
LOW-COMPLEXITY METHOD FOR HYBRID MPC WITH LOCAL
GUARANTEES∗

DAMIAN FRICK† , ANGELOS GEORGHIOU‡ , JUAN L. JEREZ§ , ALEXANDER

DOMAHIDI§ , AND MANFRED MORARI†

Abstract. Model predictive control problems for constrained hybrid systems are usually cast as
mixed-integer optimization problems (MIP). However, commercial MIP solvers are designed to run
on desktop computing platforms and are not suited for embedded applications which are typically
restricted by limited computational power and memory. To alleviate these restrictions, we develop a
novel low-complexity, iterative method for a class of non-convex, non-smooth optimization problems.
This class of problems encompasses hybrid model predictive control problems where the dynamics
are piece-wise affine (PWA). We give conditions such that the proposed algorithm has fixed points
and show that, under practical assumptions, our method is guaranteed to converge locally to local
minima. This is in contrast to other low-complexity methods in the literature, such as the non-convex
alternating directions method of multipliers (ADMM), for which no such guarantees are known for
this class of problems. By interpreting the PWA dynamics as a union of polyhedra we can exploit the
problem structure and develop an algorithm based on operator splitting procedures. Our algorithm
departs from the traditional MIP formulation, and leads to a simple, embeddable method that only
requires matrix-vector multiplications and small-scale projections onto polyhedra. We illustrate the
efficacy of the method on two numerical examples, achieving good closed-loop performance with
computational times several orders of magnitude smaller compared to state-of-the-art MIP solvers.
Moreover, it is competitive with ADMM in terms of suboptimality and computation time, but
additionally provides local optimality and local convergence guarantees.

1. Introduction. Many practical applications for control fall in the domain of
hybrid systems, including applications such as active suspension control or energy
management in automotives [2, 9] and applications in power electronics [13]. These
applications require fast sampling times in the sub-second range, and the control
algorithms need to be implemented on industrial, resource-constrained platforms, such
as microcontrollers or re-configurable hardware. Hybrid systems are characterized
by complex interactions between discrete and continuous behaviors that make them
extremely challenging to control. In the last decades, model predictive control (MPC)
[28] has received widespread attention both in research and industry. It provides
a systematic approach for controlling constrained hybrid systems, promising high
control performance with minimal tuning effort.

For hybrid systems, mature modeling tools such as the mixed logical dynamical
framework, see [5], are available. It defines rules for posing hybrid MPC as mixed-
integer optimization problems (MIP). These MIPs can then be tackled with powerful
commercial solvers such as CPLEX [19]. These solvers have focused on the solution of
generic, large-scale, mixed-integer linear/quadratic optimization problems on powerful
computing platforms, and thus have several drawbacks for embedded applications:
(i) their code size is in the order of tens of megabytes; (ii) the algorithms require
substantial working memory; (iii) they depend on numerical libraries that cannot be
ported to most embedded platforms. This has restricted the applicability of hybrid
MPC to systems that can run on desktop computing platforms, with sampling times
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in the order of minutes or even hours.
Recently there have been efforts to enable hybrid MPC applications with faster dy-

namics to run on platforms with more limited computational power. Explicit MPC [1]
is the method of choice for very small problems but quickly becomes intractable for
increasing problem dimension. Therefore, methods that further exploit (i) the spar-
sity-inducing multistage structure of MPC problems, and (ii) the fact that MPC
problems are parametric and solved in a receding horizon fashion, have been devel-
oped. Methods based on reformulation and relaxation of MIPs arising from optimal
control problems have been proposed in [3, 12, 20, 21], and have led to reduced com-
putation times compared to general-purpose solvers. However, these methods are not
fast enough for many practical applications.

Methods based on operator splitting allow to trade off computational complexity
with optimality, i.e., they typically produce “good” solutions in a fraction of the time
required even by tailored MIP solvers to find global optima. Furthermore, they allow
the problem to be split into several small subproblems, making these methods espe-
cially suited for embedded applications and implementations on computing systems
with limited resources. The alternating directions method of multipliers (ADMM) [7]
is an example of such operator splitting methods. In [33], ADMM was used on vari-
ous hybrid MPC examples achieving substantial gains in computational performance
compared to general-purpose MIP solvers. Convergence guarantees are available for
some special cases of non-convex ADMM [24,27], however, neither optimality or con-
vergence guarantees are available for the class of problems considered in this work.
Other low-complexity methods based on operator splitting suited for non-convex MPC
are [17,18]. They are attractive because they offer computational performance similar
to ADMM, but unlike ADMM they still retain some guarantees on optimality and
convergence. Nonetheless, they do not address the class of problems considered here.

1.1. Contribution. In this paper, we develop an algorithm based on operator
splitting to address hybrid MPC problems, that provides both the desired theoretical
guarantees and computational speed. Our method exploits the multistage structure
of the optimization problem, allowing to decompose the complex piece-wise affine
(PWA) equality constraints into decoupled non-convex polyhedral constraints. By
leveraging their polyhedral nature, we are able to derive guarantees on optimality
and convergence. The main contributions of this paper are the following:
• We develop an iterative, numerical method to find local minima of a class of non-
convex, non-smooth optimization problems that arise in MPC problems for systems
with PWA dynamics. Our method is of low complexity and only requires matrix-
vector multiplications and small-scale Euclidean projections onto convex polyhedra.
• We provide (i) conditions for the existence of fixed points of the proposed algorithm;
(ii) show that the method converges locally to such fixed points; and (iii) prove that
fixed points correspond to local minima. To the author’s knowledge, for the class of
problems considered, this is the first method of such simplicity that allows to give
local optimality and convergence guarantees.
• The proposed algorithm is implemented using automatic code generation, directly
targeting the embedded applications. This code generation tool is made publicly avail-
able via github [11]. We examine the method’s performance on two numerical example
and demonstrate computational speed-ups of several orders of magnitude, compared
to conventional MIP solvers, with only a minor loss of optimality. We further show,
that the method is competitive with other local methods such as ADMM.
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1.2. Outline. In Section 2, we state the problem. In Section 3, we construct an
operator whose fixed points correspond to local minima. In Section 4, we propose an
algorithm based on this operator and discuss local optimality and local convergence
of the method. In Section 5, we present numerical results. Proofs of auxiliary results
are given in the appendix.

1.3. Notation & elementary definitions. For vectors x, y ∈ Rn, ‖x‖ :=√
x>x is the 2-norm and 〈x, y〉 := x>y the scalar product. For a closed set C, PC(x) :=

arg minz∈C ‖x−z‖ is the Euclidean projection of x onto C. The closed ε-ball around x
is Bε(x) := {z | ‖x− z‖ ≤ ε}, we use the shorthand Bε := Bε(0). The relative interior
is relint C. By C + {x} we denote the Minkowski sum of C and the singleton x. The
characteristic function of set C is χC(x) := {0 if x ∈ C ; +∞ otherwise}. An operator
T : X ⇒ Y maps every point x ∈ X to a set T (x) ⊆ Y. T is called single-valued if
for all x ∈ X : T (x) is a singleton. A zero of T is a point x ∈ X such that 0 ∈ T (x),
denoted by x ∈ zeroT , where zeroT := {x | 0 ∈ T (x)}. A fixed point of T is a point
x ∈ X such that x ∈ T (x), denoted by x ∈ fixT , where fixT := {x | x ∈ T (x)}.
Finally, when we say that a set has “measure zero” we more precisely mean that it
has Lebesgue measure zero.

2. Problem statement. In this work, we consider optimization problems that
are parametric in θ ∈ Rp and given as follows:

(1a) p?(θ) := min
z∈E∩Z(θ)

1
2z
>Hz + h>z ,

with H ∈ Rn×n positive definite, and z := (z1, . . . , zN ) ∈ Rn, with zk ∈ Rnk . The
parametric nature implies that only parts of the problem data will change every time
the problem needs to be solved. The non-convex set Z(θ) ⊆ Rn has the form:

(1b) Z(θ) :=
N×
k=1

( mk⋃
i=1

Zk,i(θ)
)
,

where the sets Zk,i(θ) ⊆ Rnk are closed convex polyhedra that may depend linearly
on θ, in the following way: Zk,i(θ) := {zk ∈ Rnk | Gk,izk = gk,i(θ) , Fk,izk ≤ fk,i(θ)},
with matrices and vectors of appropriate dimensions, and gk,i(θ), fk,i(θ) affine func-
tions of the parameter θ. For a given parameter θ, the Euclidean projection onto
Z(θ) can be evaluated very efficiently by decoupling it into simple convex projections,
see Algorithm 2 in Section 4. This important feature of Z will be a key ingredient
of the algorithm presented in Section 4. For simplicity of notation we will omit the
parameter dependence of Z(θ) in the remainder of this paper. Finally, the set E is an
affine equality constrained set

(1c) E := {z ∈ Rn | Az = b} = {V v + v̄ | v ∈ Rn−m} ,

with A ∈ Rm×n full row rank, and an appropriate matrix V ∈ Rn×n−m and vector
v̄ ∈ Rn [29, p. 430, (15.14)], where V has full column rank by construction. We
furthermore assume that E ∩ Z is non-empty, hence the problem is feasible.

Remark 2.1. The class of problems named Mathematical Programs with Comple-
mentarity Constraints (MPCCs) can be brought into the form of Problem (1), as
long as their constraint functions are linear and their objective function is strictly
convex quadratic. This can be done by constructing a union of sets that enumerates
the different possibilities of the complementarity constraints. However, in general
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it is not possible to represent an MPCC in the form of Problem (1) with N > 1
and low-dimensional sets Zk,i. This representation is therefore often, and in general,
exponential in the number of complementarity constraints. In contrast, with the rep-
resentation Problem (1) we explicitly consider this Cartesian structure and in this
work develop a method that exploits it.

2.1. Consensus form. Problem (1) can be re-written in the so-called consensus
form by introducing copies y of z as follows

(2) p? := min
z,y : z=y

1
2z
>Hz + h>z + χE(z) + χZ(y) ,

which is a non-convex, non-smooth optimization problem. The constraint sets E and
Z have been moved into the cost function using their characteristic functions χE(z)
and χZ(y). This problem formulation ensures that the two sets E and Z can be
decoupled. The consensus constraint z = y encodes the coupling between z and y.

2.2. Hybrid Model Predictive Control. We are particularly interested in
MPC problems where the discrete-time dynamics are given by a PWA function of the
states and inputs. Such parametric hybrid MPC problems can be written as:

min
xk,uk

∑N

k=1
qk+1(xk+1) + rk(uk)(3a)

s. t. xk+1 = Ak,ixk +Bk,iuk + ck,i if (xk, uk) ∈ Ck,i , k = 1, . . . , N ,(3b)

x1 = θ ,(3c)

for i = 1, . . . ,mk with mk representing the number of regions of the PWA dynamics.
Vector xk ∈ Rnx denotes the state of the system at time k, uk ∈ Rnu denotes the inputs
applied to the system between times k and k + 1, and θ ∈ Rnx is the (parametric)
initial state of the system. The objective terms qk+1 and rk are strictly convex,
quadratic functions. The sets Ck,i are non-empty closed convex polyhedra that define
the partition of the PWA dynamics, and include state and input constraints.

Problems of the form (3) can be solved by introducing additional continuous and
binary variables, and formulating an MIP using, e.g., the big-M reformulation [5] or
more advanced formulations [34]. The resulting problems can then be solved using
off-the-shelf commercial MIP solvers. Instead of formulating a MIP, in this work we
transform Problem (3) into the form (1). In this way only Nnx auxiliary continuous
variables and no binary variables need to be introduced. For each time instant k we
introduce a copy wk of xk+1, as follows: wk := Ak,ixk+Bk,iuk+ck,i, if (xk, uk) ∈ Ck,i.
This allows us to define the closed convex polyhedral sets

Z1,̂ı(θ) :=
{

(u1, w1)
∣∣ w1 = A1,̂ıθ +B1,̂ıu1 + c1,̂ı and (θ, u1) ∈ C1,̂ı

}
,

Zk,i :=
{

(xk, uk, wk)
∣∣ wk = Ak,ixk +Bk,iuk + ck,i and (xk, uk) ∈ Ck,i

}
,

for ı̂ = 1, . . . ,m1 and for i = 1, . . . ,mk, k = 2, . . . , N . The non-convex constraint set
Z now has the form of (1b) and is decoupled in the horizon N . For an equivalent
formulation, we impose xk+1 = wk by defining a set of coupling equality constraints

E :=
N×
k=1

(
Rnu ×

{
(wk, xk+1) ∈ R2nx

∣∣ xk+1 = wk
})

.

