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Abstract

Assume that for every derandomization result for logspace algorithms, there is a pseudo-
random generator strong enough to nearly recover the derandomization by iterating over all
seeds and taking a majority vote. We prove under a precise version of this assumption that
BPL ⊆ ⋂

α>0
DSPACE(log1+α n).

We strengthen the theorem to an equivalence by considering two generalizations of the
concept of a pseudorandom generator against logspace. A targeted pseudorandom generator
against logspace takes as input a short uniform random seed and a finite automaton; it outputs
a long bitstring that looks random to that particular automaton. A simulation advice generator
for logspace stretches a small uniform random seed into a long advice string; the requirement
is that there is some logspace algorithm that, given a finite automaton and this advice string,
simulates the automaton reading a long uniform random input. We prove that

⋂

α>0

promise-BPSPACE(log1+α n) =
⋂

α>0

promise-DSPACE(log1+α n)

if and only if for every targeted pseudorandom generator against logspace, there is a simulation
advice generator for logspace with similar parameters.

Finally, we observe that in a certain uniform setting (namely, if we only worry about se-
quences of automata that can be generated in logspace), targeted pseudorandom generators
against logspace can be transformed into simulation advice generators with similar parameters.

1 Introduction

1.1 Derandomization vs. pseudorandom generators

The derandomization program of complexity theory consists of trying to deterministically simulate
whole classes of randomized algorithms without significant loss in efficiency. For example, we would
like to prove that P = BPP, NP = AM, and L = BPL. The main strategy for derandomization
is to design an efficient pseudorandom generator. A natural question is whether this strategy is
without loss of generality. That is, does derandomization always imply a pseudorandom generator
that is strong enough to recover that very same derandomization? This question appears to have
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first been investigated by Fortnow [For01], who gave an oracle separation between pseudorandom
generators and derandomization in the P vs. BPP setting.

Nevertheless, for both NP vs. AM and P vs. BPP, there are indeed known constructions
of pseudorandom generators from derandomization assumptions. Most such constructions come
from the hardness vs. randomness paradigm. The idea is to show that derandomization assump-
tions imply hardness results (such as circuit lower bounds). There is a large body of literature
[Yao82, BM84, NW94, IW97, IW98, HILL99, KvM02, Uma03] showing how, in turn, to construct
pseudorandom generators from hardness. Typically, the constructed pseudorandom generator is not
strong enough to recover the original derandomization assumption (e.g. [IKW02, KI04, AGHK11,
KvMS12, Wil13]) but some results are known that establish exact equivalence between certain
sorts of derandomizations and certain sorts of pseudorandom generators (see [AvM12]). Goldreich
has followed another approach [Gol11a, Gol11b] to construct pseudorandom generators from deran-
domization assumptions in the BPP setting. His approach does not directly involve establishing
hardness results on the way; instead, he shows how to derandomize the standard nonconstructive
existence proof for pseudorandom generators by a reduction to decision problems.

The subject of this paper is L vs. BPL. In this setting, there are no known constructions
of pseudorandom generators from generic derandomization assumptions. Further, the question of
whether derandomization is equivalent to pseudorandom generators is especially well-motivated in
this setting, because nontrivial derandomizations and pseudorandom generators have been uncon-
ditionally constructed – and there is a significant gap. Iterating over all seeds of the best known
pseudorandom generator, by Nisan [Nis92b], merely proves that BPL ⊆ DSPACE(log2 n) (which
can also be proven by recursive matrix exponentiation). But the best known derandomization, the
celebrated Saks-Zhou theorem [SZ99], states that BPL ⊆ DSPACE(log3/2 n).

In this work, we show that (informally) if for every derandomization of logspace algorithms,
there is a pseudorandom generator strong enough to nearly recover the derandomization by it-
erating over all seeds, then BPL ⊆ ⋂

α>0 DSPACE(log1+α n). So establishing the equivalence
of derandomization and pseudorandom generators would itself yield a strong derandomization of
BPL.

Our result can be viewed pessimistically as showing that it will be challenging to establish
equivalence of derandomization and pseudorandom generators in the BPL setting. But it can also
be viewed optimistically as giving a road map for proving that BPL ⊆

⋂
α>0 DSPACE(log1+α n).

From this second viewpoint, our result should be compared to other known results that give inter-
esting sufficient conditions for derandomizing logspace:

• Klivans and van Melkebeek showed [KvM02] that if some language in DSPACE(n) requires
branching programs of size 2Ω(n), then there is a pseudorandom generator strong enough to
prove L = BPL. While interesting, this result does not seem to provide a viable road map
for derandomizing logspace, because the strong hardness assumption seems to be far beyond
current understanding.

• Reingold, Trevisan, and Vadhan showed [RTV06] that if there is an efficient pseudorandom
walk generator for regular digraphs, then L = RL. This result can be reasonably thought of
as giving a road map for derandomizing logspace; the result is particularly tantalizing because
in the same work, they actually did construct a pseudorandom walk generator for consistently
labeled regular digraphs. Alas, in the decade since these results were announced, nobody has
been able to close the gap.
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Figure 1: The four types of derandomization that we consider. A solid arrow from A to B indi-
cates that a derandomization of type A trivially implies a derandomization of type B. Our main
result is that the implication indicated by the dashed arrow is equivalent to the statement that⋂

α>0 promise-BPSPACE(log1+α n) =
⋂

α>0 promise-DSPACE(log1+α n).

We view our result as promising, considering that there are already established techniques for
proving equivalence of derandomization and pseudorandom generators. We consider it conceivable
that those techniques can be “ported” to the L vs. BPL setting. The previously mentioned result
of [KvM02] may be a first step in that direction. To put it another way, for decades, researchers have
been trying to design strong pseudorandom generators for BPL; our result shows that researchers
can feel free to make derandomization assumptions while trying to design those pseudorandom
generators, which could make the task significantly easier.

1.2 Four types of derandomization

In fact, our main result is considerably stronger than what we have said so far. To explicate our
main result, it is useful to distinguish between four types of derandomizations of logspace. (See
Figure 1.) First, the most generic type of derandomization is a simulator for logspace. This is
an algorithm that takes as input a finite automaton Q, a start state q, and a short uniform seed
x; it outputs a state Sim(Q, q, x) whose distribution is close to the distribution of final states that
Q would be in were it to read a long uniform random string. (Finite automata provide a simple
nonuniform model of space-bounded computation; each state of a w-state automaton corresponds
to a configuration of a (logw)-space Turing machine.)

The second type of derandomization, which should be familiar, is a pseudorandom generator
against logspace. A pseudorandom generator has two key features that distinguish it from a generic
simulator:

• Input. The pseudorandom generator does not get to see the “source code” of the algorithm
being simulated, i.e. it does not get (Q, q) as part of its input.
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• Output. The pseudorandom generator produces a long string for the automaton to read,
whereas a simulator merely produces the final state of the automaton.

The third and fourth types of derandomization that we will consider generalize the concept of a
pseudorandom generator by relaxing these two features respectively. The third type of derandom-
ization, a targeted pseudorandom generator, gets as input a finite automaton Q, a start state q, and
a short uniform seed x; it outputs a long bitstring Gen(Q, q, x) that looks random to that particular
automaton Q when it starts in that particular state q. (Goldreich [Gol11b] coined the term “tar-
geted pseudorandom generator” in the context of P vs. BPP, where the generator gets a Boolean
circuit as its auxiliary input. In the L vs. BPL setting, targeted pseudorandom generators have
been studied before; see e.g. [Nis92a, RR99].) The fourth type of derandomization, a simulation
advice generator, stretches a short uniform seed x into a long advice string Gen(x); the requirement

is that there is a deterministic logspace algorithm S such that Sim(Q, q, x)
def
= S(Q, q,Gen(x)) is a

simulator for logspace. To the best of our knowledge, we are the first to study simulation advice
generators.

