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stiff and ergodic stochastic differential equations

Assyr Abdulle!, Ibrahim Almuslimani?, and Gilles Vilmart?
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Abstract

A new explicit stabilized scheme of weak order one for stiff and ergodic stochastic differ-
ential equations (SDEs) is introduced. In the absence of noise, the new method coincides
with the classical deterministic stabilized scheme (or Chebyshev method) for diffusion domi-
nated advection-diffusion problems and it inherits its optimal stability domain size that grows
quadratically with the number of internal stages of the method. For mean-square stable stiff
stochastic problems, the scheme has an optimal extended mean-square stability domain that
grows at the same quadratic rate as the deterministic stability domain size in contrast to
known existing methods for stiff SDEs [A. Abdulle and T. Li. Commun. Math. Sci., 6(4),
2008, A. Abdulle, G. Vilmart, and K. C. Zygalakis, STAM J. Sci. Comput., 35(4), 2013].
Combined with postprocessing techniques, the new methods achieve a convergence rate of
order two for sampling the invariant measure of a class of ergodic SDEs, achieving a stabilized
version of the non-Markovian scheme introduced in [B. Leimkuhler, C. Matthews, and M. V.
Tretyakov, Proc. R. Soc. A, 470, 2014].

Keywords: explicit stochastic methods, stabilized methods, postprocessor, invariant measure,
ergodicity, orthogonal Runge-Kutta Chebyshev, SK-ROCK, PSK-ROCK.
AMS subject classification (2010): 65C30, 60H35, 65120, 37M25

1 Introduction

We consider 1t6 systems of stochastic differential equations of the form
dX(t) = fF(X(0)dt + Y g (X)W, (t),  X(0) = Xo (1)
r=1

where X (t) is a stochastic process with values in RY, f : R? — R? is the drift term, g" : RY — RY,
r =1,...,m are the diffusion terms, and W,(t), r = 1,...,m, are independent one-dimensional
Weiner processes fulfilling the usual assumptions. We assume that the drift and diffusion functions
are smooth enough and Lipschitz continuous to ensure the existence and uniqueness of a solution of
(1) on a given time interval (0,7"). We consider autonomous problems to simplify the presentation,
but we emphasise that the scheme can also be extended to non-autonomous SDEs. A one step
numerical integrator for the approximation of (1) at time ¢ = nh is a discrete dynamical system
of the form

Xny1 = V(Xn, h, &) (2)
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where h denotes the stepsize and &, are independent random vectors. Analogously to the de-
terministic case, standard explicit numerical schemes for stiff stochastic problems, such as the
simplest Euler-Maruyama method defined as

m

Xny1 = Xn +hf(Xn) + Zgr(Xn)AWn ) X(0) = Xo, (3)

)

r=1

where AW, , = W,.(tn+1) — W, () are the Brownian increments, face a severe timestep restric-
tion [17, 16, 18], and one can use an implicit or semi-implicit scheme with favourable stability
properties. In particular, it is shown in [17] that the implicit #-method of weak order one is
mean-square A-stable if and only if # > 1/2, while weak order two mean-square A-stable are
constructed in [7]. An alternative approach is to consider explicit stabilized schemes with ex-
tended stability domains, as proposed in [4, 5]. In [5] the deterministic Chebyshev method is
extended to the context of mean-square stiff stochastic differential equations with It6 noise, while
the Stratonovitch noise case is treated in [4]. In place of a standard small damping, the main idea
in [4, 5] is to use a large damping parameter 1 optimized for each number s of stages to stabilize
the noise term. This yields a family of Runge-Kutta type schemes with extended stability domain
with size Lg ~ 0.33s2. This stability domain size was improved to Ls ~ 0.42s? in [8] where a
family of weak second order stabilized schemes (and strong order one under suitable assumptions)
is constructed based on the deterministic orthogonal Runge-Kutta-Chebyshev method of order 2
(ROCK2) [6].

For ergodic SDEs, i.e., when (1) has a unique invariant measure p satisfying for each test
function ¢ and for any deterministic initial condition Xy = =z,

T
lim 1 d(X(s))ds = /Rd o(y)du(y), almost surely, (4)

T%OOT 0

one is interested in approximating numerically the long-time dynamics and to design numerical
scheme with a unique invariant measure such that

<Cn, (5)

lin g Y006 = [ dwduty)

where C' is independent of h small enough and Xg. In such a situation, we say that the numerical
scheme has order r with respect to the invariant measure. For instance, the Euler-Maruyama
method has order 1 with respect to the invariant measure. In [20] the following non-Markovian
scheme with the same cost as the Euler-Maruyama method was proposed for Brownian dynamics,
i.e where the vector field is a gradient f(z) = —VV(x) and the noise is additive (g(x) = o),

5 AW+ AW
2 )

Xnt1=Xp + hf(Xn) + X(O) = Xo, (6)
and it was shown in [21] that (6) has order 2 with respect to the invariant measure for Brownian
dynamics. However, the admissible stepsizes for such an explicit method to be stable may face
a severe restriction and alternatively to switching to drift-implicit methods, one may ask if a
stabilized version of such an attractive non-Markovian scheme exists.

In this paper we introduce a new family of explicit stabilized schemes with optimal mean-
square stability domain of size Ly = C's?, where C' > 2 — %77 and 77 > 0 is a small parameter. We
emphasize that in the deterministic case, Ly = 25 is the largest, i.e. optimal, stability domain
along the negative real axis for an explicit s-stage Runge-Kutta method [16]. We note that the
Chebyshev method (8) (with 7 = 0) realizes such an optimal stability domain. The new schemes



have strong order 1/2 and weak order 1. The main ingredient for the design of the new schemes
is to consider second kind Chebyshev polynomials, in addition to the usual first kind Chebyshev
polynomials involved in the deterministic Chebychev method and stochastic extensions [5, 4]. For
stiff stochastic problems, the stability domain sizes are close to the optimal value 2s? and in the
deterministic setting the method coincide with the optimal first order explicit stabilized method.
Thus these methods are more efficient than previously introduced stochastic stabilized methods
[5, 8]. For ergodic dynamical systems, in the context of the ergodic Brownian dynamics, the new
family of explicit stabilized schemes allows for a postprocessing [29] (see also [9, 19] in the context
of Runge-Kutta methods) to achieve order two of accuracy for sampling the invariant measure.
In this context, our new methods can be seen as a stabilized version of the non-Markovian scheme
(6) introduced in [20, 21].