Remark 2.2. To ensure the strict convexity of Problem (1) equivalent to Prob-
lem (3), we impose the objective αkqk+1(xk+1) + (1− αk)qk+1(wk) + rk(uk) for each
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k and any αk ∈ (0, 1). With the coupling constraint wk = xk+1 this ensures that the
cost remains unchanged. Without loss of generality, we have used αk = 0.5 for all k.

Remark 2.3 (Properties of the non-convex set Z). In this work we deal with the
general case of Z being polyhedral non-convex, and we do not make explicit use of
structure of Z beyond the fact that it can be represented as the Cartesian product over
unions of closed convex polyhedra. In Section 4, we give local convergence guarantees
under assumptions that additionally restrict the set Z. However, even with these
restrictions, Z can still be polyhedral non-convex, which in particular means that
it can have holes and gaps. Nevertheless, depending on the application, additional
structure of Z may be desirable for the presented method to be useful from a practical
standpoint. For example, when the set Z consists of many disjoint sets, then there
exist many local minima, some of which may be almost trivial to find. Indeed, we
have found that for MPC problems the method performs well if the piecewise affine
dynamics are continuous, which often leads to fewer local minima.

3. KKT conditions for Problem (2). Our aim is to develop an algorithm
to find local minima of Problem (2). For convex optimization, Karush-Kuhn-Tucker
(KKT) conditions give rise to necessary and sufficient conditions for global optimality,
under mild assumptions. In the non-convex, non-smooth case, however, they are in
general neither necessary nor sufficient, even for local optimality. We use a notion of
KKT points for instances of Problem (2) that provide necessary conditions for local
optimality. Computing such KKT points is in general intractable. Therefore, in this
section, we propose two restrictions (inner approximations) that are computationally
attractive. Based on these KKT conditions, we construct an operator Kξ whose
properties and structure allow us to derive a computationally efficient method and
give local optimality and convergence guarantees in Section 4.

3.1. Generalized, regular & proximal KKT points. We denote KKT points
by †, local optima by ◦ and global optima by ?. A point (z†, y†, λ†) is called a
generalized KKT point [32, Theorem 3.34, p. 127] of Problem (2) if it satisfies

0 ∈ {Hz† + h}+NE(z†)− {λ†} ,(4a)

0 ∈ NZ(y†) + {λ†} ,(4b)

0 = z† − y† ,(4c)

where the regular normal cone N̂C(z) and the (limiting) normal cone NC(z) of a set C
are defined as in [31, Proposition 6.5, p. 200]:

N̂C(z) :=
{
x ∈ Rn

∣∣ lim sup
u−→
C
z

〈x, u− z〉
‖u− z‖

}
, and NC(z) := lim sup

x−→
C
z
N̂C(x) = ∂χC(z) .

In particular, the KKT conditions (4) imply that z† = y† ∈ E ∩ Z. Since any KKT
point (z†, y†, λ†) satisfies primal feasibility, z† = y†, we will use the shorthand notation
(z†, λ†) for KKT points in the remainder of this paper. The KKT conditions (4) give
rise to necessary conditions for local optimality as detailed below.

Lemma 3.1 (Necessary condition for local optimality). For every local minimum
z◦ of Problem (1) there exist Lagrange multipliers λ◦ ∈ Rn such that (z◦, λ◦) is a
generalized KKT point of Problem (2).

These KKT conditions are difficult to exploit due to the dependence on NZ(·), which
cannot be evaluated easily [15]. However, we can define two restrictions that admit
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local minima

generalized KKT

regular

proximal
ξ

Fig. 1: The sets illustrate the relationship between different KKT points and represent
points z for which there exist multipliers λ such that (z, λ) is a generalized, regular
or proximal KKT point (dashed), as well as the set of local minima (dotted).

practical characterizations, resulting in what we call regular and ξ-proximal KKT
points. These special cases of KKT points can be evaluated more efficiently and have
important regularity properties. Furthermore, in Section 4.2, we will show that they
provide sufficient (but no longer necessary) conditions for local optimality. We call a
point (z†, λ†) a regular KKT point of Problem (2), if it satisfies

0 ∈ {Hz† + h}+ N̂E(z†)− {λ†} , and(5a)

0 ∈ N̂Z(z†) + {λ†} .(5b)

Note that we have replaced the normal cone NZ(z†) from (4b) with the regular normal
cone N̂Z(z†). Since N̂Z(z†) ⊆ NZ(z†), see [31, Proposition 6.5, p. 200], the set of
regular KKT points is an inner approximation, a restriction, of the set of generalized
KKT points. Given ξ > 0, we call (z†, λ†) a ξ-proximal KKT point of Problem (2), if
it satisfies

0 ∈ {Hz† + h}+ N̂E(z†)− {λ†} , and(6a)

z† ∈ PZ(z† − 1
ξλ
†) .(6b)

Compared to the definition of regular KKT points we have replaced the regular normal
cone NZ(z†) with a condition on the projection, and we have introduced a positive
scaling ξ using z† ∈ PZ(z†− 1

ξλ
†)⇒ − 1

ξλ
† ∈ N̂Z(z†), from [31, Example 6.16, p. 212].

This directly implies that every ξ-proximal KKT point (z†, λ†) is also a regular KKT
point and therefore (6) is a restriction of (5).

Evaluating whether a pair (z, λ) is a regular KKT point has an exponential worst-
case complexity, because representing N̂Z(z) may be combinatorial and can quickly
become intractable. In contrast, evaluating whether a pair (z, λ) is a ξ-proximal KKT
point amounts to a projection that can be performed in polynomial-time. Further-
more, for the primal variables z, this inner approximation (6) of (5) can be made tight,
as shown in the following proposition. Figure 1 illustrates the conceptual relationship
between the different KKT points.

Proposition 3.2. Consider Problem (2).
i) For any regular KKT point (z†, λ†), there exists a ξ̄ > 0 such that for all
ξ ≥ ξ̄, (z†, λ†) is a ξ-proximal KKT point.

ii) Given any ξ > 0 and ξ-proximal KKT point (z†, λ†), then (z†, λ†) is also a
regular KKT point.
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Problem (2) has only finitely many local minima due to positive definiteness of H and
the polyhedrality of E ∩ Z. Therefore, given a ξ > 0 large enough, for every regular
KKT point (z†, λ†) there exists a µ† such that (z†, µ†) is a ξ-proximal KKT point.

3.2. Operator for proximal KKT points. The fact that set-membership
evaluation of (6) is efficient, motivates the construction of an operator Kξ that has the
property that (i) it is cheap to evaluate and (ii) has zeros corresponding to ξ-proximal
KKT points of Problem (2). We use these two properties in Section 4 to construct an
algorithm based on this operator for finding local minima of Problem (1). We define
a set-valued operator Kξ : Rn ⇒ Rn:

(7a) Kξ(s) := {Mξs+ cξ} − PZ(s) ,

with ξ > 0 the proximal scaling, and

Mξ := ξ (ξR− I)
−1
R , cξ := (ξR− I)

−1
(R(h+Hv̄)− v̄) ,(7b)

R := V (V >HV )−1V > ,(7c)

where V and v̄ as in Section 2. We will show that finding an s such that 0 ∈ Kξ(s) is
equivalent to finding a ξ-proximal KKT point (z†, λ†). For Kξ to be defined properly,
ξR− I needs to be invertible. Since R � 0, this holds for all

ξ >
(
λ+

min(R)
)−1

.(8a)

This impliesMξ � 0 and λ+
min(Mξ) > 1 ,(8b)

where λ+
min(R) is the smallest non-zero eigenvalue of R. For Problem (3), it can be

shown that ξ > λmax(H) is necessary and sufficient for satisfying both (8a) and (8b).
Using (7a) we can show that a point s† ∈ zeroKξ, called a zero of Kξ, corresponds to
a ξ-proximal KKT point (z†, λ†) with z†, λ† as follows:

(9) z† := Mξs
† + cξ and λ† := ξ(z† − s†) ,

where the precise relationship is given in Lemma 3.3.

Lemma 3.3 (Zeros of operator Kξ). Given any ξ > 0. A point s† ∈ Rn satisfies
s† ∈ zeroKξ if and only if the pair (z†, λ†) constructed through (9) is a ξ-proximal
KKT point of Problem (2).

Multiple points s† ∈ zeroKξ can result in the same z† (but different λ†), since Mξ

is only invertible when E = Rn. This means in particular that there can be multiple
zeros of Kξ corresponding to the same local optimum.

4. Solution method and theoretical guarantees. In this section we present
an algorithm constructed to find ξ-proximal KKT points of Problem (2) by find-
ing zeros of the operator Kξ. The basis of this algorithm is a fixed-point iteration,
where every iteration is computationally inexpensive. In Theorem 4.2, we show that
if the proposed algorithm converges, then it converges to a local minimum of Prob-
lem (1). Furthermore, in Theorem 4.6 we show that, under practical assumptions,
the presented algorithm converges locally to such minima, almost always. By ‘almost
always’ we mean that, for any local minimum that has corresponding fixed points,
there exist at most a measure zero subset of fixed points from which the method may
not converge.
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4.1. Fixed-point algorithm. We define an operator Tξ : Rn ⇒ Rn, that has
the zeros of Kξ as its fixed points:

(10a) Tξ(s) := s−WKξ(s) = s−W
(
Mξs+ cξ − PZ(s)

)
,

with W ∈ Rn×n invertible to ensure fixTξ = zeroKξ. W is defined as

(10b) W := Q
[

1
2 Λ−1 0

0 −I

]
Q> ,

where Q ∈ Rn×n is orthonormal and Λ ∈ Rn−m×n−m diagonal, positive definite, such
that Mξ = Qdiag(Λ, 0)Q> is the eigendecomposition of Mξ. In addition, the structure
of W will be used to prove local nonexpansiveness of the operator Tξ, see Lemma 4.5
in Section 4.4. The local nonexpansiveness of Tξ allows us to use the Krasnoselskij
iteration [6, Theorem 3.2, p. 65] to find fixed points of Tξ. Given an initial iterate
s0 ∈ Rn, the Krasnoselskij iteration is defined as follows:

(10c) sj+1 = (1− γ)sj + γTξ(sj) ,

with step size γ ∈ (0, 1). From (10c) we obtain Algorithm 1.

Algorithm 1 Low-complexity method for Problem (2)

Require: s0 ∈ Rn, γ ∈ (0, 1), εtol > 0
1: if z? := v̄ −R(h+Hv̄) ∈ Z then return z? . check trivial solution
2: repeat for j = 0, 1, . . .
3: zj+1 = Mξsj + cξ
4: yj+1 ∈ PZ(sj) . projection, see Alg. 2
5: sj+1 = sj − γW (zj+1 − yj+1) . Krasnoselskij iteration
6: until ‖zj+1 − yj+1‖ ≤ εtol then return yj+1 . termination criterion

Each iteration of Algorithm 1 is simple and geared towards an efficient embedded
implementation utilizing automatic code-generation. It involves only matrix-vector
multiplications and a small number of projections. The projection onto the non-
convex set Z in step 4 is the most expensive step. It can be evaluated in polynomial
time using Algorithm 2, where at most

∑N
k=1mk small-scale projections onto poly-

hedra are needed (Algorithm 2, step 2). State-of-the-art embedded solvers [10] or
even explicit solutions [16] can be used for these projections. For problems of the
form (3), the matrices Mξ and W are block-banded with bandwidth max{2nx, nu},
therefore steps 3 and 5 of Algorithm 1 can be evaluated very efficiently and have a
computational complexity of O(N(nx+nu)2). This enables the automatic generation
of efficient, embeddable code that is tailored to particular (parametric) problems.

