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LONG RANGE SCATTERING FOR NONLINEAR

SCHRÖDINGER EQUATIONS WITH CRITICAL

HOMOGENEOUS NONLINEARITY

SATOSHI MASAKI AND HAYATO MIYAZAKI

Abstract. In this paper, we consider the final state problem for the
nonlinear Schrödinger equation with a homogeneous nonlinearity which
is of the long range critical order and is not necessarily a polynomial, in
one and two space dimensions. As the nonlinearity is the critical order,
the possible asymptotic behavior depends on the shape of the nonlin-
earity. The aim here is to give a sufficient condition on the nonlinearity
to construct a modified wave operator. To deal with a non-polynomial
nonlinearity, we decompose it into a resonant part and a non-resonant
part via the Fourier series expansion. Our sufficient condition is then
given in terms of the Fourier coefficients. In particular, we need to pay
attention to the decay of the Fourier coefficients since the non-resonant
part is an infinite sum in general.

1. Introduction

This paper is devoted to the study of long time behavior of solutions to
the nonlinear Schrödinger equation

(NLS) i∂tu+∆u = F (u).

Here, (t, x) ∈ R
1+d (d = 1, 2) and u = u(t, x) is a C-valued unknown func-

tion. We suppose that the nonlinearity F is homogeneous of degree 1+2/d,
that is, F satisfies

(1.1) F (λu) = λ1+
2

dF (u)

for any λ > 0 and u ∈ C. Our aim here is to determine the asymptotic
behavior of nontrivial small solutions to (NLS) with a general homogeneous
nonlinearity. More specifically, we give a sufficient condition on the nonlin-
earity F to construct a modified wave operator.

A typical example of nonlinearity satisfying (1.1) is a gauge-invariant
power type nonlinearity

(1.2) F (u) = µ|u|
2

du,

where µ ∈ R \ {0}. As for the nonlinearity of the form µ|u|pu, the power
p = 2/d is known to be a threshold. The equation (NLS) with the nonlin-
earity |u|pu admits a nontrivial solution asymptotically behaves like a free
solution for large time when p > 2/d. However, in the case p = 2/d, there
is no nontrivial solution to the equation (NLS) with (1.2) belongs to L2 and

2010 Mathematics Subject Classification. 35Q55, 35B40, 35P25.
Key words and phrases. nonlinear Schrödinger equations, scattering, modified wave

operator, long range scattering, asymptotic behavior.

1

http://arxiv.org/abs/1612.04524v1


2 S. MASAKI AND H. MIYAZAKI

scatters in L2 (see [1,18,20]). It is shown in [2,15] that when the nonlinear-
ity is of the form (1.2) then for given final data u+ the equation admits a
solution which asymptotically behaves like

(1.3) up(t) = (2it)−
d
2 ei

|x|2

4t û+

( x
2t

)
exp

(
−iµ

∣∣∣û+
( x
2t

)∣∣∣
2

d
log t

)

as t→ ∞, where û+ is the Fourier transform of u+.
When the nonlinearity is homogeneous of the critical order, asymptotic

behavior of a solution depends on the shape of the nonlinearity. In [12], it

is shown that if the nonlinearity is F (u) = u2/d+1 then (NLS) admits an
asymptotic free solution which is a solution behaves like

(1.4) up = (2it)−
d
2 ei

|x|2

4t û+

( x
2t

)
.

Remark that this is nothing but the asymptotic behavior of the free solution
eit∆u+. Hence, the behavior in this case is similar to the case |u|pu (p > 2/d).
Let us now introduce the following terminology: We say a nonlinearity is
short range if (NLS) admits a nontrivial solution behaves like (1.4), and is
long range if (NLS) admits a nontrivial solution behaves like (1.3) with a

suitable µ ∈ R \{0}. It is shown in [8,9,17] that the nonlinearity µ|u|2/du+
Nd(u) is short range if µ = 0 and long range if µ 6= 0, where

N1(u) = λ1u
3 + λ2|u|

2u+ λ3u
3

if d = 1 and
N2(u) = λ1u

2 + λ2u
2

if d = 2, λj ∈ C, and µ ∈ R\{0}. Furthermore, if µ 6= 0 then the asymptotic
behavior of a solution is given by (1.3). Thus, the gauge-invariant term
determines the asymptotic behavior.

In this paper, we handle more general nonlinearity satisfying (1.1) and
give a sufficient condition on nonlinearity to become short range or long
range. A special example in our mind is

(1.5) F (u) = |Re u|Re u,

which satisfies (1.1) for d = 2. The nonlinearity appears, for instance, as a
main part of a generalized version of Gross-Pitaevskii equation introduced
in [10]. We restrict our attention to a solution corresponding to a given final
data which has very small low-frequency part. We remark that if a final
data has non-negligible low-frequency part then other kinds of asymptotic
behavior take place (see [3–7,13,14]).

With the example (1.5), let us explain the main point of our argument to
treat general homogeneous nonlinearity. To compare with, let us first con-
sider the nonlinearity F (u) = |Re u|2Re u in d = 1. As for the nonlinearity,
a simple calculation shows

|Re u|2 Re u =

(
u+ u

2

)3

=
3

8
|u|2u+

1

8
u3 +

3

8
|u|2u+

1

8
u3

Hence, this is of the form F (u) = (3/8)|u|2u + N1(u) and so it is included
in the previous results [8, 9, 17]. One sees that the (NLS) admits a solution
asymptotically behaves like (1.3) with µ = 3/8. The term 3

8 |u|
2u is a reso-

nant term which determines the asymptotic behavior, and the other terms
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are non-resonant terms. We would emphasize that the non-resonant part is
a finite sum. On the contrary, the resonant term of (1.5) is not extracted
by such a simple calculation. Hence, we use the Fourier series expansion to
obtain

|Re u|Re u =
4

3π
|u|u+

∑

m6=0

4(−1)m+1

π(2m− 1)(2m+ 1)(2m + 3)
|u|−2m+1u2m+1.

