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Abstract

Many code families such as low-density parity-check codes, fractional repetition codes, batch
codes and private information retrieval codes with low storage overhead rely on the use of com-
binatorial block designs or derivatives thereof. In the context of distributed storage applications,
one is often faced with system design issues that impose additional constraints on the coding
schemes, and therefore on the underlying block designs. Here, we address one such problem,
pertaining to server access frequency balancing, by introducing a new form of Steiner systems,
termed MaxMinSum Steiner systems. MaxMinSum Steiner systems are characterized by the
property that the minimum value of the sum of points (elements) within a block is maximized,
or that the minimum sum of block indices containing some fixed point is maximized. We show
that proper relabelings of points in the Bose and Skolem constructions for Steiner triple systems
lead to optimal MaxMin values for the sums of interest; for the duals of the designs, we exhibit
block labelings that are within a 3/4 multiplicative factor from the optimum.

1 Introduction

Due to their unique combinatorial features, Steiner systems have found many applications in con-
structive coding theory, ranging from low-density parity-check code design [21] to distributed stor-
age [8, 17] to batch codes [18] and low-redundancy private information retrieval [9]. In many such
applications, one is faced with system constraints that impose additional restrictions on the underly-
ing point-block incidence structures. One such constraint arises in the area of coding for distributed
storage [7], and pertains to access balancing of servers. Although issues such as delay-storage trade-
offs, volume (load) balancing, and chunk allocation for distributed storage have been studied in
depth [14, 12], the equally relevant issue of access balancing seems to have been overlooked. Unlike
the well known load-balancing paradigm, access balancing does not aim to perform near-uniform
distribution of data content on the available servers. Instead, it aims to balance the access requests
to the disks by using file or file chunk popularity information [4]. The approach is to estimate
the popularity of the files or different chunks of the files, and then store files on servers in such
a way that each server has roughly the same average access frequency. Clearly, access balancing
based on popularity may lead to load disbalances, as a small number of files may be highly popular
and hence highly accessed and most appropriately stored alone on a server in order to minimize
access collisions. The most desirable solution is to balance both the load and the average access
frequency of servers, which is the topic of this contribution. In particular, the focus is on load and
access balancing of storage schemes that utilize codes based on Steiner systems and duals of Steiner
systems.

The notion of access balancing is best illustrated on the example of Fractional Repetition Codes
(FRCs) [8], which combine Maximum Distance Separable (MDS) and repetition codes with a care-
fully chosen placement strategy (The probabilistic version of these codes that adopts a random
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Youtube File MDS Encoder {1, 2, 3, 4}, ∑ = 10

{1, 5, 6, 7}, ∑ = 19

{2, 5, 8, 9}, ∑ = 24

{3, 6, 8, 10}, ∑ = 27

{4, 7, 9, 10}, ∑ = 30

Fractional Repetition
Code (FRC)

Access
Frequency

“Popularity”

(x1, x2, . . . , x9) (y1, y2, . . . , y10)

(a(y1), a(y2), . . . , a(y10))

{1, 2, 8, 10}, ∑ = 21

{1, 5, 6, 9}, ∑ = 21

{2, 4, 7, 9}, ∑ = 22

{3, 5, 7, 8}, ∑ = 23

{3, 4, 6, 10}, ∑ = 23

Access

FRC

Balanced

(a1 > a2 > · · · > a10)

Figure 1: An example illustrating the notions of an FRC and access balancing for FRCs. Access
frequencies, which are proportional to the popularity scores of the nine data chunks and the parity
chunk, are denoted by a(y1), a(y2), . . . , a(y10). For simplicity, we assume a strict ordering of the
popularities of the data chunks and assign the lowest popularity to the parity chunk. Consequently,
in the example, the chunk labels {1, 2, . . . , 10} reflect their popularities - 10 represents the lowest
popularity chunk, while 1 represents the highest popularity chunk. Alternatively, the chunk labeled
1 has the highest access frequency, while the chunk labeled 10 has the lowest access frequency.

placement strategy is known as DRESS codes [16]). In such a distributed storage system, redun-
dant data is stored on N storage nodes so that one can recover the whole data content from any
K < N nodes. Furthermore, the system is designed in such a way that when a node fails, the node
may be repaired by creating a new node and by contacting D survivor nodes and downloading (part
of) their content to the new node; the parameter D is often referred to as the repair degree. The
restored distributed storage system is required to maintain the original MDS and repetition coding
properties. In addition, one often requires the failed node recovery procedure to have the exact re-
pair property, where the newly added replacement node has the same content as the failed node, and
the minimum-bandwidth regenerating property, which allows for a low-complexity repair/download
process. In the particular setting of FRCs, the replacement node downloads exactly one chunk
from D survivor nodes without any processing or additional coding/decoding. An example of a
small-scale FRC is shown in Fig. 1, in the upper half of the diagram. The code construction is
straightforward: User information is parsed into chunks, and the chunks are subsequently encoded
using an MDS code. This scheme, according to Fig. 1 involves ten chunks and five blocks. The ten
chunks are repeated a certain number of times (twice in the given example), and then placed in
groups so that no two servers share more than one chunk (four chunks on each server in the given
example). A solution to this grouping strategy is shown in the right hand corner of Fig. 1. If, for
example, node 1 storing the chunks {1, 2, 3, 4} fails at some point of time, a replacement node is
created which contacts D = 4 nodes 2, 3, 4, and 5 to recover the same chunks stored by node 1. An
FRC minimum-bandwidth storage repair system with the properties above may be constructed via
Steiner systems or their duals, in which the stored content of a node equals the indices of the blocks
containing that node as a point.

Assume now that the labels of the chunks are directly proportional to their popularities and
hence, their access frequencies. Then, the overall popularity of the files stored on a server may be
approximated by the sum of the labels of the chunks stored on the server. In the example, the
popularities of server information differ widely: The smallest overall popularity score equals 10,
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while the largest equals 30. To address this disbalance issue, consider the chunk placement shown
at the bottom right-hand side of Fig. 1. The blocks of data chunks still satisfy the property that
each pair of chunks appears at most once on any server, but the variation of the average popularity
values is significantly smaller than that for the previous setting: The smallest popularity score
is 21, while the largest popularity score is 23. The popularity, and hence access variation of the
placement, went down from 200% to 10%. The data chunk assignment is dictated by what we refer
to as a MaxMinSum placement, which maximizes the minimum sum of chunk popularities on the
servers. This placement also turns out to minimize the maximum difference between sums of chunk
popularities. The MaxMinSum FRC scheme also ensures natural load balancing in terms of the
volume of the data stored, as each server stores the same number of data chunks.

We conclude this example by noting that the main system design parameter to consider when
dealing with file popularities is access rate. If file chunks are ranked according to their popularity,
their access rates have been shown experimentally to follow a Zipf law, which asserts that the k-th
most popular chunk has access frequency 1/kα, α > 0 (see, for example [3] and the many follow
up papers on this line of work). To ensure accurate server access balancing, one would need to
convert popularities into to access rates, and then assign weights to the points in the design equal
to their access rates. This is clearly a much more elaborate approach which obscures the underlying
mathematical problems, and instead we chose to use the simple mapping described in the example.

The contributions of our work are two-fold. First, we introduce the notion of access balancing in
distributed storage systems that use coded information. Second, we propose new access balancing
techniques for FRCs based on a new family of combinatorial designs that satisfy constraints on the
sum of values within the blocks or sum of labels of blocks containing a certain point. Despite all
definitions and concepts being valid for Steiner systems and block designs in general, the focus of
the work is on Steiner triple systems (STSs), and in particular, MaxMinSum (MinMaxSum) Steiner
triple systems for which the goal is to maximize (minimize) the minimum (maximum) block-sum
in the design. We also describe the related questions of minimizing the difference of block-sums or
the ratio of the maximum and minimum block-sums, but relegate their detailed analysis to future
work.

Our main findings are bounds on the value of minimum and maximum block-sums and a proof
that shows that for all Steiner triple systems constructed using the Bose and Skolem methods,
one can exhibit a point relabeling that achieves the maximum minimum block-sum or minimum
maximum block-sum. The results may be extended to the case of duals of STS, which are of equally
significant importance in distributed storage applications.

The paper is organized as follows. Section 2 contains the problem statement and derivations of
bounds on various constrained Steiner system sum values. Section 3 contains constructive proofs
for the existence of MaxMinSum Steiner triple systems for all parameter values for which they exist.
These results are extended to duals of Steiner triple systems in Section 4, where it is shown that one
may exhibit dual placements only a factor 3/4 away from the optimal bound. Concluding remarks
and open problems are given in Section 5.

2 Problem Statement and Preliminaries

We start by defining some basic concepts from design theory and by introducing the new concept of
MaxMinSum and related designs. The interested reader is referred to [5] for an in-depth treatment
of the general subject of combinatorial designs and Steiner systems in particular.

Definition 1. A t-(n, k, λ) design is a pair (X ,B) where X , the point set, is an n-set and B, the
block set, is a collection of k-subsets of X (blocks) such that every t-subset of X is contained in
precisely λ blocks. A t-(n, k, 1) design is often referred to as a Steiner system and denoted by
S(t, k, n). A 2-(n, 3, 1) design is called a Steiner triple system (STS) of order n, denoted by STS(n).
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The parameters of a block design satisfy two basic constraints:

|B| × k = n× r,

where r denotes the number of blocks containing a given point, and

λ×
(
n− 1

t− 1

)
= r ×

(
k − 1

t− 1

)
,

which for the case of an STS(n) reduce to |B| = n(n− 1)/6 and r = (n− 1)/2.

Definition 2. For each block B ⊆ X let sum(B) denote the block-sum
∑

x∈B x. Given a t-(n, k, λ)
design (X ,B), we introduce the following quantities.

• The min-sum of the design, defined as min∑(B)
4
= minB∈B sum(B),

• The max-sum of the design, defined as max∑(B)
4
= maxB∈B sum(B),

• The difference-sum of the design, defined as ∆∑(B)
4
= max∑(B)−min∑(B),

• The ratio-sum of the design, defined as r∑(B)
4
= max∑(B)/min∑(B).