This paper is organized as follows. In Section 2, we introduce the new family of schemes with
optimal stability domain and we recall the main tools for the study of stiff integrators in the
mean-square sense. We then analyze its mean-square stability properties (Section 3), and conver-
gence properties (Section 4). In Section 5, using a postprocessor we present a modification with
negligible overcost that yields order two of accuracy for the invariant measure of a class of ergodic
overdamped Langevin equation. Finally, Section 6 is dedicated to the numerical experiments that
confirm our theoretical analysis and illustrate the efficiency of the new schemes.

2 New second kind Chebyshev methods

In this section we introduce our new stabilized stochastic method. We first briefly recall the
concept of stabilized methods. In the context of ordinary differential equations (ODEs),
dX(t)

S I, X(0) = X, (™)

and the Euler method X; = Xy 4+ hf(X(0)), a stabilization procedure based on recurrence
formula has been introduced in [27]. Its construction relies on Chebyshev polynomials (hence
the alternative name “Chebyshev methods”), Ts(cosx) = cos(sz) and it is based on the explicit
s-stage Runge-Kutta method

KO — XOa Kl - XO + hﬂlf(KO)a

Ki = phf(Kio1)+ vl + kiKi—o, j=2,...,s, (8)
Xl — KS;
where T (o)
n s\Wo w1
wo + 82’ Wi TSI(WO)’ H1 W07 ( )
and for all i = 2,...,s,
2w Ti—1(wo) 2woT;—1(wo) T;—2(wo)
=, Vi=——————" RKi=——— " =1—y. 10
M= T ST D) T i) i (10)

One can easily check that the (family of) methods (8) has the same first order accuracy as the
Euler method (recovered for s = 1). In addition, the scheme (8) has a low memory requirement
(only two stages should be stored when applying the recurrence formula) and it has a good
internal stability with respect to round-off errors [27]. The attractive feature of such a scheme
comes from its stability behavior. Indeed, the method (8) applied to the linear test problem
dX (t)/dt = AX (t) yields, using the recurrence relation

T;(p) = 2pT;-1(p) — Tj—2(p), (11)
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Figure 1: Stability domains and stability functions of the deterministic Chebyshev method for
s = 7 and different damping values n = 0,0.05, 3.98.

where Ty(p) = 1, T1(p) = p, with p = \h,

Ts(wo + w1p)
TS (WO)
where the dependence of the stability function R, , on the parameters s and 7 is emphasized with

a corresponding subscript. The real negative interval (—Cy(n) - s2,0) is included in the stability
domain of the method

X1 =R y(p)Xo = Xo, (12)

S:={p € G |Rsy(p) <1}. (13)

The constant Cg(n) ~ 2 — 4/3n depends on the so-called damping parameter n and for n = 0, it
reaches the maximal value Cs(0) = 2. Hence, given the stepsize h, for systems with a Jacobian
having large real negative eigenvalues (such as diffusion problems) with spectral radius Apax at
X,,, the parameter s for the next step X,,.1 can be chosen adaptively as'

hAmax + 1.5
= — ) 14
s [1/ 2~ 473 —1—05], (14)

see [1] in the context of deterministically stabilized schemes of order two with adaptative stepsizes.
The method (8) is much more efficient as its stability domain increases quadratically with the
number s of function evaluations while a composition of s explicit Euler steps (same cost) has a
stability domain that only increases linearly with s. In Figure 1(a) we plot the complex stability
domain {p € C; |R,,(p)| < 1} for s = 7 stages and different values = 0, = 0.05 and 7 = 3.98,
respectively. We also plot in Figure 1(b) the corresponding stability function R, (p) as a function
of p real, to illustrate that the stability domain along the negative real axis corresponds to the
values for which |R;,(p)| < 1. We observe that in the absence of damping (17 = 0), the stability
domain includes the large real interval [—2 - s2,0] of width 2 - 7% = 98. However for all p that
are a local extrema of the stability function, where |R;,(p)| = 1, the stability domain is very

!The notation [x] stands for the integer rounding of real numbers.



thin and does not include a neighbourhood close to the negative real axis. To make the scheme
robust with respect to small perturbations of the eigenvalues, it is therefore needed to add some
damping and a typical value is 7 = 0.05, see for instance the reviews [28, 2]. The advantage is that
the stability domain now includes a neighbourhood of the negative real axis portion. The price
of this improvement is a slight reduction of the stability domain size CnSQ, where () ~ 2 — %77.
Chebyshev methods have been first generalized for It6 SDEs in [5] (see [4] for Stratonovitch SDEs)
with the following stochastic orthogonal Runge-Kutta-Chebyshev method (S-ROCK):?

Ky = Xo
Ki = Xo+mhf(Xo)
Ki = pihf(Kio1) + vl + kiKi_o, 1=2,...,s,

X1 = K.+ Y g (K)AW,, (15)
r=1

where the coefficients p;,v;, k; are defined in (9),(10). In contrast to the deterministic method
(8), where 7 is chosen small and fixed (typically n = 0.05), in stochastic case for the classical
S-ROCK method [5], the damping 1 = 75 is not small and chosen as an increasing function of s
that plays a crucial role in stabilizing the noise and in obtaining an increasing portion of the true
stability domain (19) as s increases.

In the context of stiff SDEs, a relevant stability concept is that of mean-square stability. A
test problem widely used in the literature is [25, 17, 11, 26] ,

dX(t) = \X (D)dt + uX(OdW (1),  X(0) =1, (16)

in dimensions d = m = 1 with fixed complex parameters A, u. Note that other stability test
problem in multiple dimensions are also be considered in [10] and references therein. The exact
solution of (16) is called mean-square stable if limy o E(|X (¢)[?) = 0 and this holds if and only
if (A, p) € SM9 where

1
SMT={(A\ p) €C* s R(N) + Z|uf* <0},

Indeed, the exact solution of (16) is given by X (t) = exp((A+ %)t +puW (t)), and an application
of the the It6 formula yields E(|X (¢)[*) = exp((R(\) + 342)t) which tends to zero at infinity if
and only if R(A) + 2u? < 0. We say that a numerical scheme {X,} for the test problem (16) is
mean-square stable if and only if lim,, . E(|X,|?) = 0. For a one-step integrator applied to the
test SDE (16), we obtain in general a induction of the form

Xn+1 — R(p)qvé-n)Xna (17)

where p = Ah, ¢ = puv/h, and &, is a random variable (e.g. a Gaussian &, ~ N(0,1) or a discrete
random variable). Using E(|X,11]?) = E(|R(p, ¢, &) |>)E(|X,|?), we obtain the mean-square
stability condition [25, 17]

h_)m E(|Xn|2) =0 < (p, Q) S Snuma (18)

where we define Spum = {(p,q) € C* ;E|R(p,q,€)|* < 1}. The function R(p,q,&,) is called the
stability function of the one-step integrator. For instance, the stability function of the Euler-
Maruyama method (3) reads R(p,q,&) =1+ p + ¢¢ and we have E(|R(p, ¢,€)|?) = (1 +p)? + ¢%.

