×n and A(p) is symmetric as well as positive definite
for all p ∈ Π, then the Cholesky decomposition A = LL⊤ satisfies L ∈ C

ℓ(Π)n×n.

Proof:

We use induction with respect to n. For n = 1, we obtain A(p) = (α(p)) with
α(p) > 0 for all p. It follows that L(p) = (

√

α(p)). Thus L ∈ C ℓ(Π)1×1 is
satisfied, because the square root is differentiable to arbitrary order for positive
real numbers. Now let the assumption be valid for n− 1. We partition a matrix
A(p) ∈ Rn×n and its Cholesky decomposition into

A(p) =

(

α(p) r(p)
r(p)⊤ Ā(p)

)

and L(p) =

(

β(p) 0
s(p)⊤ B(p)

)

.

Since A(p) is positive definite, it holds that α(p) > 0 for all p. We obtain

β(p) =
√

α(p), s(p) = r(p)√
α(p)

and B(p)B(p)⊤ = Ā(p) − r(p)⊤r(p)
α(p)

=: F (p). The

mapping p 7→ F (p) is in C ℓ(Π)n×n due to A ∈ C ℓ(Π)n×n. Hence the mapping
p 7→ B(p) is in C ℓ(Π)n×n by the assumption in the induction. Note that the
operations used to compute β and s are differentiable to arbitrary orders. �

The following result guarantees the preservation of smoothness.

Lemma 3 If A,Q ∈ C ℓ(Π)n×n, then it follows that B ∈ C ℓ(Π)n×n for the trans-
formed matrix (8) using the Cholesky factorization of the solutions from the Lya-
punov equations (11).

Proof:

Each Lyapunov equation (11) represents a larger linear system of algebraic equa-
tions. Assuming A,Q ∈ C ℓ(Π)n×n, Cramer’s rule implies that the entries in the
solution M are also in C ℓ(Π). Lemma 2 yields the differentiability L ∈ C ℓ(Π)n×n.
The inverse matrix inherits the smoothness L−1 ∈ C ℓ(Π)n×n, because it holds

that L−1(p) = adj(L(p))
det(L(p))

for each p with the adjoint matrix. Now formula (8)

demonstrates that B ∈ C ℓ(Π)n×n. �
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In particular, Lemma 3 is valid in the case of continuous functions (ℓ = 0).
Furthermore, just measurable matrix-valued functions A,Q imply measurable
matrix-valued functions M,L.

If the entries of A and Q are polynomials in the variable p, then the entries of M
become rational functions. However, the entries of the factor L in a symmetric
decomposition are not rational functions in general, because a square root is
typically applied somewhere. Consequently, the transformed matrix (10) does
not represent a rational function in general.

We transform the original dynamical system (1) into (7) using the transforma-
tion matrix T (p) := L(p)⊤ for an arbitrary symmetric decomposition M(p) =
L(p)L(p)⊤. The main result is formulated now.

Theorem 2 Let A,Q : Π → R

n×n be measurable functions with A(p) stable and
Q(p) symmetric as well as positive definite for almost all p ∈ Π. The Lyapunov
equation (11) yields a unique solution M(p) for almost all p. A symmetric de-
composition M(p) = L(p)L(p)⊤ is considered for almost all p. Furthermore, let
A ∈ L q1(Π, ρ)n×n, L ∈ L q2(Π, ρ)n×n, L−1 ∈ L q3(Π, ρ)n×n with qk ∈ [1,∞] for
k = 1, 2, 3 and 1

2
= 1

q1
+ 1

q2
+ 1

q3
. Using T (p) := L(p)⊤, the Galerkin projection of

the transformed system (7) with the matrix (8) produces an asymptotically stable
linear dynamical system.