For the purpose of access-balancing, the most suitable performance metrics are the difference-
sum and ratio-sum. Unfortunately, questions pertaining to these types of designs are also the most
difficult ones to analyze. We therefore establish bounds on all four metrics of interest, but mostly
focus on upper bounds for the min-sum and lower bounds on the max-sum and constructions of
designs that meet these bounds. We then proceed to show that STS constructions that meet the
min-sum bound also offer order-optimal difference sum and ratio-sum values.

For integers a ≤ b, let [a, b] denote the set {a, a+ 1, . . . , b}. Furthermore, for |X | = n, let
X = [0, n − 1] unless stated otherwise. An upper bound on the min-sum of a Steiner system is
presented in Proposition 1. The proof follows standard arguments in combinatorial design theory.

Proposition 1 (Upper Bound on the Min-Sum). The min-sum of any Steiner system S(t, k, n)
satisfies the inequality

min∑ ≤ n(k − t+ 1) + k(t− 2)

2
.

Proof. Suppose that (X ,B) is a Steiner system S(t, k, n), and X = [0, n − 1]. Let B[0,t−2] be
the set of all blocks of the system that contain [0, t − 2] as a subset. As (X ,B) is a t-(n, k, 1)
design, the sets B \ [0, t − 2], B ∈ B[0,t−2], partition the set [t − 1, n − 1] = X \ [0, t − 2]. Hence,
|B[0,t−2]| = (n− t+ 1)/(k − t+ 1). Moreover, if Bmin is a block in B[0,t−2] with smallest block-sum,
then

sum(Bmin) ≤ 1∣∣B[0,t−2]
∣∣

∑

B∈B[0,t−2]

sum(B)

= (1 + · · ·+ (t− 2)) +
(n+ t− 2)(n− t+ 1)/2

(n− t+ 1)/(k − t+ 1)
=
nk − n(t− 1) + k(t− 2)

2
.

The first inequality asserts that the smallest block-sum is bounded from above by the average block-
sum, while the equality takes into account that the points in [0, t−2] belong to all blocks in B[0,t−2].
This proves the claimed result. �

Using a proof that follows along the same lines, with B[0,t−2] replaced by B[n−t+1,n−1], where
B[n−t+1,n−1] is the set of all blocks containing [n− t+ 1, n− 1], we arrive at the following result.
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Proposition 2 (Lower Bound on the Max-Sum). The max-sum of any Steiner system S(t, k, n)
satisfies the inequality

max∑ ≥ nk + nt− n− kt
2

.

Corollary 1. The min-sum of any STS(n) is at most n, while its max-sum is at least 2n−3. Every
STS(n) with min-sum n must contain (n − 1)/2 blocks of the form {0, i, n − i}, i ∈ [1, (n − 1)/2].
Moreover, every STS(n) with max-sum 2n− 3 must contain (n− 1)/2 blocks of the form {j, n− 2−
j, n− 1}, j ∈ [0, (n− 3)/2].

Proof. The first statement follows directly from Propositions 1 and 2, with k = 3 and t = 2.
Furthermore, from the proofs of these proposition, if an STS(n) has min-sum n then every block
containing 0 must have the same block-sum as the average, i.e. a block-sum equal to n. Since there
are precisely (n−1)/2 such blocks, they must be of the form {0, i, n−i}, i ∈ [1, (n−1)/2]. The same
line of reasoning implies that every STS(n) with max-sum 2n− 3 must contain (n− 1)/2 blocks of
the form {j, n− 2− j, n− 1}, j ∈ [0, (n− 3)/2]. �

Note that bounds on the min-sum and max-sum of STS(n) may also be derived by considering
the block containing the points 0 and 1, and the block containing the points n − 2 and n − 1,
which must have sums at most n and at least 2n− 3, respectively. Unfortunately, for general values
of k and t, this simple argument gives weaker bounds than those presented in Proposition 1 and
Proposition 2.

Combining the results for the min-sum and max-sum, one can easily derive bounds on the
difference-sum and the ratio-sum of an STS(n) of the form:

∆∑ = max∑ −min∑ ≥ n− 3

and
r∑ = max∑/min∑ ≥ 2− 3/n.

However, a more careful analysis of the blocks containing either 0 or n− 1 yields stronger bounds
on the difference-sum and the ratio-sum of an STS.

Proposition 3. The difference-sum and ratio-sum of any STS(n) satisfy ∆∑ ≥ n and r∑ ≥ 2.

Proof. Let
B0 = {(0, xi, yi) : i ∈ [1, (n− 1)/2], xi, yi ∈ [1, n− 1], xi < yi}

and
Bn−1 = {(zi, ti, n− 1) : i ∈ [1, (n− 1)/2], zi, ti ∈ [0, n− 2], zi < ti}

be the sets of all (n− 1)/2 blocks of the system containing 0 and n− 1, respectively. Note that the
pairs {xi, yi}, i ∈ [1, (n− 1)/2], partition the set [1, n− 1], and the pairs {zi, ti}, i ∈ [1, (n− 1)/2],
partition the set [0, n − 2]. Let B0,n−1 = {0, p, n − 1}, p ∈ [1, n − 2], be the unique block in the
system containing both 0 and n − 1. Then, the min-sum of the system cannot exceed the average
block-sum of B0 \B0,n−1, that is

min∑ ≤
 1
n−3
2

∑

B∈B0\{B0,n−1}

sum(B)

 =

⌊
2

n− 3

((
n

2

)
− (n− 1 + p)

)⌋
=

⌊
(n− 1)(n− 2)− 2p

n− 3

⌋
.

Moreover, the max-sum of the system must be greater than or equal to the average block-sum of
Bn−1 \B0,n−1, that is

max∑ ≥



1
n−3
2

∑

B∈Bn−1\{B0,n−1}

sum(B)




= n− 1 +

⌈
2

n− 3

((
n− 1

2

)
− p
)⌉

= n− 1 +

⌈
(n− 1)(n− 2)− 2p

n− 3

⌉
.
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Therefore, we have

∆∑ = max∑ −min∑ ≥ (n− 1) +

⌈
(n− 1)(n− 2)− 2p

n− 3

⌉
−
⌊

(n− 1)(n− 2)− 2p

n− 3

⌋
. (1)

Clearly, if n − 3 does not divide (n − 1)(n − 2) − 2p then (1) implies that ∆∑ ≥ n. Now suppose
that n−3 does divide (n−1)(n−2)−2p, which holds if and only if p = 1 or p = n−2. We consider
these two cases separately.

Case 1. p = 1. Then B0,n−1 = {0, 1, n−1}. Let B0,2 = {0, 2, x} and Bn−2,n−1 = {y, n−2, n−1}
be the unique blocks containing the pairs {0, 2} and {n − 2, n − 1}, respectively. Since the pair
{0, n − 1} does not belong to B0,2, we have x ≤ n − 2. Similarly, since the pairs {0, n − 1} and
{1, n− 1} do not belong to Bn−2,n−1, we have y ≥ 2. If x ≤ n− 3 then min∑ ≤ sum(B0,2) ≤ n− 1
and max∑ ≥ sum(Bn−2,n−1) ≥ 2n − 1, which implies that ∆∑ ≥ n. If x = n − 2 then y ≥ 3
because the pair (2, n− 2) now belongs only to block B0,2. In this case, min∑ ≤ sum(B0,2) = n and
max∑ ≥ sum(Bn−2,n−1) ≥ 2n, which again implies that ∆∑ ≥ n.

Case 2. p = n − 2. Then B0,n−1 = {0, n − 2, n − 1} and B0,1 = {0, 1, x} for x ≤ n − 3. If
x ≤ n − 4, then min∑ ≤ sum(B0,1) ≤ n − 3. By Corollary 1, max∑ ≥ 2n − 3. Therefore, in this
case, we have ∆∑ ≥ n. If x = n − 3, then B0,1 = {0, 1, n − 3} and min∑ ≤ sum(B0,1) = n − 2.
Let Bn−3,n−1 = {y, n − 3, n − 1}. Since neither of the two pairs {0, n − 1} and {1, n − 3} belongs
to Bn−3,n−1, we deduce that y ≥ 2, which leads to max∑ ≥ sum(Bn−3,n−1) ≥ 2n − 2. Thus,
∆∑ ≥ (2n− 2)− (n− 2) = n.

We have hence established that ∆∑ ≥ n. Based on this bound on the difference-sum, we can
prove that r∑ ≥ 2 as follows. By Corollary 1, min∑ ≤ n. Moreover, since max∑ −min∑ ≥ n, we
have

r∑ =
max∑
min∑ ≥

min∑ + n

min∑ = 1 +
n

min∑ ≥ 2,

which establishes the claimed bound r∑ ≥ 2. �

Note that in general, the bounds established in Proposition 3 are not tight. As an example,
for n = 7, an exhaustive computer search over all possible permutations of seven points in the
unique STS(7) yields the minimum ratio-sum 15/7 > 2. For n = 13, the search performed on two
nonisomorphic STS(13) establishes that the minimum difference-sum equals 14 > 13. For n = 7, 9,
the lower bound on the difference-sum is met, while for n = 9, the lower bound on the ratio-sum is
met as well.

3 Existence of Steiner Triple Systems with Maximum Min-Sum

In what follows, we focus our attention on constructing STS(n) that have min-sums attaining
the upper bound stated in Corollary 1. We refer to such STS(n) as MaxMinSum STS(n). Note
that by replacing each block B = {x, y, z} in a set system (X = [0, n − 1],B) with the block
B∗ = {n− 1− x, n− 1− y, n− 1− z}, one arrives at a new set system (X ,B∗) with max∑(B∗) =
3n − 3 − min∑(B). Therefore, a construction that produces an STS(n) with min-sum equal to n
immediately gives rise to an STS(n) with max-sum equal to 2n − 3, which also achieves the lower
bound stated in Corollary 1.

