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Abstract

The existence and uniqueness of the numerical invariant measure of the backward
Euler-Maruyama method for stochastic differential equations with Markovian switching
is yielded, and it is revealed that the numerical invariant measure converges to the
underlying invariant measure in the Wasserstein metric. The global Lipschitz condition
on the drift coefficients required by [J. Bao, J. Shao, and C. Yuan, Potential Anal., 44
(2016), pp. 707-727] and [X. Mao, C. Yuan, and G. Yin, J. Comput. Appl. Math.,
174 (2005), pp. 1-27] is released. Under a polynomial growth condition imposed on
drift coefficients we show that the convergence is exponential. Several examples and
numerical experiments are given to verify our theory.

Keywords: The backward Euler-Maruyama method, Markovian switching, Numerical
invariant measure, Wasserstein metric.

1 Introduction

As one of the important classes of hybrid systems, stochastic differential equations (SDEs)
with Markovian switching have been widely used in biology, control problems, neutral ac-
tivity, mathematical finance and other sciences (see, e.g., the monographs [1, 2] and the
references therein). So far, various dynamical properties including moment boundedness,
stability, ergodicity, recurrence and transience on SDEs with Markovian switching have been
investigated extensively, refer to [3, 4, 5, 1, 6, 7, 8, 9, 2]. Yin and Zhu [2, pp.181-280], and Mao
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and Yuan [1, pp.164-190] investigated the stability of SDEs with Markovian switching and
showed that the Markov chain facilitates the stochastic stabilization in which the stationary
distribution of the Markov chain plays an important role. Pinsky and Scheutzow [6] revealed
the fact that the overall system may not to be positive recurrence (resp. transience) even
though each subsystem is. So, the dynamical behaviors of SDEs with Markovian switching
are significantly different from those of SDEs.

However, solving the SDEs with Markovian switching is still a challenging task that
requires using numerical methods or approximation techniques, see, e.g., the monographs
[10, 1, 11, 2]. Some long-time behaviors of the SDEs with Markovian switching, for instance,
the almost sure stability and the moment stability, have been preserved by the numerical
solutions, see, e.g., [12, 1, 13, 14, 2, 15] and the references therein. For deterministic sys-
tems, the stability of equilibrium point is among of the interesting topics. However, many
stochastic systems don’t posses a deterministic equilibrium state. Recently, for stochastic
systems with Markovian switching, the stability of the “stochastic equilibrium state”-the
existence of the invariant measure has drawn increasing attention [3, 4, 7, 8, 9, 2]. Since the
corresponding Kolmogorov-Fokker-Planck equations are always computationally intensive, it
is important to be able to approximate the invariant measure numerically. Therefore, ap-
proximations of invariant measures for SDEs with Markovian switching have attracted much
attention recently. Mao et al. [16], Yuan and Mao [17] and Bao et al. [4] made use of Euler-
Maruyama (EM) method with a constant step size to approximate the underlying invariant
measure while Yin and Zhu [2, p.159-179] did that using the EM scheme with the decreasing
step size. In the mentioned papers, both the drift coefficients and the diffusion coefficients
of the SDEs with regime switching are required to be global Lipschitz continuous. Although
the classical Euler-Maruyama (EM) method is convenient for computations and implementa-
tions, the absolute moments of its approximation for SDEs with super-linear coefficients may
diverge to infinity at a finite time (see, e.g. [18]). It is well know, see [19], that the EM nu-
merical solutions fail to be ergodic, even when the underlying SDE is geometrically ergodic.
Many implicit methods were used to study the numerical solutions to SDEs with nonlinear
coefficients (see, e.g., [20, 21]). Higham et al. [20] proved that the implicit EM numerical
solutions converge strongly to the exact solutions of SDEs with globally one-sided Lipschitz
continuous drift term and globally Lipschitz continuous diffusion term, but the explicit EM
method fails to do that. Mattingly et al. [19] introduced variants of the implicit EM method
to preserve the ergodicity for SDEs with additional noises usually established through the
use of Foster-Lyapunov conditions in [22, 23, 24] while Liu and Mao [25] took advantage of
the implicit EM method to approximate the stability in distribution of non-globally Lipschitz
continuous SDEs. For the background on the implicit methods, we refer the reader to the
books [10, 26]. Shardlow and Stuart [27] established the perturbation theory of geometrically
ergodic Markov chain with an application to numerical approximations.

Motivated by the papers above, this paper focuses on using the backward Euler-Maruyama
(BEM) method to approximate the invariant measure of nonlinear SDEs with Markovian
switching that the drift coefficients need not to satisfy the global Lipschitz condition. The
BEM scheme, which is implicit in the drift term, has been implemented for SDEs with
Markovian switching to investigate the strong convergence and the approximation of the
almost sure stability as well as the moment stability (see, e.g., [13, 15, 28] and the references
therein). The main aim of this paper is to study the existence and uniqueness of the numer-
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ical invariant measure of the BEM method and the convergence in the Wasserstein metric to
the invariant measure of the corresponding exact solution as well as the convergence rate.

The rest of our paper is organized as follows. Section 2 gives some preliminary results
on the existence and uniqueness of the invariant measure for the exact solution. Section
3 focuses on the existence and uniqueness of the numerical invariant measures in BEM
scheme. Then we go further to reveal that the numerical invariant measure converges in
the Wasserstein distance to the underlying one. Section 4 presents several examples and
numerical experiments to illustrate our results.

2 Preliminary

Throughout this paper, let |·| denote the Euclidean norm in Rn := Rn×1 and the trace norm in
Rn×m. If A is a vector or matrix, its transpose is denoted by AT and its trace norm is denoted
by |A| =

√
trace(ATA). For vectors or matrixes A and B with compatible dimensions, AB

denotes the usual matrix multiplication. We denote the indicator function of a set D by ID,
and 0 ∈ Rn is a zero vector. For any ξ = (ξ1, ξ2, · · · , ξn)T ∈ Rn, ξ � 0 means each component
ξj > 0, j = 1, 2, · · · , n. Define ξ̂ = min1≤j≤n ξj and ξ̌ = max1≤j≤n ξj. For any a, b ∈ R,
a ∨ b = max{a, b}, and a ∧ b = min{a, b}. For each R > 0, let BR(0) = {x ∈ Rn : |x| ≤ R}.
Let B(Rn) denote the family of all Borel sets in Rn.