Proof:

The generalized Hölder inequality guarantees B = TAT−1 ∈ L 2(Π, ρ)n×n due
to the regularity assumptions for A,L, L−1. The stochastic Galerkin approach
applied to the transformed system (7) including the matrix (8) yields a dynamical
system ˙̂v = B̂v̂ with the matrix B̂ ∈ Rmn×mn. The minors B̂ij ∈ Rn×n read as

B̂ij = E [BΦiΦj ] for i, j = 1, . . . , m. We investigate the symmetric part of the

matrix B̂. The minors of the symmetric part B̂ + B̂⊤ become

B̂ij + (B̂ji)
⊤ = E [BΦiΦj ] + E

[

B⊤ΦjΦi

]

= E
[

(B +B⊤)ΦiΦj

]

.

Given the transformation (8) with T (p) = L(p)⊤, Theorem 1 shows that the
symmetric part, B(p) +B(p)⊤, of the matrix (10) is negative definite for almost
all p. Let z = (z⊤1 , . . . , z

⊤
m)

⊤ ∈ Rmn with z1, . . . , zm ∈ Rn. It follows that

z⊤(B̂ + B̂⊤)z =

m
∑

i,j=1

z⊤i

(

B̂ij + B̂⊤

ji

)

zj = E

[

m
∑

i,j=1

z⊤i (B +B⊤)zjΦiΦj

]

= E





(

m
∑

i=1

ziΦi

)⊤

(B +B⊤)

(

m
∑

j=1

zjΦj

)



 ≤ 0.
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Since the basis functions are linearly independent, it holds that

z̃ :=
m
∑

i=1

ziΦi ∈ L
2(Π, ρ)\{0} for z 6= 0.

Assuming z 6= 0, the function z̃ is non-zero on a subset U ⊂ Π with µ(U) > 0
for the probability measure µ. It follows that the above expected value becomes
strictly negative. Hence the symmetric part B̂+B̂⊤ is negative definite. Lemma 1
shows that B̂ is a stable matrix. Consequently, the dynamical system ˙̂v = B̂v̂ is
asymptotically stable. �

The above result is independent of the choice of orthogonal basis functions. More-
over, the system of basis functions is not required to be complete. Note that any
symmetric decomposition can be used satisfying the suppositions in Theorem 2.

Concerning the regularity assumptions, the choice q1 = q2 = q3 = 6 is admissible,
for example. Furthermore, qi = ∞ can be chosen for one particular i, with 1

qi
= 0.

It holds that L ∞(Π, ρ) ⊂ L q(Π, ρ) for any q ∈ [1,∞). The regularity properties
of the matrix-valued functions L, L−1 depend on the functions A and Q. We
outline sufficient conditions for the regularity assumptions of Theorem 2 in two
cases, where the Cholesky decomposition is considered:

i) Compact domain Π (e.g., uniform distribution, beta distribution, etc): if
A,Q ∈ C 0(Π)n×n, then L, L−1 ∈ C 0(Π)n×n as shown in the proof of
Lemma 3. Compact domains imply C 0(Π)n×n ⊂ L ∞(Π, ρ)n×n. Hence
continuity of A and Q is sufficient.

ii) Unbounded domain Π and exponentially decaying probability density func-
tion ρ for p → ∞ (e.g., Gaussian distribution, gamma distribution, etc.):
if the components of A,Q are (multivariate) polynomials in p, then all
entries of both M and M−1 are rational functions in p. Consequently,
these entries exhibit at most polynomial growth for p → ∞. The matrices
L, L−1 inherit this behavior. Since ρ decreases exponentially, we obtain
A,L, L−1 ∈ L q(Π, ρ) for any q ∈ [1,∞).

3.3 Numerical computation of Galerkin projection

In Theorem 2, the transformation matrix T (p) = L(p)⊤ depends on the param-
eters p ∈ Π. The solution of the Lyapunov equations (11) and its symmetric
decomposition can be computed analytically only for simple systems. We require
numerical methods for general systems.
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Table 1: Probability distributions and Gaussian quadrature methods.

probability distribution quadrature rule
uniform Gauss-Legendre
Gaussian Gauss-Hermite

beta Gauss-Jacobi
gamma Gauss-Laguerre

We compute the Galerkin projection of the transformed matrix (8) by a quadra-
ture rule for the weighted integrals (2), where the probability density is the weight
function. A quadrature scheme is defined by its nodes {p(1), . . . , p(k)} ⊂ Π and
weights {w1, . . . , wk} ⊂ R. For example, Gaussian quadrature can be applied for
a single random variable, see [20, p. 171]. Each traditional probability distribu-
tion induces a weighted integral (2) and an associated Gaussian quadrature rule.
Table 1 illustrates the most important cases. Tensor product rules of Gaussian
quadrature can be used for multiple random variables (Π ⊆ Rq), provided that
the number q is not too large.

