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Abstract. A generalization of vector fields, referred to as N -direction fields or cross fields
when N = 4, has been recently introduced and studied for geometry processing, with applications
in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation
that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-
Landau problem from mathematical physics. This yields a variety of theoretical tools for efficiently
computing boundary-aligned quad meshes, with provable guarantees on the resulting mesh, such as
the number of mesh defects and bounds on the defect locations. The procedure for generating the
quad mesh is to (i) find a complex-valued “representation” field that minimizes the Ginzburg-Landau
energy subject to a boundary constraint, (ii) convert the representation field into a boundary-aligned,
smooth cross field, (iii) use separatrices of the cross field to partition the domain into four sided
regions, and (iv) mesh each of these four-sided regions using standard techniques. Leveraging the
Ginzburg-Landau theory, we prove that this procedure can be used to produce a cross field whose
separatrices partition the domain into four sided regions. To minimize the Ginzburg-Landau energy
for the representation field, we use an extension of the Merriman-Bence-Osher (MBO) threshold
dynamics method, originally conceived as an algorithm to simulate mean curvature flow. Finally, we
demonstrate the method on a variety of test domains.
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1. Introduction. A generalization of vector fields, referred to as N -direction
fields allow forN directions to be encoded at each point of a domain. WhenN = 4, the
term cross field is often used. Such fields are better suited to encode multi-directional
information than simply using N overlaid vector fields because they allow singularities
of “fractional index” in the neighborhood of which an N -direction field turns 2π/N
radians (see Figure 1). N -direction fields have found recent applications in quad
re-meshing for computer graphics and finite element simulations [8, 14, 16, 20, 33],
parameterization [29, 34], non-photorealistic rendering [12], and texture mapping [18].

Various cross field based quad meshing techniques have been proposed (see sub-
section 2.2). One basic procedure is illustrated in Figure 2. The top left panel shows a
domain, D, with outward normal boundary vectors indicated. In the top right panel,
a complex-valued “representation” field that minimizes the Dirichlet energy subject to
a boundary condition and a unit norm constraint is found. In the bottom left panel,
the representation field is converted into a boundary-aligned, smooth cross field. Sep-
aratrices of the cross field are computed which partition the domain into four sided
regions, referred to as a quad layout. Finally, the bottom right panel shows a regular
mesh mapped into each of the four-sided regions. Variations on this procedure have
been employed in [20, 29]. In this paper we investigate the mathematics of cross field
generation and cross field guided quad meshing via streamline tracing.
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Fig. 1. Singularities in a cross field with indices +1/4 and −1/4. (left) A singularity
with index +1/4 is contained in the region enclosed by the three red lines, which are streamlines of
the cross field. Since the index is +1/4, the cross field makes a quarter turn counter-clockwise when
circulating around this singularity. (right) Similarly, a singularity with index -1/4 is enclosed by 5
streamlines. The cross field makes a quarter turn clockwise when circulating around this singularity.

Fig. 2. Overview of the cross field based meshing method. (top left) The domain
is shown with outward pointing normals. (top right) A 4-aligned boundary condition is assigned
(see Definition 3.6) and a representation vector field is found by approximately minimizing the
Ginzburg-Landau energy. (bottom left) The representation field is mapped to a smooth cross field
and separatrices of the cross field are traced to partition the domain into a quad layout. (bottom
right) A regular mesh is mapped into each region.

1.1. Contributions. We make the observation that cross field design is related
to the Ginzburg-Landau theory from mathematical physics. In particular, many of
the computational methods currently used for cross field design attempt to minimize
an energy that is, or is very similar to, a discrete Ginzburg-Landau energy; see, for
example, [2, 8, 14, 15, 20, 32, 38, 37].

We make this correspondence precise and use results from the Ginzburg-Landau
theory to prove, in Theorems 5.4 and 5.7, that the separatrices of a harmonic cross
field with indices ≤ 1/4 partition a domain into four-sided regions, possibly with a T -
junction if a limit cycle is present. The corners of these four-sided regions are located
at the singularities of the harmonic cross field. The proof of this result depends on
an asymptotic analysis of the cross field near singularities, which uses results from
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the Ginzburg-Landau theory; see subsection 5.1. Because we consider domains with
corners, we also make precise a notion of boundary singularities (see Definition 3.9)
and study their properties. We show, in Lemma 5.3, the structure of a boundary
singularity with these definitions is consistent with the structure of a cross field near an
(interior) singularity. These properties of cross field singularities have been observed
before and are assumed ubiquitously in the cross field literature. Our contribution
is the proof that singularities with such properties are obtained in cross fields which
approximate local minimizers of the Ginzburg-Landau energy (section 5). In addition,
the renormalization of the Ginzburg-Landau energy derived by Bethuel et al. [3]
(subsection 4.3) guarantees that the singularities of such a cross field will be isloated
and have index ±1/4. Based on these results, we develop an algorithm (Algorithm 1)
that uses a harmonic cross field to partition a domain into four-sided regions, possibly
with T-junctions. While similar streamline tracing methods have been employed
before [20, 29], the steps of our algorithm carefully leverage the theorems in section 5
to guarantee a partition of four-sided regions with a bound on the number of T-
junctions.

To compute a harmonic cross field, we approximately minimize the Ginzburg-
Landau energy and find a suitable representation field by using a generalization of
the MBO algorithm (Algorithm 2) [27]. This results in a harmonic cross field with
isolated singularities of degree ±1/4. This can then be used as input for Algorithm 1
to find a partition with four-sided regions. The partition can then be used to generate
a high-quality quad mesh on the domain with standard techniques.

Finally, we use our cross field design algorithm and partitioning theorem to design
quad meshes for several example geometries; see Figure 13 for examples. Throughout,
we also include figures, generated using the algorithms described in this paper, to
illustrate the main ideas.

2. Previous Work. Here we present a selection of works that have contributed
to the understanding of fundamental issues in the cross field design and meshing
problems. For brevity, we only review the work that is most relevant to this paper,
however excellent literature reviews are available on cross field and directional field
design [48] and recent approaches to quad meshing [7].

2.1. Cross Field Design. Designing globally smooth direction fields has proven
to be a challenging task. Such approaches are typically formulated as an energy
minimization problem, where the energy functional is a discrete approximation of
the Dirichlet energy of the cross field. Papers which use the N -RoSy representation,
introduced in [32], minimize the Dirichlet energy of a vector valued field [2, 15, 17,
20, 37]. Directional information is typically removed from the problem by requiring a
pointwise unit-norm constraint. Since the näıve formulation is ill-posed, researchers
have proceeded by adding a penalty term to the energy in place of directly enforcing
the pointwise unit norm constraint. This penalty term is typically nonlinear and thus
leads to an inefficient solution. Kowalski et al. [20] add the linear constraint term
un−1 ·un = 1 to the objective function via Lagrange multipliers. At each iteration the
solution is normalized so that the solution to the next iteration is penalized wherever
it is not of unit norm. Jiang et al. [15] add the non-linear term (|u|2 − 1)2 to their
objective and use a nonlinear solver to minimize the cross field energy with respect to
a custom Riemannian metric. Beaufort et al. [2] take direction from the Ginzburg-
Landau theory and also add the nonlinear term (|u|2 − 1)2 to the objective. They
then minimize the energy via a Newton method.

Rather than applying a pointwise unit norm constraint to remove directional infor-
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Fig. 3. The representation map for cross fields. The left figure for each pair represents an
element, c, of C4 (see Definition 3.1), visualized by a line from zero to the representative numbers
on the unit circle. The right figure shows the representation as a line from zero to [c]4. This
representation is equivalent to the N-RoSy representation, only expressed in complex numbers.

mation, Knöppel et al. [17] use a modified energy and enforce an L2 norm constraint
of the field. The minimizer is then given by the principle eigenfunction of the Lapla-
cian. Unfortunately, this method is not directly applicable when aligning a cross field
to the boundary as the Dirichlet boundary condition is inhomogeneous. Bommes et
al. [8] use an angle based representation for crosses and use integer variables called pe-
riod jumps, introduced in [22], to encode rotations between crosses on adjacent nodes.
This leads to a mixed-integer optimization problem. Jakob et al. [14] use a multigrid
approach and perform per-node local smoothing iterations on the cross field, where
each cross vector is renormalized after smoothing. In subsection 6.2.1, we compare
our cross field design method with a nonlinear method that directly minimizes the
Dirichlet energy with a nonlinear penalty term and with instant meshes [14].