Let (Ω, F , P) be a complete probability space, and E denotes the expectation corre-
sponding to P. Let B(t) be an m-dimensional Brownian motion defined on this probability
space. Suppose that {r(t)}t≥0 is a right-continuous Markov chain with finite state space
S = {1, 2, · · · , N} and independent of the Brownian motion B(·), where N is a positive
integer. Suppose {Ft}t≥0 is a filtration defined on this probability space satisfying the usual
conditions (i.e., it is right continuous in t and F0 contains all P-null sets) such that B(t) and
r(t) are Ft adapted. The generator of {r(t)}t≥0 is denoted by Q = (qlj)N×N , so that for a
sufficiently small ε > 0,

P{r(t+ ε) = j|r(t) = l} =

 qljε+ o(ε), if l 6= j,

1 + qllε+ o(ε), if l = j.

Here qlj ≥ 0 is the transition rate from l to j if l 6= j while qll = −
∑

l 6=j qlj. It is well
known that almost every sample path of r(t) is a right-continuous step function with a
finite number of simple jumps in any finite subinterval of R+ := [0,+∞) (see [29, p.17-
18]). As a standing hypothesis, we assume that the transition probability matrix Q are
irreducible and conservative. So Markov chain {r(t)}t≥0 has a unique stationary distribution
µ := (µ1, µ2, · · · , µN)� 0 ∈ R1×N which can be determined by solving the linear equation

µQ = 0, subject to
N∑
j=1

µj = 1. (2.1)

In this paper, we consider the two-component diffusion process (Y (t), r(t)) described by
the SDE with Markovian switching

dY (t) = f(Y (t), r(t))dt+ g(Y (t), r(t))dB(t) (2.2)
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on t ≥ 0 with the initial data (Y (0), r(0)) = (x, i) ∈ Rn × S, where

f : Rn × S→ Rn and g : Rn × S→ Rn×m.

For convenience we further impose the following hypothesises on the drift and diffusion
coefficients.

Assumption 2.1 For any j ∈ S, there exists a constant αj ∈ R such that

(u− v)T (f(u, j)− f(v, j)) ≤ αj|u− v|2, ∀u, v ∈ Rn. (2.3)

Moreover, for any R ≥ 0, there exists a positive constant KR such that

|f(u, j)− f(v, j)| ≤ KR|u− v|,

for any u, v ∈ Rn, |u| ∨ |v| ≤ R , j ∈ S.

Assumption 2.2 For any j ∈ S, there exist constants hj ∈ R and h > 0 such that

|u− v|2|g(u, j)− g(v, j)|2 − 2|(u− v)T (g(u, j)− g(v, j))|2 ≤ hj|u− v|4, (2.4)

and
|g(u, j)− g(v, j)|2 ≤ h|u− v|2, (2.5)

for any u, v ∈ Rn.

Next, for convenience, define

βj = 2αj + hj, β = (β1, · · · , βN)T , λ = |µβ|. (2.6)

Assumptions 2.1 and the elementary inequality imply that for any u ∈ Rn

uTf(u, j) ≤ αj|u|2 + |uTf(0, j)| ≤ αj|u|2 +
λ|u|2

8
+

2|f(0, j)|2

λ

≤
(
αj +

1

8
λ
)
|u|2 + σ1,

(2.7)

and Assumption 2.2 and the elementary inequality imply that

|g(u, j)|2 ≤ 2h|u|2 + σ2, (2.8)

where σ1 = 2 max
j∈S
{|f(0, j)|2/λ} and σ2 = 2 max

j∈S
{|g(0, j)|2}. Moreover, choosing constants

2p ≤ ε = λ/16h, we find that

|u|2|g(u, j)|2 + (p− 2)|uTg(u, j)|2 ≤
(
hj + (3ε+ 2p)h

)
|u|4 +

σ2(1 + 2p+ 3ε−1)

2
|u|2

≤
(
hj +

1

4
λ
)
|u|4 + σ3|u|2, (2.9)

where σ3 = (1 + λ/16h+ 48h/λ)σ2/2.
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Under Assumptions 2.1 and 2.2, the equation (2.2) admits a unique solution (Y (t), r(t))
(see, e.g., [1, Theorem 3.17, p.93]). Throughout the paper, we write (Y x,i

t , rit) in lieu of
(Y (t), r(t)) to highlight the initial data (Y (0), r(0)) = (x, i). Let P(Rn × S) denote the
family of all probability measures on Rn × S. For any p ∈ (0, 1], define a metric on Rn × S
as the following

dp((u, j), (v, l)) := |u− v|p + I{j 6=l}, (u, j), (v, l) ∈ Rn × S,

and the corresponding Wasserstein distance between ν, ν̃ ∈ P(Rn × S) by

Wp(ν, ν̃) := inf
π∈C(ν,ν̃)

∫
(Rn×S)×(Rn×S)

dp(u, v)π(du, dv),

where C(ν, ν̃) denotes the set of all couplings of ν and ν̃. Let Pt(x, i; du × {l}) be the
transition probability kenel of the pair

(
Y x,i
t , rit

)
, a time homogeneous Markov process (see,

e.g, [1, Theorem 3.28, pp.105-106]). Recall that π ∈ P(Rn×S) is called an invariant measure
of
(
Y x,i
t , rit

)
if

π(Γ× {j}) =
N∑
l=1

∫
Rn

Pt(u, l; Γ× {j})π(du× {l}), ∀t ≥ 0, Γ ∈ B(Rn), j ∈ S

holds. For each p > 0, define

Λ = diag(8β1 + 7λ, · · · , 8βN + 7λ), Qp = Q+
p

16
Λ, ηp = − max

γ∈spec(Qp)
Reγ, (2.10)

where λ and βj are introduced in (2.6), Q is the generator of {r(t)}t≥0, and spec(Qp) denotes
the spectrum of Qp.

The following lemma highlights the relationship between the sign of µβ and the sign of
ηp.

Lemma 2.1 For any p > 0, there exists a positive constant H(p) such that for any t > 0

E
[
exp

(
p

16

∫ t

0

(
8β(r(s)) + 7λ

)
ds

)]
≤ H(p)e−ηpt.

Moreover, if µβ < 0, there is a constant p̄ > 0 such that ηp > 0 for p ∈ (0, p̄). Furthermore,

(1) p̄ = +∞ if 8β̌ + 7λ ≤ 0;

(2) p̄ ∈
(

0, min
j∈S, 8βj+7λ>0

{
− 16qjj/(8βj + 7λ)

})
if 8β̌ + 7λ > 0,

where λ and βj are introduced in (2.6).

Proof. According to (2.1) and µβ < 0, it is easy to obtain

N∑
j=1

µj(8βj + 7λ) = 8µβ + 7λ = µβ < 0.

Then the desired assertion follows from [5, Proposition 4.1 and Proposition 4.2] directly.
We have the following result on the invariant measure for the exact solution.
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Theorem 2.2 Suppose that Assumptions 2.1, 2.2, and µβ < 0 hold, then the solutions of the
SDE with Markovian switching (2.2) converge to a unique invariant measure π ∈ P(Rn× S)
with some exponential rate ξ > 0 in the Wasserstein distance.