A remarkable point is that the non-resonant part consists of infinitely many

terms. The question now arises whether decay of Fourier coefficients in n
is enough to sum up. One main respect of the present paper is to establish
a sufficient condition to handle the non-resonant part. The condition is
given in terms of the Fourier coefficients of the nonlinearity. It will turn out
that |Re u|Re u is long range and (NLS) admits a solution which has the
asymptotic (1.3) with µ = 4/3π.

To state our result precisely, we introduce some notation. A homogeneous
nonlinearity is written as

(1.6) F (u) = |u|1+
2

dF

(
u

|u|

)
.

We introduce a 2π-periodic function g(θ) by

(1.7) g(θ) = F (eiθ)

We identify a homogeneous nonlinearity F satisfying (1.1) with a 2π-periodic
function g through (1.6) and (1.7). Namely, given nonlinearity F , we give a
2π-periodic function g(θ) = gF (θ) by the above procedure. Conversely, for a
given 2π-periodic function g, we can construct a homogeneous nonlinearity
F = Fg : C → C by

Fg(u) =

{
|u|1+

2

d g (arg u) , u 6= 0,

0 u = 0.

We now apply the Fourier series expansion. Since g(θ) is 2π-periodic func-
tion, it holds, at least formally, that g(θ) =

∑
n∈Z gne

inθ with the coefficients

(1.8) gn :=
1

2π

∫ 2π

0
g(θ)e−inθdθ.

This expansion gives us

F (u) = |u|
2

d
+1

∑

n∈Z

gn

(
u

|u|

)n
=

∑

n∈Z

gn|u|
1+ 2

d
−nun,

by means of (1.6) and (1.7). We then write

(1.9) F (u) = g0|u|
2

d
+1 + g1|u|

2

du+
∑

n 6=0,1

gn|u|
1+ 2

d
−nun.

The extraction of a resonant term via Fourier expansion is motivated by
[11,19]. We also remark that the Fourier coefficients are represented as the
integral gn = 1

2πi

∫
|z|=1 F (z)

dz
z1+n , some of which are used in previous works

such as [16].
In this paper, we suppose the following.
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Assumption 1.1. Assume that F is a homogeneous nonlinearity such that

a corresponding 2π-periodic function g(θ) satisfies

g0 :=
1

2π

∫ 2π

0
g(θ)dθ = 0, g1 :=

1

2π

∫ 2π

0
g(θ)e−iθdθ ∈ R,

and
∑

n∈Z |n|
1+η |gn| < ∞ for some η > 0, where gn is given in (1.8). In

particular, g is Lipschitz continuous.

1.1. Main result. Set 〈a〉 = (1 + |a|2)1/2 for any a ∈ C. The weighted
Sobolev space on R

d is defined by Hm,s = {u ∈ S ′(Rd); 〈i∇〉m 〈x〉s u ∈ L2},
and Ḣm = {u ∈ S ′(Rd); (−∆)

m
2 u ∈ L2} denotes the homogeneous Sobolev

space on R
d, where m, s ∈ R. Let us simply write Hm = Hm,0. Let

‖g‖Lip := supθ 6=θ′ |g(θ)− g(θ′)|/|θ − θ′| be the Lipschitz norm.
Our main result is as follows:

Theorem 1.2. Suppose that the nonlinearity F satisfies Assumption 1.1 for

some η > 0. Fix δ ∈ (d/2, (d + 1)/2) so that δ − d/2 < 2η. Let γ = δ/2
if d = 1 and γ = (δ + 2)/6 if d = 2. Take b ∈ (d/4, γ). Then, there exists

ε0 = ε0(b, ‖g‖Lip) such that for any u+ ∈ H0,d∩Ḣ−δ satisfying ‖û+‖L∞ < ε0,

there exists T > 0 and a unique solution u ∈ C([T,∞);L2(Rd)) of (NLS)
such that

sup
t∈[T,∞)

tb ‖u(t)− up(t)‖L2 + sup
t∈[T,∞)

tb
(∫ ∞

t
‖u(s)− up(s)‖

4
Xd
ds

) 1

4

<∞,

where

up(t) = (2it)−
d
2 ei

|x|2

4t û+

( x
2t

)
exp

(
−ig1

∣∣∣û+
( x
2t

)∣∣∣
2

d
log t

)
,

X1 = L∞(R) and X2 = L4(R2).

Remark 1.3. Our theorem include the example (1.5) in d = 2. The corre-
sponding periodic function is g(θ) = | cos θ| cos θ and so

gn =





−
4

π(n− 2)n(n+ 2)
sin

πn

2
n: odd,

0 n: even.

Remark that it satisfies Assumption 1.1 for 0 < η < 1.

Remark 1.4. The regularity assumption on the data is similar to that is
made in [8] and stronger than in [9]. This is because we use regularity of the
data to weaken the condition on the nonlinearity. Hence, if F is a sufficiently
good one, for instance if it satisfies Assumption 1.1 with η > d, then the
regularity assumption can be taken the same as in [9] by their argument.

Remark 1.5. Theorem 1.2 implies that (NLS) admits a nontrivial asymp-
totic free solution when F satisfies Assumption 1.1 and g1 = 0. For example,
F (u) = |Re u|Re u− i| Im u| Imu, d = 2, is short range. Indeed, the corre-
sponding periodic function is g(θ) = | cos θ| cos θ − i| sin θ| sin θ and so

gn =





8

π(n− 2)n(n+ 2)
, n ≡ 3 mod 4,

0, otherwise.
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The rest of the paper is organized as follows. In the next section, we
outline the proof. Then, it will turn out that the main step of the proof
is the estimate of non-resonant part (Proposition 2.3). After summarizing
several useful estimates in Section 3, we prove Proposition 2.3 in Section 4.
Main theorem is then shown in Section 5.

2. Outline of the proof

By the decomposition (1.9) and Assumption 1.1, we write

F (u) = g1|u|
2

du+
∑

n 6=0,1

gn|u|
2

d
−nun.

Denote
Gd(u) = g1|u|

2

du, Nd(u) =
∑

n 6=0,1

gn|u|
1+ 2

d
−nun.