2.2. Cross Field Guided Meshing. Most cross field driven quad meshing
techniques fall into two categories: streamline tracing techniques and parameterization
techniques. While parameterization techniques have found success in some commercial
applications and received more attention in early research [8, 6, 16], we choose to focus
on streamline tracing methods because of their direct connection with the topology
of the cross field. We refer the reader interested in parameterization based meshing
techniques to [7].

Streamline tracing methods decompose the geometry into four-sided regions by
tracing separatrices of the cross field. Alliez et al. [1] produced quad dominant meshes
by tracing streamlines in principle curvature directions and filling in flat areas with
triangle elements. Kowalski et al. [20] implemented a streamline tracing algorithm
in flat 2D by tracing streamlines starting at singularities and continuing until the
streamline reaches either the boundary of the domain or another singularity. This
approach works well on most domains but can fail on geometries with limit cycles.
Näıve streamline tracing algorithms have the disadvantage that parallel streamlines
can intersect due to numerical inaccuracies. Ray and Sokolov [35] and Myles and
Zorin [29] independently developed robust streamline tracing methods that prevent
such errors. Further, Myles and Zorin [29] developed a robust algorithm to partition
a 2-manifold into four-sided regions and demonstrated its robustness on a database
of 100 objects. They prove that for a cross field whose singularities satisfy certain
assumptions, the regions traced by their algorithm are guaranteed to have four sides.
In section 5 we show that the singularities of cross fields that are local minimizers
of the Ginzburg-Landau energy will satisfy such assumptions. Campen et al. [10]
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use a hybrid approach where streamlines are traced on the surface to form a T-mesh
and then integer values are assigned to the edges of the T-mesh to compute a valid
conformal parameterization.

3. Basic Definitions. Here we recall some background material and establish
nomenclature for the paper. We briefly review concepts in meshing, but provide more
detailed and precise definitions for concepts related to cross fields. For an introduction
to quad meshing, see [7, 24, 31].

3.1. Quad Meshing. A 2D quad mesh is a is a finite collection of nodes, edges,
and faces where each face is is bounded by four edges. Here edges are non-intersecting
straight lines between nodes, and faces do not overlap. Nodes can be seen as points
in R2. The valence of a node is the number of edges connected to it. An internal
node of a quad mesh is said to be irregular if its valence is not four, and a boundary
node if its valence is not three. A quad layout is similar to a quad mesh, but in
place of straight edges piecewise smooth curves are allowed. A mesh or quad layout
is conforming if any two faces share at most a single vertex or an entire edge. A
T-junction is a feature in a non-conforming mesh where at least two faces share only
part of an edge; see Figure 9 (right). A quad mesh has an underlying structure called
a base complex or skeleton which is the coarsest quad layout obtained from a subset
of the mesh that has the same boundary and set of irregular nodes. For example, the
skeleton of the quad meshes in Figure 2 (bottom right), Figure 7 (bottom right), and
Figure 13 (right) are highlighted in red.

3.2. Cross Fields.

Definition 3.1. Let T = {z ∈ C : |z| = 1} be the circle group with group opera-
tion given by complex multiplication and let ρ(N) be the set of the N th roots of unity.
An N -direction is an element of CN = T/ρ(N). A 4-direction is also called a cross.

Definition 3.2. There is a canonical group isomorphism R : CN → T called the
representation map given by

R([c]) = cN ,

where c is any representative member of the equivalence class [c] ∈ CN . The inverse
representation map R−1 : T→ CN is given by

R−1(u) =
[
N
√
u
]
,

i.e., by choosing the equivalence class of the N th roots of u.

Assumption 3.3. Throughout this paper we will assume that D is a bounded,
simply connected domain in R2 with piecewise-smooth boundary.

Definition 3.4. An N -direction field on D is a map f : D → CN ∪ {0} where
only finitely many points are mapped to zero. The map R ◦ f : D → T ∪ {0} is called
the representation field for f .

An N -direction, [c] ∈ CN , is often visualized as an unordered set of N unit vectors,
{v0, v1, . . . , vN−1}, each one pointing from the origin towards the N representative
elements of the class [c]. Clearly, an N -direction has a rotational symmetry of 2π/N .
An example of a cross field is illustrated in Figure 2(bottom left).

Definition 3.5. Let N(f) be the zero set of an N -direction field, f on D. Then
f is smooth if R ◦ f : D \ N(f) → T is a smooth map. Similarly, f is harmonic if
R ◦ f is harmonic on D \N(f), i.e., satisfies ∆(R ◦ f) = 0.
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Fig. 4. (left) The cross field and boundary singularity at a sharp corner with index 1/4.
The cross turns 90◦ counterclockwise with respect to the direction of the curve, all at a single point.
(center) Transformation between a sharp corner and a smooth curve, the crosses turn smoothly with
the angle of inclination. (right) The cross field along a smooth curve turning 90◦ counterclockwise
with respect to the direction of the curve.

Definition 3.6. Let ν = (ν1, ν2) be the outward pointing unit normal vector on
∂D, and let cν = (ν1 + iν2). If a map g : D → T is such that g = cNν for every smooth
point p ∈ ∂D, then g is said to be N -aligned to the boundary of D. If f : D → CN is
an N -direction field on D such that R ◦ f |∂D = cNν , then f is said to be boundary-
aligned to D.

Definition 3.7. The Brouwer degree of a map g : ∂D → T, written d = deg(g, ∂D),
is the winding number of the curve g(∂D) around the origin in the complex plane.

Definition 3.8. Let γ : [0, 1] → D be a simple closed curve circulating a single
zero of the N -direction field f at an interior point p of D. Then the value

I(p) :=
argR(f(γ(1)))− argR(f(γ(0)))

2πN

is the index of p. The zero p is called a singularity of the N -direction field if its index
is not zero. The index of a singularity of an N -direction field is 1/N times the index
of the corresponding singularity of the representation field.

Definition 3.9. Let ∂D be piecewise smooth with corners {c1, . . . , ck}. For a
corner, ci, let γ : [0, 1]→ D be a simple closed curve such that γ(0) = ci = γ(1), and
y′(0) and y′(1) are tangent to ∂D at c, and containing no other singularity. Let

∆ arg(ci) = lim
s↓0

argR(f(γ(1− s)))− argR(f(γ(s))),

and let int ci be the interior angle at ci. The index of corner ci is defined

(1) I(ci) :=
π − int(ci)− 1

N∆ arg(ci)

2π
.

The corner ci is said to be a boundary singularity if its index is non-zero.

The index of a boundary singularity can be interpreted as the number of 1/N
turns in the counterclockwise direction that the N -direction makes in relation to the
boundary. It is akin to the concept of a turning number from [38], except that it
happens at a single point (see Figure 4).

3.2.1. Streamlines. A characteristic trait of a smooth vector field is that away
from zeros it locally foliates the space, meaning that streamlines of the vector field
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Fig. 5. The covering vector field and the four sheets of the Riemann surface for the half disk.
The red and cyan streamlines both cross a green branch cut, causing the streamline to change sheets.
The red, black, and cyan streamlines of the covering vector field project onto the base domain as
streamlines of the cross field.

partition the space into disjoint curves. Streamlines can be similarly defined for an N -
direction field except that these streamlines can intersect themselves and each other
at angles of 2π/N , as precisely describe below.

For the representation field R ◦ f : D → T of the N -direction field f on D, the
map ΛN : D → T defined by ΛN = N

√
R(f) is a multi-valued map on D. We can

make a branch cut from each of the singularities of R(f) to the boundary, and define
a Riemann surface, R for this choice of branch cuts.

Definition 3.10. The covering vector field on D for the given N -direction field
f and choice of branch cuts of ΛN is the continuous vector field Λ̂N : R → T defined
by assigning the vector pointing from the origin to ΛN (p) at each point p of R.

The observation that a cross field has a corresponding continuous vector field on
a 4-covering of the domain of definition is accredited to Kälberer et al. [16].

Definition 3.11. Let γN : [a, b] → R be a streamline of Λ̂N , satisfying dγN
dt =

Λ̂N (γN (t)) for t ∈ [a, b]. Let π : R → D be the canonical projection from R to D.
Then the function γ : [a, b]→ D given by

γ = π ◦ γN

is a streamline of the N -direction field f . A separatrix of an N -direction field is a
streamline that begins or ends at a singularity.