Our main result is that
⋂

α>0

promise-BPSPACE(log1+α n) =
⋂

α>0

promise-DSPACE(log1+α n) (1)

if and only if for every targeted pseudorandom generator against logspace, there is a simula-
tion advice generator with similar parameters. (The precise statement is in Section 2.) Here,
promise-BPSPACE(s(n)) is the set of promise problems decidable by probabilistic space-s(n)
Turing machines that always halt and that have error probability at most 1/3; promise-DSPACE(s(n))
is its deterministic analog.

Additionally, in Section 7, we observe that targeted pseudorandom generators against logspace
can be transformed into simulation advice generators for logspace if we move to the uniform setting,
i.e. we only worry about sequences of automata that can be generated in logspace. This is almost
immediate from the definitions, but it illustrates how much easier it is to construct simulation
advice generators than it is to construct pseudorandom generators.

1.3 Proof techniques

One direction of our main result is easy. Under the assumption that Equation 1 holds, simulation
advice generators are uninteresting objects that can be constructed for trivial reasons. The main
content of the theorem is the reverse direction.

The proof of the harder direction is by extending the techniques of Saks and Zhou [SZ99]. The
way Saks and Zhou originally presented their result is that they used specific properties of Nisan’s
pseudorandom generator [Nis92b] to design a space-efficient algorithm for approximate matrix
exponentiation by reusing parts of the seed. Later, Armoni [Arm98] constructed a pseudorandom
generator that is better than Nisan’s for fooling low-randomness algorithms, and using Zuckerman’s
oblivious sampler [Zuc97], he adapted the Saks-Zhou algorithm to use his generator instead of
Nisan’s, giving a better derandomization of such algorithms.

In Section 4, we show that with Armoni’s ideas, the Saks-Zhou construction can instead be
formulated as a transformation on simulators. Roughly: Starting from a simulator that uses an
s-bit seed to simulate m0 steps of a w-state automaton, given a parameter m, the Saks-Zhou-

Armoni (SZA) transformation produces a new simulator that uses an O
(
s+ (logm)(logw)

logm0

)
-bit seed

4



to simulate m steps of a w-state automaton. We consider this reformulation to be interesting in its
own right, as it clarifies the power of Saks-Zhou rounding.

A simple, tempting idea is to start with a weak simulator and apply the SZA transformation

t times for some large constant t. In iteration i, choose m = 2log
i/t w. Then we end up with a

simulator with m = w (large enough to simulate randomized space-bounded algorithms), and the
seed length is only O(log1+1/t w)! But unfortunately, the space complexity blows up with each
application of the SZA transformation.

Because of the recursive structure of the SZA transformation, the blowup can be avoided as long
as the SZA transformation is only applied to simulators obtained from simulation advice generators.
So to prove the harder direction of our main result, we cycle between three transformations:

1. Our assumption, which transforms a targeted pseudorandom generator into a simulation
advice generator. (This “transformation” is not necessarily effective.)

2. The SZA transformation, which we now think of as transforming a simulation advice generator
into a simulator.

3. A simple transformation based on the method of conditional probabilities, which transforms
a simulator into a targeted pseudorandom generator.

The SZA transformation substantially increases the number of steps being simulated. For each
of the three transformations, we incur only mild degradation in the seed length, space com-
plexity, etc. Hence, overall, each cycle significantly increases the output length of our targeted
pseudorandom generator without degrading the other parameters too much. By iterating the
cycle a large constant number of times, we end up with a generator strong enough to collapse⋂

α>0 promise-BPSPACE(log1+α n) to
⋂

α>0 promise-DSPACE(log1+α n).

2 Formal statement of main result

Let [w] denote the set {1, 2, . . . , w}. Let Un denote the uniform distribution on {0, 1}n. For two
probability distributions µ, µ′ on the same measurable space, write µ ∼ε µ

′ to mean that the total
variation distance between µ and µ′ is at most ε.

Definition 1. IfA is a set of functions {0, 1}m → [w], we say that a function Sim : A×{0, 1}s → [w]
is an ε-simulator for A if for every f ∈ A, we have Sim(f, Us) ∼ε f(Um).

Definition 2. If A is a set of functions {0, 1}m → [w], we say that a function Gen : A×{0, 1}s →
{0, 1}m is a targeted ε-pseudorandom generator against A if the function Sim(f, x)

def
= f(Gen(f, x))

is an ε-simulator for A.

The standard definition of a pseudorandom generator is the special case where Gen(f, x) does
not depend on f .

Definition 3. A (w, d)-automaton is a functionQ : [w]×{0, 1}d → [w]. IfQ1 is a (w, d1)-automaton
and Q2 is a (w, d2)-automaton, then Q2Q1 is the (w, d1 + d2)-automaton defined by

(Q2Q1)(q;x, y) = Q2(Q1(q;x); y).

Let Qm
w,d be the set of all functions {0, 1}md → [w] of the form x 7→ Qm(q;x) where Q is a

(w, d)-automaton.

5



Parameter Interpretation

w Number of states in the automaton

d Number of bits the automaton reads in each step

m Number of steps the automaton takes

ε Simulation error, in total variation distance

s Seed length

a Number of advice bits

Figure 2: A summary of the parameters of the targeted pseudorandom generators, simulation
advice generators, and simulators that we study. Each family of generators/simulators is indexed
by w, and the other parameters are functions of w.

In words, Qm
w,d is the set of functions computed by letting a (w, d)-automaton run for m steps

and observing its final state. An element of Qm
w,d can be specified by a pair (Q, q), and this is how it

will be presented to simulators and targeted pseudorandom generators in our theorem statements.

Definition 4. Suppose that for each w, Genw : {0, 1}s → {0, 1}a is a function, and Aw ⊆ Qm
w,d,

where s, a, d,m are functions of w. We say that Genw is1 an ε-simulation advice generator for

Aw if there is some deterministic logspace algorithm S such that the function Sim(Q, q, x)
def
=

S(Q, q,Genw(x)) is an ε-simulator for Aw.

Note that S’s space bound is logarithmic in terms of its input length, i.e. it may use O(d +
logw + log a) bits of space. It is desirable for m to be big and s, a, ε to be small. E.g. as long as
a ≤ poly(w, 2d), it contributes nothing to the asymptotic space complexity of S. To explicate the
definition, we give several examples of where simulation advice generators might come from:

1. Any (standard, non-targeted) ε-pseudorandom generator Genw against Qm
w,d is also an ε-

simulation advice generator for Qm
w,d. The associated algorithm S(Q, q, y) computes Qm(q; y)

where y is the output of Genw. This can be done in logspace by storing the current state of
Q and the current d-bit chunk of y.

2. Suppose there is some logspace ε-simulator for Qm
w,d with seed length s. Then the identity

function on {0, 1}s is an ε-simulation advice generator forQm
w,d. (So under the assumption that

promise-L = promise-BPL, simulation advice generators are only interesting for extreme
values of parameters.)

3. Suppose Genw is a targeted ε-pseudorandom generator againstQm
w,d of the form Genw(Q, q, x) =

G(Compress(Q, q, x), x), where Compress is computable in O(d + logw) space and outputs b
bits. Let Gen′w(x) be x concatenated with the truth table T of G(·, x). Then Gen′w is an
ε-simulation advice generator for Qm

w,d with output length a = s+m2b. The associated algo-
rithm S(Q, q, x, T ) computes c = Compress(Q, q, x), referring to its advice tape for access to
x. Then, S looks up the value y = G(c, x) in the T portion of its advice tape and computes
Qm(q; y).

1Strictly speaking, this is a property of the family {Genw}, not of the individual function. There should be just
one S for the whole family, and ε is a function of w.
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4. Suppose Sim is an ε-simulator for Qm
w,d that perhaps uses much more than logspace, but that,

each time it reads from Q or q, first erases all but O(d + logw) bits. If c is a configuration
of Sim(Q, q, x) in which Sim just read from Q or q, then let f(c, x) be the configuration that
Sim(Q, q, x) will next be in when it is about to read from Q or q. Let Genw(x) be the truth
table of f(·, x). Then Genw is an ε-simulation advice generator for Qm

w,d with output length

a ≤ poly(w, 2d). The associated algorithm S(Q, q,Genw(x)) simulates Sim(Q, q, x). To update
the simulation’s configuration, S alternates between reading a bit from (Q, q) and using its
advice tape.