The idea behind our approach is to consider known constructions for STS(n) and for each of
them find a permutation (relabeling) of the set X that ensures that every permuted block has a sum
greater than or equal to n = |X |. Generally, given an arbitrary STS(n), one needs to examine n!
permutations, which can be performed in a reasonable amount of time by computer search only for
small values of n, say n ≤ 13. Corollary 1, however, reduces the search space to n

(
(n−1)/2

)
! 2(n−1)/2.

Indeed, one can consider n possible ways to map a point x ∈ X to 0. For each choice of x, there
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are
(
(n − 1)/2

)
! 2(n−1)/2 ways to create a one-to-one map between the set {B ∈ B : x ∈ B} and

the set
{
{0, i, n − i} : i ∈ [1, (n − 1)/2]

}
. The choice of x and of a map described above uniquely

determines the corresponding permutation on X . This reduction in complexity makes a computer
search possible for n ≤ 19, which is helpful in the search for a general solution.

It was established by Kirkman [13] that an STS(n) exists if and only if n ≡ 1, 3 (mod n).
Two direct constructions were established by Bose [1], for n ≡ 3 (mod 6), and by Skolem [19] and
Hanani [10], for n ≡ 1 (mod 6). We first present a special case of the Bose Construction (see, for
instance [15, p. 4] or [20, p. 127]) and describe how to permute (relabel) the points of the resulting
system to achieve a maximum value for the min-sum.

The Bose Construction. Let n = 3m ≥ 9, where m is an odd number, so that n ≡ 3 (mod 6).
We define a binary operation ⊕b on the set [0,m− 1] as follows. For 0 ≤ x, y ≤ m− 1,

x⊕b y 4=
m+ 1

2
(x+ y) (mod m). (2)

The point set equals X ′ = {(x, i) : x ∈ [0,m− 1], i ∈ [0, 2]}. The block set B′ of an STS(3m) is the
union of the following two types of blocks.

• Type 1: Bx = {(x, 0), (x, 1), (x, 2)}, for every x ∈ [0,m− 1].

• Type 2: Bx,y,i = {(x, i), (y, i), (x⊕b y, i+ 1 (mod 3))}, for every 0 ≤ x < y ≤ m − 1 and
i ∈ [0, 2].

b

b

b

b b

b b b

b b

b

b

i = 0

i = 1

i = 2

labeled by [0, n/3− 1]

labeled by [2n/3, n− 1]

labeled by [n/3, 2n/3− 1]

Block Bx

(x, i) (y, i)

(x⊕b y, i+ 1)

Block Bx,y,i

Figure 2: Illustration of Bose Construction of a Steiner triple system of order n and the intuition
for our point labeling that achieves min-sum n.

The Bose Construction is illustrated in Fig. 2. In order to achieve a min-sum of n, the general rule
is to label (x, 0), (x, 1), and (x, 2) with numbers in [0, n/3−1], [2n/3−1, n−1], and [n/3, 2n/3−1],
respectively, or using any cyclic reordering of these sets. According to this rule, it is immediate
that the block-sum of Bx is at least 0 + 2n/3 + n/3 = n for every x ∈ [0,m − 1]. Using labels
in [0, n/3 − 1] for (x, 0) and labels in [n/3, 2n/3 − 1] for (x, 1), for instance, would not allow us to
achieve the min-sum value of n because the block Bx,y,0, where (x, 0) and (y, 0) are labeled by 0
and 1, respectively, has a block-sum of at most 2n/3 < n. Before formally presenting an optimal
labeling, referred to as the Bose Mapping, we provide some intuition behind our approach. First, a
natural label for (x, 0) is x. Second, let us consider x = 0, y > 0, and assume that sum(B0,y,0) ≥ n.
Since the labels of (0, 0) and (y, 0) are 0 and y, respectively, the inequality implies that the label for
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(0⊕b y, 1) is at least n− y. In fact, we will assign the label n− y to (0⊕b y, 1) in the Bose Mapping.
The labeling rule for (x, 2) is more subtle and harder to intuitively justify.

The Bose Mapping. We introduce a mapping πB, which maps the point set X ′ of the STS(n)
obtained in the Bose Construction to X = [0, n− 1] as follows. For every x ∈ [0,m− 1],

(x, 0) 7→ x,

(x, 1) 7→
{

2m, if x = 0,

n− y, if x = 0⊕b y 6= 0,

(x, 2) 7→
{
m, if x = 0,

m+
(
0⊕b (m− x)

)
, if x 6= 0.

(3)

Applying the Bose Mapping to every point of the system (X ′,B′) produced by the Bose Construction,
we obtain another STS(n) (X = [0, n− 1],B).

Example 1. Let n = 9, m = 3. The blocks of an STS(9) obtained from the Bose Construction are
given below.

Type 1: {(0, 0), (0, 1), (0, 2)}, {(1, 0), (1, 1), (1, 2)}, {(2, 0), (2, 1), (2, 2)},
Type 2: {(0, 0), (1, 0), (2, 1)}, {(0, 1), (1, 1), (2, 2)}, {(0, 2), (1, 2), (2, 0)},

{(0, 0), (2, 0), (1, 1)}, {(0, 1), (2, 1), (1, 2)}, {(0, 2), (2, 2), (1, 0)},
{(1, 0), (2, 0), (0, 1)}, {(1, 1), (2, 1), (0, 2)}, {(1, 2), (2, 2), (0, 0)}.

According to (3), the Bose Mapping πB results in the assignments

(0, 0) 7→ 0, (1, 0) 7→ 1, (2, 0) 7→ 2,

(0, 1) 7→ 6, (1, 1) 7→ 7, (2, 1) 7→ 8,

(0, 2) 7→ 3, (1, 2) 7→ 4, (2, 2) 7→ 5.

For example, (0, 1) 7→ 2m = 6, while

(1, 2) 7→ m+
(
0⊕b (m− 1)

)
= 3 + (4 (mod 3)) = 4.

Applying this mapping to the blocks above, we obtain the blocks of the output design.

Type 1: {0, 6, 3}, {1, 7, 4}, {2, 8, 5},
Type 2: {0, 1, 8}, {6, 7, 5}, {3, 4, 2},

{0, 2, 7}, {6, 8, 4}, {3, 5, 1},
{1, 2, 6}, {7, 8, 3}, {4, 5, 0}.

One can verify that this STS(9) has min-sum 9, and that the (n− 1)/2 = 4 blocks containing 0 all
have sum equal to 9. One can also notice that the difference and the ratio of the maximum and
minimum sums are 9 and 2, respectively, which achieve the lower bounds stated in Proposition 3.
In general, the Bose Construction coupled with the Bose Mapping achieves the maximum min-sum
(Theorem 1), but does not necessarily meet the bounds on the difference-sum and the ratio-sum
(Proposition 4).

Theorem 1. For n ≥ 9, n ≡ 3 (mod 6), the Bose Construction coupled with the Bose Mapping
produces an STS(n) with min-sum equal to n.

We present next a series of lemmas needed to prove Theorem 1. The first two statements are
obvious from the definition of the operation ⊕b and their proofs are hence omitted.
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Lemma 1. If 0 ≤ x, y, r ≤ m− 1 and x+ y ≡ r (mod m), then x⊕b y = 0⊕b r.

Lemma 2. For every r ∈ [0,m− 1], it holds that

0⊕b r =

{
r/2, if r is even,

(r +m)/2, if r is odd.

The following lemma shows that the Bose Mapping is indeed one-to-one.

Lemma 3. The Bose Mapping πB is a bijection from X ′ = {(x, i) : x ∈ [0,m− 1], i ∈ [0, 2]} to
[0, n− 1]. Moreover,

• πB((x, 0)) ∈ [0,m− 1],

• πB((x, 2)) ∈ [m, 2m− 1],

• πB((x, 1)) ∈ [2m, 3m− 1].

Proof. The second statement follows from the definition of πB; noting that 0⊕b 0 = 0, and hence if
x = 0⊕b y 6= 0 then y 6= 0 as well, which in turn implies that n− y ≤ n− 1 = 3m− 1.

In order to prove the first statement, it suffices to show that πB((x, i)) 6= πB((x′, i)) whenever
x 6= x′, for every i ∈ [0, 2]. This is straightforward to do since from the definition of the binary
operation ⊕b given in (2), we always have a⊕b b 6= a⊕b c if b 6= c, for a, b, c ∈ [0,m− 1]. �

The next lemmas state that the sum of every block in the new system
(
X = πB(X ′),B = πB(B′)

)

is at least n.

Lemma 4. Let πB be the Bose Mapping. Then for every x ∈ [0,m− 1] we have

πB((x, 0)) + πB((x, 1)) + πB((x, 2)) ≥ n.

Proof. From Lemma 3,

πB((x, 0)) + πB((x, 1)) + πB((x, 2)) ≥ 0 + 2n/3 + n/3 = n.

This proves the claimed result. �

Lemma 5. Let πB be the Bose Mapping. Then for every 0 ≤ x < y ≤ m− 1 we have

πB((x, 0)) + πB((y, 0)) + πB((x⊕b y, 1)) ≥ n.

Proof. If x = 0 then

πB((0, 0)) + πB((y, 0)) + πB((0⊕b y, 1)) = 0 + y + (n− y) = n.

Suppose next that x > 0. Set r ≡ x+ y (mod m), where r ∈ [0,m− 1]. Then by Lemma 1 we have

πB((x, 0)) + πB((y, 0)) + πB((x⊕b y, 1)) = x+ y + πB((0⊕b r, 1))

= x+ y + (n− r) ≥ x+ y + (n− x− y) = n.

This completes the proof. �

Lemma 6. Let πB be the Bose Mapping. Then for every 0 ≤ x < y ≤ m− 1 we have

πB((x, 1)) + πB((y, 1)) + πB((x⊕b y, 2)) > n.