Figure 5 shows an illustration of the covering field for a cross field on a half disk.
The two green lines are branch cuts that join a singularity to a point on the boundary.
Several example streamlines are drawn. For example, the red streamline in the top
left panel is continued in the top right panel.

No two streamlines of Λ̂N can intersect each other on the Riemann surface R.
Thus, streamlines of the N -direction field intersect at a point p ∈ D only if π−1(γ)|p
is on two different sheets of R. We conclude that streamlines of an N -direction field
can only intersect themselves and each other at integer multiples of the angle 2π/N ;
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see, e.g., Figure 13 (bottom center).

3.3. Treating domains with corners. The theorems of the Ginzburg-Landau
theory in section 4 require a smooth boundary, however many domains of interest
for the meshing problem have corners. Throughout this paper, we will assume that
D is a bounded, simply connected domain in R2 with piecewise smooth boundary
(Assumption 3.3). In order to make use of the Ginzburg-Landau theory, we define a

smooth auxiliary domain, D̃ ⊆ D, as follows. We smooth each corner, c, of D with
a Bézier curve, ∂D̃c, with three control points, one on the corner, and two on the
boundary at a distance ε� 1 from the corner. The boundary condition along ∂D̃c is
then assigned by linearly interpolating the cross with the angle of inclination above
the corner; see Figure 4. The smooth domain D̃ will be considered in section 4.

If f̃ is a cross field on D̃, then a cross field f on D can be defined as follows: set
f |D̃ = f̃ , and for each corner c of D, assign the crosses on D \ D̃ by propagating the

crosses from ∂D̃c constant along each line segment from c to ∂D̃c. The cross field f is
called the extension of f̃ to D. Note that if f̃ is continuous then f is also continuous.
It is important to note that defining the auxiliary domain D̃ consequently extending
f̃ to D is only important for theoretical considerations, to be able to directly apply
the theorems from [3]. In practice there is no need to perform such operations to
generate a cross field on a discrete representation of the domain.

4. Correspondence Between Cross Field Design and the Ginzburg-
Landau Theory. The Ginzburg-Landau equation and associated energy functional
are classically used to describe the physics of superconductors and superfluids. In
this section, we describe the connection between a commonly used formulation of the
cross field design problem and the Ginzburg-Landau theory. In each subsection we
review different aspects of the Ginzburg-Landau theory in [3] and apply the results
to the cross field design problem.

As mentioned in section 2, the goal of the cross field design problem is often to
find a harmonic cross field. This is sometimes formulated as an energy minimization
problem with a feasibility constraint. Approaches using the N -RoSy representation
for a cross field, f , use the Dirichlet energy for the representation map, given by

(2) E[R(f)], where E[u] :=
1

2

∫
D̃

|∇u|2dA.

The problem then is to find the minimizer among all complex fields that represent a
cross field:

inf
u∈H1

g(D̃;T)
E(u)(3)

where

H1
g (D̃;T) := {u ∈ H1(D̃;C) : u(x) = g(x) ∀x ∈ ∂D̃ and |u(x)| = 1 a.e. x ∈ D̃}.

Here, g is boundary aligned (see Definition 3.6), and the feasibility constraint |u(x)| =
1 keeps the solution on the unit circle so that a cross can be defined at a point x by
R−1(u(x)). Note that the notion that a cross should only carry directional information
motivates the definition of a cross given in Definition 3.1, and in turn restricts the
solution space to T.

The admissible set in (3), H1
g (D̃,T), is empty whenever the Brouwer degree, d, is

non-zero. [3]. Indeed, if d 6= 0, the Poincaré-Hopf theorem necessitates a singularity
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will occur somewhere in D̃, but the Dirichlet energy (2) in any neighborhood of the
singularity is infinite [3, 17]. Problem (3) can be relaxed by enlarging the admissible

set to H1
g (D̃,C), so that the solution can approach zero in the neighborhood of a

singularity. A penalty term can then be added to the Dirichlet energy giving the
minimization problem

(4) inf
u∈H1

g(D̃,C)
Eε(u) where Eε(u) =

1

2

∫
D̃

|∇u|2dA+
1

4ε2

∫
D̃

(|u|2 − 1)2dA.

This is the approach taken in the study of the Ginzburg-Landau theory, and has also
been taken in the cross field literature [2, 15]; see also [14, 20, 37] which use different
strategies to enforce the pointwise unit norm constraint. In their foundational work
on Ginzburg-Landau vortices, Betheul et al. show that there is a well-defined sense
in which there exists a generalized solution to (3) as ε→ 0.

4.1. Existence of a Generalized Solution.

Theorem 4.1 ([3, Theorem 0.1]). Let D̃ ⊂ R2 be a bounded, simply connected

domain with smooth boundary 1 and let g : ∂D̃ → T be a smooth function. Let d =
deg(g, ∂D̃) be the Brouwer degree of g on ∂D̃. Denote by uε a solution of (4) for
ε > 0. Given a sequence εn → 0 there exists a subsequence εni and exactly d points

{a1, a2, ..., ad} ⊂ D̃ and a smooth harmonic map u? : D̃ \ {a1, ..., ad} → T with u? =

g on ∂D̃ such that

uεni → u? in Ckloc(D̃ \ ∪
i
(ai)) ∀k and in C1,α(

¯̃
D \ ∪

i
(ai)) ∀α < 1.

In addition, if d 6= 0, each singularity of u? has index sgn(d) and, more precisely,
there are complex constants, αi, with |αi| = 1 such that∣∣∣∣u?(z)− αi z − ai|z − ai|

∣∣∣∣ ≤ C|z − ai|2 as z → ai, ∀i.

In other words, Theorem 4.1 guarantees a sequence of minimizers of the relaxed
problem (4) that converges to a function, u?, that is harmonic on D̃ \ {a1, ..., ad}.
Thus we can think of u? as a generalized solution of the minimization problem (3).
Note that while u? is a (generalized) global minimizer, it is not necessarily unique.
For example, it can be shown on the disk that the the energy (4) is invariant under
rotation. Unfortunately, u? cannot in general be found analytically. Further, due to
the nonlinear second term of the energy functional in (4), the energy becomes non-
convex for small epsilon [3] and there is no guarantee that numerical methods will
converge to the global minimum. (Interestingly, the global minimum may not always
be the preferred solution for generating a quad mesh; see section 7). There is however
a related concept of which we can make practical use.

4.2. Canonical Harmonic Maps.

Theorem 4.2 ([3, Corollary I.1]). Let D̃ ⊂ R2 and g : ∂D̃ → T be as in The-

orem 4.1 with d = deg(g, ∂D̃). Given any configuration a = {a1, . . . , an} of distinct

points aj ∈ D̃ with indices I = {d1, . . . , dn} satisfying d =
∑n
i=1 di, there is a unique

function u0 satisfying

1Theorems 4.1 and 4.2 are stated in [3] for star shaped domains, but this assumption was relaxed
to simply connected domains in [45].
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Fig. 6. A plot of the streamlines for multiple smooth cross fields on a “mushroom” domain,
each with different singularity configuration. The Brouwer degree of this domain is zero. (left) This
is the boundary-aligned canonical harmonic cross field with no singularities, which by [3, Theorem
0.3] is the global minimizer of the Ginzburg-Landau energy. (center) This cross field has four
singularities. The top two have degree +1/4 and the bottom two have degree −1/4. (right) This
cross field has two singularities. The top one has degree +1/2 and the bottom one has degree −1/2.

(i) u0 is a smooth harmonic map from D̃ \ ∪iai to T,

(ii) u0 = g on ∂D̃, and
(iii) for some complex numbers αj with |αj | = 1,

(5)

∣∣∣∣∣u0(z)− αj
(z − aj)dj

|z − aj |dj

∣∣∣∣∣ ≤ C|z − aj | as z → aj , ∀j.

Furthermore, u0 is given by

(6) u0 = eiϕ(z) (z − a1)
d1

|z − a1|d1

(z − a2)
d2

|z − a2|d2
· · · (z − an)

dn

|z − an|dn
,

where ϕ is the solution of the Dirichlet problem

∆ϕ = 0 in D̃(7a)

ϕ = ϕ0 on ∂D̃,(7b)

and ϕ0 is defined on ∂D̃ by

(8) eiϕ0(z) = g(z)
|z − a1|d1

(z − a1)
d1

|z − a2|d2

(z − a2)
d2
· · · |z − an|

dn

(z − an)
dn
.