Algorithm 2 PZ(s), projection of s onto Z
Require: s = (s1, . . . , sN ) ∈ Rn, Z of form (1b)

1: for k = 1, . . . , N do
2: for i = 1, . . . ,mk do zk,i = PZk,i(sk) . small-scale projections
3: zk ∈ arg mini=1,...,mk

‖sk − zk,i‖ . select closest

4: return z = (z1, . . . , zN )
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N̂Z1
(z1)

N̂ ∗
Z1

(z1) + {z1}
Z1

ε
z1

N̂ ∗
Z2

(z2) + {z2}

Z2

N̂Z2
(z2)

ε
z2

Fig. 2: Two cases of local convexifications N̂ ∗Z(z) + {z} of non-convex sets Z1 and Z2

at points z1 (left) and z2 (right), as described in Lemma 4.1.

4.2. Local optimality. First, we will show that when Algorithm 1 converges, it
converges to a local minimum, and equivalently that the fixed points of the operator
Tξ correspond to local minima. Any set Z of form (1b) can be transformed into a finite

union of closed, convex polyhedra Zi ⊆ Rn with Z =
⋃I
i=1Zi, where I :=

∏N
k=1mk.

This equivalent representation helps to simplify our theoretical considerations. The
exact construction of the sets Zi does not affect the presented results. Furthermore,
we define the set of active components of Z at a point z ∈ Z as IZ(z) := {i ∈
{1, . . . , I} | z ∈ Zi}. To establish the subsequent theoretical results we will use
the polar N̂ ∗Z of the regular normal cone, defined in [31, Equation 6(14), p. 215]

as N̂ ∗Z(z) = {v | 〈v, w〉 ≤ 0 , ∀w ∈ N̂Z(z)}. The following lemma establishes two
important properties of the set Z and its normal cone. These properties will be used
in Theorem 4.2 for proving local optimality. At any point z ∈ Z, Lemma 4.1 relates
the set Z to a local convexification N̂ ∗Z(z) + {z}, as illustrated in Figure 2.

Lemma 4.1 (Local convexification). For any z ∈ Z, the set Z and the closed
convex set N̂ ∗Z(z) + {z} are related in the following ways:

i) There exists an ε > 0 such that Z ∩ Bε(z) ⊆ N̂ ∗Z(z) + {z}.
ii) Their regular normal cones at z coincide, i.e., N̂Z(z) = N̂N̂∗Z(z)+{z}(z).

We now use Lemma 4.1 to prove the first key result.

Theorem 4.2 (Local optimality). If Algorithm 1 converges to a point (y◦, z◦, s◦),
then y◦ = z◦ and z◦ is a local minimum of Problem (1). Moreover, (z◦, ξ(z◦− s◦)) is
a regular KKT point of Problem (2).

Proof. When Algorithm 1 converges to a point (y◦, z◦, s◦), we have by definition
that z◦ = Mξs

◦ + cξ, y
◦ ∈ PZ(s◦) and s◦ = s◦ − γW (z◦ − y◦). Together with the

invertibility of W , it follows that z◦ = y◦. Moreover, from the definition of Kξ it
follows that 0 ∈ Kξ(s

◦), i.e., s◦ ∈ zeroKξ. Lemma 3.3 thus implies that (z◦, λ◦), with
λ◦ := ξ(z◦, s◦) is a ξ-proximal KKT point of Problem (2), which implies that (z◦, λ◦)
is a regular KKT point of Problem (2), see Section 3.1. Given this, we now consider
the auxiliary problem:

(11) min
z,y : z=y

1
2z
>Hz + h>z + χE×(N̂∗Z(z◦)+{z◦})(z, y) .

Problem (11) is strictly convex and its KKT conditions are given as z = y (primal
feasibility) and

(12) 0 ∈ {Hz + h}+ N̂E(z)− {λ} and 0 ∈ N̂N̂∗Z(z◦)+{z◦}(y) + {λ} .
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By Lemma 4.1(ii), (12) is equivalent to the regular KKT conditions (5). Therefore,
(z◦, λ◦) also satisfies (12). By strict convexity, implied by H � 0, (z◦, λ◦) is primal-
dual optimal for Problem (11). Furthermore, using Lemma 4.1(i), we know that there
exists an ε > 0 such that z◦ ∈ Z ∩ Bε(z◦) ⊆ N̂ ∗Z(z◦) + {z◦}, therefore, the pair
y = z = z◦ is also optimal for the non-convex problem

min
z,y : z=y

1
2z
>Hz + h>z + χE×(Z∩Bε(z◦))(z, y) ,

which is a local instance of Problem (2), where the feasible region is restricted to
Bε(z◦). This implies that z◦ is locally optimal for Problem (2) and Problem (1).

4.3. Existence. We have seen that for any regular KKT point we can ensure
the existence of a ξ-proximal KKT point by choosing ξ large enough. Therefore, if
there exists a regular KKT point, we can ensure the existence of fixed points of the
operator Tξ, and therefore of Algorithm 1, as demonstrated in the following theorem.

Theorem 4.3 (Existence of fixed points). If there exists a regular KKT point
(z†, λ†) of Problem (2), then there exists a ξ̄ > 0 such that Algorithm 1, and equiva-
lently Tξ, has at least one fixed point for any ξ ≥ ξ̄.

Proof. Given a regular KKT point (z†, λ†) of Problem (2). By Proposition 3.2(i),
there exists a ξ̄ > 0 such that for any ξ ≥ ξ̄ we have that (z†, λ†) is a ξ-proximal KKT
point. By Lemma 3.3, s† := z†− 1

ξλ
† ∈ zeroKξ and thus s† is a fixed point of Tξ and

(z†, y†, s†), with y† = z† = Mξs
† + cξ ∈ PZ(s†) is a fixed point of Algorithm 1.

In Figure 3 we illustrate four examples for the existence and nature of KKT points.
Figures 3a–3c are cases where the proximal scaling ξ > 0 can be chosen such that
fixed points of Algorithm 1 exist and we may find local minima using the proposed
method. In Figure 3d the feasible set is a singleton and none of its corresponding
KKT points are regular. In this case Algorithm 1 would not have a fixed point for
any ξ > 0, even though a generalized KKT point exists. Figures 3a and 3b illustrate
common cases. On the other hand Figures 3c and 3d depict more rare cases.

4.4. Local convergence to local minima. In this section, we prove that the
presented method converges locally to local minima. We say that a fixed point s◦

corresponds to a local minimum z◦, if the ξ-proximal KKT point (z◦, λ◦) can be
constructed from s◦ through (9). Note that, as shown in Lemma 3.3 and Theorem 4.2,
any fixed point of Tξ can be used to reconstruct a local minimum. We denote the set
of fixed points corresponding to z◦ by fixTξ|z◦ := {s | (z◦, ξ(z◦ − s)) satisfies (6)}.
The set fixTξ|z◦ is convex for fixed z◦, because N̂E(z◦) is a convex set for any z◦ and
because the set of λ’s satisfying z◦ ∈ PZ(z◦ − 1

ξλ) form the proximal normal cone of

Z at z◦ which is also convex, see [31, p. 213]. We make the following assumptions:
(A1) Problem (2) has at least one regular KKT point.
(A2) Given any local minimum z◦ of Problem (1) such that fixTξ̄|z◦ 6= ∅ and

z◦ 6∈ fixTξ̄|z◦ for some ξ̄ > 0. There exists a ξ ≥ ξ̄ and a fixed point

s◦ ∈ fixTξ|z◦ with multipliers λ◦ := ξ(z◦−s◦) such that −λ◦ ∈ relint N̂Z(z◦).
(A3) The structure of set Z is such that, for any z ∈ Z, either N̂Z(z) = {0}, or

there exists an ε > 0 such that for all w ∈ N̂Z(z)⊥ ∩ Bε, we have z + w ∈ Z.
Assumption (A1) ensures the existence of regular KKT points. It furthermore implies
the existence of fixed points of Tξ for ξ large enough, according to Theorem 4.3. As-
sumption (A2) can be understood as a non-degeneracy condition on the multipliers.
Assumption (A3) is an assumption on the geometry of Z and ensures mild local regu-
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Fig. 3: KKT points of minz,y∈E×(Z1∪Z2) : x=y
1
2z
>z+h>z. Level curves of the objective

and the objective value evaluated on Z1, Z2 and E are illustrated in the respective col-
ors, solid where feasible, dotted where infeasible. (a) (z1, λ1) and (z2, λ2) are regular
KKT points corresponding to local minima. (b) (z1, λ1), is a regular KKT point cor-
responding to a local minimum, (z2, λ2) a non-regular KKT point corresponding to a
(not locally optimal) critical point. (c) (z, λ1), (z, λ2) are a non-regular and a regular
KKT point, corresponding to the same global minimum. (d) (z, λ1), (z, λ2) are the
only KKT points corresponding to the unique global minimum, both are non-regular.

Z
N̂Z(z)w

z

Fig. 4: A set Z where (A3) is violated at point z. We see that w is orthogonal to
N̂Z(z), but z + εw 6∈ Z for any ε > 0.

larity. These assumptions are substantially less restrictive than common assumptions
for non-convex optimization methods such as smoothness, Clarke- or prox-regularity
of the constraint set E ∩Z at critical points. In fact, we show in Section 4.5 that (A2)
holds for any given Problem (1) with (almost) arbitrary convex quadratic objective
and in Appendix B we present Algorithm 3 which provides a necessary and sufficient
condition for (A3). Algorithm 3 is a combinatorial algorithm that enumerates the
active sets and components of Z. It may therefore perform badly for anything but
small dimensions. However, when the sets Zk,i of Z are of low dimension, which is
often the case in structured problems such as hybrid MPC problems, the check can be
performed separately for each k. This significantly reduces the computational burden.
Moreover, this check can be performed once and offline for all parameters θ. Note
that (A3) does not hold for all instances of Problem (1). The sets in Figure 2 and
Figure 3, as well as the numerical examples in Section 5 satisfy (A3), whereas Figure 4
illustrates a simple counter-example in three dimensions. Moreover, when (A3) is vi-
olated, Algorithm 1 may still converge. If it converges, the solution is guaranteed to
be a local minimum independently of whether (A3) holds, as stated in Theorem 4.2.

In Algorithm 1, we apply the Krasnoselskij iteration to the operator Tξ. This
iteration is known to converge globally when the operator Tξ is nonexpansive, which
is the case when Z is convex. To show local convergence for the non-convex case
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N̂ ∗
Z(0)

Z1

Z2
H

fixTξ|0

z = 0

Fig. 5: The point z = 0 is locally optimal for the problem minz∈Z 1
2z
>z + h>z, with

Z := Z1 ∪ Z2, if and only if h ∈ H := −N̂Z(0). It can be verified that for all h ∈ H
there exist multipliers λ such that (0, λ) is a regular KKT point, i.e., (A1) holds.
Furthermore, (A2) holds for all ξ > λ+

min(R)−1 and h ∈ relintH (almost all h ∈ H),
as indicated by Theorem 4.7. Also, (A3) holds for Z. Finally, given any h ∈ H:
fixTξ|0 = {−h}. If h 6= 0 (0 6∈ fixTξ|0), then s◦ := −h ∈ fixTξ|0 is unique and
there exists an ε > 0 such that the projection PZ(s) is like the projection onto the
convex set N̂ ∗Z(0) for all s ∈ Bε(s◦), i.e., it is single-valued, continuous and firmly
nonexpansive on Bε(s◦), as indicated by Lemma 4.4.

in Theorem 4.6, we need Tξ to be nonexpansive in a neighborhood around fixed
points. Starting in such a neighborhood, we will converge via the same argument.
Theorem 4.6 is proved using two auxiliary lemmas. In Lemma 4.4 we show that,
in a neighborhood around almost all fixed points, the projection PZ behaves like
a projection onto a convex set. Therefore, it is locally firmly nonexpansive, single-
valued and continuous [4, Proposition 4.8, p. 61]. Then, in Lemma 4.5, we use this
property, together with the particular construction of the operator Tξ, to show that
Tξ is nonexpansive, single-valued and continuous in a neighborhood around almost
all fixed points. This is used in Theorem 4.6 to guarantee the local convergence of
Algorithm 1 to a local minimum, almost always.

