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COMBINING THE AUGMENTED LAGRANGIAN
PRECONDITIONER WITH THE SIMPLE SCHUR COMPLEMENT

APPROXIMATION\ast 

XIN HE\dagger , CORNELIS VUIK\ddagger , AND CHRISTIAAN M. KLAIJ\S 

Abstract. The augmented Lagrangian (AL) preconditioner and its variants have been success-
fully applied to solve saddle point systems arising from the incompressible Navier--Stokes equations
discretized by the finite element method. Attractive features are the purely algebraic construction
and robustness with respect to the Reynolds number and mesh refinement. In this paper, we recon-
sider the application of the AL preconditioner in the context of the stabilized finite volume methods
and present the extension to the Reynolds-averaged Navier--Stokes (RANS) equations, which are
used to model turbulent flows in industrial applications. Furthermore, we propose a new variant of
the AL preconditioner, obtained by substituting the approximation of the Schur complement from
the SIMPLE preconditioner into the inverse of the Schur complement for the AL preconditioner.
This new variant is applied to both Navier--Stokes and RANS equations to compute laminar and
turbulent boundary-layer flows on grids with large aspect ratios. Spectral analysis shows that the
new variant yields a more clustered spectrum of eigenvalues away from zero, which explains why it
outperforms the existing variants in terms of the number of Krylov subspace iterations.

Key words. Reynolds--averaged Navier--Stokes equations, finite volume method, block struc-
tured preconditioner, augmented Lagrangian preconditioner, SIMPLE preconditioner

AMS subject classifications. 65F10, 65F08

DOI. 10.1137/17M1144775

1. Introduction. The augmented Lagrangian (AL) preconditioner [2], belong-
ing to the class of block structured preconditioners [9, 26, 27], is originally proposed
to solve saddle point systems arising from the incompressible Navier--Stokes equations
discretized by the finite element method (FEM). The AL preconditioner features a
purely algebraic construction and robustness with respect to the Reynolds number
and mesh refinement. Because of these attractive features, recent research was de-
voted to the further development and extension of the AL preconditioner, notably
the modified variants [3, 4, 5] with reduced computational complexity and the exten-
sion [32] to the context of stabilized finite volume methods (FVM), which are widely
used in industrial computational fluid dynamic (CFD) applications.

Although applying FEM and FVM to the incompressible Navier--Stokes equations
both lead to saddle point systems, the extension from FEM to FVM is nontrivial;
see [32] for a detailed discussion on the dimensionless parameter that is involved in
the AL preconditioner, its influence on the convergence of both nonlinear and linear
iterations, and the proposed rule to choose the optimal value in practice. We observed
that the features of the AL preconditioner exhibited in the FEM context, e.g., robust-
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION A1363

ness with respect to the Reynolds number and mesh refinement, are maintained in
the context of FVM, at least for academic benchmarks. This motivates us to consider
the application of the AL preconditioner in the broader context of Reynolds-averaged
Navier--Stokes (RANS) equations, which are used to model turbulent flows in in-
dustrial CFD applications. These equations are obtained by applying the Reynolds
averaging process to the Navier--Stokes equations and adding an eddy-viscosity tur-
bulence model to close the system; see [11, 23, 30]. Such models represent the effect
of turbulence on the averaged flow quantities through a locally increased viscosity.

Unfortunately, straightforward application of the AL preconditioner to the RANS
equations yields disappointing results, as we will show in this paper. Therefore, we
reconsider the approximation of the Schur complement, which is the key to the effi-
cient block structured preconditioners [1, 24]. In [15], we compared the exact Schur
preconditioner with several cheaper approximations, including SIMPLE, for three test
cases from maritime engineering, characterized by the thin turbulent boundary layers
on grids with high aspect ratios. In this paper, we propose a new Schur complement
approximation which leads to a new variant of the AL preconditioner. The approach
is to substitute the approximation of the Schur complement from the SIMPLE precon-
ditioner [14, 16] into the inverse of the Schur complement for the AL preconditioner.
This choice is motivated by the notion that in the utilized FVM the Schur comple-
ment approximation from the SIMPLE preconditioner reduces to a scaled Laplacian
matrix [14, 16] and the efficiency of the SIMPLE preconditioner on the complicated
maritime applications [15, 16]. As we will show, the new variant of the AL precondi-
tioner significantly speeds up the convergence rate of the Krylov subspace solvers for
both turbulent and laminar boundary-layer flows computed with a stabilized FVM.

The structure of this paper is as follows. The RANS equations and the discretiza-
tion and solution methods are introduced in section 2. The new method to construct
the approximation of the Schur complement in the AL preconditioner is presented
in section 3, followed by a brief recall of the old approach. A comparison with the
SIMPLE preconditioner in section 3.4 is based on a basic cost model presented in
section 4. Section 5 includes the numerical experiments carried out on the turbulent
and laminar benchmarks. Conclusions and future work are outlined in section 6.

2. Governing equations and solution techniques. In this section, we in-
troduce the Reynolds-averaged Navier--Stokes equations as well as the finite volume
discretization and solution methods.

2.1. Reynolds-averaged Navier--Stokes equations. Incompressible and tur-
bulent flows often occur in CFD applications of the maritime industry. Most com-
mercial and open-source CFD packages rely on the Reynolds-averaged Navier--Stokes
(RANS) equations to model such flows [11, 23, 30] since more advanced models, such
as the large-eddy simulation (LES), are still too expensive for industrial applications.
In addition, engineers are first interested in the averaged properties of a flow, such as
the average forces on a body, which is exactly what RANS models provide.

The RANS equations are obtained from the Navier--Stokes equations by an av-
eraging process referred to as Reynolds averaging, where an instantaneous quantity
such as the velocity is decomposed into its averaged and fluctuating parts. If the flow
is statistically steady, time averaging is used and ensemble averaging is applied for
unsteady flows. The averaged part is solved, while the fluctuating part is modeled,
which requires additional equations, for instance, for the turbulent kinetic energy and
turbulence dissipation. We refer the reader to [11, 23, 30] for a broader discussion.
The Reynolds-averaged equations are here presented in the conservative form using
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A1364 XIN HE, CORNELIS VUIK, AND CHRISTIAAN M. KLAIJ

Fig. 1. For the turbulent flat plate problem, the ratio between the eddy viscosity and dynamic
viscosity, i.e., \mu t/\mu in the wake of the plate.