Proof. We shall adopt the approach of [4, Theorem 2.3] to complete the proof. Let

p0 = 1 ∧ p̄ ∧ λ/32h. (2.11)

Thus, for any p ∈ (0, p0), (2.9) holds, and ηp > 0 follows from Lemma 2.1. One observes
that

L
(

(1 + |x|2)
p
2 ξ

(p)
i

)
≤ C − ηpξ(p)

i (1 + |x|2)
p
2 , (2.12)

for p ∈ (0, p0), where ξ(p) = (ξ
(p)
1 , · · · , ξ(p)

N )� 0 is a eigenvector of Qp corresponding to −ηp,
C is a positive constant. Borrowing the proof method of [4, Theorem 2.3] we can get the
result on the existence and uniqueness of the invariant measure but omit the details to avoid
duplication. By the similar way to Theorem 3.5, we yield the exponential convergence rate.

Remark 2.1 By virtue of Theorem 2.2, the solution (Y (t), r(t)) is ergodic and the transition
probability of (Y (t), r(t)) converges to its invariant measure with exponential rate in the
Wasserstein distance. Furthermore, due to (2.12) the Foster-Lyapunov criterion [24, Theorem
6.1, p.536] implies that (Y (t), r(t)) is exponentially ergodic, provided all compact sets are
petite for some skeleton chain. Thus, this pair is strongly mixing since it is positively Harris-
recurrent, see details in [30, p.881]. However more conditions should be imposed on the
coefficients of the equation in order for all compact sets are petite for some skeleton chain.

3 Numerical Invariant Measure

This section is devoted to the existence and uniqueness of the numerical invariant measure of
the BEM method and approximation of the numerical invariant measure to the underlying
one in the Wasserstein metric. In order to define the numerical solution, we need to explain
how to simulate a discrete Markov chain, which has been formulated in [1, Chapter 4, p.111].
To make the content self-contained, we sketch it here.

Given a stepsize ∆ > 0 and let P (∆) = (Pij(∆))N×N = exp(∆Q). The discrete Markov
chain {rk, k = 0, 1, · · · } can be simulated as follows: let r(0) = i and give a random pseudo
number ς1 obeying the uniform (0, 1) distribution. Define

r1 =


i1, if i1 ∈ S− {N} such that

i1−1∑
j=1

Pij(∆) ≤ ς1 <

i1∑
j=1

Pij(∆),

N, if
N−1∑
j=1

Pij(∆) ≤ ς1,
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where
∑N

j=1 Pij(∆) = 0 as usual. In other words, the probability of state s being chosen
is given by P(r1 = s) = Pis(∆). Generally, after the computations of r0, r1, · · · , rk, give a
random pseudo number ςk+1 obeying a uniform (0, 1) distribution and define rk+1 by

rk+1 =


ik+1, if ik+1 ∈ S− {N} such that

ik+1−1∑
j=1

Prkj(∆) ≤ ςk+1 <

ik+1∑
j=1

Prkj(∆),

N, if
N−1∑
j=1

Prkj(∆) ≤ ςk+1.

This procedure can be carried out independently to obtain more trajectories.
We can now define the BEM scheme for the SDEs with Markovian switching (2.2). Let

X0 = x, r0 = i, and define

Xk+1 = Xk + f(Xk+1, rk)4+ g(Xk, rk)4Bk, k ≥ 0, (3.1)

where 4Bk = B(tk+1)−B(tk). Here Xk, rk, k ≥ 0, depend on the step size 4, we drop it for
simplicity. We point out that the BEM method (3.1) is well-defined under Assumption 2.1
based on a known result [13, Lemma 5.1] as follows.

Lemma 3.1 Let Assumption 2.1 holds and 4 < 1/|α̌|. Then for any j ∈ S, b ∈ Rn, there
is a unique root u ∈ Rn of the equation

u = b+ f(u, j)4.

It is useful to write (3.1) as

Xk+1 − f(Xk+1, rk)4 = Xk + g(Xk, rk)4Bk. (3.2)

For any j ∈ S, define a function Gj : Rn → Rn satisfying Gj(u) = u − f(u, j)4. Then Gj

has its inverse function G−1
j : Rn → Rn for any j ∈ S. Moreover, the BEM method (3.1) can

be represented as

Xk+1 = G−1
rk

(Xk + g(Xk, rk)4Bk), ∀k ≥ 0. (3.3)

Similar to that of [1, Theorem 6.14, p.250], we can prove the following result.

Lemma 3.2 {(Xk, rk)}k≥0 is a time homogeneous Markov chain.

Let P∆
k4(x, i; du × {l}) be the transition probability kernel of the pair

(
Xx,i
k , rik

)
, a time

homogeneous Markov chain. If π4 ∈ P(Rn × S) satisfies

π4(Γ× {j}) =
N∑
l=1

∫
Rn

P4k4(u, l; Γ× {j})π4(du× {l}),∀k ≥ 0,Γ ∈ B(Rn), j ∈ S,

then π4 is called an invariant measure of
(
Xx,i
k , rik

)
. For convenience, Denote by C a generic

positive constant which value may be different with different appearance and is independent
of the iteration number k and the time stepsize 4.

In order to show the existence of the numerical invariant measure we prepare the following
lemma on the moment boundedness of the numerical solution of the BEM scheme borrowing
the idea of [25].
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Lemma 3.3 Under the conditions of Theorem 2.2, there exists a constant 4̄ such that the
numerical solution of BEM scheme with any initial value (x, i) ∈ Rn × S satisfies

sup
k≥0

E|Xk|p ≤ C(1 + |x|p) (3.4)

for any 4 ∈ (0, 4̄) and any p ∈ (0, p0), where p0 is defined by (2.11).

Proof. It follows from (2.7) and (3.1) that

|Xk+1|2 =XT
k+1

(
f(Xk+1, rk)4+Xk + g(Xk, rk)4Bk

)
≤
(
αrk +

1

8
λ
)
|Xk+1|24+ σ14+

1

2
|Xk+1|2 +

1

2
|Xk + g(Xk, rk)4Bk|2.

Choosing a constant 0 < 41 < 1 such that (2 ˘|α| + 1
4
λ)41 ≤ 1/3 (where ˘|α| := mini∈S |αi|),

we then obtain for any 4 ∈ (0,41],

|Xk+1|2 ≤
1

1− (2αrk + 1
4
λ)4
|Xk + g(Xk, rk)4Bk|2 +

2σ14
1− (2αrk + 1

4
λ)4

,

which implies

1 + |Xk+1|2 ≤
1

1− (2αrk + 1
4
λ)4

[
1 + |Xk + g(Xk, rk)4Bk|2 +

(
2σ1 − 2αrk

)
4
]

≤ (1 + |Xk|2)

1− (2αrk + 1
4
λ)4

(
1 + υk(rk)

)
,

where

υk(rk) =
2XT

k g(Xk, rk)4Bk + |g(Xk, rk)4Bk|2 + c14
1 + |Xk|2

, c1 = |2σ1 − 2α̂|.