9



Proof. From Lemma 3, we have πB((x, 1)) ≥ 2m and πB((y, 1)) ≥ 2m. Therefore, the stated
inequality holds. �

Lemma 7. Let πB be the Bose Mapping. Then for every 0 ≤ x < y ≤ m− 1 we have

πB((x, 2)) + πB((y, 2)) + πB((x⊕b y, 0)) > n.

Proof. If x = 0, by Lemma 2 we have

πB((0, 2)) + πB((y, 2)) + πB((0⊕b y, 0)) = m+
(
m+ 0⊕b (m− y)

)
+ 0⊕b y

= 2m+

{
(m− y)/2, if m− y is even

(m− y +m)/2, if m− y is odd
+

{
y/2, if y is even

(y +m)/2, if y is odd

=

{
2m+ (m− y)/2 + (y +m)/2, if y is odd

2m+ (m− y +m)/2 + y/2, if y is even

= n,

where the third equality follows because m is odd.
Suppose that x > 0. Let r ≡ x+ y (mod m), where r ∈ [0,m− 1]. By Lemma 2 and Lemma 1

we have

πB((x, 2)) + πB((y, 2)) + πB((x⊕b y, 0)) =
(
m+ 0⊕b (m− x)

)
+
(
m+ o⊕b (m− y)

)
+ x⊕b y

= 2m+

{
(m− x)/2, if m− x is even

(m− x+m)/2, if m− x is odd
+

{
(m− y)/2, if m− y is even

(m− y +m)/2, if m− y is odd

+

{
r/2, if r is even

(r +m)/2, if r is odd
.

Since m = n/3 is odd, it is impossible that the three quantities m − x, m − y, and r are all even.
Therefore,

πB((x, 2)) + πB((y, 2)) + πB((x⊕b y, 0)) ≥ 2m+ (m− x)/2 + (m− y)/2 + r/2 +m/2

= n+ (r +m− x− y)/2 ≥ n.

This completes the proof of the lemma. �

The proof of Theorem 1 now follows from Lemmas 3, 4, 5, 6, and 7.
We next prove a proposition that establishes bounds on the max-sum, and hence difference-sum

and ratio-sum of the Bose Construction coupled with the Bose Mapping.

Proposition 4. For n ≥ 9, n ≡ 3 (mod 6), the Bose Construction coupled with the Bose Mapping
produces an STS(n) with max-sum at most 8n/3−4. Therefore, the difference-sum and the ratio-sum
of this construction and mapping are O(5n/3) and O(8/3), respectively.

Proof. From Lemma 3, it is straightforward to see that a block with the maximum sum after
applying the Bose Mapping πB must be of the form B = {(x, 1), (y, 1), (x⊕b y, 2)}. Clearly,

sum(B) ≤ (3m− 1) + (3m− 2) + (2m− 1) = 8n/3− 4.

As the min-sum is known to be n by Theorem 1, the claims regarding the difference-sum and the
ratio-sum follow easily. �
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Heuristic evidence suggests that for sufficiently large n, the max-sum of the STS(n) generated
by the Bose Construction coupled with the Bose Mapping equals 8n/3− 9.

We now turn our attention to (a special case of) the Skolem Construction (see, for instance [15,
p. 9] or [20, p. 128]) when n ≡ 1 (mod 6).

The Skolem Construction. Let n = 3m+ 1 ≥ 7, where m is an even number, so that n ≡ 1
(mod 6). We define a binary operation ⊕s on the set [0,m− 1] as follows. For 0 ≤ x, y ≤ m− 1,

x⊕s y 4=





x+ y (mod m)

2
, if x+ y (mod m) is even,(

x+ y (mod m)
)

+m− 1

2
, if x+ y (mod m) is odd.

(4)

The point set is X ′ = {∞} ∪ {(x, i) : x ∈ [0,m− 1], i ∈ [0, 2]}. The block set B′ of an STS(3m+ 1)
is the union of the following three types of blocks.

• Type 1: Bx = {(x, 0), (x, 1), (x, 2)}, for every x ∈ [0,m/2− 1].

• Type 2: Bx,y,i = {(x, i), (y, i), (x⊕s y, i+ 1 (mod 3))}, for every 0 ≤ x < y ≤ m − 1 and
i ∈ [0, 2].

• Type 3: Bx,i = {∞, (x+m/2, i), (x, i+ 1 (mod 3))}, for every x ∈ [0,m/2− 1] and i ∈ [0, 2].

Compared to the Bose Construction, the Skolem Construction uses an additional type of blocks
that contain the special point ∞. Similar reasoning to that used for the Bose Construction, along
with some additional considerations, may be used to find an optimal labeling for the Skolem STS(n).

Here, we assign to the points (x, 0), (x, 1), and (x, 2) labels from
[
0, n−13 − 1

]
,
[
2(n−1)

3 + 1, n− 1
]
,

and
[
n−1
3 + 1, 2(n−1)3

]
, respectively, but reserve the label n−1

3 for ∞. If one assigns the label n−1
3 −

1−x to (x, 0) then the condition sum(Bx,m−1,0) ≥ n implies the corresponding label for (x, 1). The
full description of this labeling, referred to as the Skolem Mapping, is given below.

The Skolem Mapping. We introduce a mapping πS , which maps the point set X ′ of the
STS(n) obtained in the Skolem Construction to X = [0, n− 1] as follows. For every x ∈ [0,m− 1],

(x, 0) 7→ m− 1− x,

(x, 1) 7→
{

2m+ 1, if x = m/2− 1,

2m+ 2 + y, if x = (m− 1)⊕s y 6= m/2− 1,

(x, 2) 7→ m+ 1 + 0⊕s x,
∞ 7→ m.

(5)

Applying the Skolem Mapping to every point of the system (X ′,B′) produced by the Skolem Con-
struction results in a new STS(n) system (X = [0, n− 1],B).

Example 2. Let n = 13, m = 4. The blocks of an STS(13) obtained from the Skolem Construction
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are given below.

Type 1: {(0, 0), (0, 1), (0, 2)}, {(1, 0), (1, 1), (1, 2)},
Type 2: {(0, 0), (1, 0), (2, 1)}, {(0, 1), (1, 1), (2, 2)}, {(0, 2), (1, 2), (2, 0)},

{(0, 0), (2, 0), (1, 1)}, {(0, 1), (2, 1), (1, 2)}, {(0, 2), (2, 2), (1, 0)},
{(0, 0), (3, 0), (3, 1)}, {(0, 1), (3, 1), (3, 2)}, {(0, 2), (3, 2), (3, 0)},
{(1, 0), (2, 0), (3, 1)}, {(1, 1), (2, 1), (3, 2)}, {(1, 2), (2, 2), (3, 0)},
{(1, 0), (3, 0), (0, 1)}, {(1, 1), (3, 1), (0, 2)}, {(1, 2), (3, 2), (0, 0)},
{(2, 0), (3, 0), (2, 1)}, {(2, 1), (3, 1), (2, 2)}, {(2, 2), (3, 2), (2, 0)},

Type 3: {∞, (2, 0), (0, 1)}, {∞, (3, 0), (1, 1)}, {∞, (2, 1), (0, 2)},
{∞, (3, 1), (1, 2)}, {∞, (2, 2), (0, 0)}, {∞, (3, 2), (1, 0)}.

According to (5), the Skolem Mapping πS makes the following assignments:

(0, 0) 7→ 3, (1, 0) 7→ 2, (2, 0) 7→ 1, (3, 0) 7→ 0,

(0, 1) 7→ 11, (1, 1) 7→ 9, (2, 1) 7→ 12, (3, 1) 7→ 10,

(0, 2) 7→ 5, (1, 2) 7→ 7, (2, 2) 7→ 6, (3, 2) 7→ 8,

∞ 7→ 4.

Applying this mapping to the blocks above, we obtain the blocks of the output design.

Type 1: {3, 11, 5}, {2, 9, 7},
Type 2: {3, 2, 12}, {11, 9, 6}, {5, 7, 1},

{3, 1, 9}, {11, 12, 7}, {5, 6, 2},
{3, 0, 10}, {11, 10, 8}, {5, 8, 0},
{2, 1, 10}, {9, 12, 8}, {7, 6, 0},
{2, 0, 11}, {9, 10, 5}, {7, 8, 3},
{1, 0, 12}, {12, 10, 6}, {6, 8, 1},

Type 3: {4, 1, 11}, {4, 0, 9}, {4, 12, 5},
{4, 10, 7}, {4, 6, 3}, {4, 8, 2}.

One can easily verify that this STS(13) has min-sum 13, while the max-sum value equals 30. Hence,
the ratio-sum equals 2.31, which exceeds the lower bound presented in Proposition 3. Similarly, the
difference-sum is 17 > 13, which also exceeds the lower bound on the difference-sum. In general,
similar to what was established for the Bose Construction, the difference-sum of the Skolem Con-
struction coupled with the Skolem Mapping is O(5n/3) and the ratio-sum is O(8/3) (Proposition 5).

Theorem 2. For n ≥ 7, n ≡ 1 (mod 6), the Skolem Construction coupled with the Skolem Mapping
produces an STS(n) with min-sum equal to n.

We make use of several lemmas to prove Theorem 2. The first three follow in a straightforward
manner from the definition of ⊕s, and their proofs are hence omitted.

Lemma 8. For every y ∈ [0,m− 1], it holds that

0⊕s y =

{
y/2, if y is even,

(y +m− 1)/2, if y is odd.
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Lemma 9. For every y ∈ [0,m− 1], it holds that

(m− 1)⊕s y =





m− 1, if y = 0,

(y − 1)/2, if y is odd,

(y +m− 2)/2, if y 6= 0 is even.

Lemma 10. If 0 ≤ x, y ≤ m − 1 and 0 ≤ r < m − 1, where x + y ≡ r (mod m), then x ⊕s y =
(m− 1)⊕s (r + 1).

We now show that the Skolem Mapping is indeed one-to-one.