Lemma 4.4. Let Assumptions (A1)–(A3) hold. For any ξ large enough, and any
local minimum z◦ to Problem (1) with z◦ 6∈ fixTξ and fixTξ|z◦ 6= ∅; we have that
for all fixed points s◦ ∈ fixTξ|z◦, except a measure zero subset, there exists an ε > 0
such that the projection PZ is single-valued, continuous and firmly nonexpansive on
Bε(s◦).
Note that Lemma 4.4 is weaker than prox-regularity of Z. Prox-regularity of Z is
equivalent to PZ being single-valued, Lipschitz-continuous and monotone in a neigh-
borhood around any point z ∈ Z, see [30, Theorem 1.3 (i)–(k), p. 5234]. Lemma 4.4
makes a similar statement about PZ for points in the neighborhood Bε(s◦) of s◦ ∈
fixTξ|z◦, with ε > 0. Because Lemma 4.4 only holds when z◦ 6∈ fixTξ, the neighbor-
hood Bε(s◦) can always be chosen such that it does not intersect with Z. In fact,
Figure 5 illustrates a simple example, where Assumptions (A1)–(A3), and thereby
Lemma 4.4, hold for a set Z that is not prox-regular at z = 0.

Lemma 4.5. Let ξ > 0 and given any fixed point s◦ ∈ fixTξ such that there exists
an ε > 0, where the projection PZ is single-valued, continuous and firmly nonexpansive
on Bε(s◦). Then the operator Tξ is also single-valued, continuous and nonexpansive
on Bε(s◦).

Theorem 4.6. Let Assumptions (A1)–(A3) hold. For any ξ large enough, and an
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initial iterate s0 sufficiently close to a fixed point of Tξ, Algorithm 1 converges almost
always to a fixed point (z◦, y◦, s◦). When it converges, zj and yj converge to each
other, i.e., z◦ = y◦, and to a local minimum of Problem (1). Moreover, sj converges
to a fixed point of Tξ, i.e., to s◦ ∈ fixTξ.

Proof. Given ξ > λ+
min(R)

−1
, i.e., (8a), and large enough, according to Theo-

rem 4.3, (A1) implies the existence of fixed points of Tξ, i.e., fixTξ 6= ∅. We first
consider that there exists a fixed point s? ∈ fixTξ with corresponding local minimum
z? such that s? = z?. Then (z?, 0) is a KKT point of Problem (2). Therefore

Mξz
? + cξ ∈ PZ(z?) = {z?} ⇔ z? = (I −Mξ)

−1cξ = v̄ −R(h+Hv̄) ,

with I −Mξ invertible due to ξ > λ+
min(R)

−1
and (8b). This is checked in step 1 of

Algorithm 1. If it holds the algorithm terminates and returns z?, a global minimum. If
there is no s◦ ∈ fixTξ such that the corresponding local minimum z◦ satisfies s◦ = z◦,
we can apply Lemma 4.4. It says that for large enough ξ and any local minimum z◦,
such that fixTξ|z◦ 6= ∅, we know that for all s◦ ∈ fixTξ|z◦, except a measure zero
subset, there exists an ε > 0 such that the projection PZ is single-valued, continuous
and firmly-nonexpansive on Bε(s◦). We consider any such ξ and s◦. Using Lemma 4.5,
Tξ is nonexpansive on Bε(s◦). If the initial iterate is close enough, i.e., s0 ∈ Bε(s◦),
then by the nonexpansiveness of Tξ the iterates will satisfy sj ∈ Bε(s◦) for all j ∈ N.
The Krasnoselskij iteration applied to Tξ, in step 5 of Algorithm 1, converges to a fixed
point of Tξ for any choice of step-size parameter γ ∈ (0, 1) [6, Theorem 3.2, p. 65].
Convergence limj→∞ ‖zj−yj‖ = 0, follows by single-valuedness, and continuity of Tξ.
By Theorem 4.2, zj , yj converge to a local minimum of Problem (1).

Theorem 4.6 may require ξ to be large. Moreover, a lower bound of ξ satisfying
Assumption (A2) may be hard to compute. However, in practice good results can
be obtained for relatively small values of ξ. In addition, if the algorithm fails to
converge, the theoretical results indicate that choosing a larger value of ξ may improve
the convergence behavior. This is verified experimentally in Section 5.2.1, where we
examine the behavior for different ξ.

4.5. Non-degeneracy. In the following we show that Assumption (A2) is satis-
fied for almost all instances of Problem (1). Corollary 4.8 makes the result applicable
to instances of Problem (3), covering hybrid MPC.

Theorem 4.7 (Non-degeneracy). Consider Problem (1) with arbitrary parame-
ter θ ∈ Rp and cost matrix H � 0. Given any point z ∈ E ∩ Z. For almost all linear
cost terms h for which fixTξ|z 6= ∅ for some ξ > 0, we have that (A2) holds at z.

Proof. By Proposition 3.2(i), Lemma 3.3 and the definition of Tξ, there exists a
ξ̄ > 0 such that for all ξ ≥ ξ̄ we have that fixTξ|z 6= ∅ if and only if there exists a λ†

such that (z, λ†) is a regular KKT point. We will show that for all linear cost terms
h, except a measure zero subset, there exists a λ◦ such that s◦ := z − 1

ξλ
◦ ∈ fixTξ|z

and −λ◦ ∈ relint N̂Z(z). This means that (A2) holds at z.
The set H of h for which there exist λ† such that (z, λ†) is a regular KKT point

is given by the following convex set

H :=
{
h ∈ Rn | ∃λ : 0 ∈ {Hz + h}+ N̂E(z)− {λ} and− λ ∈ N̂Z(z)

}
=
[
I 0 0

] ((
Rn ×−N̂Z(z)× N̂E(z) + {Hz}

)
∩
{[ h

λ
v

]
| v = λ− h

})
.
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Due to convexity of the regular normal cones all sets involved in the description
of H are convex. Therefore, we can use distributivity of the relint operator over
the Cartesian product and over the Minkowski sum [31, Exercise 2.45(a–b), p. 67],
the interchangeability of linear maps and the relint operator [31, Proposition 2.44(a),
p. 66], and distributivity of the relint operator over finite intersections if relintH 6= ∅,
see [31, Proposition 2.42, p. 65]. From this we obtain that

relintH =
[
I 0 0

] ((
Rn ×− relint N̂Z(z)× N̂E(z) + {Hz}

)
∩
{[ h

λ
v

]
| v = λ− h

})
=
{
h ∈ Rn | ∃λ : 0 ∈ {Hz + h}+ N̂E(z)− {λ} and −λ ∈ relint N̂Z(z)

}
,

if relintH 6= ∅. Therefore, all linear cost terms for which (A2) holds are in relintH.
Conversely, via [22, Theorem. 1, p. 90] and convexity of H, all linear cost terms for
which (A2) does not hold are in a measure zero subset of H. To conclude the proof, it
remains to show that relintH 6= ∅. The set N̂Z(z) is closed, convex and non-empty,
this implies that relint N̂Z(z) 6= ∅ via [31, Proposition 2.40, p. 64]. Therefore, there
exists a λ such that −λ ∈ relint N̂Z(z). Then h := λ −Hz ∈ relintH, which implies
relintH 6= ∅.

To equivalently transform Problem (3) into Problem (1), in Remark 2.2, we have
effectively restricted the choice of cost function to the case where its gradient Hz+ h
is in the set Eα, for α ∈ (0, 1)N , where the set Eα is defined as

Eα :=×N

k=1

(
Rnu ×

{
(wk, xk+1) ∈ R2nx

∣∣ αkwk = (1− αk)xk+1

})
.

With E as defined for Problem (3) in Section 2.2, we have that Eα + E⊥ = Rn, i.e.
for any α ∈ (0, 1)N : Eα and E⊥ span Rn. Theorem 4.7 does not immediately apply
to this case, because the choice of cost function has been restricted. Corollary 4.8
extends Theorem 4.7 to Problem (3).

Corollary 4.8 (Non-degeneracy of Problem (3)). Consider Problem (3) with
arbitrary initial state θ ∈ Rp, α ∈ (0, 1)N and quadratic cost matrix H � 0 following
Remark 2.2. Given any point z ∈ E ∩ Z and for all linear cost terms h satisfying
Remark 2.2 for which fixTξ|z 6= ∅ for some ξ > 0, except a measure zero subset of
Eα, we have that (A2) holds at z.

Proof sketch. Following Section 2.2, any instance of Problem (3) can be written as
an instance of Problem (1), where, according to Remark 2.2, we require cost functions
such that Hz + h ∈ Eα, for some α ∈ (0, 1)N and any z. Following the proof of
Theorem 4.7, we only need to show that relintH ∩ Eα 6= ∅. This then implies
that relint(H ∩ Eα) = relint(H) ∩ Eα, which implies the result. As in the proof of
Theorem 4.7, we have that relint N̂Z(z) 6= ∅. We need to show that there exists an
h ∈ Eα such that ({Hz+h}+N̂E(z))∩− relint N̂Z(z) 6= ∅. Due to [31, Theorem 6.46,
p. 231] which details the presentation of the regular normal cones of polyhedral sets, we
have that N̂E(z) = E⊥. Furthermore we have Hz+ Eα = Eα, for any z, by definition.
Therefore, we have ({Hz}+Eα+N̂E(z))∩− relint N̂Z(z) = Rn∩− relint N̂Z(z) 6= ∅.

5. Numerical results. We consider two numerical examples and compare our
method with an MIP reformulation based on disjunctions [34, Section 5], solved using
CPLEX, Gurobi and MOSEK. We used YALMIP [26] as optimization interface. To
ensure a fair comparison with the MIP solvers, we have used the absolute MIP gap
tolerance ∆gap, which can be specified for all three used solvers CPLEX, Gurobi and
MOSEK. The tolerance ∆gap allows the solver to terminate as soon a solution with
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objective p is found that can be certified to be at most ∆gap from the optimal objec-
tive p?, i.e., p + ∆gap ≤ p?. For each optimization problem that is solved as part of
Section 5 we perform the following steps to determine a meaningful gap: 1) Solve the
problem with the proposed method, yielding a suboptimal solution z◦ with objective
value p◦; 2) solve the problem to global optimality by warm-starting the MIP solver
using z◦. This yields the optimal objective value p?; 3) set the absolute MIP gap
tolerance of the MIP solver to ∆gap := p◦− p? and re-solve the MIP problem without
warm-starting. In all instances where a global solver is used in this section, we have
set the absolute MIP gap tolerance as described above. We further compare to an
efficient implementation of non-convex ADMM, similar to [33], where the splitting
(2) was used. Efficient C-code for the proposed method and ADMM was generated
automatically using the developed code generation tool [11], integrating explicit so-
lutions of the individual convex projections using MPT3 [16]. For Example 5.1 the
resulting binaries are less than 75 kB. For Example 5.2 they are 490 kB for prediction
horizon N = 10 and 550 kB for N = 20. The binaries for ADMM are of comparable
size. In contrast, the executables for the MIP solvers are in the range of 10 to 20 MB.
The reported timings are obtained on an Intel Core i7 processor using a single core
running at 2.8 GHz with 8 GB of RAM. No warm-starting or re-starting is used and
we always start with the initial iterate s0 = 0 (y0 = λ0 = 0 for ADMM). We have used
step size parameter γ = 0.5 and consensus tolerance εtol = 10−3. The same tolerance
was also used for the termination criterion of ADMM, according to [7], as absolute,
primal and dual residual tolerance. Both examples are instances of Problem (3). They
therefore satisfy (A2) for almost any linear cost term, according to Corollary 4.8. Fur-
thermore, Assumption (A3) was verified to hold for both examples using Algorithm 3
in Appendix B. In fact, for Example 5.1, Assumption (A3) was verified analytically,
whereas for Example 5.2 Assumption (A3) was verified computationally in one hour
and 18 minutes via an implementation of Algorithm 3 in MATLAB. The implemen-
tation was not optimized for speed and it is likely that the computation times could
be improved substantially with a more efficient implementation.

Additionally, we have applied the proposed method to suitable problems from the
MacMPEC collection [23]. This is discussed in Appendix C.