We say that a numerical integrator is mean-square A-stable if S™S € S,,m. This means that
the numerical scheme applied to (16) is mean-square stable for all all & > 0 and all (), ) € SM*

2A variant with analogous stability properties is proposed in [5] with ¢"(K) replaced by ¢"(Ks—1) in (15).
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(d) New SK-ROCK method (s = 20, n = 0.05).

Figure 2: Mean-square stability domains of the standard and new stochastic Chebyshev methods
in the p—¢? plane for s = 7,20 stages, respectively. The dashed lines corresponds to the upper
boundary ¢?> = —2p of the real mean-square stability domain S N R? of the exact solution.

for which the exact solution of (16) is mean-square stable. An explicit Runge-Kutta type scheme
cannot however be mean-square stable because its stability domain Sy, is necessary bounded
along the p-axis. Following [4, 5], we consider the following portion of the true mean-square
stability domain

Sa=1{(p0) € (~0,0) x B 5 p+ 1]qf? <0}, (19)



and define for a given method
L=sup{a>0; S, C Spum}- (20)

We search for explicit schemes for which the length L of the stability domain is large. For example,
for the classical S-ROCK method [5], the value n = 3.98 is the optimal damping maximising L
for s = 7 stages and we can see in Figure 1 that this damping reduces significantly the stability
domain compared to the optimal deterministic domain.

The new S-ROCK method, denoted SK-ROCK (for stochastic second kind orthogonal Runge-
Kutta-Chebyshev method) introduced in this paper is defined as

Ky = X
K = Xo+mhf(Xo+1Q)+r1Q
K; = whf(Ki1) +viKi1 +riK 0, i=2,...,s.

X, = K, (21)
where Q = Y7, ¢"(Xo)AW,, and p; = wi/wo,v1 = swi/2,k1 = swi/wy and p;, vi, ki, © =
2,...,s are given by (10), with a fixed small damping parameter 7. In the absence of noise
(9" =0,r =1,...,m, deterministic case), this method coincides with the standard deterministic

order 1 Chebychev method, see the review [2]. We observe that the new class of methods (21)
is closely related to the standard S-ROCK method (15). Comparing the two schemes (21) and
(15), the two differences are on the one hand that the noise term is computed at the first internal
stage K for (21), whereas it is computed at the final stage in (15), and on the other hand, for
the new method (21) the damping parameter 7 involved in (9) is fixed and small independently
of s (typically n = 0.05), whereas for the standard method (15), the damping 7 is an increasing
function of s, optimized numerically for each number of stages s.
If we apply the above scheme (21) to the linear test equation (16), we obtain

Xn+1 - R(p7 q, fn)Xna

where

E(|R(p,q,€)[*) = Ap)* + B(p)*¢?, (22)
and
Ts(wo + wip) Us—1(wo + wip)

Ts(wo) Us—1(wo)

correspond to the drift and diffusion contributions, respectively. The above stability function (see
Lemma 3.1 in Section 3) is obtained by using the recurrence relation for the first kind Chebyshev
polynomials (11) and the similar recurrence relation for the second kind Chebyshev polynomials

Ap) = B(p) = 1+ 5p)

Uj(p) = 2pU;j-1(p) — Uj—2(p), (23)

where Uy(p) = 1, Ui (p) = 2p. Notice that the relation 77(p) = sUs—1(p) between first and second
kind Chebyshev polynomials will be repeatedly used in our analysis.

In Figure 2(b)(d), we plot the mean-square stability domain of the SK-ROCK method for s = 7
and s = 20 stages, respectively and the same small damping 7 = 0.05 as for the deterministic
Chebyshev method. We observe that the stability domain has length Lg ~ (2 — %77)52. For
comparison, we also include in Figure 2(a)(c) the mean-square stability domain of the standard
S-ROCK method with smaller stability domain size L, ~ 0.33 - s2.

In Figure 3, we plot the stability function E(|R(p, q,£)|?) in (22) as a function of p for various
scaling of the noise for s = 7 stages and damping n = 0.05. We see that it is bounded by 1 for



E(|R(p, q,6)[*) = A(p)* + B(p)*¢*

Figure 3: Stability function E(|R(p, q,€)|?) = A(p)? + B(p)?q® as a function of p in (22) (solid
black lines) of the new SK-ROCK method, s = 7,7 = 0.05, for various noise scalings ¢*> =
0, —p, —2p, respectively. We also include the drift contribution A(p)? (red dotted lines) and
diffusion contribution B(p)?¢? (blue dashed lines).

peE(—2(1— %n)sQ, 0) which is proved asymptotically in Theorem 3.2. The case ¢ = 0 corresponds
to the deterministic case, and we see in Figure 3(a), the polynomial E(|R(p,0,¢)|?) = A(p)%.
Noticing that E(|R(p,q,¢)|?) is an increasing function of ¢, the case ¢> = —2p represented in
Figure 3(c) corresponds to the upper border of the stability domain S;, defined in (19) (note
that this is the stability function value along the dashed boundary in Figure 2), while the scaling
q®> = —p in Figure 3(c) is an intermediate regime. In Figures 3(b)(c), we also include the drift
function A(p)? (red dotted lines) and diffusion function B(p)2¢? (blue dashed lines), and it can
be observed that their oscillations alternate, which means that any local maxima of one function
is close to a zero of the other function. This is not surprising because A(p) and B(p) are related
to the first kind and second kind Chebyshev polynomials, respectively, corresponding to the
cosine and sine functions. This also explains how a large mean-square stability domain can be
achieved by the new SK-ROCK method (21) with a small damping parameter 7, in contrast to the
standard S-ROCK method (15) from [5] that uses a large and s-dependent damping parameter 7
with smaller stability domain size Ly ~ 0.33 - s?(see Figures 3(a)(c)).

3 Mean-square stability analysis

In this section, we prove asymptotically that the new SK-ROCK methods have an extended
mean-square stability domain with size C's?> growing quadratically as a function of the number
of internal stages s, where the constant C' > 2 — %n is the same as the optimal constant of the
standard Chebyshev method in the deterministic case, using a fixed and small damping parameter

7.
Lemma 3.1. Let s > 1 and n > 0. Applied to the linear test equation dX = AXdt + uXdW, the



scheme (21) yields
Xn+1 = R(Ah, M\/ﬁ, fn)Xn

where p = Ah,q = puv'h, & ~ N(0,1) is a Gaussian variable and the stability function given by

Ts(wo + Wlp) Us—l(wo + Wlp) (1 + ﬂp)qg (24)

R(p,q,§) = T (00) 0o 1 (o) 5

Proof. Indeed, we take advantage that T} and U; have the same recurrence relations (11),(23),
and only the initialization changes with T} (x) = 2 and U (z) = 2z, we deduce Q = Xouv/hé, and
we obtain by induction on 7 > 1,

T (wo + w1p) X0+ Ui—1(wo + w1p)
Ti(wo) T(wo)

1+ P00

K; =
2

and we use Ti(z) = zUs_1(z) and swy/Ts(wo) = 1/Us—1(wp), which yields the result for X; =
K. O

For a positive damping 7, we prove the following main result of this section, showing that a
quadratic growth L > (2—4/3n)s? of the mean-square stability domain defined in (20) is achieved
for all n small enough and all stage number s large enough.