Lemma 11. The Skolem Mapping πB is a bijection from X ′ = {∞}∪{(x, i) : x ∈ [0,m− 1], i ∈ [0, 2]}
to [0, n− 1]. Moreover,

• πS((x, 0)) ∈ [0,m− 1],

• πS(∞) = m,

• πS((x, 2)) ∈ [m+ 1, 2m],

• πS((x, 1)) ∈ [2m+ 1, 3m].

Proof. The second statement follows from the definition of πS ; noting that since m/2 − 1 = (m −
1) ⊕s (m − 1), if x = (m − 1) ⊕s y 6= m/2 − 1 then y 6= m − 1, which in turn implies that
πS((x, 1)) = 2m+ 2 + y ≤ 3m = n− 1.

It remains to show that πS((x, i)) 6= πS((x′, i)) whenever x 6= x′, for every i ∈ [0, 2]. This is also
straightforward because from the definition of the binary operation ⊕s given in (4), we always have
a⊕s b 6= a⊕s c if b 6= c, for all a, b, c ∈ [0,m− 1]. �

The next lemmas state that the sum of every block in the system
(
X = πB(X ′),B = πB(B′)

)
is

at least n.

Lemma 12. Let πS be the Skolem Mapping. Then, for every x ∈ [0,m/2− 1] we have

πS((x, 0)) + πS((x, 1)) + πS((x, 2)) > n.

Proof. By Lemma 11,

πS((x, 0)) + πS((x, 1)) + πS((x, 2)) ≥ 0 + (m+ 1) + (2m+ 1) = n+ 1 > n,

which proves the claimed result. �

Lemma 13. Let πS be the Skolem Mapping. Then for every 0 ≤ x < y ≤ m− 1 we have

πS((x, 0)) + πS((y, 0)) + πS((x⊕s y, 1)) ≥ n.

Proof. First, if x⊕s y = m/2− 1, then πS((x⊕s y, 1)) = 2m+ 1. Moreover, as x < y ≤ m− 1, this
implies that x+ y = m− 2. Therefore,

πS((x, 0)) + πS((y, 0)) + πS((x⊕s y, 1)) = (m− 1− x) + (m− 1− y) + (2m+ 1)

= n+m− 2− (x+ y) = n.

Second, if x⊕s y = m− 1, then x+ y = m− 1. Therefore,

πS((x, 0)) + πS((y, 0)) + πS((x⊕s y, 1)) = (m− 1− x) + (m− 1− y) + (2m+ 2)

= n+m− 1− (x+ y) = n.
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Lastly, suppose that x ⊕s y /∈ {m/2 − 1,m − 1}. Let r ∈ [0,m − 1] so that x + y ≡ r (mod m).
Then r < m− 1. By Lemma 10,

πS((x, 0)) + πS((y, 0)) + πS((x⊕s y, 1)) = (m− 1− x) + (m− 1− y) + πS(((m− 1)⊕s (r + 1), 1))

= (m− 1− x) + (m− 1− y) + (2m+ 2 + r + 1)

= n+m+ r − (x+ y) ≥ n.

This completes the proof. �

Lemma 14. Let πS be the Skolem Mapping. Then, for every 0 ≤ x < y ≤ m− 1 we have

πS((x, 1)) + πS((y, 1)) + πS((x⊕s y, 2)) > n.

Proof. From Lemma 11, we have πS((x, 1)) ≥ 2m+ 1 and πS((y, 1)) ≥ 2m+ 1. Therefore, it is clear
that the stated inequality holds. �

Lemma 15. Let πS be the Skolem Mapping. Then, for every 0 ≤ x < y ≤ m− 1 we have

πS((x, 2)) + πS((y, 2)) + πS((x⊕s y, 0)) > n.

Proof. Let r ≡ x+ y (mod m), where r ∈ [0,m− 1]. We have

πS((x, 2)) + πS((y, 2)) + πS((x⊕s y, 0)) = (m+ 1 + 0⊕s x) + (m+ 1 + 0⊕s y) + (m− 1− x⊕s y)

= n+

{
x/2, if x is even

(x+m− 1)/2, if x is odd
+

{
y/2, if y is even

(y +m− 1)/2, if y is odd
−
{
r/2, if r is even

(r +m− 1)/2, if r is odd

≥ n,

where the last equality follows because x + y ≥ r, and x + y and r have the same parity, as m is
even. �

Lemma 16. Let πS be the Skolem Mapping. Then, for every 0 ≤ x ≤ m/2− 1 we have

πS(∞) + πS((x+m/2, 0)) + πS((x, 1)) ≥ n.

Proof. If x = m/2− 1, then

πS(∞) + πS((x+m/2, 0)) + πS((x, 1)) = m+
(
m− 1− (m− 1)

)
+ 2m+ 1 = n.

Now suppose that x 6= m/2−1. Then there exists a unique y ∈ [0,m−1] such that x = (m−1)⊕sy.
Since (m− 1)⊕s 0 = m− 1 > m/2− 1 ≥ x, we deduce that y 6= 0. Then, by Lemma 9,

πS(∞) + πS((x+m/2, 0)) + πS((x, 1)) = m+
(
m− 1−

(
(m− 1)⊕s y +m/2

))
+ (2m+ 2 + y)

= n+m/2 + y − (m− 1)⊕s y

= n+m/2 + y −
{

(y − 1)/2, if y is odd

(y +m− 2)/2, if y is even

> n.

This completes the proof. �

Lemma 17. Let πS be the Skolem Mapping. Then, for every 0 ≤ x ≤ m/2 − 1 and for every
i ∈ [0, 1], we have

πS(∞) + πS((x+m/2, i)) + πS((x, i+ 1 (mod 3))) ≥ n.
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Proof. By Lemma 11, we have

πS(∞) + πS((x+m/2, i)) + πS((x, i+ 1 (mod 3))) ≥ m+ πS((·, 1)) ≥ m+ (2m+ 1) = n,

which establishes the claim. �

Lemma 18. Let πS be the Skolem Mapping. Then, for every 0 ≤ x ≤ m/2− 1, we have

πS(∞) + πS((x+m/2, 2)) + πS((x, 0)) > n.

Proof. One can show that

πS(∞) + πS((x+m/2, 2))+πS((x, 0)) ≥ m+
(
m+ 1 + 0⊕s (x+m/2)

)
+ (m− 1− x)

= n− (x+ 1) +

{
(x+m/2)/2, if (x+m/2) is even

(x+m/2 +m− 1)/2, if (x+m/2) is odd

≥ n,

where the last inequality holds because x ≤ m/2− 1. This completes the proof. �

The proof of Theorem 2 follows from Lemmas 11, 12, 13, 14, 15, 17, and 18.
The following proposition establishes the max-sum, and hence difference-sum and ratio-sum of

the Skolem Construction coupled with the Skolem Mapping. The results are similar to those shown
for the Bose Construction.

Proposition 5. For n ≥ 7, n ≡ 1 (mod 6), the Skolem Construction coupled with the Skolem
Mapping produces an STS(n) with max-sum at most (8n−11)/3. Therefore, the difference-sum and
the ratio-sum of this construction are O(5n/3) and O(8/3), respectively.

Proof. From Lemma 11, it is straightforward to see that a block with the maximum sum after
applying the Skolem Mapping πS must be of the form B = {(x, 1), (y, 1), (x⊕b y, 2)}. Clearly,

sum(B) ≤ 3m+ (3m− 1) + 2m = (8n− 11)/3.

As the min-sum is known to be n by Theorem 2, the claims regarding the difference-sum and the
ratio-sum hold as claimed. �

Heuristic evidence suggests that the max-sum of the STS(n) obtained from the Skolem Con-
struction coupled with the Skolem Mapping equals (8n− 17)/3 for sufficiently large n.

4 Dual Min-Sum of Steiner Triple Systems

In what follows, we focus our attention on duals of STS(n) and establish min-sum results analogous
to those established for STS(n). It turns out that the min-sum of the duals is only 3/4× of the
average block-sum in the STS, whereas the min-sum of the STSs is roughly 2/3× of the average
block-sum in the STS. Thus, one can achieve better balancing properties with the duals than with
the STSs themselves.

The dual of a design is formally defined next. Note that the block size of the dual is precisely
the repetition number of the original design [2, p. 370].

Definition 3. The dual of a t-(n, k, λ) design D = (X ,B) is D∗ = (B,X ), where B ∈ B is contained
in x ∈ X if x ∈ B in D.
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Consider the dual of an STS(n) where the blocks in B are labeled from 0 to n(n− 1)/6− 1. Our
goal is to study the dual min-sum, that is, the min-sum of the dual, denoted by min∗∑(B). A trivial
upper bound on the dual min-sum is the averaged dual min-sum.

Lemma 19. For any STS(n) (X ,B) with any block ordering, it holds that

min∗∑(B) ≤ 1

24
(n− 1)(n− 3)(n+ 2).

Proof. Since each block in B, labeled by a number ranging from 0 to n(n−1)/6−1, contains exactly
three points from X , on average, the sum of labels of blocks containing a particular point equals

1

n
×
n(n−1)/6−1∑

l=0

3l =
1

24
(n− 3)(n− 1)(n+ 2).

As the dual min-sum cannot exceed the average, the lemma follows. �

We show next that the STS(n) generated by the Bose and by the Skolem Construction, together
with a suitable block ordering, achieve min-sums that are at most 3/4× away from the upper bound
of Lemma 19.

Theorem 3. The Bose STS(n), in which the blocks are labeled from 0 to n(n−1)/6−1 in the order:
Bx, x = m − 1,m − 2 . . . , 0, followed by Bx,y,i, y = 1, 2, . . . ,m − 1, x = 0, 1, . . . , y − 1, i = 0, 1, 2,
has dual min-sum equal to

fBYXI(n) =





55

1728
n3 +

1

192
n2 − 9

64
n− 31

64
, if n/3 ≡ 1 (mod 4), n ≥ 27,

55

1728
n3 +

1

192
n2 − 13

64
n+

13

64
, if n/3 ≡ 3 (mod 4), n ≥ 33.

We refer to the specified block labeling as the Bose YXI-labeling.