5.1. Simple hybrid MPC. We consider a simple example taken from the hy-
brid MPC literature [5, Example 4.1, p. 415]. It consists of two states, one input and
PWA dynamics defined over two regions:

xk+1 =

{
A1xk +Buk if [ 1 0 ]xk ≥ 0

A2xk +Buk if [ 1 0 ]xk ≤ 0
,

with uk ∈ [−1, 1], a regulation objective
∑N
k=1 ‖xk+1‖2 + ‖uk‖2 and

A1 := 2
5

[
1 −

√
3√

3 1

]
, A2 := 2

5

[
1
√

3

−
√

3 1

]
, B := [ 0

1 ] .

For prediction horizons N = 5, 10, 20, . . . , 60, we apply the hybrid MPC in closed-
loop for 10 steps. Each MPC problem is solved using the proposed method, with
ξ = 10, and using ADMM with penalty parameter ρ = 10, where the tolerance
εtol = 10−3 is used for both methods. The convergence of our method is illustrated
in Figure 6a by a decreasing consensus violation ‖zj − yj‖, for N = 40 and the first
time step of the receding horizon problem. Even though not shown, the method also
converges for all successive time steps (and horizons N), with similar convergence
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Fig. 6: Comparison of Example 5.1 with initial state x1 = x2 = 1.

characteristics. This leads to a stable closed-loop trajectory, illustrated in Figure 6b.
The trajectory is almost indistinguishable from the optimum, obtained using a MIP
reformulation based on disjunctions [34, Section 5]. The computational advantage of
our method is underlined by Figure 6c, where the average runtime for different control
horizons N is shown. Our method is approximately two orders of magnitude faster
than the considered commercial MIP solvers. Furthermore, Figure 6d illustrates, that
our method is slightly faster than ADMM in terms of the median runtime. The
average runtime of ADMM in Figure 6c is substantially higher than for our method,
because ADMM fails to converge for two of the ten time steps and terminates when
it reaches 10 000 iterations. We were not able to achieve convergence of ADMM by
adjusting ρ for these cases.

5.1.1. Local convergence to local minima. In order to illustrate the local
convergence behavior of Algorithm 1 and the dependence of the method on both the
initial iterate s0 and the scaling ξ, we have solved Example 5.1 for N = 10 and 50 000
different initial iterates s0 := z0− 1

ξλ0, where z0 was drawn uniformly randomly from

[−1, 1]50 and λ0 from [−10, 10]50. We considered three different proximal scalings
ξ = {10, 100, 1000} and the consensus tolerance was εtol = 10−8. The convergence
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(a) ξ = 10. The method converges in 91.4% of cases and does not converge in 8.6% of cases.
Clusters with objective values (a) in [0.4189, 0.4225] (67.9%), (c) in [0.9411, 0.9461] (22.9%)
and (d) in [1.5488, 1.5572] (0.6%). Cluster (b) is not yet present, likely because ξ is too low.
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(b) ξ = 100. The method converges in 99.1% of cases and does not converge in 0.9% of cases.
Clusters with objective values (a) in [0.4189, 0.4225] (62%), (b) in [0.5072, 0.5078] (15.2%),
(c) in [0.9411, 0.9748] (21%) and (d) in [1.5488, 1.5572] (0.9%).
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(c) ξ = 1000. The method converges in 99.5% of cases and does not converge in 0.5% of
cases. Clusters with objective values (a) in [0.4189, 0.4225] (62%), (b) in [0.5072, 0.5078]
(15.6%), (c) in [0.9411, 0.9748] (21%) and (d) in [1.5488, 1.5572] (0.9%).

Fig. 7: Percentage of initial iterates s0 achieving different objective values for different
values of ξ. Converged solutions are clustered according to objective values, where
each cluster contains multiple local optima. Cluster (a) includes the optimal objective
0.4189.
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Fig. 8: Trajectories resulting from different initial iterates s0, for ξ = 100, in clusters
(a)–(d). The number of trajectories differing (in terms of the objective) by at most
10−5 is (a) 7, (b) 4, (c) 15 and (d) 8.
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to local minima can be seen in Figure 7, where we have clustered the solutions into
four clusters (a)–(d) and illustrate the percentage of initial iterates achieving certain
objective values which correspond to local optima. In Figure 7(a), we can see that
for ξ = 10 we converge to fewer different local solutions, compared to ξ = 100 or
ξ = 1000 given in Figure 7(b)–(c). In particular, the cluster (b) is absent from
Figure 7(a) and the cluster (c) contains a more narrow range of objective values.
Furthermore, comparing Figures 7(a)–(c), we see that the method converges more
frequently for larger ξ. Since the proposed method is a local method, the initial
iterate s0 of Algorithm 1 has a much large effect than ξ on which local minima our
method converges to. However, if ξ is too small, some local minima will cease to
correspond to fixed points of the method and the number of cases where the method
fails to converge increases. Moreover, the state trajectories of the solutions for each
cluster, for ξ = 100, are plotted in Figures 8a–8d. Each cluster contains multiple
local minima that have similar objective value. The 50 000 different initial iterates
only lead to 34 trajectories that each differ (in terms of the objective value) by at least
10−5. Cluster (a) with 62%− 68% of initial iterates contains solutions that are very
close to the global optimum. The initial iterate s0 = 0 used in Example 5.1 belongs
to this cluster. This illustrates that the presented method is indeed a local method,
and does not necessarily converge to the global optimum.

5.2. Racing. In this numerical example, we demonstrate the properties of the
proposed algorithm on a more complex problem. To this end, we consider a hybrid
MPC problem for racing miniature cars [25], where the friction forces acting on the
tires are modeled as a PWA function, see [14, p. 108ff]. The forward velocity vx of the
car is fixed to 2 m/s. The state x = (vy, ω) of the system consists of the lateral velocity
vy and the turning rate ω. The steering angle δ is the only input to the system. The
continuous-time dynamics are described by

v̇y = 1
m (Ff,y(vy, ω, δ) + Fr,y(vy, ω)−mvxω) ,

ω̇ = 1
IZ

(lfFf,y(vy, ω, δ)− lrFr,y(vy, ω)) ,

where m, IZ , lf , lr are known model parameters and Ff,y, Fr,y are the lateral friction
forces acting on the front and rear tires of the vehicle, respectively. They are given
as PWA functions with 5 pieces each, giving rise to an irredundant description of
the dynamics with 19 regions per time step. For a prediction horizon N , this leads
to 19N possible combinations overall. The dynamics are discretized with a sampling
time of Ts = 20 ms. Additionally, we impose input constraints δ ∈ [−23 ◦, 23 ◦] and
state constraints:

(13) vy ∈ [−1 m/s, 1 m/s] , ω ∈ [−8 rad/s, 8 rad/s] .

The objective
∑N
k=1 ‖ diag(1,

√
10)(xk+1 − x̄k+1)‖2 + ‖δk − δ̄k‖2, tracks a state x̄ and

input δ̄ reference trajectory producing an S-shaped motion of the race car.
We consider closed-loop behavior, where the MPC is applied in a receding-horizon

fashion. For every time step a problem with different initial state and reference is
solved and only the first input u1 is applied to the dynamical system. A new problem
with updated initial state and reference is solved for the next time step. We compare
the closed-loop evolution for the different methods over 150 steps. The initial state is
vy = ω = 0. The dynamics of the system are with respect to the lateral and angular
velocities, vy and ω. The MPC problem instances are solved for a prediction horizon
of N = 10 (ξ = 300) and N = 20 (ξ = 400). The penalty parameter of ADMM
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was chosen to be ρ = 350 and ρ = 450 for N = 10 and N = 20, respectively. A
time limit of 3 s for N = 10, and 43 s for N = 20 was imposed on all solvers. Both
time limits are well above the computation times achieved by our algorithm, with a
median runtime of 34 ms for N = 10, and 87 ms for N = 20, as reported in Figure 10
and Table 1. For N = 20, Gurobi has a median runtime of 10 s, reaching the time
limit in a few cases, CPLEX has a median runtime if 12 s, reaching the time limit in
some cases and MOSEK reaches the time limit for most time steps leading to median
runtime of to 43 s. The runtime of ADMM is similar to the proposed method (median
runtime of 55 ms for N = 20), however, it fails to converge in a few cases, as shown in
Figure 10. In contrast, our method converges in at most 1878 iterations for each of
the 150 problems, solved in the closed-loop simulation. This is illustrated in Figure 9.
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Fig. 9: Consensus violations
‖zj − yj‖ for N = 20 and
time steps 1 to 150, illustrat-
ing convergence.
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Fig. 10: Solution time in [s]
for time steps k of the closed-
loop simulation, for N = 20,
time limit 43 s (dashed).
Our method (solid), ADMM
(solid) and Gurobi (dash-
dotted).
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Fig. 11: Closed-loop position trajectory with initial
condition x = y = ϕ = 0. Optimal closed-loop
trajectory (dashed), our method (solid), ADMM
(solid), CPLEX (dashed), Gurobi (dash-dotted)
and MOSEK (dotted).

In Figure 11, we compare the position of the car, using the position dynamics
to transform the velocities into positions, via integration of ϕ̇ = ω, ẋ = vx cos(ϕ) −
vy sin(ϕ) and ẏ = vx sin(ϕ) + vy cos(ϕ). The proposed method (solid) visibly out-
performs the commercial MIP solvers in terms of solution quality. This is also illus-
trated in Table 1, where the relative distance to the optimal closed-loop trajectory
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N
our

method ADMM Gurobi CPLEX MOSEK

10 0.8% (34 ms) 0.2% (21 ms) 3.3% (1.1 s) 11% (1.8 s) 74% (3 s)
20 0.7% (87 ms) 0.3% (55 ms) 2.5% (10 s) 7.7% (12 s) 48% (43 s)

Table 1: Comparison of relative 2-norm distance ‖z−z
?‖

‖z?‖ to the optimal closed-loop

position trajectory z? for N = 10 and N = 20. Additionally, in brackets, we report
the median computation times for which these trajectories were achieved.

is reported. Our method comes very close to the optimal trajectory, while requiring
orders of magnitude less runtime. Both our method and ADMM provide near optimal
solutions for similar computational effort. However, our method additionally provides
guarantees on the convergence properties of the algorithm.

5.2.1. Effect of proximal scaling. To better understand the proximal scal-
ing ξ, we consider 2000 feasible, random instances with different initial states (vy, ω)
satisfying (13). We solve the MPC problem for 40 values of ξ, with a horizon of N = 10
and step size γ = 0.95. Figure 12 demonstrates the relationship between ξ, (i) the
number of solved instances and (ii) the number of iterations needed for convergence.
For larger ξ more problems are solved, with only 4 unsolved problems remaining
for ξ = 5000. Furthermore, the number of iterations needed to reach the consen-
sus threshold (right axis) grows only modestly with larger ξ. In all instances, the
constraint violations and relative suboptimality do not change significantly. These
findings are consistent with our expectations from the theory, i.e., that larger ξ usu-
ally lead to more problems solved but at the expense of slower convergence.
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Fig. 12: Effect of proximal scaling ξ. Percentage of problems solved (solid, left axis)
and number of iterations to reach 10−3 consensus violation (right axis) for the solved
problems, median (dashed), 5-th and 95-th percentile (dashed).

6. Conclusion. We propose a low-complexity method for finding local minima of
non-convex, non-smooth optimization problems. This simple and fast method is ideal
for hybrid MPC on embedded platforms. In numerical experiments, we observe that
our method provides “good” locally optimal solutions at a fraction of the time needed
by global solvers. Moreover, it is competitive with ADMM in terms of speed. In
contrast to other local methods, our algorithm additionally provides local optimality
and local convergence guarantees.

Appendix A. Auxiliary results and proofs.
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A.1. Preliminaries. We first introduce preliminary results used in this ap-
pendix, including the some additional notation: The distance of a point x to a
closed set C is dist(x, C) := minz∈C ‖x − z‖. The relative boundary of a set C is
relbd C := cl C \ relint C, where cl C is the closure and relint C the relative interior.

Moreover, we will make frequent use of the following facts relating the Euclidean
projection and the regular normal cone of non-convex polyhedral sets, and the pre-
ceding properties of operators in the remainder of this appendix.

Proposition A.1 (Projection and regular normals, [31, Example 6.16, p.212],
[31, Proposition 6.17, p.213]). Given a set C ⊆ Rn.