Theorem 3.2. There exists ng > 0 and sy such that for all n € [0,n0] and all s > sg, for all
p € [—2wt,0] and p+ lal? <0, we have E(|R(p,q,&)|?) < 1.

Remark 3.3. We deduce from Theorem 3.2, that the mean-square stability domain size (20) of
SK-ROCK grows as (2—4/3n)s? which is arbitrarily close to the optimal stability domain size 25>
forn — 0. Indeed, for s — oo and all p < 19, we have 2w1_13*2 — 2% =2-4/3n+0(1n?)
and for all s,n, we have 2w1_1 > (2 —4/3n)s%. In addition, in the special case of a zero damping
(n =0), the stability function (24) reduces to

p _ p p
R(p,q,§) = Ts(1 + ?) +5 U1 (14 g)(l + @)qﬁ,

and it holds

E(|R(p,q.6)*) <1,
for all s > 1, for all p € [—2s%,0] and all ¢ € C such that p+ |q|?/2 < 0. Indeed, for p € [-25%,0],
we denote cos = 1+ 5 € [~1,1] and using

Ts(cos(0)) = cos(s6), sin(f)Us—1(cos(0)) = sin(sh),

we obtain

91 +cosf <1

E(|R(p, 0, )I") < E(|R(p, /=2p) = cos(s0)” + sin(s0)* —— < 1,

where we used —2p = 25*(1 — cosf), 1 4 7 = 1+627059 and sin? @ = (1 + cos#)(1 — cosf).

Before we prove Theorem 3.2, we have the following lemma, see [27] for analogous results.

Lemma 3.4. We have the following convergences as s — oo to analytic functions® uniformly for
z in any bounded set of the complex plan,

T,(1 + z/s*) — cosh V22,

#Note that for z < 0, we can use v/2z = iv/—2z and obtain Ts(1 + 2/s%) — cos(y/—22) for s — oo and similarly
a(z) = sinc(v/—22).




sinh v/22
7@ )
_ tanh /27
=

Proof. We prove the uniform convergence of the first limit only, since it will be useful in the proof
of the next theorem. The others can be proved in a similar way.
First, let us write the two functions of 7 in Taylor series,

s—1 y7(n) s—1 n n
U™ (1) 1 k2 1
1 o —1 s—1 N \n _ n
S Us—l(w()) = S 7;:0: nl (82) - Z (nl H(l n 52) H 2]43-{—1) o

3_1Us—1(1 + 2/32) — a(z) =

wis? — Q(n)fl, Q(n) :

n=0 k=0 k=0
[ee] oo n
onyn 1 1
0 = 33 (gt ) o
= (2n+1)! =\t 2k +1
where we used the formula sUs(ﬁIl)(l) = S(n)(l) = Hz;é % Subtracting the above two

identities, we deduce

o e S (-0 T2
sup |5~ Us—1(wo) —a(n)| < 2 l1-TJa-=) + N o
n€[~n0,m0] =0 n! o S P 2k +1 o n!
s—1 . n 2 ©
s k 1 s
< 0 _ _ o
- n! (1 H(l 52 )> 25 — 1 + Z n! (25)
n=>0 k=0 n=s

Noticing that %(1 — (1 — ’;—3))# converges to zero as s — oo and is bounded by %6: for

25—1
all integers s,n, which is the general term of the convergent series of exp(no) = > .~ Z—O!, the
Lebesgue dominated convergence theorem implies that (25) converges to zero as s — 0o, which
concludes the proof. O

Lemma 3.5. For all n small enough and all s large enough, we have the following estimate:

2w 1 —(1—wp)?
<1 2
Ts(wo)z 1-— (a)g — W1)2 - ( 6)

Proof of Lemma 8.5. Using the Lemma 3.4 we have for s — oo, uniformly for all € [0, ng],

52wy 2+/2n and L~ (1 —wy)? . 1
Ts(wp)?  sinh(2+/2n) 1—(wo—w1)?  1-=Qmn

Now if we expand both functions in Taylor series we get:

221 4 1

=1—-n+0®W — =1 o(n’ 27
Snh(2v/27) 37 +00r), oy (), (27)
and this implies that for all s large enough and all n < g,
2w 1—(1—wp)? 4 1
<(1—zno+0m))( Omg)) =1— 2no+ O(ng 28
Ts(wo)gl_(wo_wl)g = ( 3770+ (770))( +no + (7]0)) 3770+ (770)7 ( )
which is less than 1 for g small enough. O

Remark 3.6. Numerical evidence suggests that the result of Theorem 8.2 holds for all s > 1 and
allm > 0. Indeed, it can be checked numerically that (26) holds for all n € (0,1) and all s > 1.
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Proof of Theorem 3.2. Setting x = wy + w1p, a calculation yields

E(|R(p,q,€)|*) < E(R(p,/—2p,€)*)

Ty (z)? Us_1(x)? w
TS(5U()))2 Us_ll(gl)o))Q (1 -+ ?1]7)2(_2]7)

The proof is conducted in two steps, where we treat separately the cases p € [—2w; L —1] and
p € [—1,0]. For the first case p € [—wal, —1], which corresponds to z € [~1 +1/s% wy — w1], we
have

)2 )2 wo—z\? _wy—
E(|R(pa Q7£)|2) = jz;s(guo) 2 + 5811(23)2 <1 o 02 ) 2 Owl
T 2
- TSS(EUO))Q + Us—l(x>2(1 - x2)Qs<m)

where we denote

. 1+z— 1
First, we note that J; 2 € 0,1 — 4.

dx 1—x2

. n d [1-(z—7%)?
Next, using 5 < 2, we deduce —s | =

2n 1422 —n/s%z 2n (1—a)? i} 1—(z—
s2 (1—z2)? 2 s2 (1—x2)2 > 0. Thus 1-x

value at © = wy — wq,

is an increasing function of x, smaller than its

I-(@=3)? _1-(1-w)
1—22  —1—(wp—wp)?
Using Lemma 3.5 we obtain |Qs(z)| < 1. This yields E(|R(p, q,€)|?) < Ts(x)?+Us—1(x)*(1—2?%) =
1.