The dual min-sums of the Bose STS(n) with the Bose YXI-labeling specified in Theorem 3
equal 20, 104, and 291 for n = 9, 15, and 21, respectively. As there is only one STS(9) up to
isomorphism [6], and all possible 12! block-permutations of the Bose STS(9) produce dual min-
sums not exceeding 20, we conclude that when n = 9, the Bose Construction together with the
Bose YXI-labeling indeed produces an STS(9) with maximum dual min-sum. As n goes to infinity,
the dual min-sum of the Bose STS(n) with the Bose YXI-labeling is very close to the upper bound
given in Lemma 19. More precisely, the dual min-sum is only a fraction of 55/72 > 3/4 away from
the upper bound.

To prove Theorem 3, we compute the sum of the labels of all blocks containing an arbitrary pair
(z, i), z ∈ [0,m− 1] and i ∈ [0, 2], and then show that this sum is always greater than or equal to a
polynomial in n. To this end, we make use of a couple of auxiliary lemmas. The proof of the first
lemma is obvious and hence omitted.

Lemma 20. In the Bose YXI-labeling, the labels of the blocks Bx, x ∈ [0,m− 1], equal

`B(Bx) = m− 1− x.

Lemma 21. In the Bose YXI-labeling, the labels of the blocks Bx,y,i, 0 ≤ x < y ≤ m− 1, i ∈ [0, 2],
equal

`B(Bx,y,i) = m+ i+ 3x+
3

2
y(y − 1),

where m = n/3.
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Proof. The label of a block in the Bose YXI-labeling is precisely the number of blocks preceding it
in the given order. Therefore,

`B(Bx,y,i) = |{Bx : x ∈ [0,m− 1]}|+ |{Bx,y,j : 0 ≤ j < i}|+
∣∣{Bx′,y,j : 0 ≤ x′ < x, j ∈ [0, 2]

}∣∣
+
∣∣{Bx′,y′,j : 0 ≤ x′ < y′ < y, j ∈ [0, 2]

}∣∣

= m+ i+ 3x+ 3

y−1∑

y′=1

y′

= m+ i+ 3x+
3

2
y(y − 1).

This proves the claimed result. �

Lemma 22. For any z ∈ [0,m − 1], the set Pz comprising all pairs of values (x, y), such that
0 ≤ x < y ≤ m− 1, and z = x⊕b y, is given as follows:

Pz =

{
{(x, 2z − x) : x ∈ [0, z − 1]} ∪

{
(x, 2z − x+m) : x ∈

[
2z + 1, z + m−1

2

]}
, if z ≤ m−1

2 ,{
(x, 2z − x−m) : x ∈

[
0, z − m+1

2

]}
∪ {(x, 2z − x) : x ∈ [2z −m+ 1, z − 1]} , if z ≥ m+1

2 .

Proof. It is straightforward to verify that if (x, y) ∈ Pz, then 0 ≤ x < y ≤ m − 1 and x ⊕b y = z.
Moreover, all points in the set are distinct. Since |Pz| = (m − 1)/2, we conclude that the claim
holds true. �

Lemma 23. The sum of the labels of the blocks containing (z, i), z ∈ [0,m−1], i ∈ [0, 2], according
to the Bose YXI-labeling, is given as follows:

`B(z, i) =

{
5

144n
3 − 6z+15

144 n2 − 12z2−84z−16i−8j−25
48 n+ 64z3−84z2−158z−16i−8j−25

16 , for z ≤ m−1
2 ,

1
48n

3 + 42z−39
144 n2 − 84z2−108z−16i−8j−55

48 n+ 64z3−84z2−158z−16i−8j−25
16 , for z ≥ m+1

2 ,

where j
4
= (i− 1) (mod 3) ∈ [0, 2].

Proof. The blocks containing (z, i) include:

Type 1: Bz = {(z, 0), (z, 1), (z, 2)}.

Type 2: Bz,y,i = {(z, i), (y, i), (z ⊕b y, (i+ 1) (mod 3))}, for z < y ≤ m− 1.

Type 3: Bx,z,i = {(x, i), (z, i), (x⊕b z, (i+ 1) (mod 3))}, for 0 ≤ x < z.

Type 4: Bx,y,j = {(x, j), (y, j), (z, i)}, for 0 ≤ x < y ≤ m− 1 such that x⊕b y = z and i = j + 1 (
mod 3).

Clearly, there is a unique block of Type 1 that contains (z, i), namely Bz. According to
Lemma 20, this block has label

`T1
B (z, i)

4
= `B(Bz) = m− 1− z. (6)

The blocks Bz,y,i of Type 2, where y > z, have a sum of labels that may be obtained by invoking
Lemma 21:

`T2
B (z, i)

4
=

m−1∑

y=z+1

`B
(
Bz,y,i

)
=

m−1∑

y=z+1

(
m+ i+ 3z +

3

2
y(y − 1)

)

=
m3

2
− m2

2
+ (2z + i)m− z3 + 6z2 + 5z + 2iz + 2i

2
.

(7)

17



The blocks Bx,z,i of Type 3, where x < z, have the following sum of labels which again may be
computed using Lemma 21,

`T3
B (z, i)

4
=

z−1∑

x=0

`B
(
Bx,z,i

)
=

z−1∑

x=0

(
m+ i+ 3x+

3

2
z(z − 1)

)
= zm+

(3z3

2
− 3z

2
+ iz

)
. (8)

The sums of labels of blocks of Type 4 containing (z, i) depends on whether z ≤ (m − 1)/2 or
z ≥ (m+ 1)/2.

Case 1: 0 ≤ z ≤ (m− 1)/2. From Lemma 22, the sum of labels of blocks of Type 4 containing
(z, i) equals

`T4
B (z, i)

4
=

z−1∑

x=0

`B
(
Bx,2z−x,j

)
+

z+m−1
2∑

x=2z+1

`B
(
Bx,2z−x+m,j

)

=

z−1∑

x=0

(
m+ j + 3x+

3

2
(2z − x)(2z − x− 1)

)

+

z+m−1
2∑

x=2z+1

(
m+ j + 3x+

3

2
(2z − x+m)(2z − x+m− 1)

)

=
7

16
m3 − 6z + 7

16
m2 − 12z2 − 36z − 8j − 9

16
m+

48z3 − 36z2 − 78z − 8j − 9

16
.

(9)

Case 2: (m+1)/2 ≤ z ≤ m−1. By Lemma 22, the sum of labels of blocks of Type 4 containing
(z, i) equals

`T4
B (z, i)

4
=

z−m+1
2∑

x=0

`B
(
Bx,2z−x−m,j

)
+

z−1∑

x=2z−m+1

`B
(
Bx,2z−x,j

)

=

z−m+1
2∑

x=0

(
m+ j + 3x+

3

2
(2z − x−m)(2z − x−m− 1)

)

+
z−1∑

x=2z−m+1

(
m+ j + 3x+

3

2
(2z − x)(2z − x− 1)

)

=
1

16
m3 +

42z − 31

16
m2 − 84z2 − 60z − 8j − 39

16
m+

48z3 − 36z2 − 78z − 8j − 9

16
.

(10)

Summing up (6), (7), (8), and (9) or (10), we obtain

`B(z, i) = `T1
B (z, i) + `T2

B (z, i) + `T3
B (z, i) + `T4

B (z, i)

=

{
15
16m

3 − 6z+15
16 m2 − 12z2−84z−16i−8j−25

16 m+ 64z3−84z2−158z−16i−8j−25
16 , for z ≤ m−1

2 ,
9
16m

3 + 42z−39
16 m2 − 84z2−108z−16i−8j−55

16 m+ 64z3−84z2−158z−16i−8j−25
16 , for z ≥ m+1

2 .

The proof follows by replacing m with n/3 in the above formula. �

We are now ready to prove Theorem 3.

Proof of Theorem 3. It suffices to show that `B(z, i) ≥ fBYXI(n) for every permissible value of
n ≥ 27 and for every z ∈ [0,m− 1], i ∈ [0, 2]. Moreover, the equality holds when i = 0, 1, and

z =

{
(n− 3)/12, when n/3 ≡ 1 (mod 4),

(n− 9)/12, when n/3 ≡ 3 (mod 4).

18



We first show that `B(z, i) > `B
(
z − m+1

2 , i
)

for every z ≥ m+1
2 , and then proceed to prove that

`B(z, i) ≥ fBYXI(n) for every z ∈
[
0, m−12

]
and i ∈ [0, 2].

Suppose that z = m+1
2 + t = n+3

6 + t, where t ∈ [0, m−12 − 1]. The goal is to show that
`B(z, i) ≥ `B(t, i). From Lemma 23, we have

`B(z, i) =
1

48
n3 +

42z − 39

144
n2 − 84z2 − 108z − 16i− 8j − 55

48
n+

64z3 − 84z2 − 158z − 16i− 8j − 25

16

=
17

432
n3 +

2t− 1

48
n2 +

12t2 + 36t+ 16i+ 8j − 9

48
n+

64t3 + 12t2 − 194t− 16i− 8j − 117

16
.

Also, from Lemma 23, it holds that

`B(t, i) =
5

144
n3 − 6t+ 15

144
n2 − 12t2 − 84t− 16i− 8j − 25

48
n+

64t3 − 84t2 − 158t− 16i− 8j − 25

16
.

Therefore, we deduce that

`B(z, i)− `B(t, i) =
1

216

(
(108n+ 1296)t2 + 18(n2 − 12n− 27)t+ (n3 + 18n2 − 153n− 1242)

)
> 0,

since t ≥ 0 and the coefficients of all powers of t are positive for n ≥ 27. Thus, for every z ≥ m+1
2

and i ∈ [0, 2], we have `B(z, i) > `B
(
z − m+1

2 , i
)
.

It remains to prove that `B(z, i) ≥ fBYXI(n) for every z ∈
[
0, m−12

]
and i ∈ [0, 2]. To this end,

let
g(n, z, i)

4
= `B(z, i)− fBYXI(n).