(i) For any x ∈ C it holds that x ∈ PC(x− v)⇒ v ∈ N̂C(x).
(ii) If C is convex, then for any x ∈ C it holds that x ∈ PC(x− v)⇔ v ∈ N̂C(x).

(iii) For any x ∈ C if x ∈ PC(x− τv) for some τ > 0, then PC(x− τv) = {x} for
every τ ∈ (0, τ).

Definition A.2 (Nonexpansive and firmly nonexpansive operators, [4, Defini-
tion 4.1 (i)–(ii), p. 59]). Given an operator T : X ⇒ Y and a point x̄ ∈ X .

(i) T is locally nonexpansive around x̄ if there exists an ε > 0 such that for all
x, y ∈ Bε(x̄) and any u ∈ T (x), v ∈ T (y) it holds that

‖u− v‖2 ≤ ‖x− y‖2 .

(ii) T is locally firmly nonexpansive around x̄ if there exists an ε > 0 such that
for all x, y ∈ Bε(x̄) and any u ∈ T (x), v ∈ T (y) it holds that

‖u− v‖2 ≤ 〈x− y, u− v〉 .

Finally, we elaborate on the structure of the regular normal cone of Z, where the
following representation is used: Z =

⋃I
i=1Zi. We remind the reader that IZ(z) :=

{i ∈ {1, . . . , I} | z ∈ Zi} is the set of active components of Z at a point z ∈ Z.
Proposition A.3 states, that the regular normal cone of Z at z can be written as the
finite intersection of the normal cones of its convex polyhedral parts Zi, where only
the sets Zi that contain z, i.e., the active components of Z at z, need to be considered.

Proposition A.3 ([15, p. 59f]). The regular normal cone N̂Z of Z evaluated at
z ∈ Z is given by N̂Z(z) =

⋂
i∈IZ(z) N̂Zi(z).

A.2. Necessary conditions for local optimality. We start with a proof
sketch for Lemma 3.1, which states that for every local minimum z◦ of Problem (1)
there exists multipliers λ◦ such that (z◦, λ◦) is a generalized KKT point of Prob-
lem (2).

Proof sketch of Lemma 3.1. Problem (1) is equivalent to the consensus problem,
Problem (2), which can be written as an optimization problem with variational in-
equality constraints (OPVIC) as follows

min
z,y

1
2z
>Hz + h>z

s. t. ψ(z, y) :=

[
z − y
y − z

]
≤ 0 , (z, y) ∈ E × Z ,

y ∈ Ω := Rn , 〈0, y − u〉 ≤ 0 ∀u ∈ Ω .

Because the map ψ is affine, the set E ×Z is polyhedral (non-convex) and the set Ω is
polyhedral convex, the constraint set of this problem satisfies a regularity condition
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called a local error bound [35, Theorem 4.3, p. 952] at any feasible point. This
implies that the problem is calm everywhere, see [35, Proposition 4.2, p. 951]. In
particular, this means that the problem is calm at local solutions, which together
with [35, Theorem 3.6, p. 950] implies that for every local solution z◦ to Problem (2)
there exists a λ◦ ∈ Rn such that (z◦, z◦, λ◦) satisfies the generalized KKT conditions
(4) and therefore (z◦, z◦, λ◦) is a generalized KKT point.

A.3. Proximal KKT points and zeros of Kξ. Next, we establishes a nec-
essary and sufficient relationship between regular and ξ-proximal KKT points in the
proof of Proposition 3.2 and relate the zeros of the operator Kξ to ξ-proximal KKT
points of Problem (2), in the proof of Lemma 3.3.

Proof of Proposition 3.2. We consider the two statements separately.
i) Any regular KKT point (z, λ) satisfies −λ ∈ N̂Z(z). Thus, by Proposition A.3

(14a) − λ ∈ N̂Z(z)⇒ −λ ∈
⋂

i∈IZ(z)

N̂Zi(z) .

For any ξ > 0 this is equivalent to

(14b) (14a)⇔ − 1
ξλ ∈ N̂Zi(z) ∀i ∈ IZ(z)⇔ z ∈ PZi(z − 1

ξλ) ∀i ∈ IZ(z) ,

where (14b) follows from the convexity of Zi and the relationship between PZi and
N̂Zi , described in Proposition A.1(ii). By construction, for any ε > 0 small enough,
we have Z ∩ Bε(z) =

⋃
i∈IZ(z)Zi ∩ Bε(z) and thus (14b) ⇒ z ∈ PZ∩Bε(z)(z − 1

ξλ).

We consider ξ̄ := 2
ε ‖λ‖. For any ξ ≥ ξ̄ we have ‖(z − 1

ξλ) − z‖ = 1
ξ‖λ‖ ≤ ε

2 .

Thus, for all x ∈ Z with ‖z − x‖ > ε we have ‖(z − 1
ξλ) − x‖ > ε

2 . Together with

z ∈ PZ∩Bε(z)(z − 1
ξλ), this implies that z ∈ PZ(z − 1

ξλ) for all ξ ≥ ξ̄ = 2
ε ‖λ‖, which

implies that (z, λ) is a ξ-proximal KKT point for any ξ ≥ ξ̄.
ii) Given any ξ > 0, and ξ-proximal KKT point (z, λ). By definition z ∈ PZ(z −

1
ξλ) which implies − 1

ξλ ∈ N̂Z(z) via Proposition A.1(i). This is equivalent to −λ ∈
N̂Z(z), which directly implies that (z, λ) is a regular KKT point.

Proof of Lemma 3.3. Given any ξ > 0, and any s† ∈ zeroKξ, by definition 0 ∈
{Mξs

† + cξ} − PZ(s†), and thereby z† := Mξs
† + cξ ∈ PZ(s†). We define λ† :=

ξ(z† − s†) and thus z† ∈ PZ(z† − 1
ξλ
†) ⇔ (6b) holds. Furthermore, we have

z† = Mξ(z
†− 1

ξλ
†) + cξ which, using (7b), is equivalent to z† = R

(
λ† − h−Hv̄

)
+ v̄.

By strict convexity z† is the unique solution to 0 ∈ ∂z( 1
2z
>Hz+(h−λ†)>z+χE(z))(z†),

which is equivalent to 0 ∈ {Hz†+h−λ†}+N̂E(z†) and therefore (6a) holds and (z†, λ†)
is a ξ-proximal KKT point.

A.4. Local convexification. Lemma 4.1 is one of the main mathematical tools
that we use to prove the local optimality and local convergence of the method. For
any z ∈ Z, it relates the set non-convex Z to the closed convex set N̂ ∗Z(z) + {z}, in

a neighborhood of z. Specifically, it states that Z is contained in N̂ ∗Z(z) + {z}, in
a neighborhood of z, and that the regular normal cones of the two sets at z are the
same.

Proof of Lemma 4.1. We prove the two parts individually.
i) Given ε > 0, take any z̄ ∈ Z and z ∈ Z ∩ Bε(z̄). Using the definition of the

polar cone we have that z ∈ N̂ ∗Z(z̄)+{z̄} if and only if 〈z− z̄, v〉 ≤ 0 for all v ∈ N̂Z(z̄).
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We assume for the sake of contradiction that for all ε > 0 there exists a v ∈ N̂Z(z̄)
such that 〈z − z̄, v〉 > 0. Using Proposition A.3, we have that for any ε > 0 small
enough v ∈ N̂Z(z̄) is equivalent to 〈v, u − z̄〉 ≤ 0 for all u ∈ Zi, and all i ∈ IZ(z̄).
However, since z ∈ Z, there exists an i ∈ IZ(z̄) such that z ∈ Zi, and therefore by
choosing u = z we have 〈v, u− z̄〉 < 〈z − z̄, v〉, a contradiction.

ii) For any z ∈ Z, we have that N̂Z(z) = N̂ ∗∗Z (z), due to N̂Z(z) closed and
convex, see [31, Corollary 6.21, p. 216]. From the definition of the polar and regular
normal cones, see [31, p. 203, p. 215], and convexity of N̂ ∗Z(z) we have that v ∈ N̂Z(z)

is equivalent to 〈v, w〉 ≤ 0 for all w ∈ N̂ ∗Z(z), which is equivalent to 〈v, u− z〉 ≤ 0 for

all u ∈ N̂ ∗Z(z) + {z}. This means v ∈ N̂N̂∗Z(z)+{z}(z) and implies the result.

A.5. Local convergence to local minima. We are now ready to prove the two
central lemmas that lead to the local convergence result in Theorem 4.6: Lemma 4.4
states that in a neighborhood around almost all fixed points of Tξ, the projection PZ
behaves like a projection onto a convex set. This is used in the proof of Lemma 4.5 to
show that the operator Tξ is nonexpansive, single-valued and continuous in a neigh-
borhood around almost all fixed points.

To prove Lemma 4.4, the following two auxiliary propositions are needed. Propo-
sition A.4 gives a local characterization of the projection around points s̄ where it is
unique. It states, that there always exists a neighborhood Bε(s̄), with ε > 0, such that
for all points in the neighborhood the projection onto Z can be restricted to the pro-
jection onto just the union of the active components of Z at z̄ = PZ(s̄). Furthermore
for all points s ∈ Bε(s̄) in the neighborhood the result z ∈ PZ(s) of the projection
satisfies the bound ‖z − z̄‖ ≤ ‖s− s̄‖. Proposition A.5 states that the set fixTξ|z◦ of
fixed points corresponding to a given local optimum z◦ of Problem (1) either is empty
for all ξ or is non-empty for all ξ large enough.

Proposition A.4 (Projection). Given z̄ and s̄ such that PZ(s̄) = {z̄}, then
there exists an ε > 0 such that for all s ∈ Bε(s̄): PZ(s) = PY(z̄)(s) ⊆ B‖s−s̄‖(z̄),
where Y(z) :=

⋃
i∈IZ(z)Zi.

Proof. First, we will show that for all s ∈ Rn, we have PY(z̄)(s) ⊆ B‖s−s̄‖(z̄). For
all i ∈ IZ(z̄), the projection PZi is nonexpansive because Zi is closed and convex.
Therefore, for any i ∈ IZ(z̄) and any s ∈ Rn we have ‖PZi(s) − PZi(s̄)‖ ≤ ‖s − s̄‖.
Consider any z ∈ PY(z̄)(s), since z̄ and s̄ are such that PZ(s̄) = {z̄} it follows that
PY(z̄)(s̄) = PZi(s̄) = {z̄} for all i ∈ IZ(z̄). In particular for some i ∈ IZ(z̄) we have

(15) ‖z − z̄‖ = ‖PZi(s)− PZi(s̄)‖ ≤ ‖s− s̄‖ ,

which implies PY(z̄)(s) ⊆ B‖s−s̄‖(z̄). Second, we show that there exists an ε > 0 such
that for any y ∈ Z \ Y(z̄)

(16a) ‖y − s‖ > ‖z − s‖ ∀s ∈ Bε(s̄) , z ∈ PY(z̄)(s) .

We define ς := infy∈Z\Y(z̄) ‖y − s̄‖ − ‖z̄ − s̄‖ > 0, by closedness of Z and Zi. The
triangle inequality implies that for any y ∈ Z\Y(z̄) we have ‖y−s̄‖ ≤ ‖y−s‖+‖s−s̄‖.
We choose ε < ς

3 , which implies

(16b) ‖y − s‖ ≥ ‖y − s̄‖ − ‖s− s̄‖ ≥ ς + ‖z̄ − s̄‖ − ‖s− s̄‖ > 3ε+ ‖z̄ − s̄‖ − ε ,

where in the second step we have used the definition of ς, and in the third step we
have used ς > 3ε and ‖s− s̄‖ ≤ ε. Now we consider any z ∈ PY(z̄)(s), via the triangle
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inequality ‖z − s‖ ≤ ‖z − z̄‖+ ‖s− s̄‖+ ‖z̄ − s̄‖ and (15) we have

‖z − s‖ ≤ 2‖s− s̄‖+ ‖z̄ − s̄‖ ≤ 2ε+ ‖z̄ − s̄‖ ,

which together with (16b) implies (16a). This implies the result.

Proposition A.5. Given any local minimum z◦ of Problem (1).
Either fixTξ|z◦ = ∅ for all ξ > 0 or there exists a ξ̄ > 0 such that fixTξ|z◦ 6= ∅ for
all ξ ≥ ξ̄.