For the second case p € [—1,0] which corresponds to = € [wy — w1,wp], we deduce from
Ts(z)? + Us_1(2)%(1 — ) = 1 that

1 Us_l(x)z
Ts(wp)? * Us—1(wo)? <

E(|R(p,q.6)") <

w (1 —22)Us_1(wo)?
(14 () - B Tl

Using Lemma 3.4, we get
1 Us—1(x)? wy (1 = 2*)Us—1(wp)?
E(|R(p, Q7€)|2) < T (wo)? + Us—1(wp)2 <(1 + ?p)Q(_2p) - Ty (wo)? >
a 2
o + R Con(0n) 1)+ 2000)%)

for s — oo, where the above convergence is uniform for p € [0,1],7 < 79. Using the fact that
Q(n) =1-2n+ O(n?), we deduce

877|77=0— 2+ a(p)=( §p+2)-

- 1n,p) =

By Taylor series in the neighbourhood of zero we have a(p)? = 1 + %p + %pQ + O(p*), and for
p € [-1,0], ap)? < 1+ Zp+ 2p?, thus for all p € [—1,0],

ol 2 8 4., 4 8
0 < 24 (1+2p+ ) (—p+2) = ——_p2(4p+9) < 0.
877'”_0— + ( gt P )( P+ ) 135p(p+ ) <

Therefore, there exists 7y small enough such that for all p € [-1,0],1n < no, I(n,p) < 1(0,p) = 1.
This concludes the proof of Theorem 3.2. O
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4 Convergence analysis

We show in this section that the proposed scheme (21) has strong order 1/2 and weak order 1 for
general systems of SDEs of the form (1) with Lipschitz and smooth vector fields, analogously to
the simplest Euler-Maruyama method.

We denote by C5(R?, R?) the set of functions from R? to R that are 4 times continuously
differentiable with all derivatives with at most polynomial growth. The following theorem shows
that the proposed SK-ROCK has strong order 1/2 and weak order 1 for general SDEs.

Theorem 4.1. Consider the system of SDEs (1) on a time interval of length T > 0, with
frg € CH(RY,RY), Lipschitz continuous. Then the scheme (21) has strong order 1/2 and weak
order 1,
E|(| X (ta) — Xnll) < CRY2, t,=nh < T, (29)
E(G(X(t)) — E@(Xa)| < Ch, o =nh <T, (30)

for all ¢ € CH(RLR), where C is independent of n, h.

For the proof the Theorem 4.1, the following lemma will be useful. It relies on the linear
stability analysis of Lemma 3.1.

Lemma 4.2. The scheme (21) has the following Taylor expansion after one timestep,

= r Ts”(wo)w% w1 / % r 2
X1 =Xo+hf(Xo)+ Zg (Xo) AW, +h <T(wo) + 2) f'(Xo) Zg (X0)AW, + h*Rp,(Xo),
r=1 s r=1

where all the moments of Rp(Xo) are bounded uniformly with respect to h assumed small enough,
with a polynomial growth with respect to Xj.

Proof. Using the definition (21) of the scheme and the recurrence relations (11),(23), we obtain
by induction on ¢ =1,...,s,

Ti{wo)w ST/ (wo)wi N
K; = Xo + hﬁo)lf(Xo) + Tcg())l ;g (Xo) AW,
STZ-//(W())M2 STZ-/(OJ())Q)2 , m i
h ( iT3(wo) ' 2iﬂ(w0)1> f(Xo) ;9 (X0) AW, + h?R; 1, (Xo), (31)

and R;j,(Xo) has the properties claimed on Rp(X). Using wy = Ts(wo)/Ts(wo), this yields the
result for X7 = K. ]

Proof of Theorem 4.1. A well-known theorem of Milstein [23] (see [24, Chap. 2.2]) allows to infer
the global orders of convergence from the error after one step. We first show that for all r € N
the moments E(| X,,|?") are bounded for all n, h with 0 < nh < T uniformly with respect to all k
sufficiently small. Then, it is sufficient to show the local error estimate

[E(¢(X (t1))) — E(6(X1))| < Ch?,

for all initial value X (0) = X and where C has at most polynomial growth with respect to X, to
deduce the weak convergence estimate (30). For the strong convergence (30), using the classical
result from [22], it is sufficient to show in addition the local error estimate

E(|X (1) - Xu])) < Ch

12



for all initial value X (0) = Xy and where C has at most polynomial growth with respect to X.
These later two local estimates are an immediate consequence of Lemma 4.2.

To conclude the proof of the global error estimates, it remains to check that for all » € N the
moments E(|X,|?") are bounded uniformly with respect to all h small enough for all 0 < nh < T.
We use here the approach of [24, Lemma 2.2, p. 102] which states that it is sufficient to show

[E(Xnt1 — Xn|Xn)| < C(1+ [Xa])h, [ Xnt1 — Xn| < Mp(1 + |Xn‘)\/ﬁv (32)

where C' is independent of h and M,, is a random variable with moments of all orders bounded
uniformly with respect to all A small enough. These estimates are a straightforward consequence
of the definition (21) of the scheme and the linear growth of f,g (a consequence of their Lip-
schitzness). This concludes the proof of Theorem 4.1. 0

Remark 4.3. In the case of additive noise, i.e. g",r = 1,...,m are constant functions, one can
show that the order of strong convergence (29) become 1, analogously to the case of the Euler-
Maruyama method. For a general multiplicative noise, a scheme of strong order one can also be
constructed with E(|R(p, q,€)|?) < 1 for all p € [—20.11_1,()] and all g with p + % <0, as it can
be check numerically. The idea is to modify the first stages of the scheme such that the stability
function (24) becomes

_ Ty(wo +wip) | Us—i(wo +wip)® w Wiy 262 -1
R(pa Qag) - TS(WO) + U871(w0)2 (1 + 9 p— 9 p ) q€ + q 9 .

We refer to [8, Remark 3.2] for details.

5 Long term accuracy for Brownian dynamics

In this section we discuss the long-time accuracy of the SK-ROCK for Brownian dynamics (also
called overdamped Langevin dynamics). We will see that using postprocessing techniques we can
derive an SK-ROCK method that captures the invariant measure of Brownian dynamics with
second order accuracy. In doing so, we do not need our stabilized method to be of weak order 2
on bounded time intervals and we obtain a method that is cheaper than the stochastic orthogonal
Runge-Kutta-Chebyshev method of weak order 2 (S-ROCK2) proposed in [8], as S-ROCK2 uses
many more function evaluations per time-step and a smaller stability domain.