The heart of matter is that the expansion (1.9) successfully extracts a “res-
onant part” Gd which determines the shape of asymptotic behavior up. The
validity of the extraction is confirmed by proving the other part, a “non-
resonant part” Nd, enjoys better time decay. The decay comes from the fact
that the phase of the non-resonant part is different from that of linear part.
In the integral form of the equation, it can be seen that this disagreement of
phase actually causes a time decay effect (cf. stationary phase). This kind
of additional decay was known for the case where Nd is a specific finite sum

of |u|1+2/d−nun (n 6= 0, 1) (see [8, 9]). However, our non-resonant part is an
infinite sum. In the technical point of view, a contribution of this paper is
a treatment of the infinite sum under Assumption 1.1.

We introduce a formulation in [9] (see also [8,17]). In what follows, we let
t > 1 unless otherwise stated. Let U(t) = eit∆. Introduce a multiplication
operator M(t) and a dilation operator D(t) by

(2.1) M(t) = e
i|x|2

4t , (D(t)f)(x) = (2it)−
d
2 f

( x
2t

)
.

They are isometries on L2(Rd). Then,

(2.2) up(t) =M(t)D(t)ŵ(t), ŵ(t) = û+ exp(−ig1|û+|
2

d log t).

We regard the equation (NLS) as

L(u− up) = (F (u)− F (up))− Lup + Gd(up) +Nd(up),

where L = i∂t + ∆x. A computation shows that it is rewritten as the
following integral equation;

(2.3)

u(t)− up(t) = i

∫ ∞

t
U(t− s) (F (u) − F (up)) (s)ds

+R(t)ŵ − i

∫ ∞

t
U(t− s)R(s)Gd(ŵ)(s)

ds

s

+ i

∫ ∞

t
U(t− s)Nd(up)(s)ds,

where

R(t) =M(t)D(t)

(
U

(
−

1

4t

)
− 1

)



6 S. MASAKI AND H. MIYAZAKI

(see [9]).
Let X1 = L∞(R) and X2 = L4(R2). For R,T, b > 0, we define a complete

metric space

Xd,T,b,R := {v ∈ C([T,∞);L2(Rd)); ‖v − up‖Xd,T,b
6 R},

‖v‖Xd,T,b
:= sup

t∈[T,∞)
tb ‖v(t)‖L2(Rd) + sup

t∈[T,∞)
tb
(∫ ∞

t
‖v(s)‖4Xd

ds

) 1

4

,

d(u, v) := ‖u− v‖Xd,T,b
.

We shall show that, under the assumption of Theorem 1.2, there exists
ε0 > 0 such that for any data u+ ∈ H0,d ∩ Ḣ−δ with ‖û+‖L∞ 6 ε0, we can
choose R,T > 0 so that the map

(2.4)

Φ(v)(t) := up(t) + i

∫ ∞

t
U(t− s) (F (v)− F (up)) (s)ds

+R(t)ŵ − i

∫ ∞

t
U(t− s)R(s)Gd(ŵ)(s)

ds

s

+ i

∫ ∞

t
U(t− s)Nd(up)(s)ds.

is a contraction map on Xd,T,b,R.
To this end, we introduce three intermediate results. The first one is a

consequence of Strichartz’ estimate.

Lemma 2.1. Let û+ ∈ L∞. Assume that g(θ) is Lipschitz continuous. If

b > d/4 then it holds that
∥∥∥∥
∫ ∞

t
U(t− s) (F (v)− F (up)) ds

∥∥∥∥
Xd,T,b

6 C ‖v − up‖Xd,T,b

(
‖v − up‖

2

d

Xd,T,b
T

1

2
− 2

d
b + ‖û+‖

2

d

L∞

)
,

where C depends on the Lipschitz constant of g.

The estimate is essentially the same as in [8,9,17]. Remark that Lipschitz
continuity of g gives us

|F (v)− F (up)| 6 C
(
|v − up|

1+ 2

d + |up|
2

d |v − up|
)
.

The detail is given in Appendix A.
The main step is the estimate of “external terms” on the right hand side

of (2.4). The second one is due to Hayashi, Wang, and Naumukin [9, Lemma
2.1].

Lemma 2.2. Let u+ ∈ H0,d and d/2 < δ < d. Then, the estimates

‖R(t)ŵ‖L∞
t (T,∞;L2) + ‖R(t)ŵ‖L4

t (T,∞;Xd)

6 CT− δ
2

〈
g1 ‖û+‖

2

d

L∞ log T

〉δ
‖u+‖H0,d ,

and∥∥∥∥
∫ ∞

t
U(t− s)R(s)Gd(ŵ)

ds

s

∥∥∥∥
L∞
t (T,∞;L2)

+

∥∥∥∥
∫ ∞

t
U(t− s)R(s)Gd(ŵ)

ds

s

∥∥∥∥
L4
t (T,∞;Xd)
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6 C|g1|T
− δ

2

〈
g1 ‖û+‖

2

d

L∞ log T

〉δ
‖û+‖

2

d

L∞ ‖u+‖H0,d

hold for all T > 1.

The last one, in which the main technical issue lies, is an estimate on the
term Nd(up).

Proposition 2.3. Let u+ ∈ H0,d ∩ Ḣ−δ with d/2 < δ < (d+ 1)/2. Assume

that
∑

n∈Z |n|
1+η|gn| <∞ for some η > 1

2(δ −
d
2 ). Then, the estimate

∥∥∥∥
∫ ∞

t
U(t− s)Nd(up)ds

∥∥∥∥
L∞
t (T,∞;L2)

+

∥∥∥∥
∫ ∞

t
U(t− s)Nd(up)ds

∥∥∥∥
L4
t (T,∞;Xd)

6 CT−γ

〈
g1 ‖û+‖

2

d

L∞ log T

〉δ 〈
g1 ‖û+‖

2

d

L∞

〉

× ‖û+‖
2

d

L∞ ‖u+‖H0,d∩Ḣ−δ

∑

n 6=0,1

|n|1+η|gn|

holds for all T > 1, where ‖u+‖H0,d∩Ḣ−δ = ‖u+‖H0,d + ‖u+‖Ḣ−δ .