For any p ∈ (0, p0) where p0 is defined by (2.11), noting that

(1 + u)
p
2 ≤ 1 +

p

2
u+

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

48
u3, u ≥ −1 (3.5)

and υk(rk) > −1, we then have

E
(

(1 + |Xk+1|2)
p
2 |Ftk

)
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4
λ)4]

p
2

× E
(

1 +
p

2
υk(rk) +

p(p− 2)

8
υ2
k(rk) +

p(p− 2)(p− 4)

48
υ3
k(rk)

∣∣∣Ftk).
(3.6)

Since 4Bk is independent of Ftk , we have E(4Bk|Ftk) = 0, E(|A4Bk|2|Ftk) = |A|24, for
any A ∈ Rn×m. Hence,

E
(
υk(rk)|Ftk

)
=
|g(Xk, rk)|24+ c14

1 + |Xk|2
. (3.7)
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Using the properties

E(|4Bk|2j) = C4j, E(|4Bk|2j−1|Ftk) ≤ C4j− 1
2 , j = 2, 3, · · · ,

we compute

E
(
υ2
k(rk)|Ftk

)
=

1

(1 + |Xk|2)2

(
4|XT

k g(Xk, rk)|24+ C4
3
2

)
≥ 4|XT

k g(Xk, rk)|24
(1 + |Xk|2)2

, (3.8)

and

E
(
υ3
k(rk)|Ftk

)
≤ 9

(1 + |Xk|2)3
E
[
8|XT

k g(Xk, rk)4Bk|3 + |g(Xk, rk)4Bk|6 + c3
143

∣∣∣Ftk]
≤ C4

3
2 .

(3.9)

Combining (3.6)-(3.9) and using (2.8), for any k ≥ 0 we obtain,

E
(

(1 + |Xk+1|2)
p
2 |Ftk

)
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4
λ)4]

p
2

{
1 +

p

2

[
|Xk|2|g(Xk, rk)|2 + (p− 2)|XT

k g(Xk, rk)|2

(1 + |Xk|2)2
4

+

(
2h+ c1

)
|Xk|2 + σ2 + c1

(1 + |Xk|2)2
4
]

+ C4
3
2

}
.

(3.10)

This, together with (2.8) and (2.9), implies

E
(

(1 + |Xk+1|2)
p
2 |Ftk

)
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4
λ)4]

p
2

{
1 +

p

2

[(
hrk + 1

4
λ
)
|Xk|4 + σ3|Xk|2

(1 + |Xk|2)2
4

+

(
2h+ c1

)
|Xk|2 + σ2 + c1

(1 + |Xk|2)2
4
]

+ C4
3
2

}
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4
λ)4]

p
2

[
1 +

p

2

(
hrk +

1

4
λ
)
4+ C4

3
2

]
+ C4.

(3.11)

Choosing a constant 0 < 42 ≤ 41 sufficiently small such that

C4
1
2
2 ≤ pλ/8, and 27(p+ 2)

(
2 ˘|α|+ λ/4

)242 ≤ 2λ,

this yields that for any 4 ∈ (0,42]

p

2

(
hrk +

1

4
λ
)
4+ C4

3
2 ≤ p

2

(
hrk +

1

2
λ
)
4 (3.12)

and [
1−

(
2αrk +

λ

4

)
4
]− p

2 ≤1 +
p

2

(
2αrk +

λ

4

)
4+

p(p+ 2)(2 ˘|α|+ 1
4
λ)2

8[1− (2 ˘|α|+ 1
4
λ)42]

p
2

+2
42

≤1 +
p

2

(
2αrk +

5λ

16

)
4.

(3.13)
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Then for any 4 ∈ (0,42], combining (3.11)-(3.13) we obtain

E
(
(1 + |Xk+1|2)

p
2 |Ftk

)
≤ (1 + |Xk|2)

p
2

[
1 +

p

2

(
2αrk + hrk +

13λ

16

)
4+ C42

]
+ C4.

Letting 4̄ be a constant such that 4̄ ∈ (0,42], C4̄ ≤ pλ/32 and ( ˘|β| + 7
8
λ)4̄ < 1 (where

˘|β| = maxi∈S |βi|), we arrive at for 4 ∈ (0, 4̄]

E
(
(1 + |Xk+1|2)

p
2 |Ftk

)
≤
[
1 +

p

2

(
βrk +

7

8
λ
)
4
]
(1 + |Xk|2)

p
2 + C4, (3.14)

where βi is defined as (2.6) for each i ∈ S. For any k ≥ 1, we further compute

E
(
(1 + |Xk+1|2)

p
2 |Ftk−1

)
≤
[
1 +

p

2

(
βrk +

7

8
λ
)
4
]
E((1 + |Xk|2)

p
2 |Ftk−1

) + C4

≤
k∏

j=k−1

[
1 +

p

2

(
βrj +

7

8
λ
)
4
]
(1 + |Xk−1|2)

p
2

+ C4
[
1 +

p

2

(
βrk +

7

8
λ
)
4
]

+ C4.

(3.15)

Repeating (3.15) we obtain

E
(
(1 + |Xk+1|2)

p
2 |F0

)
≤(1 + |X0|2)

p
2

k∏
j=0

[
1 +

p

2

(
βrj +

7

8
λ
)
4
]

+ C4
k∑
i=1

k∏
j=k−i+1

[
1 +

p

2

(
βrj +

7

8
λ
)
4
]

+ C4.

Hence, for any k ≥ 0, by virtue of the homogeneous property of the Markov chain, taking
expectations on both sides yields

E
(
(1 + |Xk+1|2)

p
2

)
≤(1 + |x|2)

p
2E

[
k∏
j=0

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)]

+ C4
k∑
i=1

E
[
E
( k∏
j=k−i+1

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)
|Fk−i

)]
+ C4

≤(1 + |x|2)
p
2E

[
k∏
j=0

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)]

+ C4
k∑
i=1

E
[ i∏
j=1

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)]

+ C4.

Thus, we have

E
(
(1 + |Xk+1|2)

p
2

)
≤(1 + |x|2)

p
2E

[
exp

( k∑
j=0

log
(

1 +
p

2

(
βrj +

7

8
λ
)
4
))]

+ C4
k∑
i=1

E

[
exp

( i∑
j=1

log
(

1 +
p

2

(
βrj +

7

8
λ
)
4
))]

+ C4.