Definition 4.3. The smooth harmonic map u0 : D̃ \ ∪iai → T in Theorem 4.2
is called the canonical harmonic map associated with the boundary condition g and
singularity configuration with locations a = {a1, . . . , an} and indices I = {d1, . . . , dn}.
The N -direction field associated with the canonical harmonic map, defined by R−1(u0)
is called the canonical harmonic N -direction field associated with (g, a, I).

Theorem 4.2 states that a unique canonical harmonic map exists for a given
boundary condition and singularity configuration. The immediately obvious applica-
tion to cross fields is that such representation maps can be generated easily via (6).
Figure 6 displays streamlines of cross fields having the same geometry and bound-
ary condition but different singularity configurations. Each of these cross fields was
generated using the explicit formulation from Theorem 4.2.
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Theorem 4.2 has an interesting theoretical consequence that draws a connection
between angle based approaches to cross field design ([8, 22, 38]) and N -RoSy ap-
proaches, i.e., problem (3). In the case where d = 0, the global minimizer of (3),
u?, admits no singularities. A result by Bethuel et al. [3, Theorem 0.3] states that
u? is the canonical harmonic map for its associated singularity configuration. Thus,
since no singularities occur, we can solve for u? via (6), simply by solving (7). Since
there are no singularities, the quantity ϕ becomes exactly the angle of inclination of
the N -Rosy representation vector, which in turn is simply a scalar multiple of the
angle of inclination of the cross. Thus when d = 0, u? is found by minimizing the
Dirichlet energy of the cross angle. Put slightly stronger, away from singularities, u?
minimizes both the Dirichlet energy over fields u : D → T, and the Dirichlet energy
of the argument ϕ = arg(u) over all u : D → T.

Another useful fact from Theorem 4.2 is that for a given boundary condition
and singularity configuration, the canonical harmonic map has the smallest Dirichlet
energy (2). Thus local minimizers of (4) in the limit as ε → 0 must themselves be
canonical harmonic maps. In subsection 5.1 we use the estimate (5) to establish some
properties about the singularities of canonical harmonic cross fields. These results
extend previous results on the asymptotic behavior of cross fields near singularities.
A common assumption in the cross field meshing literature is that such properties
hold for cross fields given as input to meshing algorithms. Since local minimizers are
canonical harmonic maps, the results of subsection 5.1 provide theoretical justification
for making such assumptions when the input cross field is derived by a method that
approximately minimizes the energy (4) in the limit as ε→ 0.

4.3. Renormalized Energy, Singularity Location, and Index. From The-
orem 4.1 we know that a global minimizer, u?, of (3) will have isolated singularities

occurring on the interior of D̃, each with index sgn(d). But as previously noted, for
practical applications such as meshing, we cannot rely on finding a global minimizer
as the problem is non-convex. An asymptotic analysis reveals that even the singular-
ities of local minimizers of (4) as ε → 0 must be simple, isolated, and occur on the

interior of D̃. The details of this argument are presented in [3], but we include an
outline here to keep the discussion self-contained. A similar discussion appears in [2].

In the limit as ε→ 0, the dominating term of the energy (4) is multiplied by the
sum of the squares of singularity indices. Thus a local minimizer of (4) can only have
simple singularities, since the dominating term carries more energy for a singularity of
index n where |n| > 1 than it does for n simple singularities. Beside the dominating
term, the remaining renormalized energy is given by two terms that depend only on
singularity placement. The first is a logarithmic term which repels singularities of
the same sign, and attracts singularities of opposite sign. The second term becomes
infinite as singularities approach the boundary. All together, we conclude that the
singularities of local minimizers of (4) in the limit ε → 0 must be simple, isolated
and occur on the interior. Further, they are typically well distributed because of
the logarithmic term of the renormalized energy. It is interesting to note that local
minimizers can admit singularities of opposite signs, even though u? does not. These
results apply directly to N -direction fields because the singularities of an N -direction
field occur in the same locations as those of their representation fields, only with index
multiplied by 1/N .

5. Cross Field Topology and Quad Mesh Structure. In this section, we
make rigorous the connection between the topology of a harmonic cross field and the
structure that can be extracted from it for use in building a quad mesh on a domain.
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Fig. 7. (top) Local behavior of cross fields around an interior singularity (left) and boundary
singularity (right). The thick red lines show the separatrices exiting singularities as described by
Lemmas 5.1 and 5.2. Locally, the cross field on each sector is identical to a constant cross field on a
90◦ corner, stated another way, if the separatrices are considered as boundaries of the sectors, then
the index of each corner is +1/4; see Definition 3.9. (bottom left) A cross field and separatrix
partition for a regular hexagon. The singularity in the center has index −1/2. (bottom right)
The corresponding quad mesh with skeleton highlighted in red; see subsection 3.1.

Central to this idea is the relation between the index of a cross field singularity, and
the number of separatrices meeting at that singularity, which in turn determines the
valence of a node in the quad mesh.

In subsection 5.1 we generalize previous results on N -direction field singularities
by studying the asymptotic properties of a singularity of a boundary-aligned canon-
ical harmonic N -direction field, not necessarily a minimizer of the Ginzburg-Landau
energy. Lemmas 5.1 and 5.2 use an asymptotic estimate provided by the Ginzburg-
Landau theory to make explicit the relationship between index and the number and
distribution of separatrices meeting at a singularity. Lemma 5.3 shows that the local
topology of the cross field in each sector between separatrices is identical to that of a
constant field on a 90◦ corner. These lemmas culminate in a proof that the separa-
trices of a cross field decompose the geometry into four-sided regions. Our results are
illustrated in Figure 7. For the sake of generality, the results in the following section
are stated in terms of N -direction fields.

5.1. Behavior of N-Direction Fields Near Singularities. Our first result
is that singularities locally partition an N -direction field into evenly angled sectors.
The number of sectors depends only on the index of the singularity.

Lemma 5.1. Let f be a boundary-aligned canonical harmonic N -direction field on
D. Let a be an interior singularity of f of index d/N with d < N . There are exactly
N −d separatrices meeting at a. These separatrices partition a neighborhood of a into
N − d evenly angled sectors.

While the result in Lemma 5.1 is often leveraged [19, 29, 10], relatively little work
has been done to disclose its exact nature. To the best of our knowledge this was first
studied in [32]. By linearizing around a singularity, they show that the the angles
at which separatrices exit a singularity must occur at the zeros of an N + 1 degree
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polynomial, bounding the number of separatrices above by N+1. Kowalski et al. [20]
show that for a discrete cross field interpolated linearly over triangle mesh elements,
singularities of index ±1/4 will have 3 and 5 separatrices respectively, but do not
address the question for the underlying continuous field. Beaufort et al. [2] identify
the relationship of N − d separatrices for a singularity of index d/N , and show that
this relationship holds for cross fields that are a priori aligned to a quad mesh. Here
we prove the relationship holds for singularities of a canonical harmonic N -direction
field, including local minimizers of the Ginzburg-Landau energy (4).

Proof of Lemma 5.1. Let u be the representation vector field for f . Write z =
a+ reiθ. The estimate (5) gives

(9) u(z) = αeidθ + o(r) for θ ∈ [0, 2π) and |α| = 1.

We seek directions where the vector v = z − a is parallel to any of the component
vectors of the cross f(z) = u(z)

1
N . Thus, writing α = eiθ0/N , we want to solve the

equation

(10) eiθ = lim
r↓0

u(z)
1
N = ei(

dθ+θ0
N + 2πk

N ) =⇒ θ = 2πk/(N − d) + θ0/(N − d)

for k ∈ Z. Since we are looking for solutions where θ ∈ [0, 2π) we have exactly N − d
solutions. This gives N − d separatrices and N − d sectors, each with interior angle
2π/(N − d).

Lemma 5.2. Let f be the extension of a canonical harmonic direction field f̃ .
Let c be a boundary singularity of f of index d/N with d < N/2. There are exactly
N
2 − d + 1 separatrices meeting at c (including the boundaries themselves). These

separatrices partition a neighborhood of c into N
2 − d evenly angled sectors.