As for the assumption on the nonlinearity, the assumption of Propo-
sition 2.3 is stronger than that of Proposition 2.1 because if g satisfies∑

n |n|
1+η|gn| < ∞ then it is Lipschitz continuous. The assumption of the

Theorem 1.2 comes from this proposition in order to estimate Sobolev norm
of the nonlinearity. Roughly speaking, s time derivative of |u|1+2/d−nun

produces O(|n|s). Hence, to weaken the assumption of the nonlinearity we
shall use as less derivative as possible. We remark again that we have to
pay attention to the above growth order just because we are working with
the non-resonant term which consists of infinitely many terms. Our proof
is in the same spirit as in [9]. However, the argument in [9] works only for
large η. We introduce two techniques to handle small η. Especially, they
are necessary to include the example (1.5). The detail of the technique is
discussed in the forthcoming section.

3. Key estimates

We introduce two techniques to weaken the assumption on the nonlinear-
ity. The argument in [9] works only for large η.

3.1. Estimates on nonlinearity. The first one is related to estimation

of ‖|ŵ|1+
2

d
−nŵn‖Hδ . One easily obtains such an estimate via an equivalent

difference characterization of the norm of the corresponding Besov space
Bδ

2,2. However, a straightforward calculation in this direction gives us no

more than an upper bound of order O(nd) (remark that here d equals the
minimum integer larger than δ). Hence, we use an interpolation inequality
to improve the order into O(nδ) in exchange for strengthening the regularity
assumption on the data. This is the first technique.

Let us begin with a preliminary estimate.

Lemma 3.1. For n ∈ Z, it holds that
∥∥∥|u|1+ 2

d
−nun

∥∥∥
Hd

6 C 〈n〉d ‖u‖
2

d

L∞ ‖u‖Hd
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for any u ∈ Hd(Rd).

The lemma is obvious by ‖f‖2Hd ∼
∑

α∈(Z>0)d, |α|6d
‖∂αx f‖

2
L2 . Then, we

have the following estimate.

Lemma 3.2. Let ŵ be as in (2.2). Then, it holds that

‖ŵ‖Hd 6 C ‖u+‖H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉d
,

‖∂tŵ‖Hd 6 C
|g1|

t
‖û+‖

2

d

L∞ ‖u+‖H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉d
.

Moreover,

∥∥∥|ŵ|1+ 2

d
−nŵn

∥∥∥
Hδ

6 C 〈n〉δ ‖û+‖
2

d

L∞ ‖u+‖H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉δ
,

∥∥∥∂t(|ŵ|1+
2

d
−nŵn)

∥∥∥
Hδ

6 C
〈n〉1+δ |g1|

t
‖û+‖

4

d

L∞ ‖u+‖H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉δ

for any 0 6 δ 6 d and t > 1.

Proof. The first estimate is immediate. By interpolation inequality, Hölder’s
inequality, and Lemma 3.1, we have

∥∥∥|ŵ|1+ 2

d
−nŵn

∥∥∥
Hδ

6

∥∥∥|ŵ|1+ 2

d
−nŵn

∥∥∥
1− δ

d

L2

∥∥∥|ŵ|1+ 2

d
−nŵn

∥∥∥
δ
d

Hd

6 C 〈n〉δ ‖ŵ‖
2

d

L∞ ‖ŵ‖
1− δ

d

L2 ‖ŵ‖
δ
d

Hd .

Then, the third estimate is a consequence of the first.
Let us next prove the second. We only consider d = 2. The other case is

similar. By definition, we have

∂tŵ = −
ig1
t
|û+|û+ exp(−ig1|û+| log t).

Hence, by the Schwarz inequality, one sees that

|∇2∂tŵ| 6 C
|g1|

t
(|û+||∇

2û+|+ |∇û+|
2) + C

|g1|
3(log t)2

t
|û+||∇û+|

2.

Then, a use of Gagliardo-Nirenberg inequality yields

‖∂tŵ‖Ḣ2 6 C
|g1|

t
‖û+‖L∞ ‖û+‖Ḣ2 + C

|g1|
3(log t)2

t
‖û+‖

3
L∞ ‖û+‖Ḣ2 .

Plugging this to the trivial L2 estimate, we obtain the second estimate.

To prove the last estimate, we remark that ∂t(|ŵ|
1+ 2

d
−nŵn) is of the form

g1
t
(P1(û+) exp(−ig1|û+| log t) + P2(û+) exp(ig1|û+| log t))

with polynomials Pj(z) = O(〈n〉 |z|
4

d
−nzn) and so that we can obtain

∥∥∥∂t(|ŵ|1+
2

d
−nŵn)

∥∥∥
Ḣd

6 C
〈n〉1+d |g1|

t
‖û+‖

4

d

L∞ ‖u+‖H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉d

as in the second estimate. Then, mimicking the proof of the third estimate,
we obtain the desired estimate. �
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3.2. Time-dependent regularizing operator. To obtain additional time
decay property of non-resonant part Nd(up), we use integration by parts in
time. However, the argument requires spatial regularity. In [9], Hayashi,
Wang, and Naumkin introduce a time-dependent regularizing operator (or
a time-dependent cutoff to low-frequency), and reduce required regularity
by applying the above integration by parts only for a low-frequency part
and by estimating the remaining high-frequency part with the fact that the
operator converges to the identity operator as t→ ∞.

In this paper, we take this kind of regularizing operator dependently on

both t and n. This is the second technique to weaken the assumption on the
nonlinearity.

Let ψ ∈ S. We introduce a regularizing operator Kψ = Kψ(t, n) by

(3.1) Kψ := ψ

(
i∇

|n|tσ/2

)
:= F−1ψ

(
ξ

|n|tσ/2

)
F ,

where σ = 1 if d = 1 and σ = 2+δ
3 > 1 if d = 2. We have

Kψf = Cd((|n|t
σ/2)dF−1ψ(|n|tσ/2·) ∗ f)(x).