Using a general quadrature method, the approximation B̃ ∈ Rmn×mn of B̂ ∈
R

mn×mn is given by

B̂ij = E [BΦiΦj ] ≈ B̃ij :=
k
∑

r=1

wrB(p(r))Φi(p
(r))Φj(p

(r)) (12)

for i, j = 1, . . . , m. The exact matrix B̂ + B̂⊤ is negative definite due to Theo-
rem 2. Given a sufficiently accurate quadrature rule, the approximation B̃ + B̃⊤

is negative definite as well, because the eigenvalues of a matrix depend contin-
uously on its entries. Hence the linear dynamical system ˙̃v = B̃ṽ inherits the
asymptotic stability.

We show a sufficient condition with respect to the magnitude of the quadrature
error.

Theorem 3 Let B̂, B̃,∆B ∈ Rmn×mn and B̂ = B̃ +∆B. If B̂ + B̂⊤ is negative
definite and

‖∆B‖2 < 1
2
|α(B̂ + B̂⊤)|

with the spectral (matrix) norm ‖ · ‖2 and the spectral abscissa α, then B̃ + B̃⊤

is also negative definite. Hence the matrix B̃ is stable.
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Proof:

The eigenvalues of B̂ + B̂⊤ are λ1 ≤ λ2 ≤ · · · ≤ λmn < 0. It holds that
α(B̂+ B̂⊤) = λmn. The matrix B̂+ B̂⊤ is symmetric and thus diagonalizable. An
orthonormal basis of eigenvectors exists, which forms a square matrix of condition
number one with respect to the spectral norm. Let µ ∈ R be an eigenvalue of the
symmetric matrix B̃ + B̃⊤. The Theorem of Bauer-Fike, see [6, p. 357], implies

min
j=1,...,mn

|µ− λi| ≤
∥

∥∆B +∆B⊤
∥

∥

2
≤ 2‖∆B‖2 < |λmn|.

The minimum is |µ − λℓ| with some ℓ ∈ {1, . . . , mn}. It follows that |µ − λℓ| <
−λmn and µ < −λmn + λℓ ≤ 0. Thus B̃ + B̃⊤ is negative definite. Lemma 1
shows that B̃ is a stable matrix. �

In Theorem 3, the perturbation ∆B consists of the quadrature errors concern-
ing (12). If the quadrature rule is inaccurate, then the matrix B̃ + B̃⊤ may not
be negative definite. Consequently, the stability can be lost in the approximate
Galerkin projection.

The evaluation of the formula (12) for all i, j = 1, . . . , m requires mainly to
calculate k transformed matrices (8). The effort for the evaluation of the basis
polynomials is negligible. We have to solve the Lyapunov equations (11) for k dif-
ferent realizations of the random parameters. In addition, we have to compute a
symmetric decomposition for each M(p(r)) with r = 1, . . . , k. Based on the algo-
rithm of Bartels and Stewart [3], numerical techniques were derived to compute
the Cholesky factor without having to compute M first, see [7, 9]. These direct
linear algebra methods exhibit a computational effort of O(n3) operations. Thus
our total computational work becomes O(kn3). This effort is acceptable in the
case of moderate dimensions n. Typically, we need larger numbers of nodes for
polynomials of higher degrees. For example, with polynomials Φi of degree i− 1
in a single random variable (q = 1), the approximation (12) requires a Gaussian
quadrature with k ≥ m+ 1 nodes. If the matrix-valued function B is close to a
polynomial of degree d, then k ≈ m+ d

2
nodes are sufficient.