5.1 An exact SK-ROCK method for the Orstein-Uhlenbeck process

We consider the 1-dimensional Orstein-Uhlenbeck problem with 1-dimensional noise with con-
stants 9,0 > 0,
dX(t) = —0X(t)dt + cdW (t), (33)

that is ergodic and has a Gaussian invariant measure with mean zero and variance given by
limy 0 E(X (¢)?) = 02/(26). Applying the SK-ROCK method to the above system we obtain

Xny1 = Alp) Xn + B(p)a\/ﬁfn (34)
where p = —dh, &, ~ N(0,1) is a Gaussian variable and similarly as for (24) we have
Ts(wo +w1p) Us—1(wo + w1p) w1
(p) T (00) (p) U1 (o) 1+5p) (35)
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A simple calculation (using that |A(p)| < 1) gives

2pB(p)*

o2
lim E(X;) = -<R(p), R(p) = AP -1

n—o0 20
From the above equation, we see that the SK-ROCK method has order r for the invariant measure
of (33) if and only if R(p) = 1+ O(p") and a short calculation using (35) reveals that R(p) =
1+ O(p), it has order one for the invariant measure (this is of course not surprising because
the SK-ROCK has weak order one). We next apply the techniques of postprocessed integrators
popular in the deterministic literature [12] and proposed in the stochastic context in [29]. The
idea is to consider a postprocessed dynamics X, = G,(X,) (of negligible cost) such that the
process X, approximates the invariant measure of the dynamical system with higher order. For
the process (33), we consider the postprocessor

Yn =X, + CO-\/Egna (36)
which yields lim,, ]E(Yi) = %;(R(p) —2¢%p). In the case of the SK-ROCK method with n = 0
(zero damping), we have A(p) = Ts(1 + p/s?), B(p) = Us_1(1 + p/s?)(1 + p/(2s))/s. Setting
c = 1/(2s) and using the identity (1 — 2?)U2 ;(z) = 1 — T%(z) with = 1 + p/s? reveals that

R(p) — 2¢?p = 1 and we obtain
2

. 2 o
A B = 55
Hence the postprocessed SK-ROCK method (that will be denoted PSK-ROCK) captures exactly
the invariant measure of the 1-dimensional Orstein-Uhlenbeck problem (33). Such a behavior
is known for the drift-implicit § method with § = 1/2 (see [13] in the context of the stochastic
heat equation) and has recently also been shown for the non-Markovian Euler scheme [20]. In
[29] an interpretation of the scheme [20] as an Euler-Maruyama method with postprocessing (36)
with ¢ = 1/2 has been proposed and we observe that this is exactly the same postprocessor as
for the PSK-ROCK method (with s = 1,7 = 0). As the SK-ROCK method with zero damping
is mean-square stable (see Remark 3.3 for = 0), it can be seen as a stabilized version of the
scheme [20]. However, the PSK-ROCK method with s > 1 and zero damping is not robust to use
as its stability domain along the drift axis does not allow for any imaginary perturbation at the
points where |T5(1 + p/s?)| = 1 and it is not ergodic (see Remark 5.2 below).

(37)

Stability analysis for Orstein-Uhlenbeck Let M € R?*? denote a symmetric matrix with
eigenvalues —\g < ... < —A; <0, and consider the d-dimensional Orstein-Uhlenbeck problem

dX (1) = MX(t)dt + odW (1) (38)

where W (t) denotes a d-dimensional standard Wiener process. The following theorem shows that
the damping parameter n > 0 plays an essential role to warranty the convergence to the numerical
invariant measure p” (x)dz at an exponentially fast rate.

Theorem 5.1. Letn > 0. Consider the scheme (21) with postprocessor (36) applied to (38) with
stepsize h and stage parameter s such that 2w1_1 > hAg. Then, for all h < n/\,p € C}D(}Rd, R),

BO(X,) ~ [ ol)rhe(e)da] < Cexpl=2a(1 +1)'t)

where C' is independent of h,n, s, A1,..., Aq.
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Proof. 1t is sufficient to show the estimate
|A(=Ajh)| < exp(=Ai(1+n)""h) (39)

for all h < hg, where we denote A(z) = Ts(wp + w12z)/Ts(wp). Indeed, considering two initial
conditions X}, X2 for (21) and the corresponding numerical solutions X!, X2 (obtained for the
same realizations of {&,}) with postprocessors Yi,Yi, we obtain X} — X2 = A(hM)(X} | —
X2 ) and using the matrix 2-norm || A(hM)| = max; |A(=\;h)| and (39), we deduce by induction
on n,

1 2 _
X = Xl = 11X, = X320 < exp(=M(1 +n) ™) [1Xg — X3,

and taking Yg distributed according to the numerical invariant measure yields the result.

For the proof of (39), let = = —\;h. Consider first the case z € (—nw; 's72,0). Using the
convexity of A(z) on [—nwy 's™2,0] (note that T!(x) is increasing on [1,00)), we can bound A(z)
by the affine function passing by the points (z1, A(z1)), (z, A(22)) with 21 = —nw; 's72, 29 = 0,

A(2) <1+ 2(1 —1/Ty(wo))n twr s?
Using wys® > 1 and Ti(wg) > 1 + 1, we obtain
(1= 1/T(wo))ytwis® > (L= (L) )y~ = (1 +n) 7"
This yields for all z € [—nw; 's72,0],
A(z) <1+ 2(1+n) 7" <exp(z(1+n)7)

where we used the convexity of exp(z(1 +n)~!) bounded from below by its tangent at z = 0. We

obtain
A(—/\jh) < e*’\jh(lJr??)_l < e*)\lh(1+,7)—1‘

We now consider the case z € [~Lg, —nw; *s72]. We have |wo + w1 2| < 1, thus |Ty(wo +wi2)| < 1
and
[ A(2)] < 1/Ti(wo) < exp(=A1(1+n)""h)

for all h < (1 + n)log(Ts(wo))/A1, and thus also for A < n/A; where we use Ts(wp) > 1+ n and
(14 n)log(1+n) > n. This concludes the proof. O

Remark 5.2. Note that n > 0 is a crucial assumption in Theorem 5.1. Indeed, the estimate of
Theorem 5.1 is false for n = 0 already in dimension d =1 for all s > 1: for a stepsize h such that
1 — hA1/s? = cos(m/s) we obtain A(—A1h) = —1 and B(—\1h) =0 in (35) (corresponding to the
local extrema p = —A1h of A(p) closest to zero) and X, = (—1)"Xq for all n, and the scheme is
not ergodic. In addition, notice that Theorem 5.1 allows to use an h-dependent value of 1 such
asn = th where Xl > A1 1s an upper bound for \i. In this case, the exponential convergence of
Theorem 5.1 holds for all stepsize h < 1.