Lemma 3.3 (Boundedness of K). Take ψ ∈ S and set Kψ as in (3.1). Let

s ∈ R and θ ∈ [0, 1]. For any t > 0 and n 6= 0, the followings hold.

(i) Kψ is a bounded linear operator on L2 and satisfies ‖Kψ‖L(L2) 6

‖ψ‖L∞. Further, Kψ commutes with ∇. In particular, Kψ is a

bounded linear operator on Ḣs and satisfies ‖Kψ‖L(Ḣs) 6 ‖ψ‖L∞.

(ii) K− ψ(0) is a bounded linear operator from Ḣs to Ḣs+θ with norm

‖Kψ − ψ(0)‖L(Ḣs+θ,Ḣs) 6 Ct−
θσ
2 |n|−θ.

Proof. The first item is obvious. Let us prove the second. It suffices to show
the case s = 0. For f ∈ Ḣθ, one sees from the equivalent expression that

‖(Kψ − ψ(0))φ‖L2 6 Cd(|n|t
σ/2)d

∫

Rd

|F−1ψ(|n|tσ/2η)| ‖φ(· − η)− φ‖L2 dη

6 C(|n|tσ/2)d
∫

Rd

|F−1ψ(|n|tσ/2η)|

∥∥∥∥sin
ξ · η

2
Fφ

∥∥∥∥
L2

dη

6 C(|n|tσ/2)d
∫

Rd

|F−1ψ(|n|tσ/2η)||η|θ
∥∥∥|ξ|θFφ

∥∥∥
L2
dη

6 Cψt
− θσ

2 |n|−θ ‖φ‖Ḣθ .

The proof is completed. �

4. Proof of Proposition 2.3

In this section, we prove Proposition 2.3. Using up = M(t)D(t)ŵ(t) =

D(t)E(t)ŵ(t) with E(t) = eit|x|
2/2, we obtain

Nd(up) =
∑

n 6=0,1

gn

(
1

it
D(t)En(t)φn(t)

)
,

where

(4.1) φn(t) := |ŵ(t)|1+
2

d
−nŵn(t).
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Let ψ0(x) = e−|x|2/4 ∈ S and set K(t, n) := Kψ0
(t, n) as in (3.1) with σ = 1

if d = 1 and σ = 2+δ
3 > 1 if d = 2. We decompose Nd(up) into low frequency

part and high frequency part,

N (up) = Pd +Qd,

where

Pd =
∑

n 6=0,1

gn

(
1

it
D(t) (En(t)Kφn(t))

)
,

Qd = −
∑

n 6=0,1

gn

(
1

it
D(t) (En(t)(K − 1)φn(t))

)
.

We estimate high frequency part Qd. By Strichartz’ estimate, it suffices
to bound ‖Qd‖L1(T,∞;L2). By using Lemma 3.3 (ii) and Lemma 3.2, we have

‖Qd(t)‖L2 6 Ct−1
∑

n 6=0,1

|gn| ‖(K − 1)φn‖L2

6 Ct−1− θσ
2

∑

n 6=0,1

|n|−θ|gn| ‖φn‖Ḣθ

6 Ct−1− θσ
2 ‖û+‖

2

d

L∞ ‖u+‖H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉θ ∑

n 6=0,1

|gn|.

We choose θ = δ < 1 if d = 1 and θ = 1 if d = 2. Then, we obtain

(4.2) ‖Qd‖L1(T,∞;L2)

6 CT−γ

〈
g1 ‖û+‖

2

d

L∞ log T

〉δ
‖û+‖

2

d

L∞ ‖u+‖H0,d

∑

n 6=0,1

|gn|.

Next, we estimate low frequency part
∥∥∫∞

t U(t− s)Pd(up)ds
∥∥
Xd

. By the

factorization of U(t),

U(t) =M(t)D(t)FM(t) =M(t)D(t)U

(
−

1

4t

)
F .

Further, the Gagliardo-Nirenberg inequality implies ‖F‖Lp 6 C ‖F‖aHν ‖F‖
1−a
L2

for p > 2 and a ∈ [0, 1) with 1
p = 1

2 −
aν
d . Hence,

(4.3)

∥∥∥∥
∫ ∞

t
U(t− s)Pd(s)ds

∥∥∥∥
Xd

=

∥∥∥∥U(t)F−1

∫ ∞

t
FU(−s)Pd(s)ds

∥∥∥∥
Xd

=

∥∥∥∥D(t)U

(
−

1

4t

)∫ ∞

t
FU(−s)Pd(s)ds

∥∥∥∥
Xd

6 Ct−
1

2

∥∥∥∥
∫ ∞

t
FU(−s)Pd(s)ds

∥∥∥∥
a

Hν

∥∥∥∥
∫ ∞

t
FU(−s)Pd(s)ds

∥∥∥∥
1−a

L2

for ν = 1/2a > 1/2. We fix ν so that

(4.4)
1

2
< ν < min (δ, 2 − δ) .
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To choose such ν, we need δ < 3/2.
By factorization of U(t), we have

FU(−t)D(t)Eρ(t) = i
d
2E

1− 1

ρ (t)U
( ρ
4t

)
D

(ρ
2

)

for ρ 6= 0 (see [9]). Therefore, we further compute

FU(−s)Pd(s) =
∑

n 6=0,1

gnFU(−s)
1

is
D(s)En(s)Kφn(s)

=
∑

n 6=0,1

gns
−1i

d
2
−1E1− 1

n (s)U
( n
4s

)
D

(n
2

)
Kφn(s).

Now, we have E1− 1

n (s) = A(s)∂s(sE
1− 1

n (s)) for n 6= 0, 1, where A(s) =(
1 +

i(1− 1

n
)s

2 |ξ|2
)−1

. Further,

∂sU
( n
4s

)
= U

( n
4s

)(
∂s −

in

4s2
∆

)
.