Proof. Let φc = int(c), the interior angle at c. By the definition of a boundary
singularity (Definition 3.9), we calculate that ∆ arg(c) = N(π − φc) − 2πd. We can
parameterize the geometry near the corner with polar coordinates z = reiφ, where r
is the distance between from the corner and φ ∈ [0, φc] measures the angle from the
segment succeeding the corner. In this coordinate system, the representation field, u,
near the corner can be written

(11) u(z) = e−iφ
∆ arg(c)
φc = e−iφ

N(π−φc)−2πd
φc .

As in Lemma 5.1, we are looking for values of φ where v = z − c is parallel to a
component vector of the cross f(z) = u(z)

1
N . Thus, we want to solve

(12) eiφ = u(z)
1
N = e−iφ

N(π−φc)−2πd
Nφc

+ 2πk
N =⇒ φ =

φc
N
2 − d

k

for k ∈ Z. Since we are looking for solutions where φ ∈ [0, φc], for d < N/2 and N
even we have solutions for k = 0, . . . , N2 − d. Thus, N2 − d+ 1 separatrices partition a

neighborhood of the corner c into N
2 −d sectors, each with interior angle φc/(

N
2 −d).

In Lemma 5.2, if we allow d = N/2 then (12) simplifies to the identity, and so for
every value of θ we get a separatrix. In the case of a cross field, this means that any
boundary singularity with index +1/2 has infinitely many separatrices; see Figure 8
(left). Likewise, (10) reduces to the identity when d = N and θ0 = 0.

The following Lemma specifies the behavior of the cross field within each sector
around either a boundary or an interior singularity.
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Fig. 8. Singularities of index ≥ 1/2 lead to degenerate quad meshes. (left) A boundary
singularity of index 1/2 leads to an infinite number of separatrices converging to a single point.
(right) An internal singularity of index 1/2 leads to a pair of the degenerate “doublet” quads.

Lemma 5.3. Let N be even and d < N/2. Consider a component of the partition
described in Lemmas 5.1 and 5.2. A singularity, c, in the corner of this component,
when viewed as a boundary singularity, has index 1

2 −
1
N .

Proof. If the singularity is an internal singularity, then (10) gives that on each of
the sectors

int(c) =
2π

N − d
.

From (9), we compute

−∆ arg(c) = d

[
2π(k + 1)

N − d
+

θ0

N − d

]
+ θ0 −

(
d

[
2πk

N − d
+

θ0

N − d

]
+ θ0

)
= d

2π

N − d
.

Using (1), the index of the corner is

I(c) =
π − 2π

N−d −
d
N
−2π
N−d

2π
=

N
2 − 1

N
.

If the singularity is a boundary singularity, then from eq. (12),

int(c) =
φc

N
2 − d

.

Using (11), we compute

∆ arg(c) =
N(π − φc)− 2πd

φc

(
φc(k + 1)
N
2 − d

− φck
N
2 − d

)
=
N(π − φc)− 2πd

N
2 − d

.

Thus (1) gives that the index of the corner is

I(c) =
π − φc

N
2 −d
− 1

N
N(π−φc)−2πd

N
2 −d

2π
=

N
2 − 1

N
.

Lemma 5.3 says that the index of the boundary singularity around the corner of
any sector is (N2 −1)/N . When N = 4, this simply means that each corner of a sector
looks like a right angle with respect to the cross field. Stated another way, the cross
field in each sector allows for a local (u, v) parameterization; see Figure 7.

The next section shows how we can use the local structure of singularities to
determine the structure of a quad layout on D.
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Fig. 9. A cross field on a domain that exhibits a limit cycle. (left) The separatrix traced
in yellow converges to a limit cycle. The partition shown in red inserts a T-junction at the first
place where the yellow separatrix intersects another one. (right) The four-sided regions without
a T-junction can be meshed by conformal mapping. The region with the T-junction requires the
insertion of more irregular nodes in order to conform with the mesh on its right and left sides.

5.2. Partitioning into Four-Sided Regions. The skeleton of a quad mesh
(subsection 3.1) gives the basic structure of the mesh in the sense that it partitions
the domain into the coarsest possible quad layout for the given choice of irregular
nodes and connectivity between them; see Figure 2 (bottom), Figure 7 (bottom left),
and Figure 13 (right). Any mesh with this structure, including the original mesh, can
be seen as simply a refinement of this quad layout.

It is well known that a cross field can be generated on a quad mesh by locally
aligning the crosses with quad edges (see [2, 51]). Beaufort et al. [2] show that a
cross field created in such a way will have singularities exactly at the irregular nodes.
Further, the separatrices of the cross field will be exactly the curves traced out by the
skeleton of the quad mesh. Presumably, one could create the skeleton of a quad layout
by reversing this process, i.e., simply tracing separatrices of the cross field (this is the
approach taken in [20]). This would allow for meshing the domain by conformally
mapping a regular grid into each region of the quad layout. Unfortunately, it is not
always so simple. Figure 9 shows a geometry that contains a limit cycle. The yellow
separatrix begins at the corner, but continues indefinitely as it approaches the limit
cycle. The following theorem shows that this is the only type of failure case that can
occur. The second part of the proof follows [29].

Theorem 5.4. Let f be a boundary-aligned canonical harmonic cross field on D
whose singularities have index ≤ 1/4. If no separatrix of f converges to a limit cycle,
then the separatrices of f , along with ∂D partition D into a quad layout.

Proof. By Lemma 5.1, a finite number of separatrices meet at each singularity.
Since no separatrix converges to a limit cycle on D (and consequently, none on R) the
Poincaré-Bendixson theorem for manifolds [42] guarantees that each separatrix must
either end at another singularity, or exit the domain orthogonal to the boundary. The
set of separatrices along with ∂D then partition the domain into bounded regions that
contain no singularities. If a curve of the boundary of any region meets another curve,
the corner where they meet must have index +1/4 because they are either separatrices
intersecting each other or the boundary orthogonally, or they meet at singularities and
by Lemma 5.3 have index +1/4. Since there are no internal singularities, the total
index must come from corner singularities, and since the index for each corner is
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positive, the sum must be non-negative. By the Poincaré-Hopf theorem for cross
fields [38], the total index of a given region must equal the Euler characteristic of
that region. The genus of each region is zero because the domain is defined in two
dimensions. Thus there are only two possibilities; either there is one boundary and
the Euler characteristic is one, in which case we have four corners each of index +1/4,
a quad element. Otherwise, there are two boundaries and the Euler characteristic is
zero. In this case the total index is zero, so there are no singularities, i.e., an annulus.

The main takeaway is that when no separatrix of the cross field converges to
a limit cycle, the topology of the cross field is sufficient to uniquely determine a
quad layout, which can then easily be meshed by mapping a regular grid into each
region. The irregular nodes of any such mesh mirror exactly the singularity structure
of the cross field through the relationship established in Lemmas 5.1 and 5.2. Further,
since the index of each singularity is ≤ 1/4, each singularity will have at least three
separatrices, and so none of the quad elements of the mesh will be degenerate; see
Figure 8.

The failure case occurs when one of the separatrices converges to a limit cycle. In
a case like this, we propose that such separatrices can easily be handled by allowing
T-junctions on the quad layout; see Figure 9. This complicates the meshing problem
slightly; a domain can no longer be meshed by simply mapping a regular grid into
each region of the quad layout. Instead, regions adjacent to T-junctions will require
additional singularities to resolve the differing number of quads needed on opposite
sides of the region. This however has been addressed in [41, 46, 47], and so partitioning
the domain into a quad layout with T-junctions is sufficient to produce a quad mesh
where the number, location, and valence of its irregular nodes are determined only by
the singularities and T-junctions in the partition, and the target density of the quad
mesh. See subsection 6.2.2 for more details.

It is not immediately clear that a separatrix can always be cut off by another
separatrix to form a T-junction. The question is even more delicate on 2-manifolds
with genus greater than zero. Though not actually used in the robust implementation
of their algorithm, in the proof of their main result, Myles et al. [29] rely on including
sections of a sufficiently fine background grid in their partition in order to guarantee
that separatrices will terminate. The following two results show that in two dimen-
sions, separatrix tracing alone is sufficient to guarantee a partition into four-sided
regions.

Theorem 5.5. Let f be a smooth boundary-aligned cross field on D with a finite
singularity set. Every separatrix that converges to a limit cycle intersects at least one
other separatrix.