FVM for a control volume \Omega with the surface S and outward normal vector n:\int 

S

\rho uu \cdot n dS +

\int 

S

Pn dS  - 
\int 

S

\mu eff(\nabla u+\nabla uT ) \cdot n dS =

\int 

\Omega 

\rho b d\Omega ,

\int 

S

u \cdot n dS = 0,

(1)

where u is the velocity, P = p + 2
3\rho k consists of the pressure p and the turbulent

kinetic energy k, \rho is the (constant) density, \mu eff is the (variable) effective viscosity,
and b is a given force field. On the boundaries we either impose the velocity (u = uref

on inflow and u = 0 on walls) or the normal stress (\mu eff
\partial \bfu 
\partial \bfn  - Pn = 0 on outflow and

far field). The effective viscosity \mu eff is the sum of the constant dynamic viscosity \mu 
and the variable turbulent eddy viscosity \mu t provided by the turbulence model as a
function of k and possibly other turbulence quantities. Notice that for laminar flows,
where k and \mu t are zero, the RANS equations reduce to the Navier--Stokes equations.

In this paper, we will consider laminar flow of water over a finite flat plate at
Re = 105 and turbulent flow at Re = 107. The density and dynamic viscosity of
water at atmospheric pressure and 20 degrees Celsius are roughly \rho = 1000[kg/m

3
]

and \mu = 0.001[kg/m/s]; see [31]. The inflow velocity uref in [m/s] is adjusted to obtain

the given Reynolds number Re = \rho \| \bfu ref\| Lref

\mu based on the length Lref = 1[m] of the
plate. The flow is characterized by a very thin boundary layer on the plate which is
fully resolved by stretching the grid in the vertical direction. This inevitably results
in high aspect-ratio cells near the plate. At the higher Reynolds number, the flow
becomes turbulent in this thin boundary layer and in the wake of the plate. Figure 1
illustrates how the effective viscosity (provided in this case by the k-\omega shear stress
transport model of Menter [20]) varies in the domain: the eddy viscosity in the wake
of the plate is two orders of magnitude larger than the dynamic viscosity. We also
consider turbulent flow over a backward-facing step at Reynolds 5 \cdot 104 based on the
step height, which has a similar eddy-viscosity magnitude in the wake of the step.

Solvers for the RANS equations should be able to handle both challenges, i.e.,
the high-aspect ratio cells and the significant variation in viscosity.

2.2. Linear saddle point system. As explained in [15], the nonlinear system
(1) is solved for u and P as a series of linear systems obtained by the Picard lineariza-
tion [11], i.e., by assuming that the mass flux \rho u \cdot n, the turbulent kinetic energy k,
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION A1365

and the effective viscosity \mu eff are known from the previous iteration. The turbulence
equations are then solved for k and possibly other turbulence quantities, after which
the process is repeated until a convergence criterion is met.

After linearization and discretization of system (1) by the cell-centered and col-
located FVM [11], the linear system is in saddle point form as

(2)

\biggl[ 
Q G
D C

\biggr] \biggl[ 
u
p

\biggr] 
=

\biggl[ 
f
g

\biggr] 
with \scrA :=

\biggl[ 
Q G
D C

\biggr] 
,

where Q corresponds to the convection-diffusion operator and the matrices G and D
denote the gradient and divergence operators, respectively. The matrix C comes from
the stabilization method. The details of these matrices are presented as follows.

The linearization and the explicit treatment of the second diffusion term \mu eff\nabla uT \cdot 
n by using the velocity and effective viscosity from the previous iteration make the
matrix Q of a block diagonal form. Each diagonal part Qii is equal and contains
the contributions from the convective term \rho uiu \cdot n and the remaining diffusion term
\mu eff\nabla ui \cdot n.

In FEM the divergence matrix is the negative transpose of the gradient matrix,
i.e., D =  - GT . However, in FVM we have Di = Gi on structured and unstructured
grids, where i denotes the components therein. For structured grids only we have
that D is skew-symmetric (Di =  - DT

i ) and therefore that D =  - GT as in FEM. We
refer the reader to [11] for the details of D and G in FVM.

To avoid pressure oscillations when the velocity and pressure are collocated in the
cell centers, the pressure-weighted interpolation (PWI) method [21] is applied here
and leads to the stabilization matrix C as

(3) C = Ddiag - 1(Q)G - diag - 1(Qii)Lp,

where Lp is the Laplacian matrix. Details about the PWI method and its represen-
tation by the discrete matrices as (3) are given in [14, 16].

2.3. Preconditioners for saddle point systems. Block structured precondi-
tioners are used to accelerate the convergence rate of the Krylov subspace solvers for
saddle point systems as (2). They are based on the block \scrL \scrD \scrU decomposition of the
coefficient matrix given by

(4) \scrA = \scrL \scrD \scrU =

\biggl[ 
Q G
D C

\biggr] 
=

\biggl[ 
I O

DQ - 1 I

\biggr] \biggl[ 
Q O
O S

\biggr] \biggl[ 
I Q - 1G
O I

\biggr] 
,

where S = C  - DQ - 1G is the so-called Schur complement. To successfully design
block structured preconditioners, a combination of this block factorization with a
suitable approximation of the Schur complement is utilized. It is not practical to
explicitly form the exact Schur complement due to the action of Q - 1 typically when
the size is large. This implies that constructing the spectrally equivalent and nu-
merically cheap approximations of the Schur complement can be very challenging.
There exist several state-of-the-art approximations of the Schur complement, e.g.,
the least-squares commutator (LSC) [8], pressure convection-diffusion (PCD) opera-
tor [13, 28], SIMPLE(R) preconditioner [16, 17, 29], and augmented Lagrangian (AL)
approach [2, 3, 4, 32]. These Schur complement approximations are originally de-
signed in the context of stable FEM where the (2, 2) block of \scrA is zero. For more
details of the Schur approximation, we refer the reader to the surveys [1, 24, 26, 27]
and the books [9, 22].
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This paper is meant to significantly improve the efficiency of the AL precondi-
tioner in the turbulent and laminar boundary-layer flows computed with a stabilized
FVM. To fulfill the objective of this paper, a new variant of the AL preconditioner
is proposed which substitutes the approximation of the Schur complement from the
SIMPLE preconditioner into the inverse of the Schur complement for the AL precon-
ditioner. More details are presented in the next section.

3. Augmented Lagrangian preconditioner. In this section, we propose the
new method to construct the approximation of the Schur complement in the AL
preconditioner, followed by a comparison with the old approach.