Proof. Given any local minimum z◦. Either fixTξ|z◦ = ∅ for all ξ > 0 or there
exists a ξ̄ such that there exists an s̄ ∈ fixTξ̄|z◦ 6= ∅. By Lemma 3.3, it holds that

(z◦, λ), with λ := ξ̄(z◦ − s̄), is a ξ̄-proximal KKT point. From Proposition 3.2, it
further follows that (z◦, λ) is also a ξ-proximal KKT point for any ξ ≥ ξ̄, which
implies s := z◦ − 1

ξλ ∈ fixTξ|z◦, and thus fixTξ|z◦ 6= ∅ for all ξ ≥ ξ̄.
We use the following claim to prove Lemma 4.4. The proof of Claim A.6 is

presented immediately after the proof of Lemma 4.4. The claim states that if ξ is
chosen large enough, then for any local minimum z◦ for which the operator Tξ has
fixed points such that z◦ itself is not a fixed point of Tξ, we have that for almost
all fixed points of Tξ, the projection is unique and the fixed point lies in the relative

interior of the shifted regular normal cone N̂Z(z◦) + {z◦} of Z at z◦.

Claim A.6. Given Assumptions (A1)–(A2). For any ξ > 0 large enough and any
local minimum z◦ to Problem (2), with fixTξ|z◦ 6= ∅ and z◦ 6∈ fixTξ|z◦, we have that

(17) PZ(s◦) = {z◦} and s◦ ∈ relint N̂Z(z◦) + {z◦} ,

for all fixed points s◦ ∈ fixTξ|z◦, except a measure zero subset.

Proof of Lemma 4.4. Given Claim A.6 and consider any pair z◦, s◦ satisfying (17).
We will show that in a neighborhood of s◦ the projection onto Z is the same as pro-
jecting onto an appropriate closed, convex set. This then implies local firm nonex-
pansiveness, continuity and single-valuedness of the projection.

Let Bε(s◦) be a neighborhood of s◦, for some ε > 0 small enough. We define S :=
lin(N̂Z(z◦)), the linear subspace spanned by N̂Z(z◦), and its orthogonal complement
S⊥. For any s ∈ Bε(s◦), we can write s = s◦ + u + v, where u ∈ S, v ∈ S⊥ and
u + v ∈ Bε. This allows us to argue about the contribution of u and v successively.
We consider s̄ := s◦ + u. Due to PZ(s◦) = {z◦}, continuity of the distance function,
and Proposition A.1(iii), we have PZ(s̄) = PZ(s◦ + u) = {z◦} for all u ∈ Bε, given
that ε is small enough. Furthermore, due to openness of relint N̂Z(z◦) on S, we have
s̄ ∈ relint N̂Z(z◦) + {z◦} for all u ∈ Bε, with ε > 0 small enough. Therefore instead
of considering a pair z◦, s◦ satisfying (17), we will consider z◦, s̄. We now examine
the contribution of v, i.e., s = s̄+ v. Similarly to Lemma 4.1, where we showed that
we can replace the regular normal cone of Z by the normal cone of N̂ ∗Z(z◦) + {z}, we

will now consider the projection onto that set. We do this because N̂ ∗Z(z◦) + {z◦} is

a local convexification of Z. We have v ∈ S⊥ ⊆ N̂ ∗Z(z◦). We consider the projection
PN̂∗Z(z◦)(s− z◦) = arg minw∈N̂∗Z(z◦) ‖s̄− z◦ + v − w‖2 = arg minw∈N̂∗Z(z◦) ‖s̄− z◦‖2 +

‖v − w‖2 − 2〈s̄ − z◦, w〉, where we have used 〈s̄ − z◦, v〉 = 0. By 〈s̄ − z◦, w〉 ≤ 0, v
is a minimizer. It is unique because the set N̂ ∗Z(z◦) is closed and convex, therefore
PN̂∗Z(z◦)(s−z◦) = {v} and consequently PN̂∗Z(z◦)+{z◦}(s̄+v) = {z◦+v}. Additionally,

due to Z ∩ Bε(z◦) ⊆ N̂ ∗Z(z◦) + {z◦} from Lemma 4.1 and z◦ + v ∈ Z ∩ Bε(z◦) due to
Assumption (A3), it follows that z◦ + v ∈ PZ(s̄ + v). Finally using Proposition A.4
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we know that PZ(s̄ + v) ⊆ Z ∩ B‖v‖(z◦) ⊆ Z ∩ Bε(z◦), which immediately implies
that PZ(s̄ + v) = PN̂∗Z(z◦)+{z◦}(s̄ + v) = {z◦ + v}. This means for all s ∈ Bε(s◦)
the projection onto Z is equivalent to the projection onto the closed, convex set
N̂ ∗Z(z◦) + {z◦} and therefore enjoys all of the properties of a projection onto a closed
convex set. In particular single-valuedness, continuity and firm nonexpansiveness [4,
Proposition 4.8, p. 61].

Proof of Claim A.6. Given a local minimum z◦ to Problem (2) and consider any
ξ̄ according to Proposition A.5 such that (A2) holds. By definition of fixTξ and by
Proposition A.1(iii), (A2) also holds for any larger ξ ≥ ξ̄. We will show that for any
ξ > ξ̄, and any local minimum z◦ such that fixTξ|z◦ 6= ∅ and z◦ 6∈ fixTξ|z◦:

(18) relint fixTξ|z◦ =
{
s ∈ fixTξ|z◦

∣∣ PZ(s) = {z◦} , s ∈ relint N̂Z(z◦) + {z◦}
}
.

[22, Theorem. 1, p. 90] states that the boundary of a convex set has zero Lebesgue
measure. Convexity of fixTξ|z◦ together with (18) therefore imply that (17) holds for
all s ∈ fixTξ|z◦, except a measure zero subset.

Due to fixTξ̄|z◦ 6= ∅ and (A2), we have that there exists an s̄ ∈ fixTξ̄|z◦ with

s̄ ∈ relint N̂Z(z◦)+{z◦}. Furthermore, we have that s(ξ) := z◦− 1
ξ ξ̄(z

◦− s̄) ∈ fixTξ|z◦
and s(ξ) ∈ relint N̂Z(z◦) + {z◦} for ξ ≥ ξ̄ and by Proposition A.1(iii) we have that
PZ(s(ξ)) = {z◦} for any ξ > ξ̄. Therefore, for any ξ > ξ̄ we have that

(19) fixTξ|z◦ ∩ relint
(
N̂Z(z◦) + {z◦}

)
∩
{
s
∣∣ PZ(s) = {z◦}

}
6= ∅ .

We consider the set {s | z◦ ∈ PZ(s)}. We have{
s
∣∣ z◦ ∈ PZ(s)

}
=
{
s
∣∣ ‖s− z◦‖ ≤ dist(s,Z)

}
=
{
s
∣∣ ‖s− z◦‖ ≤ dist(s,Y(z◦))

}
∩
{
s
∣∣ ‖s− z◦‖ ≤ dist(s,Yc(z◦))

}
=
(
N̂Z(z◦) + {z◦}

)
∩
{
s
∣∣ ‖s− z◦‖ ≤ dist(s,Yc(z◦))

}
,

with Y(z◦) :=
⋃
i∈IZ(z◦)Zi and Yc(z◦) :=

⋃
i∈IcZ(z◦)Zi, where IcZ(z◦) := {1, . . . , I} \

IZ(z◦). Where we have used that by Proposition A.3 and convexity of Zi we have

{s | ‖s− z◦‖ ≤ dist(s,Y(z◦))} = {s | z◦ ∈ PY(z◦)(s)}
= N̂Y(z◦)(z

◦) + {z◦} = N̂Z(z◦) + {z◦} .
By continuity and upper-boundedness of ς(s) := ‖s − z◦‖ − dist(s,Yc(z◦)), and by
closedness of Yc(z◦), it follows that

relint
{
s
∣∣ ‖s− z◦‖ ≤ dist(s,Yc(z◦))

}
=
{
s
∣∣ ‖s− z◦‖ < dist(s,Yc(z◦))

}
=
{
s
∣∣ PZ(s) = {z◦}

}
for all s such that z◦ ∈ PZ(s). Therefore, by distributivity of the relint operator over
finite intersections due to (19), see [31, Proposition 2.42, p. 65], we have

relint
{
s
∣∣ z◦ ∈ PZ(s)

}
= relint

(
N̂Z(z◦) + {z◦}

)
∩
{
s
∣∣ PZ(s) = {z◦}

}
6= ∅ .

By definition of fixTξ|z◦, convexity of {s | z◦ ∈ PZ(s)}, [31, Proposition 2.42, p. 65]
and (19) we then have

relint fixTξ|z◦ = relint
{
s
∣∣ 0 ∈ {Hz◦ + h}+ N̂E(z◦)− {ξ(z◦ − s)} , z◦ ∈ PZ(s)

}
= fixTξ|z◦ ∩ relint

{
s
∣∣ z◦ ∈ PZ(s)

}
= fixTξ|z◦ ∩ relint

(
N̂Z(z◦) + {z◦}) ∩

{
s
∣∣ PZ(s) = {z◦}

}
6= ∅ .
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Proof of Lemma 4.5. We consider any ξ > 0, ε > 0 and s◦ ∈ fixTξ such that the
projection PZ is single-valued, continuous and firmly nonexpansive on Bε(s◦). We
recall the definition of Tξ in (10a). Clearly Tξ is single-valued and continuous on Bε(s◦)
by virtue of the projection. It remains to show the nonexpansiveness of Tξ on Bε(s◦).
By [4, Definition 4.1 (ii), p. 59], Tξ is nonexpansive on Bε(s◦) if ‖Tξ(s) − Tξ(t)‖2 ≤
‖s− t‖2 for all s, t ∈ Bε(s◦). For any s, t, we have that

‖Tξ(s)− Tξ(t)‖2 = ‖(I −WMξ)(s− t)‖2(20)

+ 2〈W>(I −WMξ)(s− t),PZ(s)− PZ(t)〉
+ ‖W (PZ(s)− PZ(t))‖2 .

To show (20) ≤ ‖s− t‖2 for all s, t ∈ Bε(s◦) we will split (20) into two parts, the por-
tions belonging to the range- and nullspace of Mξ. We recall that Mξ is positive semi-
definite for ξ satisfying (8a). Therefore, we can consider the eigenvalue decomposition
of Mξ, as in (10) and define qi, for i = 1, . . . , n, to be the normalized eigenvectors of
Mξ. We define δ, p ∈ Rn as coefficients, such that

∑n
i=1 δiqi = s− t and

∑n
i=1 piqi =

PZ(s) − PZ(t). We further define δ⊥ :=
∑n−m
i=1 δiqi, δ

0 :=
∑n
i=n−m+1 δiqi, p

⊥ :=∑n−m
i=1 piqi and p0 :=

∑n
i=n−m+1 piqi, which splits s− t and PZ(s)−PZ(t) into their

range and nullspace portions. Additionally, p⊥Λ :=
∑n−m
i=1 λ−1

i piqi, for λi the non-zero
eigenvalues of Mξ. Substituting δ⊥, δ0, p⊥, p0 and p⊥Λ into (20), using the eigenvalue
decomposition of Mξ and W as defined in (10b), we obtain

‖Tξ(s)− Tξ(t)‖2 = 1
4‖δ⊥‖2 + ‖δ0‖2 + 1

2 〈δ⊥, p⊥Λ 〉 − 2〈δ0, p0〉+ 1
4‖p⊥Λ‖2 + ‖p0‖2 .(21)

We want to show that (20) = (21) ≤ ‖s − t‖2 = ‖δ⊥‖2 + ‖δ0‖2. However, this only
has to hold for δ, p that are related via the projection PZ where in particular we want
to exploit its firm nonexpansiveness. The projection PZ being firmly nonexpansive,
and nonexpansive, on Bε(s◦), means via Definition (A.2), that for all s, t ∈ Bε(s◦)

‖PZ(s)− PZ(t)‖2 ≤ 〈s− t,PZ(s)− PZ(t)〉, and(FNE)

‖PZ(s)− PZ(t)‖2 ≤ ‖s− t‖2 .(NE)

By applying the Cauchy-Schwarz inequality, and combining (FNE) and (NE) we get

(22) 0 ≤ ‖PZ(s)− PZ(t)‖2 ≤ 〈s− t,PZ(s)− PZ(t)〉 ≤ ‖s− t‖2 .