For comparison, an LU -decomposition of a dense Galerkin-projected matrix Â

or B̂ costs O(m3n3) operations, which is required in implicit time integrators.
The matrices are typically sparse for high dimensions n, where iterative methods
have to be used for solving Lyapunov equations. Furthermore, there is some
potential to reduce the computational effort by numerical methods for parameter-
dependent Lyapunov equations, cf. [18].
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4 Nonlinear dynamical systems

We derive a stabilization for nonlinear dynamical systems now.

4.1 Stationary solutions

Let a nonlinear autonomous dynamical system

ẋ(t, p) = f(x(t, p), p) (13)

be given, including a sufficiently smooth function f : D×Π → R

n (D ⊆ Rn). We
assume that a family of asymptotically stable stationary solutions x∗ : Π → R

n

exists, i.e.,
f(x∗(p), p) = 0 for all p ∈ Π. (14)

The asymptotic stability means that the Jacobian matrix ∂f

∂x

∣

∣

x=x∗(p)
is stable for

all p ∈ Π, cf. [17, p. 22].

The Galerkin projection of the nonlinear system (13) reads as

˙̂v(t) = F (v̂(t)) (15)

with the right-hand side

F = (F⊤

1 , . . . , F⊤

m)⊤, Fi(v̂) := E

[

f

(

m
∑

j=1

v̂jΦj(·), ·
)

Φi(·)
]

(16)

for v̂ = (v̂⊤1 , . . . , v̂
⊤
m)

⊤, where the expected value is applied component-wise again.
However, the existence of an equilibrium of the larger system (15) with the right-
hand side (16) is not guaranteed in general. In [12], sufficient conditions are
specified, under which there is a stationary solution of (15) for a sufficiently high
polynomial degree in gPC expansions. Moreover, if (15) has a stationary solution
v̂∗ ∈ Rmn, then the function

x̄(p) :=
m
∑

j=1

v̂∗jΦj(p) (17)

is not an equilibrium of the original system (13) in general. Thus the stability of
the equilibria x∗ satisfying (14) does not imply the stability of an equilibrium v̂∗

associated to the dynamical system (15).
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4.2 Stabilization of stationary solutions

Instead of arguing about the stability of an arbitrary equilibrium, we transform
the system (13) into

˙̃x(t, p) = f̃(x̃(t, p), p) with f̃(x, p) := f(x+ x∗(p), p) (18)

using the family x∗ of stationary solutions. It follows that zero represents an
asymptotically stable stationary solution of the transformed system (18) for
all p ∈ Π. Let

F̃ = (F̃⊤

1 , . . . , F̃⊤

m)⊤, F̃i(ṽ) := E

[

f̃

(

m
∑

j=1

ṽjΦj(·), ·
)

Φi(·)
]

(19)

using the shifted function f̃ from (18) and ṽ = (ṽ⊤1 , . . . , ṽ
⊤
m)

⊤. Now ṽ∗ = 0 is also
a stationary solution of the Galerkin-projected system

˙̃v(t) = F̃ (ṽ(t)) (20)

with the right-hand side (19). Given a solution of (20), an approximation for a
solution of the original system (13) reads as

x(t, p) ≈
(

m
∑

j=1

ṽj(t)Φj(p)

)

+ x∗(p) ≈
m
∑

j=1

(

v∗j + ṽj(t)
)

Φj(p)

assuming a convergent expansion

x∗(p) =

m
∑

j=1

v∗jΦj(p)

of the original stationary solutions.

If the equilibrium ṽ∗ = 0 of the Galerkin-projected system (20) is unstable,
then a stabilized system can be constructed as in Section 3.2. We apply the
transformation to the parameter-dependent matrix

A(p) := ∂f

∂x

∣

∣

x=x∗(p)
= ∂f̃

∂x

∣

∣

∣

x=0
. (21)

The stabilized system is given by

ẏ(t, p) = L(p)⊤f̃(L(p)−⊤y(t, p), p), (22)

using a symmetric decomposition M(p) = L(p)L(p)⊤ of the solution of the Lya-
punov equations (11) including the parameter-dependent Jacobian matrix (21).