3.1. Transformation of the linear system. It is observed in [2, 3] that apply-
ing the AL preconditioner allows us to circumvent the challenging issue of constructing
the numerically cheap and spectrally equivalent approximation of the Schur comple-
ment S of the original system (2). To apply the AL preconditioner, the original system
(2) is transformed into an equivalent one with the same solution [3, 32], which is of
the form

(5)

\biggl[ 
Q\gamma G\gamma 

D C

\biggr] \biggl[ 
u
p

\biggr] 
=

\biggl[ 
f\gamma 
g

\biggr] 
with \scrA \gamma :=

\biggl[ 
Q\gamma G\gamma 

D C

\biggr] 
,

where Q\gamma = Q - \gamma GW - 1D, G\gamma = G - \gamma GW - 1C, and f\gamma = f - \gamma GW - 1g. The scalar
\gamma > 0 and the matrix W should be nonsingular. This transformation is obtained by
multiplying  - \gamma GW - 1 on both sides of the second row of system (2) and adding the
resulting equation to the first one. Clearly, the transformed system (5) has the same
solution as system (2) for any value of \gamma and any nonsingular matrix W . The Schur
complement of \scrA \gamma is S\gamma = C  - DQ - 1

\gamma G\gamma .
The equivalent system (5) is what we want to solve when applying the AL pre-

conditioner. Using the block \scrD \scrU decomposition of \scrA \gamma , the ideal AL preconditioner
\scrP IAL is given by

(6) \scrP IAL =

\biggl[ 
Q\gamma G\gamma 

O \widetilde S\gamma 

\biggr] 
,

where \widetilde S\gamma denotes the approximation of S\gamma .
The modified variant of the ideal AL preconditioner, i.e., the so-called modified

AL preconditioner, replaces Q\gamma by its block lower-triangular part, i.e., \widetilde Q\gamma , such that
the difficulty of solving subsystems with Q\gamma is avoided [3]. To see it more clearly, we

take a 2D case as an example and give Q\gamma and \widetilde Q\gamma as follows:

Q =

\biggl[ 
Q1 O
O Q1

\biggr] 
, G =

\biggl[ 
G1

G2

\biggr] 
, D =

\bigl[ 
D1 D2

\bigr] 
,

Q\gamma =

\biggl[ 
Q1  - \gamma G1W

 - 1D1  - \gamma G1W
 - 1D2

 - \gamma G2W
 - 1D1 Q1  - \gamma G2W

 - 1D2

\biggr] 
,

\widetilde Q\gamma =

\biggl[ 
Q1  - \gamma G1W

 - 1D1 O
 - \gamma G2W

 - 1D1 Q1  - \gamma G2W
 - 1D2

\biggr] 
.

Substituting \widetilde Q\gamma into \scrP IAL as (6), we then get the modified AL preconditioner \scrP MAL:

(7) \scrP MAL =

\Biggl[ 
\widetilde Q\gamma G\gamma 

O \widetilde S\gamma 

\Biggr] 
.
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION A1367

It appears that one needs to solve subsystems with \widetilde Q\gamma when applying \scrP MAL. This
work is further reduced to solve systems with Q1 - \gamma G1W

 - 1D1 and Q1 - \gamma G2W
 - 1D2.

These two subblocks do not contain the coupling between two components of the
velocity so that it is much easier to solve, compared to Q\gamma involved in \scrP IAL.

3.2. New Schur complement approximation. The key of the ideal and mod-
ified AL preconditioners is to find a numerically cheap and spectrally equivalent Schur
complement approximation \widetilde S\gamma . The novel approximation proposed by this paper is
based on the following lemma.

Lemma 3.1. Assuming that all the relevant matrices are invertible, then the in-
verse of S\gamma is given by

(8) S - 1
\gamma = S - 1(I  - \gamma CW - 1) + \gamma W - 1,

where S = C  - DQ - 1G denotes the Schur complement of the original system (2).

Proof. We refer the reader to [3, 32] for the proof.

This lemma was already published, but its importance was not fully appreciated.
Since Lemma 3.1 gives the connection between the Schur complement S\gamma and S, it
provides a framework to build the approximation of S\gamma . Provided an approximation

of S denoted by \widetilde S, it is natural to substitute \widetilde S into expression (8) to construct an
approximation of S\gamma in the inverse form as

(9) \widetilde S - 1
\gamma new = \widetilde S - 1(I  - \gamma CW - 1) + \gamma W - 1,

where the notation new is used to differ from the old approach to approximate S\gamma ,
discussed in the next section.

Actually it is not necessary to explicitly implement \widetilde S\gamma new. Solving a subsystem

with \widetilde S\gamma new, i.e., \widetilde S\gamma new x = b, converts to multiply the vector b on both sides
of expression (9). Suppose that W is a diagonal matrix, e.g., the mass matrix Mp

with density multiplied with cell volumes in FVM; then the complexity of (\widetilde S - 1(I  - 
\gamma CW - 1) + \gamma W - 1)b is focused on solving the system with \widetilde S. This means that the

accelerating techniques to optimize \widetilde S can reduce the computational time of the new
approach.

From expression (9) it is clear that the Schur complement approximation \widetilde S pro-

posed for the original system (2) is used to construct \widetilde S\gamma new here. Among the known
LSC, PCD, and SIMPLE methods, this paper chooses the Schur complement ap-
proximation arising from the SIMPLE preconditioner. One motivation is that in the
context of the considered FVM the Schur complement approximation from the SIM-
PLE preconditioner reduces to a scaled Laplacian matrix. See the next paragraph for
more details. This choice is also motivated by the efficiency of the SIMPLE precondi-
tioner on the complicated maritime applications; see [15, 16], for instance. We expect
that the choice of the Schur complement approximation arising from the SIMPLE
preconditioner helps to build a numerically cheap and efficient \widetilde S\gamma new.

Regarding the Schur complement S = C - DQ - 1G of the original system (2), the
SIMPLE preconditioner approximates Q by its diagonal, i.e., diag(Q), and obtains the

approximation of S as \widetilde S1 = C  - Ddiag - 1(Q)G. Taking into account the stabilization
matrix C = Ddiag - 1(Q)G  - diag - 1(Qii)Lp as given in (3), we further reduce the

approximation to \widetilde SSIMPLE =  - diag - 1(Qii)Lp because the term Ddiag - 1(Q)G in \widetilde S1

and C cancels. See, for instance, [14, 16] for a detailed discussion of obtaining \widetilde SSIMPLE
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in FVM. Substituting \widetilde SSIMPLE and W = Mp into expression (9), we obtain

(10) \widetilde S - 1
\gamma new = \widetilde S - 1

SIMPLE(I  - \gamma CM - 1
p ) + \gamma M - 1

p , where \widetilde SSIMPLE =  - diag - 1(Qii)Lp.

Based on the above approach, it is easy to see that there is no extra requirement
on the value of the parameter \gamma . As pointed out in the next section, the requirements
in the old approximation of the Schur complement are contradictory. This suggests
that the convergence rate of the Krylov subspace solvers preconditioned by the AL
preconditioner with the new Schur complement approximation is weakly depending
on the value of \gamma . This advantage makes the new AL variant less sensitive to the
choice of \gamma . See the results regarding the influence of \gamma on the convergence rate in
the numerical experiment section.