Therefore, an integration by parts gives us
∫ ∞

t
E1− 1

n (s)U
( n
4s

)
D

(n
2

)
Kφn(s)

ds

s

= −E1− 1

n (t)A(t)U
( n
4s

)
D

(n
2

)
Kφn(t)

−

∫ ∞

t
E1− 1

n (s)s∂s
(
s−1A(s)

)
U
( n
4s

)
D

(n
2

)
Kφn(s)ds

−

∫ ∞

t
E1− 1

n (s)A(s)U
( n
4s

)(
∂s −

in

4s2
∆

)
D

(n
2

)
Kφn(s)ds

=: I1 + I2 + I3.

(4.5)

Thanks to (4.3), we shall estimate Ij (j = 1, 2, 3) in L2 and Hν . The
following estimate is useful.

Lemma 4.1. Let d/2 < δ < (d+1)/2 and δ < d/2+2η. Let ν satisfy either

ν = 0 or 1/2 < ν < min(δ, 2 − δ). Let β = max(1, δ) and let m = 1, 2.
Then, it holds for any t > 1 and n 6= 0, 1 that

(4.6)

∥∥∥E1− 1

n (t)Am(t)U
( n
4t

)
D

(n
2

)
Kφn(t)

∥∥∥
Hν

6 Ct
ν−δ
2 |n|−δ+η

(
‖φ(t)‖Hδ +

∥∥∥|ξ|−δφn(t)
∥∥∥
L2

)

+ Ct
ν−α
2 |n|−α+η

(
‖φn(t)‖Hδ +

∥∥∥|ξ|−δφn(t)
∥∥∥
L2

)1−ν
‖φn(t)‖

ν
Hβ ,

where α = (1− ν)δ + νβ.

We postpone the proof of this lemma and continue the proof of Proposi-
tion 2.3. For simplicity, we consider the case d = 2, in which case α = β = δ
in Lemma 4.1. Fix η > 1

2

(
δ − d

2

)
. Using Lemma 4.1, we obtain

‖I1‖Hν =
∥∥∥E1− 1

n (t)A(t)U
( n
4t

)
D

(n
2

)
Kφn(t)

∥∥∥
Hν

6 Ct
ν−δ
2 |n|−δ+η ‖φ(t)‖Hδ∩H0,−δ .

(4.7)
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Let us estimate ‖I2‖Hν . By ∂s
(
s−1A(s)

)
= −2s−2A(s) + s−2 (A(s))2 and

Lemma 4.1, we compute

‖I2‖Hν 6 C

∫ ∞

t

∥∥∥E1− 1

n (s)s−1A(s)U
( n
4s

)
D

(n
2

)
Kφn(s)

∥∥∥
Hν

ds

+ C

∫ ∞

t

∥∥∥E1− 1

n (s)s−1 (A(s))2 U
( n
4s

)
D

(n
2

)
Kφn(s)

∥∥∥
Hν

ds

6 C|n|−δ+η
∫ ∞

t
s

ν−δ
2

−1 ‖φ(s)‖Hδ∩H0,−δ ds.

(4.8)

Finally, we estimate ‖I3‖Hν . We introduce the regularizing operators
Kj := Kψj

(j = 1, 2) by (3.1) with

ψ1(x) = −
σ

2
x · ∇ψ0 ∈ S, ψ2(x) =

i

4
|x|2ψ0(x) ∈ S.

We then have an identity
(
∂s −

in

4s2
∆

)
D

(n
2

)
Kφn = D

(n
2

)
K∂sφn + s−1D

(n
2

)
K1φn

+ sσ−2nD
(n
2

)
K2φn.

Since K1 and K2 of the form (3.1), the estimate (4.6) is valid also for these
regularizing operators. Then, we have

‖I3‖Hν 6 C|n|−δ+η
∫ ∞

t
s

ν−δ
2 ‖∂sφn(s)‖Hδ∩H0,−δ ds

+ C|n|−δ+η
∫ ∞

t
s

ν−δ
2

−1 ‖φn(s)‖Hδ∩H0,−δ ds

+ C|n|−δ+1+η

∫ ∞

t
s

ν−δ
2

+σ−2 ‖φn(s)‖Hδ∩H0,−δ ds.

(4.9)

By (4.7), (4.8), (4.9), Lemma 3.2 and the estimates

‖φn‖H0,−δ 6 C ‖û+‖
2

d

L∞ ‖u+‖Ḣ−δ ,

‖∂tφn‖H0,−δ 6 C
|g1|

t
‖û+‖

4

d

L∞ ‖u+‖Ḣ−δ ,

we find
∥∥∥∥
∫ ∞

t
E1− 1

n (s)U
( n
4s

)
D

(n
2

)
Kφn(s)

ds

s

∥∥∥∥
Hν

6 Ct
ν−δ
2

+σ−1|n|1+η ‖û+‖
2

d

L∞ ‖u+‖Ḣ−δ∩H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉δ

+ Ct
ν−δ
2 |n|1+η|g1| ‖û+‖

4

d

L∞ ‖u+‖Ḣ−δ∩H0,d

〈
g1 ‖û+‖

2

d

L∞ log t

〉δ

Thus, summing up with respect to n, we reach to the estimate

(4.10)

∥∥∥∥
∫ ∞

t
U(t− s)Pd(s)ds

∥∥∥∥
Hν



LONG RANGE SCATTERING FOR NLS 13

6 Ct
ν−δ
2

+σ−1

〈
g1 ‖û+‖

2

d

L∞ log t

〉δ 〈
g1 ‖û+‖

2

d

L∞

〉

× ‖û+‖
2

d

L∞ ‖u+‖Ḣ−δ∩H0,d

∑

n 6=0,1

|n|1+η |gn|.

In a similar way, one sees that (4.10) holds true for ν = 0. Therefore, in
light of (4.3), we obtain

(4.11)

∥∥∥∥
∫ ∞

t
U(t− s)Pd(s)ds

∥∥∥∥
Xd

6 Ct−
5

4
− δ

2
+σ

〈
g1 ‖û+‖

2

d

L∞ log t

〉δ 〈
g1 ‖û+‖

2

d

L∞

〉

× ‖û+‖
2

d

L∞ ‖u+‖H0,δ∩Ḣ−δ

∑

n 6=0,1

|n|1+η |gn|.