Suppose {Fw} is a family where Fw is a simulator for, a simulation advice generator for, or a
targeted pseudorandom generator against Qm

w,d, with seed length s(w). For convenience, we will
say that the family is efficiently computable if s(w) is space constructible and given (w,X), Fw(X)
can be computed in deterministic space O(s(w)). We will often speak of an individual function Fw
being efficiently computable when the family is clear.

We now formally state our main result. In Condition 2, η, σ, µ are the parameters of the targeted
pseudorandom generator. The last parameter γ quantifies the extent to which the derandomization
degrades when the targeted pseudorandom generator is replaced with a simulation advice generator.

Theorem 1. The following are equivalent.

1. ⋂

α>0

promise-BPSPACE(log1+α n) =
⋂

α>0

promise-DSPACE(log1+α n).

2. For any constant µ ∈ [0, 1], for any sufficiently small constants σ > η > 0, and for any
constant γ > 0, the following holds. Suppose there is a family {Genw}, where Genw is an
efficiently computable targeted ε-pseudorandom generator against Qm

w,1 with seed length s,
satisfying

s ≤ O(log1+σ w), log(1/ε) = log1+η w, logm ≥ logµ w.

Then there is another family {Gen′w}, where Gen′w is an efficiently computable ε′-simulation
advice generator for Qm′

w,1 with seed length s′ and output length a′, satisfying

s′ ≤ O(log1+σ+γ w), log(1/ε′) = log1+η−γ w, logm′ ≥ logµ−γ w, log a′ ≤ O(log1+η+γ w).

3 The implicit oracle model

Toward proving Theorem 1, we introduce a model of space-bounded oracle algorithms that seem-
ingly does not appear in the literature. Our new oracle model (the “implicit oracle model”) gives a
convenient framework for expressing the SZA result as a transformation on simulators and clarifies
the effect on the simulator’s space complexity when the SZA transformation is iterated.

The implicit oracle model is similar to Wilson’s oracle stack model [Wil88], and it is appropriate
for the situation where the algorithm doesn’t have room to write down the entire query string, but
it is ready to provide the oracle with random access to the query string (possibly by making more
oracle queries.)

7



Definition 5. Fix a set A ⊆ {0, 1}∗. Giving an algorithm implicit oracle access to A allows the
algorithm to interface with an oracle in the following ways:

• The algorithm can invoke the oracle, which passes control to the oracle.

• The oracle can read position j ∈ N by giving j to the algorithm. This passes control back to
the algorithm. We associate this read with the most recent unresolved invocation.

• The algorithm can give the oracle a query value b ∈ {0, 1,⊥}. This passes control back to the
oracle and resolves the most recent unresolved read.

• The oracle can give the algorithm a boolean answer value. This passes control back to the
algorithm and resolves the most recent unresolved invocation.

The oracle is guaranteed to behave as follows: Fix any x ∈ {0, 1}∗. Suppose that for some invocation,
when the oracle reads position j, the algorithm specifies value xj (where we interpret xj = ⊥ for
j > |x|.) Then the oracle will make finitely many reads and give the answer value corresponding
to whether x ∈ A, and every read will be of a position j ≤ |x|+ 1.

We extend the definition by saying that we give an algorithm implicit oracle access to a function
f : {0, 1}∗ → {0, 1}∗ to mean that we give the algorithm implicit oracle access to the set A =
{(x, b, 0) : |f(x)| ≤ b} ∪ {(x, b, 1) : f(x)b = 1}.

Wilson’s oracle stack model is equivalent to the implicit oracle model with the additional re-
striction that the oracle is guaranteed to read its input from left to right.

Ultimately, we will only use the implicit oracle model in intermediate steps of our proof; for our
final algorithm, we will “plug in” actual algorithms in place of the oracle. The next lemma says
what happens to space complexity when this actual algorithm is plugged in.

Lemma 1. Suppose Gen : {0, 1}s → {0, 1}a is an efficiently computable ε-simulation advice gen-
erator for Qm

w,d, and let Sim be the corresponding simulator. Suppose Alg is an implicit oracle

algorithm and x is an input such that during the execution of AlgSim(w, x), Alg uses s′ bits of space,
and at any moment, there are at most u unresolved oracle invocations, and there are at most v
unresolved reads of seeds. Then AlgSim(w, x) can be computed (by a non-oracle algorithm) in space
O(s′ + s · (v + 1) + u · (d+ logw + log a)).

Proof. Recall that Sim is of the form Sim(Q, q, x) = S(Q, q,Gen(x)). Naturally, just simulate Alg,
replacing its oracle queries with computations of Sim. The space needed is s′ for the computation
of Alg, plus O(d + logw + log a) for each unresolved execution of S, plus O(s) for each unresolved
execution of Gen. The number of unresolved executions of S is precisely u. The number of unresolved
executions of Gen is at most v+1, because while an instance of Sim is in the process of computing
Gen, that instance never queries the (Q, q) portion of its input.

4 The SZA transformation

Formulating the Saks-Zhou construction as a transformation on simulators is not technically chal-
lenging. A (w, d)-automaton with fail state2 is a (w+1, d)-automaton such that Q(w+1; y) = w+1

2This is equivalent to the definition of a “finite state machine of type (w, d)” in [SZ99] or that of a “(w, d)-
automaton” in [CCvM06].
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for all y. (We think of w + 1 as the “fail state”.) Let Q̃m
w,d be the set of all functions of the form

x 7→ Qm(q;x) where Q is a (w, d)-automaton with fail state. When we give an algorithm (implicit)
oracle access to an ε-simulator for Q̃m

w,d with seed length s, it is understood that the algorithm can
query for the parameters w, d,m, ε, s as well as interacting with the oracle in the usual way.

Theorem 2. There is a constant c ∈ N and a deterministic implicit oracle algorithm SZA with the
following properties. Pick w ∈ N, ε > 0 and let d = ⌈c log(w/ε)⌉. Suppose Sim is an ε-simulator
for Q̃m0

w,d with seed length s ≤ m0 ≤ w. Then

1. For any m ∈ N, there is some m′ ≥ m such that SZASim
m is a (12mε)-simulator for Q̃m′

w,d.
(Here m is an input to SZA; we write it as a subscript merely to separate it from the usual
simulator inputs.)

2. At any moment in the execution of SZASim
m , there are at most u

def
= ⌈(logm)/(logm0)⌉ unre-

solved oracle invocations, and there is at most one unresolved read of the seed of Sim.

3. The seed length and space complexity of SZASim
m are both O(s+ u log(w/ε)).

To illustrate the theorem statement, we demonstrate how to recover the original Saks-Zhou
result of [SZ99]. Let Gen : {0, 1}s → {0, 1}m0 be the (non-targeted) efficiently computable ε-
pseudorandom generator against Q̃m0

w,d of [INW94, Theorem 3] with m0 = 2
√
logw, ε = 1/(6 · 12w),

and s ≤ O(log3/2 w). Let Sim be the corresponding simulator. Then SZASim
w is a (1/6)-simulator

for Q̃m′

w,d for some m′ ≥ w, and hence it can be used to simulate BPL (by ensuring that all

transitions from the halting configurations are self loops.) The parameter u is O(
√
logw), and

hence the seed length and space usage of SZASim
w are both O(log3/2 w). By Lemma 1, the space

needed to simulate SZASim
w by a non-oracle algorithm is O(log3/2 w). Iterating over all seeds proves

BPL ⊆ DSPACE(log3/2 n), since the number of configurations of a logspace Turing machine on
a length n input is w ≤ poly(n).