We end this section by noting that being exact for the invariant measure of Brownian dynamics
(40) is only true for the PSK-ROCK method (or the method in [20]) in the linear case, i.e. for
a quadratic potential V. Second order accuracy for the invariant measure has been shown in
[21] (see also [29]) for the method in (6) (equivalent to PSK-ROCK with s = 1 stage) for general
nonlinear Brownian dynamics (40). This will also be shown for the nonlinear PSK-ROCK method
in the next section.
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5.2 PSK-ROCK: a second order postprocessed SK-ROCK method for nonlin-
ear Brownian dynamics

We consider the overdamped Langevin equation,
dX(t) = —=VV(X(t))dt + cdW(t), (40)

where the stochastic process X (t) takes values in R? and W (t) is a d-dimensional Wiener process.
We assume that the potential V : R? — R has class C* and satisfies the at least quadratic growth
assumption

eTVV(x) > Crale — Oy (41)

for two constants C1,Co > 0 independent of z € R?. The above assumptions warranty that the
system (40) is ergodic with exponential convergence to a unique invariant measure with Gibbs
density poo = Z exp(—202V (z)),

BO(X(0) ~ [ dw)oms(a)da] < Ce™,

for test function ¢ and all initial condition X, where C, A are independent of ¢.
We propose to modify the internal stage K1 = Xo 4+ p1hf(Xo + 11Q) + k1Q of the method
(21) as follows:

K1 = Xo+ phf(Xo +11Q) + £1Q + ah(f(Xo + 1Q) — 2f(Xo) + f(Xo — 11Q)), (42)
where « is a parameter depending on s and 7 given in Theorem 5.4 below.

Remark 5.3. Notice that for a = 0, we recover the original definition from (21). We note that
the parameter a does not modify the stability function of Lemma 3.1, and yields a perturbation of
order O(h?) in the definition of X1. Thus, the results of Theorem 8.2 and Theorem 4.1 remain
valid for any value of v for the scheme (21) with modified internal stage (42).

Theorem 5.4. Consider the Brownian dynamics (40), where we assume that V : R — R has
class C*°, with V'V globally Lipschitz and satisfying (41). Consider the scheme (21) applied to
(40) with modified internal stage Ky defined in (42) with o defined in (43), and the postprocessor
defined as

X, = Xn + coVhE,

where
1 T// 2T// ) 2T//
02 _ w1 + wily ((.U()) o wils (WO)’ o = (CQ + d ((AJ()) — ’I“s), (43)
42 Ti(wo) AT (wo) SWow1 2Ts(wo)
and rs is defined by induction as ro =0, r; = % = A1 and

T,y (wo)wi

T = Uirio1 4 Kiriee + 0, Ay = M DT (wo)
i

Then, X, yields order two for the invariant measure, i.e. (5) holds with r = 2, and in addition
B - [ ahpm(a)da| < Cre™ + Cal® (44
Rd

for all t, = nh, ¢ € CF (R, R), where Cy,Co are independent of h assumed small enough, and
Cs is independent of the initial condition X.
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The proof of Theorem 5.4 relies on the following postprocessing analysis from [29]. Consider
a scheme (2) with bounded moments and assumed ergodic when applied to (40), where the
potential V' satisfies the above ergodicity assumptions. Assume that the scheme has a weak
Taylor expansion after one time step of the form

E(¢(X1)|Xo = z) = ¢(x) + hLp(x) + B> A1p(z) + O(h?), (45)
and consider a postprocessor of the form X,, = G,,(X,,) where
E(¢(X1)| X1 = z) = ¢(x) + hAip(x) + O(h?), (46)

where the constants in O in (45),(46) have at most a polynomial growth with respect to z. Here
Lo = ¢'f + 0?/2A¢ denotes generator of the SDE and Aj, A; are linear differential operators
with smooth coefficients. Note that A; # £2/2 in general (otherwise the scheme has weak order
2). If the condition (A; + [£, A1])*peo = 0 holds, equivalently,

(Ar1¢+ £, A1]p) =0 (47)

for all test function ¢, where we define (¢) = [r4 ¢psodz, then it is shown in [29, Theorem 4.1]
that X, has order two for the invariant measure, i.e. the convergence estimates (5) with r = 2
and (44) hold. Before we can apply the above result, the following lemma allow to compute the
weak Taylor expansion of the modified scheme.

Lemma 5.5. Consider the scheme (21) with modified stage (42) and assume the hypotheses of
Theorem 5.4. Then (45) holds where the linear differential operator A; is given by

1 o2 d ot d
Mo = SN+ Y ¢ enen )+ D oW eje) + e f'f
i=1 ij=1
52 d
+ C33¢'Zf”(€i,€¢) +eso® Y ¢ (feise), (48)
=1 i=1
where f=—-VV(z) and
211 11
wiT? (wp) wo T/ (wo)wi ~ wi
= — = Ts — G = 5 4
2 2Ts(wo) ¢ ="Tst swla “ T!(wp) + 2 (49)

Proof. Adapting the proof of Lemma 4.2, the internal stage K; defined in (21) (and (42) for i = 1)
satisfies (31) where h2R; 5 (X() can be replaced by

WiT{ (wo) o*

2111((00) thI(XO)f(XO) + 'Fz 9 f”(XO)(gna En) + h5/2§i —+ hSEi,h(XO), (50)

where E(R;) = 0 and all the moments of R;, ﬁi,h(Xo) are bounded with polynomial growth with
respect to Xg. Here, 7; is defined by induction as 79 = 0, 7y = A1 + «a, and
TP = UiTi_1 + KiTi—o + 0, 1=2,...,8.

We have E(R;) = 0 because R; is a linear combination of f'(Xo)f"(Xo0)&n, £ (X0)(f(X0), &), and
1"(X0)(&n, &n, &) with zero mean values (recall that odd moments of &, vanish). Next, observing
that the difference d; = 7; — r; satisfies dy = 0,dy = «, and d; = v;d;_1 + Kidi—2,i = 2,...,8, we

deduce Uiy (0)

= di,  di= om0 W =0, .

Ty =71 + aj, i E(WO) wox ? yees S
In particular, taking i = s in (31),(50), and expanding (45), we deduce that (48) holds with
2, c3, ¢y defined in (49) where we note that c3 =75 = rs + ds. O
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Figure 4: Nonlinear problem (52). Strong and weak convergence plots using SK-ROCK with final
time T = 1, stepsizes h = 277, p = 1..10, 10 samples and number of stages s = 1,5, 10, 100.