By (4.10) with ν = 0 and (4.11), we finally obtain

(4.12)∥∥∥∥
∫ ∞

t
U(t− s)Pd(s)ds

∥∥∥∥
L∞(T,∞;L2)

+

∥∥∥∥
∫ ∞

t
U(t− s)Pd(s)ds

∥∥∥∥
L4(T,∞;Xd)

6 CT− δ
2
+σ−1

〈
g1 ‖û+‖

2

d

L∞ log T

〉δ 〈
g1 ‖û+‖

2

d

L∞

〉

× ‖û+‖
2

d

L∞ ‖u+‖H0,δ∩Ḣ−δ

∑

n 6=0,1

|n|1+η|gn|

since − δ
2 + σ − 1 = −γ < 0. The result follows from (4.2) and (4.12).

To complete the proof we prove Lemma 4.1.

Proof of Lemma 4.1. It suffice to estimate Ḣν norm instead of Hν norm be-
cause smaller ν gives better estimate and because the case ν = 0 is included.

Further, we only treat the case m = 1. We set B = (1 + t|ξ|2)−
1

2 , which
yields |A(t)| 6 CB2 for any n 6= 0, 1. Since ν < 2 − δ < 2 − d/2, we have

|ξ|δB2−ν 6 Ct−
δ
2 and B2−ν ∈ L2 ∩ L∞(Rd). Set ψ = U

(
n
4t

)
D

(
n
2

)
Kφn(t).

By a standard argument, we have

(4.13)
∥∥∥E1− 1

n (t)A(t)ψ
∥∥∥
Ḣν

6 C ‖|∂|ν(A(t)ψ)‖L2 + Ct
ν
2

∥∥B2−νψ
∥∥
L2 .

We first estimate the second term in (4.13). By the triangle inequality,
∥∥∥B2−νU

( n
4t

)
D

(n
2

)
Kφn(t)

∥∥∥
L2

6

∥∥∥B2−ν
(
U
( n
4t

)
− 1

)
D

(n
2

)
Kφn(t)

∥∥∥
L2

+
∥∥∥B2−νD

(n
2

)
(K − 1)φn(t)

∥∥∥
L2

+
∥∥∥B2−νD

(n
2

)
φn(t)

∥∥∥
L2

=: I + II + III
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For any p1 ∈ (2,∞], one sees from Sobolev embedding and Lemma 3.3 (i)
that

‖I‖L2 6 C
∥∥B2−ν

∥∥
Lp1

∥∥∥∥∥|∇|
d
p1

∣∣∣∣
n|∇|2

t

∣∣∣∣
1

2
(δ− d

p1
)

D
(n
2

)
Kφn(t)

∥∥∥∥∥
L2

6 Ct−
δ
2 |n|

−δ+( δ
2
− d

2p1
)
‖φn(t)‖Ḣδ .

By definition of η, we are able to choose p1 so that

(4.14)
δ

2
−

d

2p1
< η.

By Lemma 3.3 (ii), we estimate

‖II‖L2 6 C
∥∥B2−ν

∥∥
Lp2

∥∥∥|∇|
d
p2D

(n
2

)
(K − 1)φn(t)

∥∥∥
L2

6 Ct
− d

2p2 |n|
− d

p2

∥∥∥|∇|
d
p2 (K − 1)φn(t)

∥∥∥
L2

6 Ct
− 1

2
( d
p2

−θ2)|n|
− d

p2
−θ2 ‖φn(t)‖

Ḣ
d
p2

+θ2

for any p2 ∈ (2,∞] and θ2 ∈ [0, 1], where we have used the relation σ > 1.
Taking p2 and θ2 so that θ2 = δ− d

p2
6 1, we obtain desired estimate for II.

We can choose such p2 and θ2 because ν < 2− δ. Next, we have

‖III‖L2 6 Ct−
δ
2

∥∥∥|ξ|−δD
(n
2

)
φn(t)

∥∥∥
L2

6 Ct−
δ
2 |n|−δ

∥∥∥|ξ|−δφn(t)
∥∥∥
L2
.

These estimates yield

(4.15) t
ν
2

∥∥B2m−νψ
∥∥
L2 6 Ct

ν−δ
2 |n|−δ+η

(
‖φn(t)‖Hδ +

∥∥∥|ξ|−δφn(t)
∥∥∥
L2

)
.

Let us move on to the estimate of the first term in (4.13). By interpolation
inequality,

‖|∂|ν(A(t)ψ)‖L2 6 ‖A(t)ψ‖1−νL2 ‖∇ (A(t)ψ)‖νL2 .

From |∇A(t)| 6 Ct1/2B2 and the Leibniz rule, we have

‖∇(A(t)ψ)‖L2 6 Ct1/2
∥∥B2ψ

∥∥
L2 +

∥∥B2∇ψ
∥∥
L2 .

These implies that

‖|∂|ν(A(t)ψ)‖L2 6 Ct
ν
2

∥∥B2ψ
∥∥
L2 +C

∥∥B2ψ
∥∥1−ν
L2

∥∥B2∇ψ
∥∥ν
L2 .(4.16)

The estimate of
∥∥B2ψ

∥∥
L2 is the same as in (4.15). To complete the proof,

it then suffices to show that
∥∥B2∇ψ

∥∥
L2 6 Ct

1−β
2 |n|−β ‖φn(t)‖Ḣβ ,(4.17)

where β = 1 if d = 1 and β = δ if d = 2.
Let us show (4.17). We estimate as∥∥∥B2∇U

( n
4t

)
D

(n
2

)
Kφn(t)

∥∥∥
L2

6

∥∥∥B2∇
(
U
( n
4t

)
− 1

)
D

(n
2

)
Kφn(t)

∥∥∥
L2

+
∥∥∥B2∇D

(n
2

)
(K − 1)φn(t)

∥∥∥
L2

+
∥∥∥B2∇D

(n
2

)
φn(t)

∥∥∥
L2

=: IV + V+VI.