By its definition, fBYXI(n) depends on the congruence class of m = n/3 (mod 4). Therefore, we
separately consider two different cases.

Case 1: n/3 ≡ 1 (mod 4) and n ≥ 27. We have

g(n, z, i) =

(
5

144
n3 − 6z + 15

144
n2 − 12z2 − 84z − 16i− 8j − 25

48
n+

64z3 − 84z2 − 158z − 16i− 8j − 25

16

)

−
(

55

1728
n3 +

1

192
n2 − 9

64
n− 31

64

)

=

(
5

144
n3 − 6z + 15

144
n2 − 12z2 − 84z − 41

48
n+

64z3 − 84z2 − 158z − 41

16

)

−
(

55

1728
n3 +

1

192
n2 − 9

64
n− 31

64

)
+

(
16i+ 8j − 16

48
n− 16i+ 8j − 16

16

)
.

The last term in the above sum is nonnegative, since

16i+ 8j − 16

48
n− 16i+ 8j − 16

16
=

1

48
(16i+ 8j − 16)(n− 3) ≥ 0

for every i, j ∈ [0, 2], j ≡ (i− 1) (mod 3), and n ≥ 3. For n ≥ 27, the equality holds if and only if
i = 1 and j = 0 or i = 0 and j = 2. Therefore,

g(n, z, i) ≥
(

5

144
n3 − 6z + 15

144
n2 − 12z2 − 84z − 41

48
n+

64z3 − 84z2 − 158z − 41

16

)

−
(

55

1728
n3 +

1

192
n2 − 9

64
n− 31

64

)

=
(
z − z∗

)
h(n, z),
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where

z∗
4
=
n− 3

12

and

h(n, z)
4
= 4z2 +

n− 75

12
z − 5n2 − 174n+ 1197

144
.

In order to prove that g(n, z, i) ≥ 0, it suffices to show that z− z∗ and h(n, z) do not have opposite
signs for z ∈ [0, n/3 − 1] and n ≥ 27. We hence proceed to analyze the sign of the quadratic
polynomial h(n, z) in z. First, we compute

∆(n) =
(n− 75

12

)2
+ 16

5n2 − 174n+ 1197

144
=

9n2 − 326n+ 2753

16
.

It is easy to see that ∆(n) > 0 whenever n ≥ 23. As we assume that n ≥ 27, h(n, z) has two distinct
roots

z1 =
− 1

12(n− 75)−
√

∆(n)

8
, z2 =

− 1
12(n− 75) +

√
∆(n)

8
.

It can be verified that z1 < 0 when n ≥ 26. Since h(n, z) ≥ 0 when z ≥ z2 and h(n, z) ≤ 0 when
0 ≤ z ≤ z2, for (z − z∗)h(n, z) to be nonnegative, it suffices to show that

z∗ − 1 ≤ z2 ≤ z∗.

Then, if z ≥ z∗ ≥ z2, we have z−z∗ ≥ 0 and h(n, z) ≥ 0, while if z ≤ z∗−1 ≤ z2, we have z−z∗ < 0
and h(n, z) ≤ 0. Both cases lead to (z− z∗)h(n, z) ≥ 0 as z ∈ [0, m−12 ] is a nonnegative integer. We
hence have

z2 ≤ z∗ ⇐⇒
− 1

12(n− 75) +
√

∆(n)

8
≤ n− 3

12
⇐⇒

√
9n2 − 326n+ 2753 ≤ 3n− 33⇐⇒ n ≥ 13,

which is true because we assumed that n ≥ 27. Similarly,

z∗−1 ≤ z2 ⇐⇒
n− 3

12
−1 ≤ −

1
12(n− 75) +

√
∆(n)

8
⇐⇒ 3n−65 ≤

√
9n2 − 326n+ 2753⇐⇒ n ≥ 23.

Therefore, as long as n ≥ 27 (the smallest valid value of n greater than or equal to 26), it holds
that g(n, z, i) ≥ (z − z∗)h(n, z) ≥ 0, which implies that `B(z, i) ≥ fBYXI(n), the inequality we
set out to prove. It is clear that when z = m−1

4 = n−3
12 and i = 0, 1, equality is met, that is,

`B(z, i) = fBYXI(n). Thus, in this case, the dual min-sum of the STS(n) in the Bose Construction
together with the Bose YXI-labeling of blocks is precisely fBYXI(n).

Case 2: n/3 ≡ 3 (mod 4) and n ≥ 33. Similarly as in the previous case, we have

g(n, z, i) =

(
5

144
n3 − 6z + 15

144
n2 − 12z2 − 84z − 41

48
n+

64z3 − 84z2 − 158z − 41

16

)

−
(

55

1728
n3 +

1

192
n2 − 13

64
n+

13

64

)
+

(
16i+ 8j − 16

48
n− 16i+ 8j − 16

16

)

≥ (z − z∗∗)k(n, z),

where z∗∗
4
= n−9

12 and k(n, z)
4
= 4z2 + n−99

12 z − 5n2−144n+531
144 . As long as n ≥ 19, the quadratic

polynomial k(n, z) has two roots

z1 =
− 1

12(n− 99)− 1
4

√
9n2 − 278n+ 2033

8
, z2 =

− 1
12(n− 99) + 1

4

√
9n2 − 278n+ 2033

8
.
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It can be easily verified that when n ≥ 25, we have z1 < 0. Also, we have

z∗∗ ≤ z2 ≤ z∗∗ + 1,

where the first inequality holds when n ≥ 19 and the second inequality holds when n ≥ 11. The
smallest valid n greater than or equal to 25 is n = 33. For n ≥ 33, if z ≥ z∗∗ + 1 ≥ z2, then
z − z∗∗ > 0 and k(n, z) ≥ 0, and if z ≤ z∗∗, then z − z∗∗ < 0 and k(n, z) ≤ 0. Both cases lead to
g(n, z, i) ≥ (z − z∗∗)k(n, z) ≥ 0, which implies that `B(z, i) ≥ fBYXI , as desired. The equality is
obtained when z = m−3

4 = n−9
12 and i = 0, 1. This completes the proof of Theorem 3. �

Proposition 6. The Bose STS(n), in which the blocks are labeled according to the Bose YXI-
labeling, has dual max-sum equal to

gBYXI(n) =
31

432
n3 − 9

16
n2 +

35

16
n− 55

16
, n ≥ 15.

Therefore, the dual difference-sum and the dual ratio-sum of this construction and block labeling are
O
(
23n3/1728

)
and O(124/55), respectively.

Proof. The proof that establishes the dual max-sum is similar to the proof that establishes the dual
min-sum and hence is omitted. Note that it suffices to show that gBYXI(n) − `B(z, i) ≥ 0 for all
m− 1 ≥ z ≥ m+1

2 , i ∈ [0, 2], n ≥ 15, and that equality holds if and only if (z, i) = (m− 1, 2). �

The following more natural block ordering of the STS(n) produced by the Bose Construction
gives a smaller dual min-sum compared to the Bose YXI-labeling. We omit the proof.

Theorem 4. The dual of the Bose STS(n), where the blocks are labeled from 0 to n(n−1)
6 − 1

in the following order: Bx, x = 0, 1, . . . ,m − 1, followed by Bx,y,i, x = 0, 1, . . . ,m − 2, y =
x+ 1, x+ 2, . . . ,m− 1, i = 0, 1, 2, has min-sum equal to

fB(n) =
5

432
n3 +

19

48
n2 − 133

48
n+

71

16
, n ≥ 9.

We state next a similar result for the dual of the Skolem STS(n) (Theorem 5). As the full proof
is tedious and mostly follows along the same lines as the corresponding proof of Theorem 3, we only
present the key lemmas and important formulas without including all details.

Theorem 5. The dual of the Skolem STS(n), where the blocks are labeled from 0 to n(n−1)
6 − 1 in

the following order, referred to as the Skolem YXI-labeling: Bx, x = 0, 1, . . . ,m/2 − 1, followed by
Bx,y,i, y = 1, 2, . . . ,m − 1, x = 0, 1, . . . , y − 1, i = 0, 1, 2, followed by Bx,i, x = 0, 1, . . . ,m/2 − 1,
i = 0, 1, 2, where m = (n− 1)/3, and the blocks Bx,i are labeled as

n(n− 1)

6
− n− 1

2
+





(n− 1)/6 + 2x, i = 0,

x, i = 1,

(n− 1)/6 + 2x+ 1, i = 2,

has min-sum equal to

fSY XI(n) =





55

1728
n3 − 31

576
n2 − 137

576
n− 1279

1728
, if (n− 1)/3 ≡ 0 (mod 4), n ≥ 13,

55

1728
n3 − 31

576
n2 − 173

576
n+

1421

1728
, if (n− 1)/3 ≡ 2 (mod 4), n ≥ 7.

Lemma 24. In the Skolem YXI-labeling, the labels of the blocks Bx, x ∈ [0,m/2− 1], equal

`S(Bx) = x.
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Lemma 25. In the Skolem YXI-labeling, the labels of the blocks Bx,y,i, 0 ≤ x < y ≤ m−1, i ∈ [0, 2],
equal

`S(Bx,y,i) =
m

2
+ i+ 3x+

3

2
y(y − 1).

Note that the labels of the blocks Bx,i, x ∈ [0,m/2 − 1], i ∈ [0, 2], are given explicitly in the
statement of Theorem 5.

Lemma 26. For any z ∈ [0,m− 1], the set Qz = {(x, y) : 0 ≤ x < y ≤ m− 1, z = x⊕s y} has the
explicit form

Qz =

{
{(x, 2z − x) : x ∈ [0, z − 1]} ∪

{
(x, 2z − x+m) : x ∈

[
2z + 1, z + m

2 − 1
]}
, if z < m

2 ,{
(x, 2z − x−m+ 1): x ∈

[
0, z − m

2

]}
∪ {(x, 2z − x+ 1): x ∈ [2z −m+ 2, z]} , if z ≥ m

2 .