14



However, an evaluation of the function f̃ in the system (22) requires the compu-
tation of the stationary solution, x∗, of (13) for a given parameter value. Note
that the Jacobian matrix of (22) at the stationary solution is

B(p) := L(p)⊤ ∂f̃

∂x

∣

∣

∣

x=0
L(p)−⊤.

Thus, Section 3.2 yields that the spectrum of the symmetric part of the original
Jacobian matrix is changed appropriately to preserve stability. The Galerkin
projection of the dynamical system (22) results in a larger dynamical system,
whose equilibrium ṽ∗ = 0 is guaranteed to be asymptotically stable.

5 Illustrative examples

We investigate a linear dynamical system as well as a nonlinear dynamical system
with respect to the stability properties in the Galerkin-projected system.

5.1 Linear dynamical system

We consider the linear dynamical system (1) including the matrix

A(p) := 1
100

(

128p2 − 72p− 32 295p2 − 199p+ 4 165p2 − 234p+ 46
−82p2 − 59p+ 270 −266p2 + 144p− 73 −147p2 − 210p+ 286
70p2 + 296p− 80 43p2 + 96p+ 8 15p2 + 146p− 251

)

(23)

with a real parameter p. The eigenvalues of this matrix have a negative real part
for all p ∈ [−1, 1]. Thus the matrix (23) is stable in view of Definition 1.

In the stochastic model, we assume a uniform distribution for p ∈ [−1, 1]. The
expansion (4) includes the Legendre polynomials up to degree d = m − 1. We
use Gauss-Legendre quadrature to compute the matrices in the linear dynamical
systems (6) of the stochastic Galerkin method. This computation is exact, except
for round-off errors, because the entries of the matrix (23) represent polynomials
in p. However, the Galerkin projection always generates an unstable system.
Figure 1 illustrates the spectral abscissae of the matrices Â for d = 0, 1, . . . , 10.

Now we use the transformation from Section 3.2 to obtain a stable system. In
the Lyapunov equation (11), we choose the constant matrix Q = I, the identity
matrix in R3×3, which is obviously symmetric and positive definite. The unique
solution M(p) of the Lyapunov equation has entries, which represent rational
functions in the variable p with numerator/denominator polynomials of degrees
up to ten. The Cholesky algorithm yields the decomposition M(p) = L(p)L(p)⊤

15
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Figure 1: Spectral abscissae in linear dynamical systems, including matrix (23),
from stochastic Galerkin method for different polynomial degrees, using a uniform
distribution in [−1, 1].

with the unique factor. Hence the transformed matrix (10) can be computed
point-wise for p ∈ [−1, 1].

The Galerkin projection of the matrix B(p) in the transformed system (7) is
computed numerically by a Gauss-Legendre quadrature with 20 nodes. Thus
the matrix (10) is evaluated at each node of the quadrature. Figure 1 shows
the spectral abscissae of the Galerkin-projected matrix for polynomial degrees
d = 0, 1, . . . , 10. We recognize that all spectral abscissae are strictly negative,
which confirms the asymptotic stability.

Furthermore, we examine the behavior of all eigenvalues in the Galerkin-projected
systems. Figure 2 depicts the real part of the eigenvalues for both the original
system and the stabilized system for different polynomial degrees. Since complex
conjugate eigenvalues arise, some real parts coincide for each matrix. We observe
that the eigenvalues behave similar and thus just the stabilization represents the
crucial difference.

We repeat the numerical computations employing a uniform distribution in the
smaller interval p ∈ [−2

5
, 2
5
]. Figure 3 illustrates the spectral abscissae of the

Galerkin-projected matrices for different polynomial degrees. Just two out of ten
original systems become unstable now. Although the other spectral abscissae of
the original system are already negative, the transformed systems exhibit a more
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Figure 2: Eigenvalues of the original system, including matrix (23), (left) and the
stabilized system (right) for different degrees of the polynomial expansion with
uniform distribution in [−1, 1].

negative spectral abscissa. In [14], a similar stabilization technique was applied in
the context of model order reduction, where this effect becomes more pronounced
in an example.