Proof. Let s : [0,∞)→ D be a separatrix beginning at a singularity s(0) with s(t)
converging to the limit cycle, γ∞, as t→∞. Since s converges to γ∞, there exists a t∗

such that a streamline intersecting s at s(t∗) must also intersect γ∞. Let s+
⊥,t∗ be the

segment of this streamline beginning at s(t∗) and continuing in the direction towards
γ∞. Consider the the family of streamline segments s+

⊥,t for t ∈ [0,∞) beginning at

s(t), and continuing in the direction from s consistent with s+
⊥,t∗ . Let this family of

curves be parameterized so that each curve, s+
⊥,t(r), has unit speed and starts on s at

s(t) when r = 0. Finally, let s⊥,t be the corresponding streamlines.
If s+
⊥,t intersects γ∞, for every t, then s+

⊥,0 must also be a separatrix (since it

starts at a singularity), and since it intersects γ∞ it must also intersect s. If s+
⊥,t does

not intersect γ∞, for all t, then there is a greatest lower bound, τ , such that for t > τ ,
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Fig. 10. An illustration of case B in the proof of Corollary 5.6. The area filled in with grey is
the set A.

s+
⊥,t must intersect γ∞.

We claim that s+
⊥,τ cannot intersect γ∞. If it did, then by the stability of ordinary

differential equations with respect to initial data, [11, Proposition 2.76], there would
be a neighborhood around s(τ) within which any streamline would also intersect γ∞,
contradicting the fact that τ is a greatest lower bound.

We claim that s+
⊥,τ connects to a singularity, making s⊥,τ a separatrix, and argue

by contradiction. If s+
⊥,τ does not connect to a singularity, then by the Poincaré-

Bendixson theorem, either s⊥,τ is a periodic orbit (case 1), or s+
⊥,τ will exit the

boundary (case 2) or approach a limit cycle (case 3).
Case 1: If s⊥,τ is a periodic orbit, then since both s⊥,τ and γ∞ are closed sets,

there is a finite distance, δ > 0, between s⊥,τ and γ∞. Let V = {x ∈ D : d(x, s⊥,τ ) <
δ/2}. By [11, Proposition 2.76], there exists an ε > 0 such that s+

⊥,t must remain in

V for t ∈ (τ − ε, τ + ε). Then s+
⊥,τ+ε/2 must remain in V , and on the other hand,

must intersect γ∞ since τ + ε/2 > τ . This is a contradiction since V ∩ γ∞ is empty.
Case 2: Suppose that s+

⊥,τ exits the boundary. Since s+
⊥,τ and γ∞ are a compact

sets, there exists a δ > 0 such that the set V = {x ∈ D : d(x, s+
⊥,τ ) < δ/2} has an

empty intersection with γ∞. Again by [11, Proposition 2.76] there is an ε > 0 such
that s+

⊥,t must remain in V for all r ≥ 0 when t ∈ (τ−ε, τ+ε). But s+
⊥,t+ε/2 intersects

γ∞, which again is a contradiction since V ∩ γ∞ is empty.
Case 3: Suppose s+

⊥,τ approaches a limit cycle `∞. Then there exists an r∗ and an

ε1 > 0 such that if t ∈ (τ −ε1, τ +ε1), then s+
⊥,t(r) approaches `∞ asymptotically as r

increases from r∗ to ∞. Consider the segment of s+
⊥,τ (r) for r ∈ [0, r∗]. This segment

is a closed set, so again there is a δ such that the set V = {x ∈ D : d(x, s+
⊥,τ (r)) <

δ/2 for r ∈ [0, r∗]} has an empty intersection with γ∞. Again, by [11, Proposition
2.76], there is a ε2 > 0 such that s+

⊥,t must remain in V for all r ∈ [0, r∗] when
t ∈ (τ − ε2, τ + ε2). Let ε = min(ε1, ε2). Then for t ∈ (τ − ε, τ + ε), s⊥,t + (r) ∈ V for
r < r∗, and approaches `∞ asymptotically afterwards. Thus s+

⊥,t+ε/2 cannot intersect

γ∞, which again is a contradiction.

Corollary 5.6. Let f be a boundary-aligned canonical harmonic map for some
singularity configuration where each singularity has index ≤ 1/4. Let γ∞ be a limit
cycle with a separatrix, s, converging to it. There is a separatrix, s′, (not necessarily
the same as s) that converges to γ∞ and intersects a separatrix, s′⊥, that begins at the
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same singularity as s′ and intersects γ∞.

Proof. Let s+
⊥,t be defined as in the proof of Theorem 5.5. Either s+

⊥,t intersects
γ∞ for all t (case A), or not (case B). In case A, by the proof of Theorem 5.5, s
intersects s⊥,0, which is a separatrix beginning at the same singularity and intersecting
γ∞, so letting s′ = s and s′⊥ = s⊥,0, the proof is complete. In case B, as in the proof
of Theorem 5.5, there is a greatest lower bound, τ , such that for t > τ , s+

⊥,t intersects

γ∞ and s+
⊥,τ connects to a singularity, xα. For t > τ , let s∗⊥,t be the segment of s+

⊥,t
between s and γ∞. The segment s∗⊥,t does not contain a singularity for any t > τ ,
otherwise τ would not be a greatest lower bound. Let A = ∪t>τs∗⊥,t. A contains no
singularities and any streamline in it running orthogonal to the segments s∗⊥,t must
converge to γ∞.

Let s∗⊥,τ be the segment of ∂A that starts at s(τ), runs orthogonal to s, and
ends at the first intersection of ∂A and s. This curve contains xα and may contain
other singularities. However, s∗⊥,τ is aligned with the cross field, so it is a piecewise
smooth finite union of separatrices and segments of separatrices. Each singularity on
s∗⊥,τ has a separatrix entering A and running orthogonal to every s∗⊥,t, thus each of
these separatrices must converge to γ∞. Consider xω, the singularity that is farthest
from s(τ) along s∗⊥,τ . Let sω be the separatrix beginning at xω converging to γ∞.
The separatrix, denoted sω⊥, beginning at xω and continuing along s∗⊥,τ intersects s,
and therefore must intersect γ∞ since s∗⊥,t intersects γ∞ for all t > τ . Then setting
s′ = sω and s′⊥ = sω⊥ satisfies the statement of the theorem.

Theorem 5.5 and Corollary 5.6 allow us to deal with the issue of limit cycles in
a predictable manner. When a limit cycle occurs in the cross field, the partition can
be obtained by first tracing out all of the separatrices that don’t converge to a limit
cycle, and then tracing out each separatrix that does converge to a limit cycle until it
reaches another separatrix, placing a T-junction at that point. The exact process for
partitioning a domain into a quad layout with T-junctions is specified in Algorithm 1.
We denote the set of separatrices that converge to any limit cycle by P.

Theorem 5.7. Given a domain D satisfying Assumption 3.3, and a boundary-
aligned canonical harmonic cross field f with singularities of index ≤ 1/4, Algorithm 1
is well-defined, terminates in finite time, and partitions D into a quad layout with
exactly |P| T-junctions.

Proof. The first ‘for’ loop is well-defined by Corollary 5.6.
In the second ‘for’ loop, each separatrix that converges to a limit cycle is guar-

anteed to intersect another separatrix by Theorem 5.5. If it does not intersect a
separatrix in S, then it must intersect one that runs orthogonal to the limit cycle
itself which is added to B in the first for loop.

Clearly Algorithm 1 partitions the domain into regions without singularities. As
in Theorem 5.4, each corner of the partition must have an index of 1/4 because it
either meets at a singularity, intersects another separatrix, or exits the boundary or-
thogonally. Following the argument from the second part of the proof of Theorem 5.4,
this is enough to guarantee that each region is a quad or an annulus. There are ex-
actly |P| T-junctions because they are created exactly when we trace a separatrix in
P until it reaches another separatrix that is already in the set B.

6. Computational Methods. In this section we describe computational meth-
ods to practically apply the results of sections 4 and 5. We introduce a new method
for cross field design, discuss its implementation on a discrete mesh, and compare it
to other cross field design methods. We also implement Algorithm 1 in a discrete
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Algorithm 1 Partitioning D into a quad layout with T-junctions.

Input: A domain D satisfying Assumption 3.3, and a boundary-aligned canonical
harmonic cross field f with singularities of index ≤ 1/4.

Output: A set B containing limit cycles and separatrices that define a quad
layout with T junctions.