3.3. Old Schur complement approximation. For a comparison reason, the
old approximation of the Schur complement in the AL preconditioner is recalled in
this section. The starting point to construct the old approximation of the Schur
complement in the AL preconditioner is also Lemma 3.1. However, the strategy is
totally different. Choosing W1 = \gamma C +Mp and substituting W1 into expression (8),
we have

S - 1
\gamma = S - 1(I  - (\gamma C +Mp  - Mp)(\gamma C +Mp)

 - 1) + \gamma (\gamma C +Mp)
 - 1

= S - 1Mp(\gamma C +Mp)
 - 1 + \gamma (\gamma C +Mp)

 - 1

= (\gamma  - 1S - 1Mp + I)(C + \gamma  - 1Mp)
 - 1.

For large values of \gamma such that \| \gamma  - 1S - 1Mp \| \ll 1, the term \gamma  - 1S - 1Mp can be

neglected so that we have \widetilde S\gamma old as follows:

(11) \widetilde S\gamma old = C + \gamma  - 1Mp.

The choice of W1 = \gamma C +Mp is not practical since the action of W - 1
1 is needed

in the transformed system (5). The ideal and modified AL preconditioners, used,
for instance, in [3, 32], omit the term \gamma C in W1 and choose W = Mp. The choice
W = Mp only involves the mass matrix Mp, which is easily inverted, especially in
FVM, where Mp is a diagonal matrix.

The contradictory requirements in the above method are presented as follows.
The approximation \widetilde S\gamma old is obtained if and only if W1 = \gamma C +Mp and large values
of \gamma are chosen. However, W = Mp is close to W1 = \gamma C + Mp only when \gamma is
small. This means that it is contradictory to tune the value of \gamma so that W = Mp

and \widetilde S\gamma old could be simultaneously obtained. A simply balanced value of \gamma is \gamma = 1
or O(1). This disadvantage reflects in the convergence rate of the Krylov subspace
solvers. This paper shows that for the laminar calculations the number of the Krylov
subspace iterations preconditioned by the AL preconditioner with \widetilde S\gamma old is about

fourteen times larger than the new Schur approximation \widetilde S\gamma new. An application of

the AL preconditioner with \widetilde S\gamma old in the more challenging turbulent computations
with variable viscosity and more stretched grids shows a very slow convergence or
even stagnation. See numerical experiments in section 5.

In summary, regarding the ideal and modified AL preconditioners applied to the
transformed system (5), there are two types of Schur complement approximations,
i.e.,

1. \widetilde S - 1
\gamma new = \widetilde S - 1

SIMPLE(I  - \gamma CM - 1
p ) + \gamma M - 1

p , \widetilde SSIMPLE =  - diag - 1(Qii)Lp,
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2. \widetilde S\gamma old = C + \gamma  - 1Mp.
The choice of W = Mp is fixed in the transformation to obtain the equivalent system
(5) and the construction of two Schur complement approximations.

3.4. SIMPLE preconditioner. Although the focus of this paper is on the
new Schur complement approximation and its advantage over the old one in the AL
preconditioner, we also present the SIMPLE preconditioner for a more comprehensive
comparison. Different from the ideal AL preconditioner and its modified variant, the
SIMPLE preconditioner is proposed for the original system (2), which is based on the
block \scrL \scrD \scrU decomposition of the coefficient matrix \scrA and given by

\scrP SIMPLE =

\biggl[ 
Q O

D \widetilde S

\biggr] \biggl[ 
I diag - 1(Q)G
O I

\biggr] 
,

where \widetilde S denotes the approximation of the Schur complement of \scrA , i.e., S = C  - 
DQ - 1G. With the stabilization matrix C given by (3), the Schur complement ap-

proximation becomes \widetilde S = \widetilde SSIMPLE =  - diag - 1(Qii)Lp, where Lp is the Laplacian
matrix. Therefore, the scaled Laplacian matrix is used as the approximation of the
Schur complement in the SIMPLE preconditioner. In order to avoid repetition, we
refer the reader to section 3.2 for the details of obtaining \widetilde SSIMPLE, and to [15, 16] for
the performance of the SIMPLE preconditioner in the FVM context on both academic
and maritime applications.

4. Cost model for AL and SIMPLE preconditioners. To summarize the
linearized systems where the AL and SIMPLE preconditioners are applied individu-
ally, we give the schematic diagram as follows:

Use FVM and Picard method to solve the nonlinear problem (1).
Each Picard iteration:

Use Krylov subspace method to solve
the adapted linearized system (5):

[
Qγ Gγ

D C

] [
u
p

]
=

[
fγ
g

]
,Aγ =

[
Qγ Gγ

D C

]
.

Use Krylov subspace method to
solve the linearized system (2):

[
Q G
D C

] [
u
p

]
=

[
f
g

]
,A =

[
Q G
D C

]
.

Each Krylov iteration: solve a system with the
ideal or modified AL preconditioner

PMAL =

[
Q̃γ Gγ

O S̃γ

]
or PIAL =

[
Qγ Gγ

O S̃γ

]

with S̃γ = S̃γ new or S̃γ = S̃γ old

Each Krylov iteration: solve a system
with the SIMPLE preconditioner
PSIMPLE =[
Q O

D S̃SIMPLE

] [
I diag−1(Q)G
O I

]

reduced to solve the subsystems with Qγ

(or Q̃γ) and S̃γ .
reduced to solve the subsystems with
Q and S̃SIMPLE.

In [15], we presented a basic cost model to distinguish between the SIMPLE pre-
conditioner and other preconditioners. Here, we extend the model to include the
modified AL preconditioner with two Schur complement approximations. First, we
consider the cost of using the SIMPLE preconditioner \scrP SIMPLE for a Krylov subspace
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method that solves the system with \scrA to a certain relative tolerance in n1 iterations.
The preconditioner is applied at each Krylov iteration, and the SIMPLE precondi-
tioner involves the solution of the momentum subsystem ``mom-u"" with Q and the
pressure subsystem ``mass-p"" with \widetilde SSIMPLE. In addition, at each Krylov iteration
another cost is expressed in the product of the coefficient matrix \scrA with a Krylov
residual vector bres. Thus, the total cost is

\bullet \scrP SIMPLE: n1 \times (mom-u with Q+mass-p with \widetilde SSIMPLE +\scrA \times bres).
Second, we consider the cost of applying the modified AL preconditioner \scrP MAL

with the new Schur approximation \widetilde S\gamma new. If we neglect the multiplications in the

definition of \widetilde S\gamma new as given in (10), the cost of solving the pressure subsystem with
\widetilde S\gamma new is the same as \widetilde SSIMPLE. Thus, the total cost is

\bullet \scrP MAL with \widetilde S\gamma new: n2\times (mom-u with \widetilde Q\gamma +mass-p with \widetilde SSIMPLE+\scrA \gamma \times bres).
Finally, we consider the cost of applying the modified AL preconditioner \scrP MAL

with the old Schur approximation \widetilde S\gamma old. Similarly to the analysis of \scrP MAL with
\widetilde S\gamma new, we obtain the total cost as

\bullet \scrP MAL with \widetilde S\gamma old: n3 \times (mom-u with \widetilde Q\gamma +mass-p with \widetilde S\gamma old +\scrA \gamma \times bres).