(3.16)
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Then, by inequality log(1 + u) ≤ u, ∀u > −1, we compute

E
(

(1 + |Xk+1|2)
p
2

)
≤(1 + |x|2)

p
2E

[
exp

(
p

16

k∑
j=0

(
8βrj + 7λ

)
4
)]

+ C4
k∑
i=1

E

[
exp

(
p

16

i∑
j=1

(
8βrj + 7λ

)
4
)]

+ C4.

(3.17)

For any p ∈ (0, p0), Lemma 2.1 implies that ηp > 0 and there exists a positive constant H(p)
such that

E

[
exp

(
p

16

k∑
j=1

(
8βrj + 7λ

)
4
)]
≤ H(p)e−ηpk∆, (3.18)

and

C4
k∑
i=1

E

[
exp

(
p

16

i∑
j=1

(
8βrj + 7λ

)
4
)]
≤C4

k∑
i=1

H(p)e−ηpi4

≤C4
(
eηp4 − 1

)−1 ≤ C.

(3.19)

Combining (3.19) and (3.18) with (3.17) yields

E
(

(1 + |Xk+1|2)
p
2

)
≤ C(1 + |x|2)

p
2 e−ηpk4 + C + C4. (3.20)

Therefore the desired assertion follows.

Remark 3.1 Recently, the work of [25] gives the the moment boundedness of the BEM
numerical solutions for SDEs without globally Lipschitz continuous coefficients. However
the proof techniques can’t be adopted for SDEs with regime switching directly since their
dynamical behaviors are significantly different from those of SDEs. In the proof of Lemma
3.3 we establish the recursion formula (3.14) dependent on the states, and then yield the
desired result by making use of the ergodic property of the Markov chain.

To investigate the uniqueness of the invariant measure we provide the asymptotically
attractive property of the numerical solutions of BEM scheme. Here we denote the numerical
solution of BEM scheme with any given initial value (x, i) by Xx,i

k .

Lemma 3.4 Under the conditions of Theorem 2.2, it holds that

E|Xx,i
k −X

y,j
k |

p ≤ C(1 + |x|p + |y|p)e−ςk4 (3.21)

for any 4 ∈ (0, 4̄) and for any p ∈ (0, p0), (x, i), (y, j) ∈ Rn × S, 4̄ and p0 are given in
Lemma 3.3, ς > 0 is a constant.
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Proof. Note that {
Xx,i
k+1 =Xx,i

k + f(Xx,i
k+1, r

i
k)4+ g(Xx,i

k , rik)4Bk,

Xy,i
k+1 =Xy,i

k + f(Xy,i
k+1, r

i
k)4+ g(Xy,i

k , rik)4Bk.

It follows from Assumption 2.1 that

|Xx,i
k+1 −X

y,i
k+1|

2 =
(
Xx,i
k+1 −X

y,i
k+1

)T(
f(Xx,i

k+1, r
i
k)− f(Xy,i

k+1, r
i
k)
)
4

+
(
Xx,i
k+1 −X

y,i
k+1

)T(
Xx,i
k −X

y,i
k +

(
g(Xx,i

k , rik)− g(Xy,i
k , rik)

)
4Bk

)
≤αrik

∣∣Xx,i
k+1 −X

y,i
k+1

∣∣24
+

1

2

∣∣Xx,i
k+1 −X

y,i
k+1

∣∣2 +
1

2

∣∣(Xx,i
k −X

y,i
k ) +

(
g(Xx,i

k , rik)− g(Xy,i
k , rik)

)
4Bk

∣∣2.
We hence obtain

|Xx,i
k+1 −X

y,i
k+1|

2 ≤ 1

1− 2αrik4
∣∣(Xx,i

k −X
y,i
k ) + (g(Xx,i

k , rik)− g(Xy,i
k , rik)4Bk)

∣∣2
=
|Xx,i

k −X
y,i
k |2

1− 2αrik4

(
1 + ϑ(rik)

)
,

where

ϑk(r
i
k) =

2(Xx,i
k −X

y,i
k )T (g(Xx,i

k , rik)− g(Xy,i
k , rik))4Bk + |

(
g(Xx,i

k , rik)− g(Xy,i
k , rik)

)
4Bk|2

|Xx,i
k −X

y,i
k |2

if |Xx,i
k −X

y,i
k | 6= 0, otherwise it is set to −1. Clear, ϑk(r

i
k) ≥ −1. For any p ∈ (0, p0), then

using (3.5) we derive that

E
(
|Xx,i

k+1 −X
y,i
k+1|

p
∣∣Ftk) ≤ |Xx,i

k −X
y,i
k |p(

1− 2αrik4
) p

2

I{|Xx,i
k −X

y,i
k |6=0}E

[
1 +

p

2
ϑk(r

i
k)

+
p(p− 2)

8
ϑ2
k(r

i
k) +

p(p− 2)(p− 4)

48
ϑ3
k(r

i
k)
∣∣Ftk].

(3.22)

Then following the same way as (3.7)-(3.9), by (2.5) we can show

I{|Xx,i
k −X

y,i
k |6=0}E

(
ϑk(r

i
k)|Ftk

)
= I{|Xx,i

k −X
y,i
k |6=0}

|g(Xx,i
k , rik)− g(Xy,i

k , rik)|24
|Xx,i

k −X
y,i
k |2

, (3.23)

and

I{|Xx,i
k −X

y,i
k |6=0}E

(
ϑ2
k(r

i
k)|Ftk

)
≥ I{|Xx,i

k −X
y,i
k |6=0}

4|(Xx,i
k −X

y,i
k )T (g(Xx,i

k , rik)− g(Xy,i
k , rik))|24

|Xx,i
k −X

y,i
k |4

,

(3.24)
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and

I{|Xx,i
k −X

y,i
k |6=0}E

(
ϑ3
k(r

i
k)|Ftk

)
≤ I{|Xx,i

k −X
y,i
k |6=0}C4

3
2 . (3.25)

Combining (3.22)-(3.25) and using Assumption 2.2, for any k ≥ 0 we arrive at

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)

≤|X
x,i
k −X

y,i
k |p

(1− 2αrik4)
p
2

I{|Xx,i
k −X

y,i
k |6=0}

[
1 +

p

2

(
|g(Xx,i

k , rik)− g(Xy,i
k , rik)|2

|Xx,i
k −X

y,i
k |2

4

+ (p− 2)
|(Xx,i

k −X
y,i
k )T (g(Xx,i

k , rik)− g(Xy,i
k , rik))|24

|Xx,i
k −X

y,i
k |4

)
+
p(p− 2)(p− 4)

48
C4

3
2

]
≤|X

x,i
k −X

y,i
k |p

(1− 2αrik4)
p
2

[
1 +

p

2

(
hrik + ph

)
4+

p(p− 2)(p− 4)

48
C4

3
2

]
.