The rest of this section is the proof of Theorem 2. All of the ideas in the proof are already
present in [SZ99] and [Arm98]. Our main contributions in this section are the formulation and
statement of Theorem 2, which enable us to derive the consequence expressed in Theorem 1.

4.1 Randomness efficient samplers

The first step to proving Theorem 2 is an observation by Armoni [Arm98]. Let NisGen denote
Nisan’s generator. Saks and Zhou used a special feature of NisGen. The special feature is that the
seed can be split into two parts x, z with z ≤ O(log(w/ε)) such that for any particular automaton
Q, for most values of x, NisGen(x, ·) is a good pseudorandom generator for Q. (Namely, we can let
x be the sequence of hash functions and z be the input to those hash functions.) Armoni observed
that any pseudorandom generator can be made to have this feature just by precomposing with
an averaging sampler. We give here the appropriate notion of averaging samplers for [w]-valued
functions:

Definition 6. Fix Samp : {0, 1}ℓ × {0, 1}d → {0, 1}s. For a function f : {0, 1}s → [w], we say that
a string x ∈ {0, 1}ℓ is δ-good for f if f(Samp(x,Ud)) ∼δ f(Us). We say that Samp is an averaging
(δ, γ)-sampler for [w]-valued functions if for every f : {0, 1}s → [w],

Pr
x∼Uℓ

[x is δ-good for f ] ≥ 1− γ.
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We need a space-efficient averaging sampler with good parameters. Armoni used Zuckerman’s
averaging sampler [Zuc97], but Zuckerman’s sampler breaks down for extremely small values of δ.
Therefore, to get a slightly more general result, we use the GUV extractor [GUV09], or rather a
space-optimized version by Kane, Nelson, and Woodruff [KNW08]. It is standard that extractors
are good samplers; the following lemma expresses the parameters achieved by the space-optimized
GUV extractor when it is viewed as a sampler for [w]-valued functions:

Lemma 2. For all s,w ∈ N and all δ, γ > 0, there is an averaging (δ, γ)-sampler for [w]-valued
functions Samp : {0, 1}ℓ × {0, 1}d → {0, 1}s with

ℓ ≤ O(s) + log(w/γ)

and
d ≤ O(log s+ logw + log(1/δ) + log log(1/γ)),

where Samp(x, y) can be computed in O(s + log(w/γ)) space.

Proof. Let ℓ = 2s + 1 + log(w/γ). By [KNW08, Theorem A.14], there is a (2s, 2δ/w)-extractor
Samp : {0, 1}ℓ × {0, 1}d → {0, 1}s with d ≤ O(log ℓ+ log(w/δ)), which is

O(log s+ logw + log(1/δ) + log log(1/γ))

as claimed, such that Samp(x, y) can be computed in O(ℓ+log(w/δ)) space, which is O(s+log(w/δ))
space as claimed.

All that remains is to prove correctness. Fix f : {0, 1}s → [w]. Say x ∈ {0, 1}ℓ is good for f
with respect to z ∈ [w] if

|Pr[f(Samp(x,Ud)) = z]− Pr[f(Us) = z]| ≤ 2δ/w.

By [Zuc97, Proposition 2.7] (or rather its proof), for each z ∈ [w],

Pr
x∼Uℓ

[x is good for f with respect to z] ≥ 1− 2− log(w/γ) = 1− γ/w.

Therefore, by the union bound over the w different values of z, the probability that a uniform
random x is good for f with respect to every z ∈ [w] simultaneously is at least 1− γ. For such an
x, the ℓ1 distance between f(Samp(x,Ud)) and f(Us) is at most 2δ. Total variation distance is half
ℓ1 distance, so such an x is δ-good for f , completing the proof.

4.2 The snap operation

At the heart of the SZA transformation is a randomized rounding operation that we will call
Snap. This operation slightly perturbs a given automaton with fail state. The basic feature of this
perturbation is that if Q ≈ Q′, then with high probability, Snap(Q) = Snap(Q′). This phenomenon
(which we will make rigorous in Lemma 5) is reminiscent of “snapping to a grid”, hence the name.

A substochastic d-matrix is a square matrix M filled with nonnegative multiples of 2−d such
that for every q,

∑
r Mqr ≤ 1. A (w, d)-automaton with fail state Q has a transition probability

matrix M(Q), a w × w substochastic d-matrix defined by

M(Q)qr = Pr
z∈{0,1}d

[Q(q; z) = r].

10



Conversely, from a w×w substochastic d-matrix M , we define a canonical automaton with fail state
Q(M) by identifying {0, 1}d with [2d] and setting

Q(M)(q; z) =

{
the smallest r such that z2−d ≤∑r

r′=1Mqr′ if such an r exists

w + 1 otherwise.

Definition 7. For p ∈ [0, 1] and ∆ ∈ N, define ⌊p⌋∆ = ⌊2∆p⌋2−∆, i.e. p truncated to ∆ bits after
the radix point. Define Snap : [0, 1] × {0, 1}∗ → [0, 1] by

Snap(p, y) = ⌊max{0, p − (0.y) · 2−|y|}⌋|y|,

where 0.y represents a number in [0, 1] in binary.3 Extend the definition to operate on matrices
componentwise: Snap(M,y)qr = Snap(Mqr, y). Further extend Snap to operate on automata with
fail states by the rule Snap(Q, y) = Q(Snap(M(Q), y)). (The second argument to Snap should be
thought of as random bits.)

Let ‖·‖ denote the matrix norm, i.e. the maximum sum of absolute entries of any row. Define a
metric on automata with fail states with the same number of states by setting ρ(Q,Q′) = ‖M(Q)−
M(Q′)‖. The following lemma relates this metric to total variation distance.

Lemma 3. Suppose Q is a (w, d)-automaton with fail state and Q′ is a (w, d′)-automaton with fail
state. Let δ be the maximum, over all q ∈ [w + 1], of the total variation distance between Q(q;Ud)
and Q′(q;Ud′). Then 1

2ρ(Q,Q′) ≤ δ ≤ ρ(Q,Q′).

Proof. For each q, r ∈ [w + 1], let ρqr = Pr[Q(q;Ud) = r] − Pr[Q′(q;Ud′) = r]. Then ρ(Q,Q′) =
maxq∈[w]

∑
r∈[w] |ρqr|. Since total variation distance is half L1 distance, δ = 1

2 maxq∈[w+1]

∑
r∈[w+1] |ρqr|.

This immediately shows that 1
2ρ(Q,Q′) ≤ δ. For the second inequality, let q be such that δ =

1
2

∑
r∈[w+1] |ρqr|. Since Q and Q′ are both automata with fail states, q can be chosen to not be

w + 1, and hence ρ(Q,Q′) ≥∑r∈[w] |ρqr| = 2δ − |ρq,w+1|. Since
∑

r ρqr = 0, |ρq,w+1| ≤ ρ(Q,Q′), so
ρ(Q,Q′) ≥ 2δ − ρ(Q,Q′). Rearranging completes the proof.

Lemma 4. For any (w, d)-automaton with fail state Q and any y ∈ {0, 1}∆, ρ(Q,Snap(Q, y)) ≤
w2−∆+1.

Proof. The snap operation perturbs each entry of the w × w matrix by at most 2−∆+1.

Lemma 5. Fix a (w, d)-automaton with fail state Q and let Y ∼ U∆. Then

Pr[∃Q′ such that ρ(Q,Q′) ≤ 2−2∆ and yet Snap(Q,Y ) 6= Snap(Q′, Y )] ≤ w22−∆+1.

Proof. Let Eqr be the bad event that there exists p such that |Mqr−p| ≤ 2−2∆ and yet Snap(M(Q)qr, Y ) 6=
Snap(p, Y ). For Eqr to occur, there must be some x a multiple of 2−∆ such thatM(Q)qr−(0.Y )·2−∆

is in [x − 2−2∆, x + 2−2∆). There are only two values of Y that can make this happen, so
Pr[Eqr] ≤ 2−∆+1. The union bound completes the proof, since ‖M‖ ≥ maxq,r |Mqr|.