Clearly, the difference in cost by applying \scrP MAL with \widetilde S\gamma new and \widetilde S\gamma old arises from

solving the pressure subsystems with \widetilde SSIMPLE and \widetilde S\gamma old, respectively. It is difficult

to analytically compare the complexity of solving the subsystems with \widetilde SSIMPLE and
\widetilde S\gamma old. However, numerical experiments in the next section show n2 \ll n3 on all
considered problems, which makes the new Schur complement approximation more
efficient and attractive in terms of the number of iterations and wall-clock time.

At each Krylov iteration, more nonzero fill-in introduced in the blocks Q\gamma and

G\gamma and more difficulty of iteratively solving the momentum subsystem with \widetilde Q\gamma than

Q lead to a higher cost of applying \scrP MAL with \widetilde S\gamma new than \scrP SIMPLE. We refer the
reader to [32] for a detailed discussion. Therefore, this higher cost of \scrP MAL with
\widetilde S\gamma new only pays off if n2 < n1. In this paper we observe n2 < n1 on the turbulent

and laminar tests, but the time advantage of \scrP MAL with \widetilde S\gamma new over \scrP SIMPLE needs
a further assessment, which is included in the future research plan.

5. Numerical experiments. In this section, we compare the new AL variant
with the old one and the SIMPLE preconditioner, for incompressible and laminar flow
governed by the Navier--Stokes equations, as well as turbulent flow governed by the
Reynolds--averaged Navier--Stokes equations.

5.1. Flow over a finite flat plate (FP). Flow over a finite flat plate is a
standard test case in maritime engineering; see [25] for a detailed study of various
turbulence models with MARIN's CFD software package ReFRESCO [19].

We first consider the fully turbulent flow at Re = 107 on the block structured
grids. The grids are refined near the leading and trailing edge of the plate and spread
out in the wake of the plate; see Figure 2(a), which leads to some eccentricity and
nonorthogonality. As can be seen, the grids are stretched in both the horizontal and
vertical directions and reach the maximal aspect ratio of order 1 : 104 near the middle
of the plate. The complete flow is computed, starting from uniform laminar flow
upstream of the plate.

Second, we reconsider laminar flow at Re = 105 on a straight single-block grid.
This case was already presented in [14, 15, 16, 32] for other solvers and preconditioners.
We reconsider it here to show that the new Schur complement approximation also
improves the efficiency of the AL preconditioner in the calculations of laminar flow.
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(a) Turbulent case

(b) Laminar case

Fig. 2. Impression of the grids. Turbulent case with 80\times 40 cells and the max aspect ratio of
order 1 : 104 and laminar case with 64\times 64 cells and the max aspect ratio of order 1 : 50.

The stretched grids shown in Figure 2(b) are generated based on uniform Cartesian
grids by applying the stretching function from [16] in the vertical direction. Near the
plate the grids have a maximal aspect ratio of order 1 : 50, which is about two orders
smaller than the turbulent grids. Contrary to the turbulent case, the flow starts with
the (semianalytical) Blasius solution halfway down the plate, so only the second half
and the wake are computed.

5.2. Flow over a backward-facing step (BFS). We consider turbulent flow
over a backward-facing step in a channel, as measured by Driver and Seegmiller [6].
The chosen case corresponds to the C-30 case from the ERCOFTAC Classic Collection
[10], with Reynolds number 5 \cdot 104 based on the inflow velocity and the step height.
The flow is more complicated than the flat-plate flow as it features separation, a
free shear-layer, and reattachment. Detailed results with ReFRESCO for various
turbulence models are found in [7], including results for the k-\omega SST turbulence
model [20] used here. The grid is also more complicated: multiple blocks are used to
wrap the boundary layer around the step; see Figure 3.

In this paper all experiments are carried out based on the blocks Q, G, D, C,
Mp, and Lp and the right-hand side vector rhs, which are obtained at the 30th
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Fig. 3. Impression of block structured grid with 9600 cells for turbulent flow over backward-
facing step.

nonlinear iteration. Numerical experiments in [32] show that the number of linear
iterations varies during the nonlinear procedure. The motivation for choosing the
30th nonlinear iteration to export the blocks is that a representative number of linear
iteration can be obtained from the 30th nonlinear step, compared with the average
number of linear iterations through the whole nonlinear procedure. We use a series
of structured grids with 80\times 40 and 160\times 80 cells for the turbulent FP case and the
structured grid with 9600 cells for the turbulent BFS case. Regarding the laminar
FP calculation, we use a structured grid with 64 \times 64 cells. The matrices and right-
hand side vector are generated by ReFRESCO and available in the MATLAB binary
.mat format on the website [18]. The aim of the numerical experiments is to show
the variation in the eigenvalues and the number of Krylov subspace iterations arising
from different Schur complement approximations in the AL preconditioner. To carry
out a comprehensive evaluation of the new Schur complement approximation in the
AL preconditioner, in this paper we solve the linear system preconditioned by the
AL preconditioner with the new Schur complement approximation to the machine
accuracy. For a fair comparison, the same stopping tolerance is used when employing
the old Schur complement approximation and the SIMPLE preconditioner. Since the
AL preconditioner with different Schur complement approximations and the SIMPLE
preconditioner involve various momentum or pressure subsystems, all the subsystems
are directly solved in this paper to avoid the sensitiveness of iterative solvers on the
varying solution complexities.

5.3. Numerical experiments on the turbulent FP case. To find out the
reason that the new Schur complement approximation \widetilde S\gamma new leads to a fast conver-
gence of the Krylov subspace solvers preconditioned by the AL preconditioner, we
plot ten extreme eigenvalues of the preconditioned matrices \scrP  - 1

IAL\scrA \gamma and \scrP  - 1
MAL\scrA \gamma 

with \widetilde S\gamma new on the grid with 80\times 40 cells. The results, which are shown in Figures 4
and 5, show that for the considered values of \gamma the smallest eigenvalues are far from
zero and the spectrum is clustered due to a small ratio between the largest and small-
est magnitudes of the eigenvalues. Such a distribution of the eigenvalues is favorable
for the Krylov subspace solvers and a fast convergence rate can be expected.