LONG RANGE SCATTERING FOR NLS 15

For any p3 ∈ (4,∞], one sees from Sobolev embedding and Lemma 3.3 (i)
that

‖IV‖L2 6 C
∥∥B2

∥∥
Lp3

∥∥∥|∇|
1+ d

p3D
(n
2

)
Kφn(t)

∥∥∥
L2

6 Ct
1−β
2 |n|−β ‖φn(t)‖Ḣβ .

Here, we take p3 so that 1 + d
p3

= β. By Lemma 3.3 (ii), we estimate

‖V‖L2 6 C
∥∥B2

∥∥
Lp4

∥∥∥|∇|
1+ d

p2D
(n
2

)
(K − 1)φn(t)

∥∥∥
L2

6 Ct
− d

2p2 |n|
−1− d

p4

∥∥∥|∇|
1+ d

p4 (K − 1)φn(t)
∥∥∥
L2

6 Ct
1−β
2 |n|−β ‖φn(t)‖Ḣβ ,

where β = 1 + 1
p4
. Finally, from the Hardy inequality, we have

‖VI‖L2 6 Ct
1−β
2

∥∥∥|ξ|1−δ |∇|D
(n
2

)
φn(t)

∥∥∥
L2

6 Ct
1−β
2 |n|−β

∥∥∥|∇|βφn(t)
∥∥∥
L2
.

By these estimates, we obtain (4.17), which completes the proof of (4.6). �

5. Proof of main result

We are now in a position to prove our main result.

Proof of Theorem 1.2. Let η > 0 and δ ∈ (d/2, (d + 1)/2) be as in the
assumption. Then, we have the relation η > 1

2 (δ − d/2). Take b ∈ (d/4, γ).
By Lemma 2.1, Lemma 2.2, and Proposition 2.3, we have

‖Φ(v)‖Xd,T,b

6 C1 ‖g‖LipR
(
R

2

dT
1

2
− 2

d
b + ε

2

d

)

+ C2(1 + |g1|)T
b− δ

2

〈
g1ε

2

d log T
〉δ 〈

ε
2

d

〉
‖u+‖H0,d

+ C3T
b−γ

〈
g1ε

2

d log T
〉δ 〈

g1ε
2

d

〉
ε

2

d ‖u+‖Ḣ−δ∩H0,d

∑

n 6=0,1

|n|1+η|gn|,

(5.1)

for any v ∈ Xd,T,b,R, R > 0, T > T0 and ε > 0.
We next see that

(5.2) d(Φ(u),Φ(v)) 6 C4 ‖g‖Lip

(
R

2

dT
1

2
− 2

d
b + ε

2

d

)
d(u, v).

Indeed, by the integral equation of (NLS), we see that

Φ(u)− Φ(v) = i

∫ ∞

t
U(t− s) (F (u) − F (v)) (s)ds.

We then find

|F (u) − F (v)| 6 C ‖g‖Lip

(
|u|

2

d + |v|
2

d

)
|u− v|

6 C ‖g‖Lip

(
|u− up|

2

d + |v − up|
2

d

)
|u− v|

+ ‖g‖Lip |up|
2

d |u− v|.
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The rest of the proof is similar to that of Lemma 2.1.
Choose ε = ε(‖g‖Lip) so small that

C1 ‖g‖Lip ε
2

d 6
1

2
, C4 ‖g‖Lip ε

2

d 6
1

4
.

Set R = 1. Then, for sufficiently large T , we obtain

‖Φ(v)‖Xd,T,b
< 1 = R

and

d(Φ(u),Φ(v)) 6
1

2
d(u, v),

which shows Φ : Xd,T,b,1 → Xd,T,b,1 is a contraction mapping. Then, we
obtain a unique solution v(t) ∈ Xd,t,b,1. �

Appendix A. Lipschitz continuity of gF

In this appendix we show the following.

Lemma A.1. Let F (u) satisfy (1.1). Let g(θ) be a corresponding periodic

function given by (1.6) and (1.7). Then, the following two statements are

equivalent:

(1) g(θ) is Lipschitz continuous.

(2) There exists C > 0 such that

(A.1) |F (u)− F (v)| 6 C(|u|2/d + |v|2/d)|u− v|

for all u, v ∈ C.

Moreover, the constant C depends only on the Lipschitz constant of g.

Proof. By (1.7), it is easy to see that Lipschitz continuity of g is equivalent
to existence of a constant C such that

(A.2) |F (u)− F (v)| 6 C|u− v|

for all u, v ∈ C with |u| = |v| = 1. Hence, (2)⇒(1) is obvious.
We will show that (A.2) implies (A.1). We may suppose that u 6= 0 and

v 6= 0. Otherwise (A.1) is immediate from (1.1). We have

|F (u)− F (v)| 6

∣∣∣∣F (u)− F

(
|u|

|v|
v

)∣∣∣∣+
∣∣∣∣F

(
|u|

|v|
v

)
− F (v)

∣∣∣∣ .

By (1.1) and (A.2), we have
∣∣∣∣F (u)− F

(
|u|

|v|
v

)∣∣∣∣ = |u|1+
2

d

∣∣∣∣F
(
u

|u|

)
− F

(
v

|v|

)∣∣∣∣

6 C|u|1+
2

d

∣∣∣∣
u

|u|
−

v

|v|

∣∣∣∣

6 C|u|1+
2

d
||v|u− v|v||+ ||v|v − |u|v|

|u||v|

6 C|u|
2

d |u− v|.

Again by (1.1),
∣∣∣∣F

(
|u|

|v|
v

)
− F (v)

∣∣∣∣ =
∣∣∣∣F

(
v

|v|

)∣∣∣∣
∣∣∣|u|1+ 2

d − |v|1+
2

d

∣∣∣
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6 C(|u|
2

d + |v|
2

d )|u− v|.

Thus, we obtain (A.1). �
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