It is easy to find from (2.11) that 4ph < λ holds for each p ∈ (0, p0). Choose a constant
0 < 44 ≤ 4̄ (4̄ is a positive constant given in Lemma 3.3) sufficiently small such that

C41/2
4 ≤ 3λ/8, which implies that for any 4 ∈ (0,44]

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)
≤ |X

x,i
k −X

y,i
k |p(

1− 2αrik4
) p

2

[
1 +

p

2

(
hrik +

1

4
λ
)
4+

pλ

16
4
]
. (3.26)

Further choose 0 < 45 ≤ 44 such that for any 4 ∈ (0,45], any i ∈ S, any integer k

(1− 2αrik4)
p
2 ≥ 1− pαrik4− C4

2 ≥ 1− p

2
(2αrik +

1

16
λ)4 (3.27)

holds. Substituting this in (3.26) yields

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)
≤

1 + p
2
(hrik + 3

8
λ)4

1− p
2
(2αrik + 1

16
λ)4
|Xx,i

k −X
y,i
k |

p.

Using inequality 1/(1− u) ≤ 1 + u+ 2u2 for any u ∈ (−1/2, 1/2), we obtain

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)
≤
(

1 +
p

2
(βrik +

1

2
λ)4

)
|Xx,i

k −X
y,i
k |

p (3.28)

for any 4 ∈ (0,4∗), p ∈ (0, p0), where 0 < 4∗ ≤ 45 satisfying C4∗ ≤ pλ/32, and

p0( ˘|β|+ λ/2)4∗/2 < 1. This implies that

E
(
|Xx,i

k −X
y,i
k |

p
)
≤ |x− y|pE

[ k−1∏
j=0

(
1 +

p

2

(
βrij +

1

2
λ
)
4
)]

≤ |x− y|pE
[

exp

(k−1∑
j=0

log
(

1 +
p

2
(βrij +

1

2
λ)4

))]

≤ |x− y|pE
[

exp

(
p

4

k−1∑
j=0

(
2βrij + λ

)
4
)]
.

(3.29)
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For any p ∈ (0, p0), Lemma 2.1 implies that ηp > 0 and there exists a positive constant H(p)
such that

E

[
exp

(
p

4

k−1∑
j=0

(
2βrij + λ

)
4
)]
≤ E

[
exp

(
p

16

k−1∑
j=0

(
8βrij + 7λ

)
4
)]
≤ H(p)e−ηpk4. (3.30)

This together with (3.29) implies

E|Xx,i
k −X

y,i
k |

p ≤ H(p)|x− y|pe−ηpk4, ∀ k > 0. (3.31)

Define τ̄ = inf{k ≥ 0 : rik = rjk}. Since the state space S is finite, and Q is irreducible, there
exists γ̄ > 0 such that

P(τ̄ > k) ≤ e−γ̄k4 (3.32)

for any k > 0. For the fixed p ∈ (0, p0), let q = (p + p0)/(2p) > 1, then pq = (p + p0)/2 ∈
(0, p0). Moreover, Hölder’s inequality implies that

E|Xx,i
k −X

y,j
k |

p

=E
(
|Xx,i

k −X
y,j
k |

pI{τ̄>[ k
2

]}

)
+ E

(
|Xx,i

k −X
y,j
k |

pI{τ̄≤[ k
2

]}

)
≤
(
E|Xx,i

k −X
y,j
k |

pq
) 1
q
(
P(τ̄ > [

k

2
])
)1− 1

q
+ E

[
I{τ̄≤[ k

2
]}E
(
|Xx,i

k −X
y,j
k |

p
∣∣Fτ̄4)]

≤
(
E|Xx,i

k −X
y,j
k |

pq
) 1
q
(
P(τ̄ > [

k

2
])
)1− 1

q
+ E

[
I{τ̄≤[ k

2
]}E
(
|XXx,i

τ̄ ,riτ̄
k−τ̄ −XXy,j

τ̄ ,rjτ̄
k−τ̄ |p

)]
≤Ce−

q−1
2q

γ̄k4
(
E|Xx,i

k −X
y,j
k |

pq
) 1
q

+ Ce−
ηp
2
k4E

[
I{τ̄≤[ k

2
]}E
(
|Xx,i

τ̄ −Xy,j
τ̄ |p

)]
≤Ce

− p0−p
2(p+p0)

γ̄k4
(
E|Xx,i

k −X
y,j
k |

p+p0
2

) 2p
p+p0 + Ce−

ηp
2
k4E

(∣∣Xx,i

τ̄∧[ k
2

]
−Xy,j

τ̄∧[ k
2

]

∣∣p),

(3.33)

where [x] represents the integer part of x for any x ∈ R. Applying the elementary inequality
(a+ b)p ≤ 2p(ap + bp) for all a, b > 0, by (3.4), yields that(

E|Xx,i
k −X

y,j
k |

p+p0
2

) 2p
p+p0 ≤ C(1 + |x|p + |y|p),

and

E
(
|Xx,i

τ̄∧[ k
2

]
−Xy,j

τ̄∧[ k
2

]
|p
)
≤E
(
|Xx,i

τ̄∧[ k
2

]
|p
)

+ E
(
|Xy,j

τ̄∧[ k
2

]
|p
)

=E
( [ k

2
]∑

l=0

|Xx,i
l |

pI{τ̄∧[ k
2

]=l}(ω)
)

+ E
( [ k

2
]∑

l=0

|Xy,j
l |

pI{τ̄∧[ k
2

]=l}(ω)
)

≤
[ k
2

]∑
l=0

[
E
(
|Xx,i

l |
p
)

+ E
(
|Xy,j

l |
p
)]
≤ C(1 + |x|p + |y|p)(k + 2).

The desired assertion (3.21) follows by using (3.33).
Next we give the existence and uniqueness of the numerical invariant measure for SDE

(2.2) of BEM method.
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Theorem 3.5 Under the conditions of Theorem 2.2, there is a positive 4∗ sufficiently small
such that for any 4 ∈ (0,4∗), the solutions of the BEM method (3.1) converge to a unique
invariant measure π∆ ∈ P(Rn × S) with some exponential rate ξ4 > 0 in the Wasserstein
distance.