Results in Figure 6 show the fast convergence rate of the Krylov subspace solver
preconditioned by the ideal AL preconditioner with the new Schur approximation
\widetilde S\gamma new on the grids with 80 \times 40 cells and 160 \times 80 cells. The fast convergence rate

confirms the prediction that the new Schur approximation \widetilde S\gamma new produces a favorable
ideal AL preconditioner for the Krylov subspace solvers. In Figure 6 we observe that
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large values of \gamma result in a faster convergence rate on both grids. This observation
is analogous to that when applying the old Schur complement approximation \widetilde S\gamma old

in the ideal AL preconditioner with stable FEM; see [12], for instance. On the other
hand, an ill-conditioned Q\gamma can arise from large values of \gamma [32]. This indicates that
the value of \gamma cannot be taken too large, otherwise solving the momentum subsystem
with Q\gamma can be very difficult. To circumvent the challenge of solving Q\gamma with big
values of \gamma and the slow convergence rate of the Krylov subspace solver by small
values of \gamma , in this work we choose the balanced value of \gamma to be \gamma = 1 or O(1) in the

ideal AL preconditioner with the new Schur approximation \widetilde S\gamma new.
Compared with the ideal AL preconditioner, the values of \gamma exhibit a different

influence on the spectrum of the preconditioned matrix by using the modified AL
preconditioner. For example, with \gamma = 100 the smallest eigenvalue of \scrP  - 1

MAL\scrA \gamma is two
orders of magnitude smaller than \gamma = 0.01 and \gamma = 1.0, as seen from the last row of
Figure 5. It appears that the optimal value of \gamma , which leads to the most clustered
eigenvalues of \scrP  - 1

MAL\scrA \gamma , is \gamma opt = 1. Based on this observation we predict that the
fastest convergence rate of the Krylov subspace solvers preconditioned by the modified
AL preconditioner with \widetilde S\gamma new can be obtained with \gamma opt = 1.

The convergence rates of the Krylov subspace solvers preconditioned by the mod-
ified AL preconditioner with \widetilde S\gamma new on the grids with 80\times 40 cells and 160\times 80 cells
are presented in Figure 7. We find out that \gamma opt = 1 results in the fastest convergence
rate on two grids, and this confirms the prediction based on the spectrum analysis
from Figure 5. Comparing two grids with 160\times 80 cells and 80\times 40 cells, it appears
that the optimal value \gamma opt = 1 is independent of mesh refinement. This property is
helpful in practice since one can carry out numerical experiments to determine \gamma opt
on coarse grids and then reuse it on finer grids.

In Table 1 we summarize the number of the Krylov subspace iterations precon-
ditioned by the SIMPLE preconditioner and the AL preconditioners with the new
Schur complement approximation \widetilde S\gamma new and \gamma = 1 on two grids. First, we focus on
the ideal and modified AL preconditioners. The value \gamma = 1 is a balanced choice for
the ideal AL preconditioner and is the optimal choice for the modified AL precondi-
tioner. As can be seen, for this considered turbulent case the new Schur complement
approximation \widetilde S\gamma new does not make the AL preconditioners independent of mesh
refinement. This motivates a further study focused on mesh independence, which is
planned as a future direction of research.

On the other hand, the proposal of the new Schur complement approximation
\widetilde S\gamma new is a big contribution to the development of AL preconditioners in the context of
turbulent calculations. This is clearly seen from Figure 8, where the Krylov subspace
solver converges very slowly when applying the old Schur complement approximation
\widetilde S\gamma old in the modified AL preconditioner. To understand this slow convergence the

extreme eigenvalues of \scrP  - 1
MAL\scrA \gamma with \widetilde S\gamma old on the grid with 80\times 40 cells are presented

in Figure 9. We see that the smallest eigenvalues are quite close to zero for all tested
values of \gamma , which degrades the efficiency of the Krylov subspace solver considerably.
Among the tested values of \gamma , Figure 9 shows that \gamma = 1 results in a relatively clustered
spectrum. Based on this observation we expect that the optimal value \gamma opt = 1
leads to the fastest convergence when using the old Schur complement approximation
\widetilde S\gamma old in the modified AL preconditioner. However, the number of Krylov subspace

iterations preconditioned by \scrP MAL with \widetilde S\gamma old and \gamma opt = 1 is over 5000, as seen
from Figure 8. Compared with 140 Krylov subspace iterations preconditioned by
\scrP MAL with \widetilde S\gamma new and \gamma opt = 1, we clearly show that the new Schur complement

D
ow

nl
oa

de
d 

02
/2

4/
20

 to
 1

31
.1

80
.1

13
.8

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1374 XIN HE, CORNELIS VUIK, AND CHRISTIAAN M. KLAIJ

0.766 0.768 0.77 0.772 0.774 0.776 0.778 0.78 0.782

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(a) \gamma = 0.01

0 5 10 15 20 25

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b) \gamma = 0.01

0.7655 0.766 0.7665 0.767 0.7675

×10-4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(c) \gamma = 1

1.8 2 2.2 2.4 2.6 2.8 3

-10

-8

-6

-4

-2

0

2

4

6

8

10

(d) \gamma = 1

0.595 0.6 0.605 0.61 0.615 0.62 0.625

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(e) \gamma = 100

2.8 3 3.2 3.4 3.6 3.8 4 4.2

-10

-8

-6

-4

-2

0

2

4

6

8

10

(f) \gamma = 100

Fig. 4. Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of \scrP  - 1
IAL\scrA \gamma with

the new Schur approximation \widetilde S\gamma new and different values of \gamma . The grid with 80\times 40 cells is used.

approximation \widetilde S\gamma new proposed in this paper significantly improves the performance
of the AL preconditioners on the turbulent FP case.

Second, we compare the SIMPLE preconditioner with the modified AL precondi-
tioner which uses the new Schur complement approximation \widetilde S\gamma new and \gamma opt = 1. The
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(f) \gamma = 100

Fig. 5. Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of \scrP  - 1
MAL\scrA \gamma with

the new Schur approximation \widetilde S\gamma new and different values of \gamma . The grid with 80\times 40 cells is used.

comparison in terms of the spectrum of the eigenvalues is given in Figure 10, which
illustrates that on the grid with 80 \times 40 cells the smallest eigenvalues are nearly the
same for both preconditioners. However, the SIMPLE preconditioner leads to a larger
ratio between the largest and smallest magnitudes of the eigenvalues, which means
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Fig. 6. Turbulent FP: the convergence of GMRES (no restart) preconditioned by the ideal AL

preconditioner \scrP IAL with the new Schur approximation \widetilde S\gamma new on the grids with 80\times 40 cells (left)
and 160\times 80 cells (right).
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Fig. 7. Turbulent FP: the convergence of GMRES (no restart) preconditioned by the modified

AL preconditioner \scrP MAL with the new Schur approximation \widetilde S\gamma new on the grids with 80\times 40 cells
(left) and 160\times 80 cells (right).

that the spectrum of the eigenvalues is less clustered compared to the modified AL
preconditioner. Therefore, a faster convergence rate of the Krylov subspace solvers is
expected by applying the modified AL preconditioner. Results in Table 1 illustrate
that with the mesh refinement the number of Krylov subspace iterations increases by
a factor of 1.7 by using the modified AL preconditioner with \widetilde S\gamma new and \gamma opt = 1. The
increasing factor is 2.2 when using the SIMPLE preconditioner. The smaller increas-
ing factor allows a more apparent advantage of the modified AL preconditioner with
\widetilde S\gamma new in terms of the reduced number of the Krylov subspace iterations with mesh
refinement, which foresees the overall advantage in terms of total wall-clock time on
fine enough grids.