Substituting δ⊥, δ0, p⊥ and p0 into (22), we obtain

(23) 0 ≤ ‖p⊥‖2 + ‖p0‖2 ≤ 〈p⊥, δ⊥〉+ 〈p0, δ0〉 ≤ ‖δ⊥‖2 + ‖δ0‖2 .

To show that Tξ is nonexpansive it is therefore sufficient to show that for all δ, p that
satisfy (23) it holds that (21) ≤ ‖δ⊥‖2 + ‖δ0‖2. Notice, that (21) and (23) do not
contain any coupling terms between range- and nullspace portions of δ or p, therefore
we can argue about them separately.

i) We consider all δ⊥, p⊥ such that 0 ≤ ‖p⊥‖2 ≤ 〈p⊥, δ⊥〉 ≤ ‖δ⊥‖2. Using (8b)
implies that ‖Λ−1‖2 ≤ 1 thus we obtain ‖p⊥Λ‖ ≤ ‖p⊥‖ ≤ ‖δ⊥‖ and 〈δ⊥, p⊥Λ 〉 ≤ ‖δ⊥‖2.
Therefore, 1

4‖δ⊥‖2 + 1
2 〈δ⊥, p⊥Λ 〉+ 1

4‖p⊥Λ‖2 ≤ 1
4‖δ⊥‖2 + 1

2‖δ⊥‖2 + 1
4‖δ⊥‖2 = ‖δ⊥‖2, i.e.,

the result holds for the range space portion.
ii) We consider all δ0, p0 such that 0 ≤ ‖p0‖2 ≤ 〈p0, δ0〉 ≤ ‖δ0‖2. It follows that

‖δ0‖2 − 2〈δ0, p0〉+ ‖p0‖2 ≤ ‖δ0‖2 − 2〈δ0, p0〉+ 〈δ0, p0〉 ≤ ‖δ0‖2. Thus, the result also
holds for the null space portion.
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Cases i) and ii) together imply the result.

Appendix B. Condition for satisfying (A3). We give an algorithm to check
whether Assumption (A3) is satisfied at every point in Z, representing a necessary
and sufficient condition. This conditions relies on the enumeration of all possible
combinations of active components and their active sets, and can be checked once and
offline for all parameters θ. We consider E := {z ∈ Rn | Az = b}, with A ∈ Rm×n,
and Z(θ) with components Zi(θ) defined as

(24) Z(θ) =

I⋃
i=1

Zi(θ) =

I⋃
i=1

{z ∈ Rn | Giz = gi(θ) , F iz ≤ f i(θ)} ,

where Gi ∈ Rpi×n and F i ∈ Rmi×n. The functions f i(θ) = F i,θθ + f i and gi(θ) =
Gi,θθ+gi depend affinely on a parameter θ ∈ Rp. With Zi(θ) closed convex polyhedra
for fixed θ ∈ Rp and non-empty for some θ.

Given a parameter θ and index i ∈ {1, . . . , I}. The active set JZi(θ)(z) :=
{
j ∈

{1, . . . ,mi}
∣∣ s. t. F ij z = f ij(θ)

}
of Zi(θ) at z ∈ Zi(θ) is defined in the usual way [29,

Definition 12.1, p. 308], where F ij denotes the j-th row of F i. For z 6∈ Zi(θ), we define

JZi(θ)(z) := ∅. For any active set J ⊆ {1, . . . ,mi}, F iJ denotes the subset of rows of

F i that belong to the active set J, f iJ is defined in the same way. We further define
the active set JZ(θ)(z) of Z(θ) at z ∈ Z(θ), as the collection of all the active sets of
the components of Z(θ), i.e., JZ(θ)(z) := {JZi(θ)(z)}Ii=1,

The set IZ ⊆ 2{1,...,I} denotes the set of sets of active components of Z(θ), i.e.,
I ∈ IZ if and only if there exists θ ∈ Rp and z ∈ Z(θ) such that I ≡ IZ(θ)(z), where
IZ(θ)(z) denotes the set of active components at z, as defined in Section 4.2. Similarly

we denote by JZ := {JZi}Ii=1 the collection of the sets of all possible active sets of
Z(θ), where JZi :=

{
J ⊆ {1, . . . ,mi}

∣∣ ∃θ ∈ Rp ,∃z ∈ Z(θ) s. t. J ≡ JZi(θ)(z)
}

denotes the set of all possible active sets for component i.
Assumption (A3) is purely geometric and needs to be satisfied at every point in Z.

Algorithm 3 will effectively enumerate all possible combinations of active components
and their active sets and check for each such combination. This amounts to a finite
number of checks. Checking a parametric set Z(θ), due to the polyhedral structure,
requires checking finitely many different non-parametric sets.

Algorithm 3 Check of Assumption (A3)

Require: Z(θ) as in (24)
1: for each I ∈ IZ , {Ji}Ii=1 ∈ JZ do
2: N ← ⋂

i∈I{v | v = Gi>ν + F i>Ji µ , µ ≥ 0} . construct regular normal cone
3: if N = {0} then continue
4: R ← ⋃

i∈I{v | Giv = 0 , F iJiv ≤ 0} . construct union of recession cones

5: if N⊥ ⊆ R then continue
6: else
7: w ← w ∈ N⊥ \ R
8: (z, θ)← z, θ s. t. z ∈ ⋂Ii=1Ai(θ)
9: return (w, z, θ) . return counter-example

Algorithm 3 is a combinatorial algorithm and may perform badly for anything
but small dimensions. However when the set Z is a Cartesian product of sets in
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low dimension, the check can be performed separately for each part of the Cartesian
product. This significantly reduces the “curse of dimensionality”.

Lemma B.1. Given a (parametric) set Z(θ) as in (24), then Algorithm 3 termi-
nates in a finite number of steps. Either Z(θ) satisfies Assumption (A3) for all θ, or
the algorithm returns a valid counter-example.

Proof of Lemma B.1. We will show that Algorithm 3 effectively checks Assump-
tion (A3) for every θ and every point in Z(θ). We will argue, that checking (A3) for
every θ ∈ Rp and every z ∈ Z(θ) is equivalent to checking it for every set of active
constraints. Note that JZ the set of active sets of Z(θ) is a finite set with at most

2
∑I
i=1mi elements.
In Algorithm 3, we iterate over the elements of IZ and JZ , which means that

the loop is executed at most a finite number of times. Given a pair I, {Ji}Ii=1 we
want to verify, or invalidate, (A3) by considering two sets N and R. The sets N , R
are defined solely via the active constraints and do not depend on θ. For each active
component i ∈ I we define two auxiliary sets

Ai(θ) := {z | Giz = gi(θ) , F iJiz = f iJi(θ) , F
i
J ci z < f iJ ci (θ)} ,

Fi(θ) := {z | Giz = gi(θ) , F iJiz ≤ f iJi(θ)} ,

where the set J ci is simply the complement of Ji, i.e., the set of constraints that are
not active. For a given θ, Ai(θ) is the set of points z ∈ Z that belong to the active set
Ji, whereas Fi(θ) ⊇ Ai(θ) is a larger set, that is defined by only the active constraints

and in general is not included in Z. We further define A(θ) :=
⋂I
i=1Ai(θ), the set

of points that belong to all of the active sets of the active components. By checking
Assumption (A3) for each A(θ) we will effectively check it for each z ∈ Z.

The conditions to be checked involve the regular normal cone N̂Z(θ)(z). For each

θ, z ∈ A(θ) the regular normal cone N̂Z(θ)(z) is given as N̂Z(θ)(z) =
⋂
i∈I{Gi>ν +

F i>Ji µ | µ ≥ 0}, using Proposition A.3 and the fact that normal cones of polyhedral
sets can be represented as linear and conic combinations of their halfspaces, see [31,
Theorem 6.46, p. 231]. It is independent of θ and z, and only depends the active
constraints and components. This set, N := N̂Z(θ)(z), is computed in step 2 of
Algorithm 3. A half-space representation of N can be obtained using Fourier-Motzkin
elimination [8, p. 84] for each i ∈ I, after which the intersections are trivial. We now
need to check two conditions. If N = {0}, then the first part of (A3) is satisfied for
all z ∈ A(θ), and we continue with the next active set. Otherwise, we need to check
whether there exists an ε > 0 such that for all w ∈ N⊥∩Bε we have that z+w ∈ Z(θ).
In order to check this condition, in step 4, we construct the set R as the union of
the recession cones Ri := rec(Fi(θ)) = {v | Giv = 0 , F iJiv ≤ 0} of Fi(θ). Finally it
remains to show that checking this condition for all z ∈ A(θ), in step 5, is equivalent
to checking whether the orthogonal complementN⊥ := {v ∈ Rn | 〈v, u〉 = 0 ,∀u ∈ N}
is contained in R. If N⊥ ⊆ R, consider any z ∈ A(θ), an ε > 0 small enough and
any w ∈ N⊥ ∩ Bε. Clearly there exists an i ∈ I such that w ∈ Ri. Furthermore, by
construction of A(θ) and Ri, we have z + w ∈ Zi ⊆ Z. This means (A3) is satisfied
for all z ∈ A(θ) and we continue with the next active set. If N⊥ 6⊆ R, then there
exists a w ∈ N⊥ \R. Because N and Ri are cones, this is true for all positive scalings
of w. In particular, for any ε > 0 there exists a t > 0 such that tw ∈ N⊥ ∩ Bε and
tw 6∈ R. Analogously to above, it follows that for any z ∈ A(θ), z + tw 6∈ Zi for
all i ∈ I, and therefore z + tw 6∈ Z, which violates (A3). In this case, the algorithm
terminates and returns a violating direction w, point z and parameter θ. Because
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Algorithm 3 enumerates all active sets, it either terminates with a counterexample,
or it returns after finitely many steps, having checked all possibilities.

Appendix C. MacMPEC benchmark problems. The MacMPEC library [23]
is a collection of almost 200 benchmark problems for mathematical programs with
equilibrium constraints (MPECs). It contains 41 MPCCs with linear constraints
(including linear complementarity constraints) that can be formulated in the form of
Problem (2) with a positive definite quadratic objective. Formulating such MPCCs in
the form of Problem (2) can lead to a number of regions that is worst-case exponential
in the number of complementarity constraints. Therefore, for 12 of the 41 problems
we were unable to obtain a tractable representation in the form of Problem (2). The
remaining 29 problems were brought into the form of Problem (2). However, in only
two of the cases, qpec1 and qpec2, we managed to extract the Cartesian product
structure, i.e. N > 1, and in all cases, we used E = Rn. We solved each problem
using the proposed method with ξ = 2λmax(H), εtol = 10−6 and initial iterate s0 = 0.
For all of these problems, Algorithm 1 converged and returned solutions close to the
global minimum.

In Table 2, for each of the 41 problems, we report the problem dimensions: the
number of decision variables n, the number of regions m and the “horizon” N . We
also report the objective value of the found local minima compared to the objective
value of the global optimum, and how many iterations were needed for each problem
to converge to a solution with 10−6 consensus tolerance. Each of the 29 problems that
could be tractably represented converged close to the global minimum within a few
iterations, which the exception of scale3, which needed 6815 iterations to converge.
For each problem, we have additionally, checked Assumption (A3) using Algorithm 3.
For the problems portfl-i-{1,2,3,4,6}, checking Assumption (A3) was intractable
due to the large number of regions (more than 4000) and decision variables (74). For
23 of the remaining 24 problems Assumption (A3) was determined to be satisfied,
with Algorithm 3 terminating within a few seconds. For one problem, hs044-i,
Algorithm 3 terminated after 40.1 minutes with a counter-example, certifying that
Assumption (A3) does not hold. Nevertheless, Algorithm 1 converged for each of the
29 problems, including for the problems hs044-i and portfl-i-{1,2,3,4,6}, where
Assumption (A3) was violated or could not be checked. Moreover, they converged to
local minima, as indicated by Theorem 4.2.
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