Lemma 27. The sum of the labels of the blocks containing (z, i), z ∈ [0,m−1], i ∈ [0, 2], according
to the Skolem YXI-labeling, is given as follows.

For z < m
2 ,

`S(z, i) =
5

144
n3 − 2z + 7

48
n2 − 36z2 − 228z − 3− 48i− 24j

144
n

+
576z3 − 828z2 − 1518z + 13− 192i− 168j

144
+





(n− 1)/6 + 2z, j = 0,

z, j = 1,

(n− 1)/6 + 2z + 1, j = 2,

where j
4
= (i− 1) (mod 3) ∈ [0, 2].

For z ≥ m
2 ,

`S(z, i) =
1

48
n3 +

14z − 5

48
n2 − 84z2 + 4z − 47− 16i− 8j

48
n

+
192z3 + 84z2 − 346z − 187− 64i− 8j

48
+





2z, i = 0,

z, i = 1,

2z + 1, i = 2,

where again j
4
= (i− 1) (mod 3) ∈ [0, 2].

Sketch of the Proof. The blocks containing (z, i) include:

Type 1: Bz = {(z, 0), (z, 1), (z, 2)}, if 0 ≤ z < m
2 .

Type 2: Bz,y,i = {(z, i), (y, i), (z ⊕s y, (i+ 1) (mod 3))}, for 0 ≤ z < y ≤ m− 1.

Type 3: Bx,z,i = {(x, i), (z, i), (x⊕s z, (i+ 1) (mod 3))}, for 0 ≤ x < z ≤ m− 1.

Type 4: Bx,y,j = {(x, j), (y, j), (z, i)}, for 0 ≤ x < y ≤ m− 1 such that x⊕s y = z.

Type 5: Bz,j = {∞, (z + m
2 , j), (z, i)}, where j

4
= (i− 1) (mod 3) ∈ [0, 2], where z < m

2 .

Type 6: Bz−m
2
,i = {∞, (z, i), (z − m

2 , (i+ 1) (mod 3))}, for z ≥ m
2 .

Based on Lemmas 24, 25, and 26, one can compute the sums of labels of blocks of each type as
follows.
Type 1:

`T1
S (z, i)

4
= `B(Bz) = z. (11)

22



Type 2:

`T2
S (z, i)

4
=

m−1∑

y=z+1

`S
(
Bz,y,i

)
=

m−1∑

y=z+1

(m
2

+ i+ 3z +
3

2
y(y − 1)

)

=
1

2

(
m3 − 2m2 + (5z + 2i+ 1)m− (z3 + 6z2 + 5z + 2iz + 2i)

)
.

(12)

Type 3:

`T3
S (z, i)

4
=

z−1∑

x=0

`S
(
Bx,z,i

)
=

z−1∑

x=0

(m
2

+ i+ 3x+
3

2
z(z − 1)

)
=
z

2
m+

(3z3

2
− 3z

2
+ iz

)
. (13)

Type 4: The sums of labels of blocks of Type 4 containing (z, i) depends on whether z < m
2 or

z ≥ m
2 . For z < m

2 , we have

`T4
S (z, i)

4
=

z−1∑

x=0

`S
(
Bx,2z−x,j

)
+

z+m
2
−1∑

x=2z+1

`S
(
Bx,2z−x+m,j

)
=

z−1∑

x=0

(m
2

+ j + 3x+
3

2
(2z − x)(2z − x− 1)

)

=
7

16
m3 − 3z + 7

8
m2 − 3z2 − 6z − 2j

4
m+ (3z3 − 3z2 − 6z − j).

(14)

For z ≥ m
2 , we have

`T4
S (z, i)

4
=

z−m
2∑

x=0

`S
(
Bx,2z−x−m+1,j

)
+

z∑

x=2z−m+2

`S
(
Bx,2z−x+1,j

)

=

z−m
2∑

x=0

(m
2

+ j + 3x+
3

2
(2z − x−m+ 1)(2z − x−m)

)

+
z∑

x=2z−m+2

(m
2

+ j + 3x+
3

2
(2z − x+ 1)(2z − x)

)

=
1

16
m3 +

7(3z − 1)

8
m2 − 21z2 + 6z − 2j − 14

4
m+ 3(z − 1)(z + 1)2.

(15)

Type 5:

`T4
S (z, i)

4
= `S(Bz,j) =

n(n− 1)

6
− n− 1

2
+





(n− 1)/6 + 2z, j = 0,

z, j = 1,

(n− 1)/6 + 2z + 1, j = 2.

(16)

Type 6:

`T4
S (z, i)

4
= `S(Bz−m

2
,j) =

n(n− 1)

6
+





m/2 + 2(z −m/2), i = 0

z −m/2, i = 1

m/2 + 2(z −m/2) + 1, i = 2

=
(n− 1)(n− 4)

6
+





2z, i = 0,

z, i = 1,

2z + 1, i = 2.

(17)

Finally, to compute `S(z, i), we sum up (11), (12), (13), (14), and (16) for z < m/2, and (12),
(13), (15), and (17) for z ≥ m/2. The proof follows by replacing m with (n− 1)/3 in the obtained
sums. �
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Proof of Theorem 5 (Sketch). The proof follows along the same lines as the corresponding proof of
Theorem 3, with some slightly more complicated technical details. Note that we can ignore the point
∞ because the n−1

2 blocks containing this point have the largest possible labels from n(n−1)
6 − n−1

2 to
n(n−1)

6 −1, the sum of which is clearly larger than the sum of the labels of the blocks containing any
other point (z, i). It also suffices to show that `S(z, i) ≥ fSY XI(n) for every z < m

2 and i ∈ [0, 2].
In order to evaluate the difference `S(z, i)− fSY XI(n), we need to eliminate the part of `S(z, i)

that involves i and j. More precisely, a lower bound on the expression

48i+ 24j

144
n− 192i+ 168j

144
+





(n− 1)/6 + 2z, j = 0,

z, j = 1,

(n− 1)/6 + 2z + 1, j = 2,

that depends only on n and z must be established. We can simplify and evaluate this expression as
follows

2i+ j

6
(n− 4)− j

2
+





(n− 1)/6 + 2z, j = 0

z, j = 1

(n− 1)/6 + 2z + 1, j = 2

≥ n− 4

3
+
n− 1

6
+ 2z,

where the inequality holds when j = 0, 2, or equivalently, when i = (j + 1) (mod 3) ∈ {0, 1}. To
prove the inequality when j = 1, we use the fact that n ≥ 7 and z ≤ m

2 − 1 = n−7
6 . Therefore, for

z < m
2 it holds that

`S(z, i) ≥ 5

144
n3 − 2z + 7

48
n2 − 36z2 − 228z − 3

144
n+

576z3 − 828z2 − 1518z + 13

144

+
(n− 4

3
+
n− 1

6
+ 2z

)

=
5

144
n3 − 2z + 7

48
n2 − 36z2 − 228z − 75

144
n+

576z3 − 828z2 − 1230z − 203

144
.

Hence, for (n− 1)/3 ≡ 0 (mod 4), we have

`S(z, i)− fSY XI(n) ≥
(
z − n− 1

12

)(
4z2 +

n− 73

12
z − 5n2 − 144n+ 1157

144

)
,

and for (n− 1)/3 ≡ 2 (mod 4), we have

`S(z, i)− fSY XI(n) ≥
(
z − n− 7

12

)(
4z2 +

n− 97

12
z − 5n2 − 124n+ 551

144

)
.

The same argument as in the proof of Theorem 3 may be used to establish that `S(z, i)−fSY XI(n) ≥
0, for every valid n ≥ 7. Moreover, equality holds when z = n−1

12 if (n−1)/3 ≡ 0 (mod 4) and when
z = n−7

12 if (n− 1)/3 ≡ 2 (mod 4) (and i = 0, 1). This completes the proof of the theorem. �

It is straightforward to see that the dual max-sum of the Skolem STS(n) with the Skolem
YXI-labeling equals

gSY XI(n) =
1

12
n3 − 7

24
n2 +

1

12
n+

1

8
,

and that it corresponds to the sum of the labels of the blocks containing the point ∞. As a
consequence, the dual difference-sum and the dual ratio-sum are O

(
89n3/1728

)
and O(144/55),

respectively.
The natural block ordering determined by the Skolem Construction produces an STS(n) with

smaller dual min-sum compared to the Skolem YXI-labeling. The result is described in Theorem 6.
We again omit the proof since is mostly involves algebraic manipulations.

24



Theorem 6. The dual of the Skolem STS(n), where the blocks are labeled from 0 to n(n−1)
6 − 1

in the following order: Bx, x = 0, 1, . . . ,m/2 − 1, followed by Bx,y,i, x = 0, 1, . . . ,m − 2, y =
x + 1, x + 2, . . . ,m − 1, i = 0, 1, 2, followed by Bx,i, x = 0, 1, . . . ,m/2 − 1, i = 0, 1, 2, where
m = (n− 1)/3, has min-sum equal to

fS(n) =
5

432
n3 +

55

144
n2 − 511

144
n+

3523

432
, n ≥ 7.

5 Concluding Remarks and Open Problems

Motivated by distributed storage codes and access-balancing issues that accompany them, we in-
troduced a new family of problems in combinatorial design theory pertaining to sum-constrained
Steiner systems. The constraints on the sums of points in the blocks of a design, or similar con-
straints for the duals of the design, were addressed by permuting (relabeling) the points and blocks
of two classes of Steiner systems, the Bose and Skolem triple systems. Optimal labelings achieving
upper bounds were identified for the designs, while near-optimal labelings were constructed for dual
designs.

Many open problems in this new area of design theory remain, including:

1. Establishing which nonisomorphic Steiner triple systems have MaxMinSum labelings.

2. Tightening the bounds on difference-sum and ratio-sum in Section 2 and constructing labelings
that attain the bounds.

3. Improving the block labelings for dual designs.

4. Deriving extensions of the presented results for Steiner systems with block sizes k > 3, as for
example the quadruple systems of [11], and for block designs in general.
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