5.4. Numerical experiments on the turbulent BFS case. On the calcula-
tions of the turbulent BFS case, we further assess the new Schur complement approxi-
mation \widetilde S\gamma new applied in the modified AL preconditioner and present the convergence
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Table 1
Turbulent FP: the number of GMRES iterations (no restart) preconditioned by the SIMPLE

preconditioner and the AL preconditioners with the new Schur approximation \widetilde S\gamma new and \gamma = 1 on
two grids.

Grid 80\times 40 cells 160\times 80 cells
\scrP IAL: 132 245
\scrP MAL: 140 246

\scrP SIMPLE: 180 382

Iterations
0 1000 2000 3000 4000 5000 6000

R
es

id
ua

ls

10-14

10-12

10-10

10-8

10-6

10-4

10-2

1

Fig. 8. Turbulent FP: the convergence of GMRES (no restart) preconditioned by the modified

AL preconditioner \scrP MAL with the old Schur approximation \widetilde S\gamma old and \gamma opt = 1. The grid with
80\times 40 cells is used.

rate of the Krylov subspace solver in Figure 11(a). As seen, the utilization of \widetilde S\gamma new

produces quite a fast convergence rate in the turbulent BFS case too. Among the
considered values of \gamma , it appears that \gamma opt = 0.1 results in the fastest convergence
rate on the turbulent BFS case. Considering \gamma opt = 1 on the turbulent FP test, we
find out that the optimal value of \gamma resulting in the best performance of the modified
AL preconditioner with the new Schur complement approximation \widetilde S\gamma new is weakly
problem dependent.

Comparable to the turbulent FP case, on the turbulent BFS test we also see the
faster convergence rate achieved by using the modified AL preconditioner with \widetilde S\gamma new

than the SIMPLE preconditioner. Comparison in Figure 11(a) shows that the number
of Krylov subspace iterations preconditioned by the modified AL preconditioner with
\widetilde S\gamma new and \gamma opt = 0.1 is nearly half that when using the SIMPLE preconditioner.
Based on the result with mesh refinement in the turbulent FP case (see Table 1), it is
reasonable to expect that in the turbulent BFS test fewer Krylov subspace iterations
preconditioned by the modified AL preconditioner with \widetilde S\gamma new will convert to a time
advantage over the SIMPLE preconditioner on fine grids.

To illustrate the improvement arising from the utilization of the new Schur com-
plement approximation \widetilde S\gamma new, in Figure 11(b) we present the convergence rate pre-
conditioned by the modified AL preconditioner with the old Schur complement ap-
proximation \widetilde S\gamma old. The fastest convergence rate with \widetilde S\gamma old is obtained with \gamma opt = 1,
and other values of \gamma cannot make the solution procedure converge to the desired toler-
ance within the maximal 1000 iterations. The fastest convergence rate with \widetilde S\gamma old and

\gamma opt = 1 is about eight times slower than \widetilde S\gamma new with \gamma opt = 0.1. The turbulent BFS
case is another example to illustrate the advantage of the new Schur approximation
\widetilde S\gamma new over the old one \widetilde S\gamma old in the turbulent context.
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Fig. 9. Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of \scrP  - 1
MAL\scrA \gamma with

the old Schur approximation \widetilde S\gamma old and different values of \gamma . The grid with 80\times 40 cells is used.

For a comprehensive comparison, in Table 2 we summarize the number of Krylov
subspace iterations accelerated by different preconditioners. Since we have observed
the mesh dependence of the AL preconditioners with the new Schur approximation
\widetilde S\gamma new on the turbulent FP case, we expect an analogous behavior in the turbulent
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Fig. 10. Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of \scrP  - 1
MAL\scrA \gamma with

the new Schur approximation \widetilde S\gamma new and \gamma opt = 1, and of \scrP  - 1
SIMPLE\scrA . The grid with 80\times 40 cells

is used.

BFS case. The planned future research includes the improvement of allowing robust-
ness with respect to mesh refinement on turbulent calculations.

5.5. Numerical experiments on the laminar FP case. The modified AL
preconditioner is often utilized due to the reduced complexity of solving the sub-
system with \widetilde Q\gamma , compared to Q\gamma involved in the ideal AL preconditioner. The ex-

treme eigenvalues of \scrP  - 1
MAL\scrA \gamma with the new Schur approximation \widetilde S\gamma new are shown

in Figure 12. There are two observations to be made. First, for moderate values of \gamma ,
e.g., \gamma \in [0.01, 0.1], the smallest eigenvalues are far from zero. Second, \gamma = 0.1 results
in the smallest ratio between the largest and smallest magnitudes of the eigenvalues.
Thus, we expect that the optimal value of \gamma is \gamma opt = 0.1 for the laminar FP case.
The prediction is confirmed by Figure 13, which illustrates that \gamma opt = 0.1 results in
the fastest convergence rate among other tested values of \gamma .

In [32] we find out that for the laminar FP case the optimal value of \gamma for the

old Schur approximation \widetilde S\gamma old is \gamma opt = 400. Seen from Table 3, on the laminar

FP case the modified AL preconditioner with the new Schur approximation \widetilde S\gamma new

and \gamma opt = 0.1 reduces the number of the Krylov subspace iterations by factors 14.6
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(b) \scrP MAL with \widetilde S\gamma old

Fig. 11. Turbulent BFS: the convergence of GMRES (no restart) preconditioned by the modified

AL preconditioner \scrP MAL with the new Schur approximation \widetilde S\gamma new and the SIMPLE preconditioner

(left), and the modified AL preconditioner \scrP MAL with the old Schur approximation \widetilde S\gamma old (right).
The grid with 9600 cells is used.

Table 2
Turbulent BFS: the number of GMRES iterations (no restart) preconditioned by the AL pre-

conditioners with different Schur complement approximations and different values of \gamma , and the
SIMPLE preconditioner. The grid with 9600 cells is used.

\gamma 0.01 0.1 1

\scrP IAL with \widetilde S\gamma new: 133 103 96

\scrP MAL with \widetilde S\gamma new: 134 104 111

\scrP MAL with \widetilde S\gamma old: > 1000 > 1000 791
\scrP SIMPLE: 199

and 2.2, compared to the old Schur approximation \widetilde S\gamma old with \gamma opt = 400 and the
SIMPLE preconditioner, respectively. The above numerical results clearly show that
the new Schur complement approximation \widetilde S\gamma new proposed in this paper significantly
improves the performance of the AL preconditioner for laminar flows too.