Alternatively, we choose a beta distribution in the stochastic modeling. The
probability density function reads as

ρ(p) = c (1− p)α(1 + p)β for p ∈ [−1, 1]

with a constant c > 0 for standardization. We select α = 3, β = 2. Jacobi
polynomials yield an orthogonal basis. Again the stochastic Galerkin method
results in unstable systems for all polynomial degrees. The Galerkin projection
of the matrices of the original system and the stabilized system are computed by
Gauss-Jacobi quadrature with 20 nodes. The spectral abscissae of the Galerkin-
projected matrices for the polynomial degrees d = 0, 1, . . . , 10 are depicted in
Figure 4. The transformation yields again a stabilization of the critical systems.

5.2 Nonlinear dynamical system

We now consider a two-dimensional dynamical system (13) with the quadratic
right-hand side

f(x, p) =











x2

1
+ (−35p− 2 sin(p)− 13p2 − 97)x1 − 2x2

2
+ (4 cos(p)− 77p− 33p2 + 23)x2

+sin2(p)− 2 cos2(p) + cos(p)(33p2 + 77p− 23) + sin(p)(13p2 + 35p+ 97)

4x2

1
+ (85p− 8 sin(p) + 51p2 − 54)x1 − x2

2
+ (2 cos(p)− 1

10
p+ 67p2 − 24)x2

+4 sin2(p)− cos2(p) + cos(p)(−67p2 + 1

10
p+ 24)− sin(p)(51p2 + 85p− 54)











(24)
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Figure 3: Spectral abscissae in linear dynamical systems, including matrix (23),
from stochastic Galerkin method for different polynomial degrees, using a uniform
distribution in [−2

5
, 2
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Figure 4: Spectral abscissae in linear dynamical systems, including matrix (23),
after the Galerkin projection for different polynomial degrees, using a beta dis-
tribution in [−1, 1].

18



-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

0.4

0.6

0.8

1

Figure 5: Approximations associated with stationary solutions of the Galerkin-
projected system, using the right-hand side function (24), for different polynomial
degrees in quadratic problem.

and a real parameter p. This system is chosen such that

x∗(p) =

(

sin(p)
cos(p)

)

(25)

is a stationary solution for all p ∈ R. Numerical computations confirm that
these equilibria are asymptotically stable for all p ∈ [−1, 1]. Since the stationary
solution (25) includes trigonometric functions, an exact representation in terms
of polynomials in the variable p is not feasible.

Again, we assume the parameter to be a uniformly distributed random variable
with the range [−1, 1]. Consequently, the gPC expansion uses the Legendre
polynomials. The stochastic Galerkin method yields the nonlinear dynamical
system (15). In the right-hand side (16), we evaluate the probabilistic integrals
(expected values) approximately by a Gauss-Legendre quadrature using 20 nodes.

Numerical computations show that the Galerkin-projected system (15) exhibits
stationary solutions for all degrees d = 1, 2, . . . , 10. Therein, the respective non-
linear systems F (v̂∗) = 0 are solved successfully by Newton iterations. The cor-
responding stationary solutions yield the functions (17), which represent approx-
imations of the equilibrium in the original dynamical system. Figure 5 illustrates
the functions (17) for the polynomial degrees d = 1, 3, 5. The approximations
converge rapidly to sine and cosine, respectively, because these trigonometric
terms are analytic functions in the variable p. However, the stationary solutions
of the Galerkin-projected systems (15) for all polynomial degrees d are unstable,
which can be seen by the spectral abscissae of the Jacobian matrices ∂F

∂v̂

∣

∣

v̂=v̂∗
in

Figure 6 (left).
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Figure 6: Spectral abscissae for the Jacobian matrices associated with the station-
ary solutions of the Galerkin projections for the original system, the shifted sys-
tem and the stabilized system with right-hand side function (24) in the quadratic
problem.