3In the notation of [SZ99] and [Arm98], Snap(p, y) = ⌊Σ(0.y)2−|y| (p)⌋|y|. In the notation of [CCvM06], Snap(p, y) =
Ry,|y|(p).
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4.3 The construction

Recall that w is the number of states (excluding the fail state), ε is the error of Sim, and s is
the seed length of Sim. Let ∆ = ⌈log(w2/ε)⌉, let δ = 2−2∆−1, and let γ = 2ε/w. Let Samp :
{0, 1}ℓ × {0, 1}d → {0, 1}s be the averaging (δ, γ)-sampler for [w]-valued functions of Lemma 2.
(This defines the constant c; note that Lemma 2 ensures d ≤ O(log(w/ε)), since the theorem
statement assumes s ≤ w.)

We now define a randomized approximate automaton powering operation P̂ow. For a (w, d)-
automaton with fail state Q and a string x ∈ {0, 1}ℓ, we define a (w, d)-automaton with fail state

P̂ow(Q,x) by the formula

P̂ow(Q,x)(q; z) = Sim(Q, q,Samp(x, z)).

Recall that m0 is the number of steps simulated by Sim, and note that for any Q, for most x,
P̂ow(Q,x) ≈ Qm0 . The idea of the SZA transformation is to alternately apply P̂ow and Snap. The

Snap operation allows us to reuse the randomness of the P̂ow operation from one application to the
next, thereby saving random bits.

Let Q0 be the (w, d)-automaton with fail state that is given to SZA as input. Recall that
u = ⌈(logm)/(logm0)⌉, where m is the number of steps of Q0 that SZA is trying to simulate.
For a sequence y = (y1, . . . , yu) ∈ {0, 1}∆u and a string x ∈ {0, 1}ℓ, we define a sequence of
(w, d)-automata with fail states Q̂0[x, y], . . . , Q̂u[x, y] by starting with Q̂0[x, y] = Q0 and setting

Q̂i+1[x, y] = Snap(P̂ow(Q̂i[x, y], x), yi+1).

(For i ≥ 1, Qi is naturally thought of as a (w,∆)-automaton with fail state, but since ∆ ≤ d, we
can think of it as reading d bits for each transition and ignoring all but the first ∆ of them.) Finally,
for seed values x ∈ {0, 1}ℓ, y ∈ {0, 1}∆u, z ∈ {0, 1}d, we set

SZASim
m (Q0, q, x, y, z) := Q̂u[x, y](q; z).

4.4 Correctness

The bulk of the correctness proof consists of justifying the fact that we use the same x value for
each application of P̂ow in the definition of Q̂i. To do this, we define a deterministic approximate
powering operation Pow. For a (w, d)-automaton with fail state Q, define a (w, s)-automaton with
fail state Pow(Q) by

Pow(Q)(q; z) = Sim(Q, q, z).

Note that Pow(Q) ≈ Qm0 . For a sequence y = (y1, . . . , yu) ∈ {0, 1}∆u, define (just for the analysis)
another sequence of (w, d)-automata with fail states Q0[y], . . . , Qu[y] by starting with Q0[y] = Q0

and setting
Qi+1[y] = Snap(Pow(Qi[y]), yi+1).

We first verify that these automata Qi (always) provide good approximations for the true powers
of Q0:

Lemma 6. For any y, ρ(Qu[y], Q
mu

0
0 ) ≤ 8mε.
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Proof. We show by induction on i that

ρ(Qi[y], Q
mi

0
0 ) ≤ mi

0 − 1

m0 − 1
· (2ε +w2−∆+1).

In the base case i = 0, this is immediate. For the inductive step, by the triangle inequality,

ρ(Qi+1[y], Q
mi+1

0
0 ) ≤ ρ(Qi+1[y],Pow(Qi[y])) + ρ(Pow(Qi[y]), Qi[y]

m0) + ρ(Qi[y]
m0 , Q

mi+1
0

0 ).

The first term is at most w2−∆+1 by Lemma 4. The second term is at most 2ε by the simulator
guarantee and Lemma 3. The third term is at most m0ρ(Qi[y], Q

mi
0) by [SZ99, Proposition 2.3].

Therefore, by the inductive assumption,

ρ(Qi+1[y], Q
mi+1

0
0 ) ≤ w2−∆+1 + 2ε+m0 ·

mi
0 − 1

m0 − 1
· (2ε + w2−∆+1)

=
mi+1

0 − 1

m0 − 1
· (2ε +w2−∆+1).

That completes the induction. Finally, we plug in i = u:

ρ(Qu[y], Q
mu

0
0 ) ≤ mu

0 − 1

m0 − 1
(2ε + 2w2−∆) ≤ 2m · (2ε + 2ε).

Now, we show that the Snap operation ensures that with high probability, Q̂i and Qi are exactly
equal, despite their different definitions:

Lemma 7. Let X ∼ Uℓ, Y1 ∼ U∆, . . . , Yu ∼ U∆ all be independent. Then

Pr[there is some i ≤ u such that Q̂i[X,Y ] 6= Qi[Y ]] ≤ 4mε.

Proof. By the sampling property, Lemma 3, and a union bound over the w different start states,
for each i ∈ {0, . . . , u− 1},

Pr[ρ(Pow(Qi[Y ]), P̂ow(Qi[Y ],X)) > 2δ] ≤ wγ = 2ε. (2)

(Imagine picking Y first and then taking a probability over the randomness of X alone.) Now,
2δ = 2−2∆, and by Lemma 5,

Pr

[
∃Q′ such that ρ(Pow(Qi[Y ]), Q′) ≤ 2−2∆

and Snap(Pow(Qi[Y ]), Yi+1) 6= Snap(Q′, Yi+1)

]
≤ w22−∆+1 (3)

≤ 2ε. (4)

By the union bound over the u different values of i, the probability that any of these bad events
occur is at most u(2ε + 2ε) ≤ 4mε. So to prove the lemma, assume that none of these bad events
occur. In this case, we show by induction that Q̂i[X,Y ] = Qi[Y ] for every 0 ≤ i ≤ u. The base
case i = 0 holds by definition. For the inductive step, assume Q̂i[X,Y ] = Qi[Y ]. Then because we

assumed that the bad event of Equation 2 did not occur, ρ(P̂ow(Q̂i[X,Y ],X),Pow(Q̂i[Y ])) ≤ 2−2∆.
And hence because we assumed that the bad event of Equation 3 also did not occur, we may
conclude that

Snap(P̂ow(Q̂i[X,Y ],X), Yi+1) = Snap(Pow(Qi[Y ]), Yi+1).

By definition, this implies that Q̂i+1[X,Y ] = Qi+1[Y ].
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We have shown that Q1, Q2, . . . , Qu provide good approximations of true powers of Q0, and
with high probability, Q̂i = Qi for every i. It immediately follows that a random transition of Q̂u

gives a similar distribution as mu
0 random transitions of Q0:

Proof of correctness of SZA. Lemmas 6 and 7 imply that

Pr[ρ(Q̂u[X,Y ], Q
mu

0
0 ) ≤ 8mε] ≥ 1− 4mε.

By Lemma 3, if x and y are such that ρ(Q̂u[x, y], Q
mu

0
0 ) ≤ 8mε, then Q̂u[x, y](q;Z) ∼8mε Q

mu
0

0 (q;Udmu
0
).

An averaging argument completes the proof.

4.5 Efficiency

The seed length of SZA is ℓ + u∆ + d, which is O(s + u log(w/ε)). We argue that SZA can be
implemented to run in O(s+u log(w/ε)) space through mutual recursion involving two subroutines.
The first subroutine, given i, r, z′, computes Q̂i[x, y](r; z

′):

1. If i = 0, just consult the input directly. Otherwise:

2. Use the second subroutine to obtain each required entry of M(P̂ow(Q̂i−1[x, y], x)). Apply the
definition of Q̂i directly.