In the previous work [32] we set the stopping tolerance for the linear system to
be 10 - 3 in the laminar FP case and compare the modified AL preconditioner with
the old Schur complement approximation and the SIMPLE preconditioner in terms of
the number of Krylov subspace iterations. This comparison is executed based on the
chosen stopping tolerance which balances the linear and nonlinear solvers. Since the
nonlinear solver is not the focus of this paper, it is reasonable to solve the linear sys-
tem to the machine accuracy so that a comprehensive evaluation of the proposed new
Schur complement approximation in the AL preconditioner and a complete compar-
ison with the old Schur complement approximation and the SIMPLE preconditioner
can be obtained. In this sense, the results in Table 3, regarding the number of Krylov
subspace iterations preconditioned by the modified AL preconditioner with the old
Schur complement approximation and the SIMPLE preconditioner, supplement the
previous work [32].

5.6. Comparisons between the turbulent and laminar calculations. Fi-
nally we put the turbulent and laminar results together in Table 4 for a comparison.
Considering the modified AL preconditioner with the new Schur approximation \widetilde S\gamma new

and the optimal value \gamma opt , we see that the number of the Krylov subspace iterations
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Fig. 12. Laminar FP: the ten smallest (left) and largest (right) eigenvalues of \scrP  - 1
MAL\scrA \gamma with

the new Schur approximation \widetilde S\gamma new and different values of \gamma . The grid with 64\times 64 cells is used.

is quite acceptable for all tested cases. This means that the new Schur complement
approximation proposed in this paper makes the AL preconditioner robust with re-
spect to the mesh anisotropy and physical parameter variation, e.g., the variation of
the viscosity. Regarding the optimal value of \gamma , it lies in the interval [0.1, 1] for all
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Fig. 13. Laminar FP: the convergence of GMRES (no restart) preconditioned by the modified

AL preconditioner with the new Schur complement approximation \widetilde S\gamma new and different values of \gamma .
The grid with 64\times 64 cells is used.

Table 3
Laminar FP: the number of GMRES iterations (no restart) preconditioned by the modified AL

preconditioner with two Schur complement approximations and their corresponding optimal values
of \gamma , and the SIMPLE preconditioner. The grid with 64\times 64 cells is used.

\scrP MAL with \widetilde S\gamma new and \gamma opt = 0.1 \scrP MAL with \widetilde S\gamma old and \gamma opt = 400 \scrP SIMPLE

83 1200 183

tests when applying the new Schur complement approximation in the modified AL
preconditioner. This interval is much more clustered than when using the old Schur
complement approximation. This means that the optimal value \gamma opt is easier to deter-
mine and weakly problem dependent for the new variant. Regarding the influence of
\gamma on the convergence, we observe that by using the new Schur complement approxi-
mation the variation of the convergence rate arising from different values of \gamma is much
less than that with the old approximation. See Figure 11 for the turbulent BFS case,
for instance. This illustrates that the new AL variant is less sensitive to the values
of \gamma . In addition, the advantage of the new Schur approximation over the old one
is clearly exhibited in terms of the significantly reduced number of Krylov subspace
iterations in all cases. This means that the new Schur approximation can consider-
ably improve the efficiency of the AL preconditioner for both turbulent and laminar
calculations. Although the number of Krylov subspace iterations by applying the
modified AL preconditioner with new Schur approximation and the optimal value of
\gamma is less than the SIMPLE preconditioner, the benefit in terms of the total wall-clock
time needs the further assessment due to the heavier cost of the AL preconditioner
presented in section 4. This is included in the future research plan.

6. Conclusion and future work. In this paper, we have considered the exten-
sion of the AL preconditioner in the context of stabilized finite volume methods to
both laminar flow governed by the Navier--Stokes equations and turbulent flow gov-
erned by the Reynolds-averaged Navier--Stokes (RANS) equations with eddy-viscosity
turbulence model.
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Table 4
The number of GMRES iterations (no restart) accelerated by different preconditioners on dif-

ferent tests. The grids with 80\times 40 cells, 9600 cells, and 64\times 64 cells are used for the turbulent FP,
turbulent BFS, and laminar FP cases, respectively.

Turbulent FP Turbulent BFS Laminar FP

\scrP MAL with \widetilde S\gamma new

\gamma opt: 1 0.1 0.1
iterations: 140 104 83

\scrP MAL with \widetilde S\gamma old

\gamma opt: 1 1 400
iterations: > 5000 791 1200
\scrP SIMPLE

iterations: 180 199 183

We find out that a straightforward application of the AL preconditioner to the
RANS equations yields disappointing results and therefore proposed a new Schur com-
plement approximation which leads to a variant of the AL preconditioner. The ap-
proach is to substitute the approximation of the Schur complement from the SIMPLE
preconditioner into the inverse of the Schur complement for the AL preconditioner.
Without the contradictory requirements in the old approximation, the new Schur
complement approximation makes the new AL variant less sensitive to the choice of
\gamma and weakly problem dependent.

To evaluate the new variant of the AL preconditioner, we consider the solution
of the linear system obtained at the 30th nonlinear iteration for three cases: laminar
and turbulent boundary-layer flow over a flat plate on grids with large aspect ratios,
and turbulent flow over a backward-facing step in a channel. The backward-facing
step flow is more complicated than the flat-plate flow as it features separation, a free
shear-layer, and reattachment. The new variant of the AL preconditioner significantly
speeds up the convergence rate of the Krylov subspace solvers for both turbulent and
laminar cases. Spectral analysis of the preconditioned systems explains the observed
difference. Like the SIMPLE preconditioner, the new AL variant avoids the clustering
of the smallest eigenvalues near zero. At the same time, the largest eigenvalues by
applying the new AL variant are significantly smaller than the SIMPLE precondi-
tioner. As a consequence, the new variant of the AL preconditioner outperforms the
considered preconditioners in terms of the number of Krylov subspace iterations. The
matrices and right-hand side vectors used in this paper are publicly available on the
website [18]. This makes the research reproducible and the comparison with other
preconditioning techniques easier.

We present a basic cost model to compare the new variant with others, including
the SIMPLE preconditioner, which is well established for the RANS equations. The
heavier cost of the new AL variant can be paid off with fewer Krylov subspace iter-
ations, which is seen in this paper. However, our test cases so far have been carried
out on the modest grid sizes that allow the matrices to be exported and analyzed in
MATLAB. Future work is planned on the assessment of the new AL variant on larger
grid sizes to show the benefit in terms of the reduced total wall-clock time. In this
paper we observe that the new AL variant is not mesh independent. Another planned
future research is on the improvement which allows robustness with respect to mesh
refinement.
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