Let S be the set of separatrices that do not converge to a limit cycle. Let P be
the set of separatrices that do. Let L be the set of limit cycles.

Initialize the set B = S.

for l ∈ L do
if no element of B intersects l then

(i) Add l to B.
(ii) By Corollary 5.6, there is an element of P that intersects l. Let ρ′ be
the portion of that separatrix beginning at the singularity and ending in a
T-junction with l.
(iii) Add ρ′ to B.
(iv) remove ρ from P.

end if
end for
for ρ ∈ P do

Let ρ′ be the curve segment of ρ beginning at the singularity and continuing
until it intersects an element of B. Add ρ′ to B.

end for

setting and use the resulting partitions to obtain quad meshes on various geometries.

6.1. Cross Field Design and the MBO Diffusion Generated Method.
Another consequence of the connection between the cross field design problem and
Ginzburg-Landau theory is an efficient computational method for minimizing the
Ginzburg-Landau functional (4) based on a generalization of the Merriman-Bence-
Osher (MBO) diffusion generated method. The MBO diffusion generated method
was originally introduced in [25, 26, 27] in the context of mean curvature flow and
extended to (4) in [40] to study the evolution of vortex filaments in three dimensions.
The details of the algorithm are given in Algorithm 2. We view this method as an
energy splitting method for the Ginzburg-Landau functional (4). The first term of
(4) is the Dirichlet energy of the representation field, whose gradient flow is diffusion.
Thus in the first step of Algorithm 2, we diffuse for a short time τ > 0. The second
term of (4) penalizes complex numbers that do not lie on the unit circle, T, and the
gradient flow for this term is

ut = ε−2(|u|2 − 1)u.

The field evolves pointwise in the radial direction; i.e., the representation vectors
lengthen or shorten radially toward T. Since this term is multiplied by a factor
ε2, and ε is small, we can rescale time as t̃ = t/ε2, giving ut̃ = (|u|2 − 1)u. As
ε → 0, τ̃ = τ/ε2 → ∞ and the solution tends towards the closest point on T.
Thus, we approximate the second step of the energy splitting method with pointwise
renormalization as in the second step of Algorithm 2.
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Algorithm 2 A diffusion generated method algorithm for approximating minimizers
of the Ginzburg-Landau energy (4).

Input: Let D be a domain satisfying Assumption 3.3, τ > 0, and δ > 0. Fix
boundary conditions g on ∂U as in Definition 3.6. Initialize a representation map
of the cross field, u0 : D → C, with u0(x) = g(x) for every x ∈ ∂D. Let k = 0.

while k > 0 and ‖uk − uk−1‖ > δ, do
(i) Solve the diffusion equation,

∂tv(t, x) = ∆v(t, x) x ∈ D(13a)

v(t, x) = g(x) x ∈ ∂D(13b)

v(0, x) = uk(x) x ∈ D,(13c)

until time τ . Denote the solution by ũk+1 = eτ∆uk = v(τ).

(ii) Set uk+1 = ũk+1

|ũk+1| and k = k + 1.

end while

The MBO method (Algorithm 2) provides an efficient way to approximate lo-
cal minimizers for the Ginzburg-Landau energy (4). By the discussion in subsec-
tion 4.3, local minimizers will have isolated singularities of degree ±1. Such a field is
a boundary-aligned canonical harmonic map for some singularity configuration, so the
results in section 5 apply, and Theorems 5.4 and 5.7 guarantee that its separatrices
will partition the domain into four-sided regions.

Remark 6.1. While the original MBO diffusion generated method is known to
converge to mean curvature flow, Laux and Yip [21] have recently proven the codi-
mension two result that the method converges to the gradient flow of (4).

6.2. Discrete Computation and Meshing. We now turn our attention to an
example implementation of our method. Given a domain D, we discretize it with a
triangle mesh M and use a P1 Lagrange basis. This assigns crosses to nodes of the
mesh and singularities to the faces. For a canonical harmonic cross field with isolated
singularities of degree ±1, a P1 basis is sufficient to represent the topology of the field
without aliasing problems [48]. Further, the results on singularities of Kowalski et al.
[20] apply to our discretization and thus the properties of singularities of canonical
harmonic fields proven in section 5 still hold in the discrete setting.

We can approximate a canonical harmonic cross field with simple isolated singu-
larities either by fixing the singularity locations and degrees and using (6) or via the
MBO method. The former consists of a single solve of the real scalar Laplace equation
(see Theorem 4.2). To implement the MBO method, we initialize the field either with
a canonical harmonic map using (6) or with a harmonic map obtained by solving the
complex Laplace equation on D. In our experimentation we have also initialized with
randomly assigned fields. We have not found an example domain where the initializa-
tion affects the final solution. We implement the diffusion steps of the MBO method
using the backward Euler time discretization. The sparse symmetric positive definite
matrix appearing in this discretization is factored efficiently once and then reused at
each iteration of the MBO method. This is an advantage over most other cross field
methods, which require a full system solve at each iteration.
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To choose the parameter τ in Algorithm 2, we use a time scale related to the
characteristic length of the diffusion equation. Roughly speaking, the solution will

evolve at length scales less than
√
τ . Taking the characteristic length to be λ

− 1
2

1 ,
where λ1 is the principle eigenvalue of the Dirichlet-Laplacian, we take τ = λ−1

1 .
Figure 12 illustrates the time evolution of the MBO method until the solution

becomes stationary on a half disk. We randomly initialize the field with a uniformly
distributed unit vector field. The computation is performed on a mesh with 29,856
nodes with τ = λ−1

1 /10. We choose a smaller value of τ here in order to slow down
the evolution of the system in the first few MBO iterations. After 1600 iterations the
field satisfies ‖uk − uk−1‖`2 ≤ 2n× 10−15 where n is the number of interior nodes of
the mesh, however visually the solutions at each iteration are indistinguishable after
≈ 300 iterations.

6.2.1. Comparison to Other Approaches. In this section, we provide a com-
parison of the MBO method (Algorithm 2) to minimizing (4) directly using the L-
BFGS method and to instant meshing [14].

For the L-BFGS method, we use the minlbfgsoptimize command in the numer-
ical library [5] with default parameters. To initialize Algorithm 2 and the L-BFGS
methods, we use the solution to the Laplace equation with boundary-aligned boundary
conditions,

∆u = 0 Ω

u = g ∂Ω.

For a convergence criterion for Algorithm 2, and L-BFGS, we use the condition ‖uk−
uk−1‖`2 ≤ 2n× 10−4, where n is the number of nodes in the triangle mesh. Here we
have chosen a relatively large convergence criterion, which is appropriate for meshing.

For instant meshes, we use the implementation at the interactive geometry lab
website2 with the intrinsic energy and boundary alignment options selected [14]. We
ran instant meshes on a single thread so that the times are comparable with the other
methods.

The number of iterations and wall-clock time for each method on several dis-
cretizations of various models are tabulated in Table 1. The instant meshes method
and Algorithm 2 are roughly the same speed and an order of magnitude faster than
the L-BFGS method.

A comparison of the singularity placements for a representative simulation on the
gear model is given in Figure 11. The singularity placements for Algorithm 2 and L-
BFGS are nearly the same. Since instant meshes performs local iterations, the solution
has not converged and this causes poor singularity placement for boundary-aligned
fields.

6.2.2. Creating a Quad Mesh from a Representation Field. The discrete
representation map produced by our implementation of the MBO method can be
transformed into a discrete cross field by taking the fourth root of the representa-
tion map at any point. Singularities occur at the zeros of the representation map.
The directions that separatrices exit a singularity are then computed by solving for
locations on the boundary of a singular triangle where one of the cross vectors is point-
ing at the singularity location. Separatrices are then computed using a fourth order
Runge-Kutta method and traced out as specified in Algorithm 1. There is no need to

2http://igl.ethz.ch/projects/instant-meshes/

http://igl.ethz.ch/projects/instant-meshes/
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MBO L-BFGS instant meshes
Model nodes iters time iters time iters time

half disk 269 47 0.0017 10 0.0425 66 0.0092

disk 264 223 0.0072 17 0.0280 66 0.0116
5967 16 0.0370 46 1.0724 96 0.0411

gear 6375 34 0.0289 8 0.8484 102 0.057
108787 14 0.6843 29 27.938 252 1.853

nautilus 964 95 0.0156 17 0.0996 78 0.017
Table 1

A comparison of three methods (MBO, L-BFGS, and instant meshes) on four different models
for different discretizations. For each iterative method, we report the number of iterations and the
time (in seconds) for the computation. Details are given in subsection 6.2.1.