The space used by this subroutine is only O(log(w/ε)) plus the space required for computing each

matrix entry. The second subroutine, given i, r, v, computes M(P̂ow(Q̂i[x, y], x))rv :

1. Initialize ξ = 0. For all z′ ∈ {0, 1}d:

(a) Use the oracle to compute P̂ow(Q̂i[x, y], x)(r; z
′). If it gives v, set ξ := ξ + 2−d. When

the oracle makes reads to its automaton/start state inputs, use the first subroutine to
compute the necessary values of Q̂i[x, y]. When the oracle makes reads to its seed inputs,
(re)compute Samp(x, z′) to obtain the appropriate bit.

2. Output ξ.

This subroutine’s space usage can get up to O(s+log(w/ε)) for computing the sampler, but before
each recursive call, it erases all but O(log(w/ε)) bits. By induction, this shows that the total
space usage of each of these two subroutines (including now the space used for recursive calls) is
O(s + (i + 1) log(w/ε)). It follows that the space used by SZA is O(s + u log(w/ε)), since it just
requires a call to the first subroutine with i = u.

In this implementation, the maximum number of unresolved oracle invocations at any time is
indeed u, and there is indeed at most one unresolved read of a seed. This completes the proof of
Theorem 2.

5 Transforming simulators into targeted PRGs

Recall from Section 1.3 that to prove the harder direction of our main result, we require three
transformations: an assumed transformation of targeted pseudorandom generators into simulation
advice generators, the SZA transformation, and a transformation of simulators into targeted pseu-
dorandom generators. In this section, we construct the last transformation.
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We state our transformation in terms of the Ladner-Lynch (LL) oracle model [LL76]. This
model is simpler than the implicit oracle model of Section 3. An LL-model oracle algorithm has a
single write-only oracle tape. When the algorithm makes a query, the contents of the oracle tape
are erased, and the answer to the query is stored in the algorithm’s state. Symbols written on
the oracle tape do not count toward the algorithm’s space complexity. For a non-Boolean oracle
f : {0, 1}∗ → {0, 1}∗, the oracle algorithm is required to specify an index i along with the query
string x; the oracle responds with f(x)i. We emphasize that as with the SZA transformation, this
oracle model is only used to cleanly express the transformation; ultimately, we will plug in actual
algorithms in place of the oracle.

Lemma 8. There exists a deterministic LL-model oracle algorithm G such that if Sim is an ε-
simulator for Qm

wm,d with seed length s, then:

1. GSim is a targeted (2mw2ε)-pseudorandom generator against Qm
w,d.

2. GSim has seed length s and space complexity O(s+ d+ logw + logm).

To prove Lemma 8, we use Sim to choose a final state, and then we use Sim to “reverse engineer”
a string that brings Q to that final state. This reverse engineering process is a straightforward
application of the method of conditional probabilities.

Proof. Given (Q, q, x):

1. Let Q′ be the (wm, d)-automaton formed by adding dummy states to Q. Use the oracle to
set R := Sim(Q′, q, x).

2. Initialize v = q. For i = 0 to m− 1:

(a) For each z ∈ {0, 1}d, let vz = Q(v; z).

(b) Let Q′ be a (wm, d)-automaton that simulates m− i steps of Q, with v′z being the start
state corresponding to vz and R′ being the end state corresponding to R.

(c) Compute the z ∈ {0, 1}d that maximizes #{x′ : Sim(Q′, v′z, x
′) = R′}, breaking ties

arbitrarily.

(d) Print z and set v := vz.

Clearly, G outputs dm bits and uses O(s+d+logw+logm) space. Proof of correctness: For t, r ∈ [w]
and i ∈ {0, . . . ,m− 1}, let pt,r[i] = Pr[Qm−i(t;Um−i) = r]. We show by induction on i that at the
beginning of iteration i of the loop on line 2, pv,R[i] ≥ pq,R[0] − 2iε. Base case: At the beginning
of iteration i = 0, v = q. Inductive step: Consider the execution of iteration i of the loop. By the
simulator guarantee, there is some z ∈ {0, 1}d such that #{x′ : Sim(Q′, v′z, x

′) = R} ≥ (pv,R[i]−ε)2s.
Therefore, G chooses a z that also satisfies that inequality. Therefore, applying the simulator
guarantee again, pvz ,R[i+ 1] ≥ pv,R[i]− 2ε. This completes the induction.

Now, let X ∼ Us, and let Y = GSim(Q, q,X). Fix an arbitrary state r ∈ [w]; we will show that
Pr[Qm(q;Y ) = r] is close to Pr[Qm(q;Udm) = r]. Say r is typical if pq,r[0] ≥ 2mε. For the first case,
suppose r is typical. By the fact that we proved by induction, Pr[Qm(q;Y ) = R | R is typical] = 1.
Therefore,

Pr[Qm(q;Y ) = r] = Pr[Qm(q;Y ) = r | R = r] · Pr[R = r] + Pr[Qm(q;Y ) = r | R 6= r] · Pr[R 6= r]

= Pr[R = r] + Pr[Qm(q;Y ) = r | R 6= r] · Pr[R 6= r].
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This expression is lower bounded by Pr[R = r], which is lower bounded by Pr[Qm(q;Udm) = r]− ε
by the simulator guarantee. On the other hand, the expression is upper bounded by Pr[R =
r] +Pr[R is atypical], which is upper bounded by Pr[Qm(q;Udm) = r] + ε+2mwε by the simulator
guarantee, the definition of typicality, and the union bound.

For the second case, suppose r is atypical. Then Qm(q;Y ) = r implies that R is atypical,
which happens with probability at most 2mwε+ ε by the definition of typicality and the simulator
guarantee.

Therefore, in either case, Pr[Qm(q;Y ) = r] is within ±(2mw + 1)ε of Pr[Qm(q;Udm) = r].
Statistical distance is half L1 distance, so the error of GSim is at most 1

2w(2mw+1)ε ≤ 2mw2ε.

6 Proof of Theorem 1

6.1 Composing the transformations

In this section, we compose the transformation of Condition 2 of Theorem 1, the SZA transforma-
tion, and the transformation of Section 5. (In the overview of Section 1.3, this corresponds to the
composition of steps 1, 2, and 3.) The composition is a transformation on targeted pseudorandom
generators:

Lemma 9. Assume Condition 2 of Theorem 1 is true. Fix a constant β > 0, sufficiently small
constants σ > η > γ > 0, and a constant µ ∈ (γ, 1 − β]. Suppose there is a family {Genw}, where
Genw is an efficiently computable targeted ε-pseudorandom generator against Qm

w,1 with seed length
s satisfying

s ≤ O(log1+σ w), log(1/ε) = log1+η w, logm ≥ logµ w.

Then there is another family {Gen′w}, where Gen′w is an efficiently computable targeted ε′-pseudorandom
generator against Qm′

w,1 with seed length s′ satisfying

s′ ≤ O(log1+max{σ,β}+4η w), log(1/ε′) ≥ Ω(log1+η−γ w), logm′ ≥ logµ+β w.

All the hard work of proving Lemma 9 has already been done in Sections 4 and 5; conceptually,
the proof is simply by composing. Some technicalities complicate matters slightly. First, we need
two little lemmas to deal with the fact that d > 1 in Theorem 2, to deal with the fact that Theorem 2
is phrased in terms of automata with fail states, and to deal with the relationship between w and
m in Lemma 8.

Lemma 10. Suppose Gen is an ε-simulation advice generator for Qm
(w+1)2d,1

. Then Gen is also an

ε-simulation advice generator for Q̃
⌊m/d⌋
w,d .

Proof. Let S be the logspace algorithm such that S(Q, q,Gen(x)) is an ε-simulator for Qm
(w+1)2d,1

.

Let a be the output length of Gen. For a (w, d)-automaton with fail state Q, a start state q ∈ [w+1],
and a string y ∈ {0, 1}a, let S′(Q, q, y) behave as follows:

1. Let Q′ be the ((w + 1)2d, 1)-automaton that simulates Q. (One step of Q is simulated by
d steps of Q′; the state space of Q′ is [w + 1] × {0, 1}<d.) Let q′ be the start state of Q′

corresponding to q.
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2. Let r′ = S(Q′, q′, y).