Proof. For any initial data (x, i), by (3.4) and Chebyshev’s inequality, we derive that
{δ(x,i)P

4
k4} is tight, then one can extract a subsequence which converges weakly to an invari-

ant measure denoted by π∆ ∈ P(Rn × S). It follows from (3.32) that

P(rik 6= rjk) = P(τ̄ > k) ≤ e−γ̄k4 (3.34)

for any k > 0. Therefore, we derive from (3.21) and (3.34) that

Wp(δ(x,i)P
4
k4, δ(y,j)P

4
k4) ≤E|Xx,i

k −X
y,j
k |

p + P(rik 6= rjk)

≤C(1 + |x|p + |y|p)e−ξ4k4.
(3.35)

where ξ4 := ς ∧ γ̄ > 0. Due to the Kolmogorov-Chapman equation and Lemma 3.3 one
observes that for any k, l > 0,

Wp(δ(x,i)P
4
k4, δ(x,i)P

4
(k+l)4) =Wp(δ(x,i)P

4
k4, δ(x,i)P

4
l4P

4
k4)

≤
∫
Rn×S

Wp(δ(x,i)P
4
k4, δ(y,j)P

4
k4)P4l4(x, i; dy, j)

≤
∑
j∈S

∫
Rn
C(1 + |x|p + |y|p)e−ξ4k4P4l4(x, i; dy, j)

=C(1 + |x|p + E|Xx,i
l |

p)e−ξ4k4 ≤ Ce−ξ4k4.

Thus, taking l→∞ implies

Wp(δ(x,i)P
4
k4, π

∆) ≤ Ce−ξ4k4 → 0, k →∞, (3.36)

namely, π∆ is the unique invariant measure of {δ(x,i)P
4
k4}. Assume ν41 , ν

4
2 ∈ P(Rn × S) are

the invariant measures of (Xx,i
k , rik) and (Xy,j

k , rjk), respectively, we have

Wp(ν
4
1 , ν

4
2 ) ≤

∫
(Rn×S)×(Rn×S)

Wp(δ(x,i)P
4
k4, δ(y,j)P

4
k4)π(dx× di, dy × dj),

where π is a coupling of ν41 and ν42 . Therefore, the uniqueness of invariant measures follows
from (3.35) immediately.

The following theorem reveals that numerical invariant measure π4 converges in the
Wassertein distance to the underlying one π.

Theorem 3.6 Under the conditions of Theorem 2.2, lim4→0Wp(π, π
4) = 0. Furthermore,

if the drift term satisfies the polynomial growth condition, that is,

|f(x, i)− f(y, i)|2 ≤ ci(1 + |x|q + |y|q)|x− y|2, ∀x, y ∈ Rn, i ∈ S,

then Wp(π, π
4) ≤ C4γ for some γ ∈ (0, p/2), where ci, q are positive constants.
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Proof. Under Assumptions 2.1 and 2.2, by Theorem 2.2, Remark 2.1 and (3.36), for any
4 ∈ (0,4∗) and any ε > 0, there is a k > 0 sufficiently large such that

Wp(δ(x,i)Pk4, π) +Wp(δ(x,i)P
4
k4, π

4) ≤ Ce−ξ
∗k4 <

ε

2
, (3.37)

where 4∗ is given by Theorem 3.5 and ξ∗ := ξ ∧ ξ4. Moreover, for the fixed k by the
convergence of finite time when 4 is sufficiently small,

Wp(δ(x,i)Pk4, δ(x,i)P
4
k4) <

ε

2
.

Therefore the first desired assertion follows.
Furthermore, under the polynomial growth condition of f , by the similar way to [20], we

can obtain that
Wp(δ(x,i)Pk4, δ(x,i)P

4
k4) ≤ Ceνk44p/2,

for some positive constant ν. Let K̄ be the integer part of constant −p ln4/[2(ν + ξ∗)4],
obviously, K̄ →∞ as 4→ 0. One observes that

eνK̄44p/2 ≤ 4
pξ

2(ν+ξ∗) , e−ξK̄4 ≤ eξ
∗4∗4

pξ
2(ν+ξ∗) .

Therefore, Wp(π, π
4) ≤ C4

pξ
2(ν+ξ∗) =: C4γ.

Remark 3.2 In Theorem 3.6 we not only give the convergence of invariant measures but
also reveal the rate of the convergence is exponential under the polynomial growth condition
imposed on f . We also notice that Meyn and Tweedie’s work [22] reveals the relationship
of tightness, Harris recurrence and ergodicity for discrete-time Markov chains, they gave the
generalization of Lyapunov-Foster criteria for the various ergodicity. However, these criteria
are not applicable for (Xk, rk) owing to the switching effects. Precisely, it is impossible from
(3.14) to find a constant 0 < λ ≤ 1 such that E

(
(1 + |Xk+1|2)

p
2 |Ftk

)
≤ λ(1 + |Xk|2)

p
2 + C4

holds due to the changeable sign of βrk + 7λ/8.

Remark 3.3 By the virtue of Theorem 3.5, (Xk, rk) is ergodic, moreover, the transition
probability of (Xk, rk) decays into its invariant measure exponentially under Wasserstein
distance, see (3.36).

Remark 3.4 Comparing with the convergence result of the EM scheme for SDE in [27], we
release the restriction of the global Lipschitz continuity of the coefficients and deal with the
convergence of invariant measures for nonlinear SDE with regime switching.

Remark 3.5 Although many works pay attention to the approximation of invariant mea-
sures for SDEs, for example, [25, 19, 27], there are few works focusing on the approximation
of invariant measures for switching diffusion processes, especially described by nonlinear sys-
tems. On the other hand, compared with the fast development of the finite-time numerical
analysis for SPDEs, for examples, [31, 32], the results on long-time approximations for SPDEs
are few. The methods developed in this paper provide ideas to deal with the invariant mea-
sure approximations for nonlinear SPDEs or SPDEs with regime switching. Owing to the
importance this will be considered in our future work.
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4 Examples

In this section, we consider two examples of nonlinear hybrid stochastic systems and provide
simulations to illustrate the efficiency of the BEM method (3.1). We first consider a two-
dimensional SDE with Markovian switching.

Example 4.1 Consider (2.2) with r(t) taking values in S = {1, 2} with generator

Q =

 −5 5

1 −1

 .

The system is regarded as the Markovian switching between dY1(t) =
[
2Y1(t)− Y 3

1 (t)− Y1(t)Y 2
2 (t)

]
dt− 3dB1(t) + dB2(t),

dY2(t) =
[
1 + Y2(t)− Y 3

2 (t)− Y2(t)Y 2
1 (t)

]
dt+ 4dB1(t),

(4.1)

and 

dY1(t) =
(
Y1(t)− 2Y1(t)

√
Y 2

1 (t) + Y 2
2 (t) + 1

)
dt

+ (2Y1(t)− Y2(t) + 2)dB1(t) + (Y1(t)− Y2(t))dB2(t),

dY2(t) =
(

0.5Y2(t)− 2Y2(t)
√
Y 2

1 (t) + Y 2
2 (t) + 2

)
dt

+ (Y1(t) + 2Y2(t))dB1(t) + (Y1(t) + Y2(t)− 4)dB2(t),

(4.2)

with the initial data Y (0) = 1, r(0) = 1, where B(t) = (B1(t), B2(t))T is a two-dimensional
Brownian motion. Obviously, the diffusion coefficient g is global Lipschitz continuous with
h = 7. Note that the drift coefficient f is neither the global Lipschitz continuous nor the
linear growth, but we can derive that