Fig. 11. The singularities of the gear model generated using Algorithm 2 (top), the L-BFGS
method (center), and instant meshes (bottom). See subsection 6.2.1 for details.

compute a Riemann surface for the domain for streamline tracing because locally the
appropriate vector field is completely determined. Separatrices are snapped to singu-
larities if the distance to the singularity falls below a fixed tolerance. This method
is identical to the one described in [20] except that we offer a way in which to treat
separatrices converging to limit cycles. We apply it here primarily for the purposes of
illustration, as neither the Runge-Kutta tracing method nor the separatrix snapping
approach are robust for a variety of geometries. For more robust streamline based
domain partitioning algorithms we refer the reader to [10, 29], and leave a robust
implementation of Algorithm 1 as a subject of future research [50].

Following this approach, we obtain a partition of the domain into a quad layout
with exactly one T-junction for every separatrix that approaches a limit cycle. For
quad layouts that contain no T-junctions, a regular grid can be conformally mapped
into each quad region to obtain the mesh. We do this using the CUBIT software [41].

When a T-junctions appears in a quad layout, a mesh can no longer be obtained
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Fig. 12. A random initialization and iterations 1, 3, 10, 30, and 300 of Algorithm 2 for a half
disk. At each iteration the representation field is drawn. Singularities of index -1 are shown in red
while singularities of index +1 are shown in cyan for each MBO iteration (not shown for the random
initialization). As time evolves the singularities in the field move as to reduce the Ginzburg-Landau
energy (4). Details are included in subsection 6.2.

by simply mapping a grid into each region. The problem is illustrated in Figure 9
(right). To mesh a region, the opposite sides of that region must have the same number
of quads. If we were to map a regular grid into each subsequent region, we would
have to satisfy the conditions a+ b = c, c = b, a > 0, b > 0 and c > 0 where a and b
are the number of quads required on the sides adjacent to the T-junction, and c is the
number of quads required on the opposite side; see Figure 9. Clearly these conditions
are incompatible, so any mesh in such a region will require additional singularities. In
our examples, we mesh these regions using the paving algorithm [4], however a more
deterministic method such as [47] could be used.

These singularities do not necessarily need to be placed in the region adjacent to
the T-junction as shown in Figure 9, but can be distributed throughout the regions
by assigning the number of quads to appear on each curve. This is a combinatorial
problem similar to the user specified interval assignment problem considered in [28].

6.3. Example Mesh Generation. Figure 13 shows several example meshes
using this method. The first example is a surface from a CAD designed mechanical
part [41]. This domain has Brouwer degree two and the cross field contains two
singularities of index +1/4. Three separatrices meet at each of these singularities,
and thus the corresponding quad mesh has 3-valent nodes at the singularity locations.

The second example is a block U. The field was initialized with a canonical har-
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monic cross field with a boundary condition of Brouwer degree −2 and a singularity
configuration placing two singularities of index −1/4 in the bottom corners of the U.
The corresponding quad mesh has two 5-valent nodes.

The next two examples are multiply connected domains. These examples could
be handled within the framework of this paper by cutting the domain or handled
directly by applying the results in [39], however in practice we apply the MBO method
directly to the multiply connected domain. The first multiply connected domain has
Brouwer degree −1, which we count by subtracting the Brouwer degree of the interior
boundaries from the exterior one. One singularity of index −1/4 appears near the
curve that contributes to the negative Brouwer degree. The cross field in the last
example contains two singularities with index −1/4, and also contains periodic orbits
that intersect themselves.

7. Discussion and Future Directions. In this paper, we have made the ob-
servation that cross field design for two-dimensional quad meshing is related to the
well-known Ginzburg-Landau problem from mathematical physics. Using this identi-
fication, we prove that this procedure can be used to produce a cross field whose sepa-
ratrices partition the domain into four sided regions. This identification also allows for
an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method to be
used to find representation fields that approximately minimize the Ginzburg-Landau
energy. The methods are demonstrated with a number of computational examples.

Some limitations exist when using the energy (2). Since the problem is non-
convex, for most domains, we cannot guarantee that we will reach a global minimum.
Ironically, a global minimum may not always result in the best mesh. For example, the
cross field in Figure 6 (left) is the global minimizer of the Ginzburg-Landau energy for
this domain because it is the canonical harmonic cross field with no singularities. The
one shown in Figure 6 (center) is the cross field obtained through the MBO method.
Isotropy of mesh elements is a desirable property in many meshing applications, and
in this case the local minimizer found by the MBO method produces a more isotropic
mesh than the global minimizer because of the additional singularities. This suggests
that this definition of cross field energy may assign too much weight to singularities.
The infinite energy at singularities is also problematic because the discrete measure of
field energy depends on the discretization. As the mesh is refined near singularities,
the energy is increased.

Despite these limitations, we have shown that approximate solutions to prob-
lem (2) has many desirable properties for meshing. For example, the MBO method
produces cross fields with isolated singularities of index ±1/4 (subsection 4.3) that
locally exhibit the same structure as irregular mesh nodes subsection 5.1. Further,
the separatrices of these cross fields are guaranteed to partition a domain into a quad
layout, possibly with T-junctions.

There are a number of future directions for this work. One direction is a more
careful numerical analysis of the finite element problem arising in the discretization
of (4). Along the same line, a more careful comparison should be made with the quad
meshing methods in [14, 15, 17, 20, 34]. Also, a comparison between the location of
singularities of fields generated via this method and those generated via the method
in [17], utilizing a different cross field energy, is necessary.

In section 3 we discuss a method to smooth the corners of a piecewise smooth
domain so as to be able to apply the Ginzburg-Landau theory. A more elegant solution
would be to extend the Ginzburg-Landau theory to handle domains with piecewise
smooth boundary.
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Fig. 13. For several different geometries (rows), we plot the (left) representation field obtained
via the MBO method (Algorithm 2), (center) the cross field and quad layout obtained from the
separatrices of the cross field, and (right) quad mesh with skeleton drawn in red.
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In this paper, the index of a boundary singularity is determined by the corner
smoothing operation in section 3. While this is a natural choice, it does not allow us
to mesh geometries with sharp corners such as that in Figure 8 (left), since a boundary
singularity of index 1/2 would be assigned. While quad elements are more isotropic
when the index values are chosen close to π− int(c)/2π, in reality, there is ambiguity
in the index assignment of any corner. For example, the bottom four corners on the
block U in Figure 13 were each assigned an index of 1/4, but an index of zero would
have been just as reasonable, and would change the resulting cross field and mesh. It
may be preferable to let the user have control of the index assignment for each corner
to allow for greater flexibility for the mesh and enable meshing of geometries with
sharp corners. This is often as simple as modifying the assignment of the boundary
cross on a singular corner.

Proving general symmetry results for solutions of the Ginzburg-Landau energy is
a difficult problem. In [23], a the symmetric solution on a disc is analyzed and is shown
to be stable under perturbations. See also [9] for further discussion and open problems.
However, we observe in numerous numerical examples that the symmetries of a domain
are inherited by the configuration of the Ginzburg-Landau vortices. Analytical results
in this direction for the specific boundary conditions considered here could be used to
guarantee symmetries in the resulting mesh.

For simplicity, in this paper we have restricted to simple planar Euclidean domains
and not surfaces with boundary. However, due to the topological nature of our
results and the Ginzburg-Landau theory, we expect that many of these results can
be extended to surfaces [44]. Further, the problem of designing a cross field aligned
to a prescribed set of orthogonal directions, such as principle curvature directions, is
often desired on curved surfaces. This is typically achieved by adding a least-squares
fitting term to the energy. While we are not aware of any results from the classical
Ginzburg-Landau theory that treat this extension of the energy, the MBO method
can be adapted to this setting; see [30].

In three dimensions, the analogous approach is to minimize the Dirichlet energy
over the set of H1 functions taking values in SO(3)/O where O is the octahedral
symmetry group [13, 36, 43]. Unfortunately, this approach is more complicated as the
field topology is no longer sufficient to determine the underlying structure of a hex
mesh [49]. Finding an efficient representation for elements of the set SO(3)/O and
studying the singularity structure for generalized solutions of this problem requires
further attention.
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