3. Return the state r ∈ [w + 1] that corresponds to r′.

The maps (Q, q, y) 7→ (Q′, q′, y) and r′ 7→ r are computable in logspace, so S′ can be implemented

to run in logspace. Clearly, S′(Q, q,Gen(x)) is an ε-simulator for Q̃
⌊m/d⌋
w,d .

Lemma 11. There exists a deterministic LL-model oracle algorithm R with the following properties.
Pick m ≤ m′ and d ≤ d′. Suppose Sim is an ε-simulator for Q̃m′

wm(m+1),d′ with seed length s. Then

RSim
m,d is an ε-simulator for Qm

wm,d with seed length s. (Here m,d are inputs to R; we write them as

subscripts merely to separate them from the usual simulator inputs.) Further, RSim
m,d only uses space

O(d′ + logw + logm).

Proof. Given (Q, q, x) and oracle access to Sim:

1. Let Q′ be a (wm(m+ 1), d′)-automaton with fail state on state space [wm]× [m+ 1] (plus a
fail state) defined by

Q′((q, t); y) =

{
(Q(q; y ↾d), t+ 1) if t ≤ m

(q, t) if t = m+ 1.

Here y ↾d denotes the first d bits of y.

2. Output the first coordinate of Sim(Q′, (q, 1), x).

The first coordinate of (Q′)m
′
((q, 1);Um′d′) is distributed identically to Qm(q;Umd), and applying

a deterministic function (such as “the first coordinate of”) can only make distributions closer, so
this algorithm is correct. Clearly, Q′ can be computed from Q in space O(d′ + logw + logm).

Now we are ready to prove Lemma 9; the proof mainly consists in verifying parameters.

Proof of Lemma 9. Using Condition 2 of Theorem 1, transform the family {Genw} into a family
{AdvGenw} of simulation advice generators. For each w, let Simw be the simulator induced by
AdvGen(w+1)2d using Lemma 10, where d = ⌈c[log1+η−γ(w) + log(w)]⌉ and c is the constant in
Theorem 2. Define

Sim′
w = SZASimw

m′ where logm′ = ⌈logµ+β w⌉.
Define

Sim′′
w = R

Sim
′
wm′(m′+1)

m′,1 ,

where R is the algorithm of Lemma 11. Finally, define

Gen′w = GSim
′′
w ,

where G is the algorithm of Lemma 8.
Now that we have constructed Gen′w, we show that our construction worked. Since log1+η−γ w is

monotone increasing, Gen′(w+1)2d can be thought of as having error ε0 where log(1/ε0) = log1+η−γ w.

Therefore, Simw is an ε0-simulator for Q̃m0
w,d, where logm0 ≥ Ω(logµ−γ(w)− log(d)) = Ω(logµ−γ w).

Observe that the chosen d value is exactly ⌈c log(w/ε0)⌉. Therefore, by Theorem 2, Sim′
w is

a (12wε0)-simulator for Q̃
m1
w,d for some m1 ≥ m′. Again using monotonicity, we can think of

17



Sim′
wm′(m′+1) as having the same error. By Lemma 11, this implies that Sim′′

w is a (12wε0)-

simulator for Qm′

wm′,1, and hence Gen′w is a targeted ε′-pseduorandom generator against Qm′

w,1, where

ε′ = 24m′w3ε0, and hence log(1/ε′) ≥ Ω(log1+η−γ w) as desired.
The seed length of Simw is s0 ≤ O(log1+σ+γ((w+1)2d)), which is O(log(1+σ+γ)(1+η−γ) w). Since

1+σ+ η+ γ+ση+ γη < 1+σ+4η, we have s0 ≤ O(log1+σ+4η w). The parameter u of Theorem 2
is bounded by

u ≤ O

(
logµ+β w

logµ−γ w

)
= O(logβ+γ w).

Therefore, the seed length of Sim′
w is O(s0 + u log(w/ε0), which is O(log1+σ+4η(w) + log1+β+η(w)),

which is O(log1+max{σ,β}+4η w). Thus the seed length of Sim′′
w is O(log1+max{σ,β}+4η poly(w)), which

is O(log1+max{σ,β}+4η w). Hence the seed length of Gen′w is the same.
The output length a of AdvGenw2d satisfies log a ≤ O(log1+η+γ((w+1)2d)), which is O(log(1+η+γ)(1+η−γ) w).

Since (1 + η)2 ≤ 1 + 3η, we have a ≤ O(log1+3η w). Therefore, by Lemma 1 and Theorem 2, the
space complexity of Sim′

w is O(s0+u[d+logw+log a]), which is O(log1+σ+4η(w)+ log1+β+3η+γ w),
which is O(log1+max{σ,β}+4η w). Therefore, by Lemma 11, the space complexity of Sim′′

w satisfies
the same bound, and hence so does that of Gen′w.

6.2 Iterating the composition

In this section, we prove the (2 =⇒ 1) direction of Theorem 1, i.e. we give a strong deran-
domization under the assumption that targeted pseudorandom generators can be transformed into
simulation advice generators. The proof follows the idea outlined in Section 1.3: we repeatedly
apply the composition transformation of the last section t times for an arbitrarily large constant t.
Each application substantially increases the output length of our targeted pseudorandom generator
while the other parameters degrade negligibly, so we end up with an efficiently computable targeted
pseudorandom generator with output length w and seed length O(log1+O(1/t) w):

Lemma 12. Assume Condition 2 of Theorem 1 is true. Fix α > 0. There is a family {Genw},
where Genw is an efficiently computable targeted (1/6)-pseudorandom generator against Qm

w,1 with

seed length O(log1+α w) where m ≥ w.

Proof. Let t = ⌈2/α⌉, β = 1/t, η = α/(8t), and γ = η/(3t). We show by induction that for 1 ≤
i ≤ t, there is a family {Genw}, where Genw is an efficiently computable targeted εi-pseudorandom
generator against Qmi

w,1 with seed length si satisfying

si ≤ O(log1+β+4iη w), log(1/εi) = log1+η−2iγ w, logmi ≥ logiβ w.

For the base case i = 1, use the generator of [INW94, Theorem 3]. For the chosen output length
and error, the seed length is O((log1+η−2γ w)(logβ w)). For the inductive step, suppose we have
constructed family i. Apply Lemma 9 to this family, using the chosen β, γ values. (By the choice of
γ, η− 2iγ > 0.) The parameters of the resulting family are all correct except that the error merely
satisfies log(1/ε′) ≥ Ω(log1+η−(2i+1)γ w); for sufficiently large w, this is at least log1+η−2(i+1)γ w, so
modifying finitely many elements of the family gives family i+ 1.

That completes the induction. To prove the lemma, use family t. The output length is at least
w as desired, and the error is subconstant as desired. The space complexity and seed length are
log1+β+4tη w. By the choices of β, η, γ, 1 + β + 4tη ≤ 1 + α as desired (as long as t is sufficiently
large.)
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Proof of the (2 =⇒ 1) direction of Theorem 1. Fix some promise problem

A ∈
⋂

β>0

promise-BPSPACE(log1+β n)

and a constant α > 0. Let M be a probabilistic space-O(log1+α n) Turing machine that decides A
with error 1/6. Without loss of generality, assume that M has unique accept/reject configurations.
On input x ∈ {0, 1}n:

1. Let Q be a (w, 1)-automaton corresponding to the execution of M(x): each state of Q specifies
tape contents and a read head location ofM , and the transitions ofQ correspond toM reading
a single random bit. Let the transitions from the accept/reject configurations be self-loops.

2. Use the generator of Lemma 12 (with the chosen α value) to deterministically simulate Q by
iterating over all seeds and taking a majority vote. Accept or reject accordingly.