To stabilize the computation, we change to the shifted nonlinear dynamical sys-
tem (18) and its Galerkin-projected system (20). The stationary solutions ṽ∗ = 0
are still unstable for all polynomial degrees, which is illustrated by the spectral
abscissae of the associated Jacobian matrices in Figure 6 (left). The values for
the original Galerkin system and the novel Galerkin system become closer for
higher polynomial degrees in agreement to the convergence results in [12].

Now we apply the stabilization technique from Section 4.2. In the Lyapunov
equations (11), the matrix Q = I, the identity matrix in R2×2, is selected. The
Cholesky algorithm yields a decomposition of the solutions. This procedure has to
be done for each node of the Gauss-Legendre quadrature. The stochastic Galerkin
method projects the transformed system (22) to a larger system (20). Figure 6
(right) shows the spectral abscissae of the Jacobian matrices for the stationary
solution zero for different polynomial degrees d = 1, 2, . . . , 10. It follows that the
equilibria are asymptotically stable now.

Finally, we illustrate solutions of initial value problems computed using the
stochastic Galerkin method for original, shifted and stabilized right-hand side
function. We choose the polynomial degree equal to three, which results in eight
coefficient functions. The trapezoidal rule yields the numerical solutions. Firstly,
the original Galerkin-projected system (15) is solved, whose initial values are se-
lected close to its stationary solution. Figure 7 (top) illustrates the numerical
solution. The trajectories are nearly constant at the beginning, say t ∈ [0, 1].
Later the solution changes from the unstable equilibrium to some stable equi-
librium. Secondly, we solve the Galerkin-projected system (15) with the shifted
right-hand side function (18) using initial values ṽ(0) = (10−3, 0, . . . , 0)⊤ close to
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the equilibrium ṽ∗ = 0. The same behavior appears like before, as depicted in
Figure 7 (center). Thirdly, the Galerkin projection of the stabilized system (22) is
solved, where the initial values are set to ṽ(0) = (1, 0, . . . , 0)⊤. Figure 7 (bottom)
shows the numerical solution. Now the trajectories tend to the stable stationary
solution ṽ∗ = 0.

6 Conclusions

A basis transformation was constructed for linear dynamical systems includ-
ing random variables. We proved that the stability properties are preserved
in a Galerkin projection of the transformed system. The transformation ma-
trix follows from a symmetric decomposition of a solution of a Lyapunov equa-
tion. We showed that the Cholesky factorization retains the smoothness of in-
volved functions, while the computational effort is low in comparison to eigen-
value/eigenvector decompositions. Moreover, the transformation can be applied
to guarantee the stability properties for stationary solutions in nonlinear dynam-
ical systems. We performed numerical computations for test examples. The
results demonstrate that the combination of the stochastic Galerkin method and
the basis transformation yields an efficient numerical technique to preserve sta-
bility of the original system under the Galerkin projection.
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Figure 7: Solutions of initial value problems for the Galerkin projections of orig-
inal system, shifted system and stabilized system in quadratic test example.

22



References

[1] F. Augustin, A. Gilg, M. Paffrath, P. Rentrop, U. Wever, Polynomial chaos
for the approximation of uncertainties: chances and limits, Euro. Jnl. of
Applied Mathematics 19 (2008), pp. 149–190.

[2] F. Augustin, P. Rentrop, Stochastic Galerkin techniques for random ordinary
differential equations, Numer. Math. 122 (2012), pp. 399–419.

[3] R.H. Bartels, G.W. Stewart, Solution of the matrix equation AX+XB = C,
Comm. ACM 15 (1972), pp. 820–826.

[4] O.G. Ernst, A. Mugler, H.J. Starkloff, E. Ullmann, On the convergence of
generalized polynomial chaos expansions, ESAIM: Mathematical Modelling
and Numerical Analysis 46 (2012), pp. 317–339.
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