(u− v)T (f(u, 1)− f(v, 1)) ≤ 2|u− v|2 − 1

4
(|u| − |v|)4 ≤ 2|u− v|2,

and
(u− v)T (f(u, 2)− f(v, 2)) ≤ |u− v|2 − 2(|u|+ |v|)(|u| − |v|)2 ≤ |u− v|2,

i.e. Assumption 2.1 is satisfied with α1 = 2 and α2 = 1 for all u, v ∈ R2. We furthermore
observe that

|u− v|2|g(u, j)− g(v, j)|2 − 2|(u− v)T (g(u, j)− g(v, j))|2 ≤ hj|u− v|4, ∀j ∈ S,

holds with h1 = 0 and h2 = −3 for all u, v ∈ R2. Direct calculation leads to β1 = 2α1 + h1 =
4, β2 = 2α2 + h2 = −1. By solving the linear equation (2.1) we obtain the unique stationary
distribution of r(t), µ = (µ1, µ2) = (1/6, 5/6) , then µβ = µ1β1 +µ2β2 = −1/6 < 0. It follows
from Theorem 2.2 that the exact solution (Y (t), r(t)) of (2.2) admits a unique invariant mea-
sure π ∈ P(Rn×S). By virtue of Theorems 3.5 and 3.6, for a given stepsize 4 the numerical
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solution of BEM scheme has a unique invariant measure π4 ∈ P(Rn × S) approximating π
in the Wasserstein metric. We apply the BEM scheme for numerical experiments. Since it
is impossible to get the closed form of the solutions of the stochastic system with random
switching between (4.1) and (4.2), we approximate the underlying solution by the numerical
solution of BEM scheme (3.1). We regard the numerical solution with 4 = 2−17 as a more
precise approximation comparing it with the numerical solution with stepsize 4 = 0.002, see
Figure 1.
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Figure 1: Example 4.1. (a) Computer simulation of a single path of Markov chain r(t). (b)
A sample path of exact solution Y (t) in 3D settings. (c) A sample path of numerical solution
X(t) in 3D settings. The red line represents the exact solution (i.e. the BEM numerical
solution with 4 = 2−17) while the blue line represents the BEM numerical solution with
4 = 0.002.

We simulate one path with 13107200 iterations and plot the empirical cumulative dis-
tribution function (ECDF) of numerical solution with 4 = 0.002 in blue dashed line in
Figure 2. The ECDF of exact solution is plotted on the same figure in a red solid line.
The similarity of those two distributions is clearly seen, which indicates that the numeri-
cal stationary distribution is a good approximation to the theoretical one. To measure the
similarity quantitatively, we use the Kolmogorov-Smirnov test [33] to test the alternative
hypothesis that the numerical solution and exact solution are from different distributions
against the null hypothesis that they are from the same distribution for both Y1(t) and Y2(t).
With 3% significance level, the Kolmogorov-Smirnov test indicates that we cannot reject the
null hypothesis. This example illustrates that numerical invariant measure converges to the
underlying invariant measure.

In order to illustrate the validity, we consider the scalar hybrid cubic SDE (c.f. the
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Figure 2: Example 4.1. (a) The ECDF for Y1(t). (b) The ECDF for Y2(t). The red solid line
represents the exact solution of the switching system while the blue dashed line represents
the numerical solution of the switching system.

stochastic Ginzburg-Laudau equation (4.52) in [10, p.125] ) which drift coefficient isn’t global
Lipschitz continuous.

Example 4.2 Let r(t) be a Markov chain with the state space S = {1, 2} and the generator

Q =

 −q q

3 −3


for some q > 0. It is easy to see that its unique stationary distribution µ = (µ1, µ2) ∈ R1×2

is given by µ1 = 3
3+q

, µ2 = q
3+q

. Consider the scalar hybrid cubic SDE

dY (t) = (b(r(t))Y (t) + a(r(t))Y 3(t))dt+ ρ(r(t))Y (t)dB(t), (4.3)

with the initial data Y (0) = 0.5, r(0) = 2, where

b(1) = 1, a(1) = −1, ρ(1) = 2, b(2) = 2, a(2) = −3, ρ(2) = −1,

and B(t) is a scalar Brownian motion. There exists a unique continuous solution Y (t) to
SDE (4.3) for any Y (0) > 0, which is global and represented by

Y (t) =

0.5 exp
{∫ t

0

[
b(r(s))− 1

2
ρ2(r(s))

]
ds+ ρ(r(s))dB(s)

}
√

1− 0.5

∫ t

0

a(r(s)) exp
{∫ s

0

[
2b(r(u))− ρ2(r(u))

]
du+ 2ρ(r(u))dB(u)

}
ds

.

It is straightforward to see that α1 = 1, α2 = 2, h1 = −4, and h2 = −1. Direct calculation
leads to β1 = −2, β2 = 3, then

µβ = µ1β1 + µ2β2 < 0
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holds with q ∈ (0, 2). It follows from Theorem 2.2 that the exact solution (Y (t), r(t)) of
(2.2) admits a unique invariant measure π ∈ P(Rn × S). By virtue of Theorems 3.5 and
3.6 the numerical solution of BEM scheme has a unique invariant measure π4 ∈ P(Rn × S)
approximating π in the Wasserstein metric.
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Figure 3: Example 4.2. Six trajectories of the BEM numerical solution with 104 iterations,
Y (0) = 0.5, r(0) = 2 and stepsize 4 = 0.001.
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Figure 4: Example 4.2. (a) Computer simulation of a single path of Markov chain r(t). (b)
Sample paths of the exact solution and the BEM solution. (c) ECDFs for the exact solution
and the BEM solution. The red solid line represents exact solution of the switching system
while the blue dashed line represents the numerical solution.

We apply the BEM scheme to do numerical experiments. Choose q = 1.5 and stepsize
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4 = 0.001, we simulate 100 paths, each of which has 104 iterations. Figure 3 depicts six
trajectories of the numerical solution of BEM scheme (3.1). Intuitively, some stationary
behaviours display. Figure 4 (a) depicts the trajectory of the Markov chain. From this
figure we find that the time the Markov chain staying on state 1 is more than on that
of state 2. Figure 4(b) further depicts the trajectories of the exact solution Y (t) and the
corresponding BEM solution X(t), and Figure 4(c) depicts the ECDFs of the exact solution
and the BEM solution. The similarity of those two distributions is clear, which reveals
that the numerical stationary distribution is a good approximation to the underlying one.
Moreover, This example illustrates the existence of the stationary distribution as time goes
to infinity. Thus instead of using numerous paths, we could just use few paths to picture the
stationary distribution.
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