The value w satisfies logw ≤ O(log1+α n), and Q can be produced from x in deterministic space

O(log1+α n). The space needed for the simulation is O(log1+α w), which is O(log(1+α)2 n). There-

fore, the composition algorithm deterministically decides A in space O(log1+2α+α2
n). Since α was

arbitrary and limα→0(1 + 2α + α2) = 1, this shows that A ∈ ⋂α>0 promise-DSPACE(log1+α n).

6.3 Transforming targeted PRGs into advice generators, assuming derandom-

ization

In this section, we finally prove the easier half of Theorem 1, i.e. we prove that targeted pseudoran-
dom generators can be transformed to simulation advice generators under strong derandomization
assumptions. This is essentially immediate from the definitions: under strong derandomization
assumptions, no advice is needed to simulate automata, so the identity function (padded appropri-
ately) is trivially a simulation advice generator.

Lemma 13. If promise-BPL ⊆ ⋂α>0 promise-DSPACE(log1+α n), then for any η, γ > 0, there
is a family {Genw}, where Genw is an efficiently computable ε-simulation advice generator for Qw

w,1

with seed length s satisfying

s ≤ O(log1+η w) log(1/ε) ≥ Ω(log1+η w) log a ≤ O(log1+η+γ w).

Remark 1. For the purpose of proving Theorem 1, Lemma 13 only needed to conclude with
Condition 2 of the theorem, i.e. a transformation from targeted pseudorandom generators to
simulation advice generators. But it turns out that under the derandomization assumption of
Lemma 13, we can just construct a simulation advice generator “from scratch.”

Remark 2. The derandomization premise of Lemma 13 may seem weaker than the derandomiza-
tion statement in Theorem 1 (since it is about promise-BPL instead of

⋂
α>0 promise-BPSPACE(log1+α n)).

This would again make Lemma 13 stronger than necessary. But the two derandomization state-
ments are actually equivalent by a padding argument.

Proof of Lemma 13. Let B be the following promise problem:
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• Input: A (w, 1)-automaton Q, states q, r ∈ [w], a positive integer t < 2⌈log
1+η w⌉, and padding

to make the input length 2⌈log
1+η w⌉.

• Yes instances: Pr[Qw(q;Uw) = r] ≥ (t+ 1)/2⌈log
1+η w⌉

• No instances: Pr[Qw(q;Uw) = r] ≤ (t− 1)/2⌈log
1+η w⌉.

Then B ∈ promise-BPL. Proof: Simulate w steps of Q from start state q a total of v times, using
fresh randomness each time, where

v ≥ ln 6

2
22⌈log

1+η w⌉.

Count how many end up in state r, and accept if and only if the fraction is at least t/2⌈log
1+η w⌉.

The space required by this algorithm is O(log1+η w), which is logarithmic in terms of the input
length. By Hoeffding’s inequality, this algorithm succeeds with probability at least 2

3 .

Therefore, by the premise of the lemma, B ∈ promise-DSPACE(log1+γ/(1+η) n), i.e. B can
be decided in deterministic space

O(log(1+η)(1+γ/(1+η)) w) = O(log1+η+γ w).

Let Genw : {0, 1}⌈log1+η w⌉ → {0, 1}2⌈log
1+η+γ w⌉ be the identity function padded with zeroes. When

the algorithm S is given (Q, q, x) with x ∈ {0, 1}⌈log1+η w⌉ (i.e. discarding the padding), it behaves
as follows:

1. Interpret x as an integer in {0, . . . , 2⌈log1+η w⌉ − 1}. Initialize t = 0.

2. For each r ∈ [w]:

(a) Find the largest ∆t such that (Q, q, r,∆t) is accepted by the deterministic algorithm
that decides B (when the input is padded appropriately.)

(b) Set t := t+∆t.

(c) If t ≥ x, output r.

The space usage of S is O(log1+η+γ w) as it should be. Now we analyze the error. The probability

of outputting a particular r ∈ [w] when x is chosen uniformly at random is precisely ∆t/2⌈log
1+η w⌉,

where ∆t is the largest value such that (Q, q, r,∆t) is accepted by the algorithm that decides

B (when padded appropriately.) By the definition of B, this probability is within 2− log1+η w of
Pr[Qw(q;Uw) = r]. Total variation distance is half L1 distance, so the error of the simulator is at

most ε = 1
2w2

− log1+η w. Hence log(1/ε) ≥ Ω(log1+η w).

7 Transforming targeted PRGs into advice generators in the uni-

form setting

The proof of our main result (Theorem 1) is complete; this section can be considered “optional
reading”. In this section, we give an unconditional proof of a uniform statement analogous to
Condition 2 in Theorem 1. Namely, we show that targeted pseudorandom generators can be
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transformed into simulation advice generators, as long as we only worry about correctness with
respect to sequences of automata that can be generated in logspace.

One might hope that this would lead to an unconditional derandomization of BPL that is only
guaranteed to work for easily-generated inputs. Unfortunately, we are not able to prove such a
result: when trying to simulate an easily-generated automaton Q using the SZA transformation,
the approximate powers of Q that arise are not so easily generated.

Definition 8. Suppose ((Q1, q1), (Q2, q2), . . . ) is a sequence where Qw is a (w, 1)-automaton and
qw ∈ [w]. We say that the sequence is uniform if there is some deterministic algorithm that, given
w, produces (Qw, qw) in space O(logw).

Definition 9. We say that Genw is4 a targeted ε-pseudorandom generator against Qm
w,1 in the

uniform setting if Genw is a targeted ε-pseudorandom generator against Aw ⊆ Qm
w,1 such that

for every uniform sequence ((Q1, q1), (Q2, q1), . . . ), for all sufficiently large w, the element of Qm
w,1

specified by (Qw, qw) is an element of Aw. We similarly define what it means for Genw to be an
ε-simulation advice generator for Qm

w,1 in the uniform setting.

Proposition 1. For any constant µ ∈ [0, 1] and for any constants σ > η > 0, the following holds.
Suppose there is a family {Genw}, where Genw is an efficiently computable targeted ε-pseudorandom
generator against Qm

w,1 in the uniform setting with seed length s satisfying

s ≤ O(log1+σ w), log(1/ε) = log1+η w, logm ≥ logµ w.

Then there is another family {Gen′w}, where Gen′w is an efficiently computable ε-simulation advice
generator for Qm

w,1 in the uniform setting with seed length s and output length a′ ≤ poly(w).

The proof of Proposition 1 is simple: the simulation advice is just a list of pseudorandom strings
for particular (Q, q) pairs. The length of the list is small, but ω(1), and constructed in such a way
that for any uniform sequence ((Q1, q1), (Q2, q2), . . . ), for sufficiently large w, the advice includes a
pseudorandom string for (Qw, qw).

Proof. Gen′w behaves as follows, given seed x:

1. For all programs P of length at most logw that on input w have an explicit self-imposed
O(logw) space bound:

(a) Run P (w). If it produces a pair (Q, q) where Q is a (w, 1)-automaton and q ∈ [w], then
print (Q, q,Gen(Q, q, x)).

This generator clearly uses space O(log1+σ w), has seed length s, and has output length a ≤ poly(w).
The corresponding algorthm S behaves as follows, given (Q, q, y) where y is the output of Gen′w:

1. If, for some z, the triple (Q, q, z) appears in y, then output Q|z|(q; z). Otherwise output 1.

This algorithm clearly runs in logspace. We will show that it is an ε-simulator for Qm
w,1 in the

uniform setting. Indeed, suppose ((Q1, q1), (Q2, q2), . . . ) is uniform via some program P . Then for
all sufficiently large w, Genw works against (Qw, qw). Furthermore, when w ≥ 2|P |, the algorithm
for Gen′w will consider P , and hence its output will include the triple (Qw, qw,Genw(Qw, qw, x)).
Therefore, for such w, the simulator will give an output that is ε-close to Qm

w (qw;Um).
4Again, strictly speaking, this is a property of a family {Genw}, not an individual generator.
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