Proof of Theorem 5.4. Following the proof of [29, Theorem 4.2] (see also [19, Theorem 5.8])
where we apply repeatedly integration by parts for the integral in (47), using Lemma 5.5 for the
expression of A;, we deduce that the quantity in (47) satisfies

d 2
(A1 + [L, Ai]g) = Z <(63 —c2 — CQ)%Gb,f”(@z‘, e;) + (ca — 13 )" (f'es, €i)> ;

=1

where we use [£, 4] = —c?0?(1/2¢ Zle (e ei) + Zle ¢"(f'eire;)) for Aip = ??/2 A,
We see that the above quantity (47) vanished if c3 —ca — ¢? = ¢4 — i -3 - c? = 0, equivalently,

1
63—62262264—1—%. (51)

For the values of a, ¢ defined in (43), we obtain that (51) indeed holds and we deduce that the
order two condition (47) for the invariant measure is satisfied. This concludes the proof. 0
6 Numerical experiments

In this Section, we illustrate numerically our theoretical analysis and we show the performance
of the proposed SK-ROCK method and its postprocessed modification PSK-ROCK.
6.1 A nonlinear nonstiff problem

We first consider the following non-stiff nonlinear SDE,

X = (iX N 1> i3 (X2 + Daw, X(0)=o0. (52)

whose exact solution is X (t) = sinh(%#—wfg)). In Figure 4, we consider the SK-ROCK method (21)

and plot the strong error E(| X (T) — X x| and the weak error |E(arcsinh(X (7")) — E(arcsinh(Xy))|
at the final time 7' = Nh = 1 using 10* samples and number of stages s = 1,5,10,100. We
obtain convergence slopes 1 and 1/2, respectively, which confirms Theorem 4.1 stating the strong
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(a) Non-stiff case =X\ = pg = 1. (b) Stiff case —A; = p? = 100.
Figure 5: Nonlinear problem (53) with v = 2, us = 0.5,A\2 = —1. Weak convergence plots

using SK-ROCK for E(X(T)?) where T = 1, h = T/[2"/?],i = 1,...,14, and 10° samples.
For the stiff case (b), the method uses the following number of stages respectively: s =
8,6,5,4,4,3,3,3,2,2,2,1,1,1 (with damping n = 0.05) and s = 13,9,8,7,6,5,4,4,3,3,3,3,2,2
(with damping n = 4).

order 1/2 and weak order 1 of the proposed scheme. Note that s = 1 stage is sufficient for the
stability of the scheme in the non-stiff case. The results for s = 5,10, 100 yield nearly identical
curves which illustrates that the error constants of the method are nearly independent of the
stage number of the scheme.

6.2 Nonlinear nonglobally Lipschitz stiff problems

Consider the following nonlinear SDE in dimensions d = 2 with a one-dimensional noise (d =
2,m = 1). This is a modification of a one-dimensional population dynamics model from [15,
Chap. 6.2] considered in [7, 8, 3] for testing stiff integrator performances,

dX = (v(Y —1) = M X(1 — X))dt — i X(1 — X)dW, X(0) = 0.95,
dY = —\Y (1= Y)dt — oY (1 = Y)dW, Y (0) = 0.95. (53)

Observe that linearizing (53) close to the equilibrium (X,Y) = (1,1), we recover for v = 0
the scalar test problem (16). In Figure 5 we consider the SK-ROCK method applied to (53)
with parameters that are identical to those used in [3, Sect.4.2]. We take the initial condition
X (0) =Y (0) = 0.95 close to this steady state and use the parameters v = 2, up = 0.5,A2 = —1. In
a nonstiff regime (—\; = g1 = 1 in Figure 5(a)), we observe a convergence slope 1 for the second
moment E(X (7)?) which illustrates the weak order one of the scheme, although our analysis in
Theorem 4.1 applies only for globally Lipschitz vector fields. The stage number s = 1 is sufficient
for stability, but we also include for comparison the results for s = 10 (note that the results for
s = 50,100 not displayed here are nearly identical to the case s = 10). The convergence curves
are obtained as an average over 10° samples. In a stiff regime (—\; = p? = 100 in Figure 5(b)),
we observe for the standard small damping = 0.05 a stable but not very accurate convergence,
due to the severe nonlinear stiffness. However, considering a slightly larger damping n = 4, in
the spirit of the S-ROCK method, yields a stable integration for all considered timesteps and
all trajectories and we observe a line with slope one for the SK-ROCK method. Here, given the
timesteps h, the numbers of stages s are adjusted as proposed in (54) where Apax = |A1] = 100.
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Figure 6: Linear additive problem (55). Second moment error E(X(T)?) for for short time
T = 0.5 (top pictures) and long time 7" = 10 (bottom pictures) without (SK-ROCK) or with a
postprocessor (PSK-ROCK). where, h = T/[10 x 2¢/8] for T = 10, and h = T/[2/?] for T = 0.5
with 4 = 1,...,16, and 10® samples.

Remark 6.1. For severely stiff problems, alternatively to switching to drift-implicit schemes
[17, 7], one can consider in SK-ROCK a slightly larger damping n and the corresponding stage
parameter s below, similar to (14) and chosen such that the mean-square stability domain length
(20) satisfies L > hAmax,

+0.5], (54)

o | [ 15
2Q(n)

where Q(n) is given in Lemma 3.4.

6.3 Linear case: Orstein-Uhlenbeck process

We now illustrate numerically in details the role of the postprocessor introduced in Theorem 5.4
for the linear Orstein-Uhlenbeck process in dimension d = m =1,

dX = —\Xdt + cdW, X(0)=2 (55)

where we choose A = 1 and o = /2.
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Figure 7: PSK-ROCK without damping (n = 0). Second moment error of problem (55), with
T =10, h = T/[2i/2], and s = 1,5,10, 100, using M = 10® samples (the Monte-Carlo error has
size M~1/2 =107%).

In Figure 6, we consider the SK-ROCK and PSK-ROCK methods with s = 1,5, 10, 100 stages,
respectively. For a short time 7" = 0.5 (Fig. 6(a)(b)), we observe weak convergence slopes one
for both SK-ROCK and PSK-ROCK (second moment E(X (T)?)) as predicted by Theorem 4.1,
and the postprocessor has nearly no effect of the errors. For a long time 7" = 10 where the
solution of this ergodic SDE is close to equilibrium, we observe that the weak order one of SK-
ROCK (Fig. 6(c)) is improved to order two using the postprocessor in PSK-ROCK (Fig. 6(d)),
which confirms the statement of Theorem 5.4 that the postprocessed scheme has order two of
accuracy for the invariant measure. For comparison, in Figure 7, we also include the results of
PSK-ROCK without damping (1 = 0) using M = 10® samples. We recall that for the scalar linear
Orstein-Uhlenbeck process, the PSK-ROCK method with zero damping is exact for the invariant
measure (see Section 5.1). We observe only Monte-Carlo errors with size ~ M~1/2 = 10~, which
confirms that the PSK-ROCK method has no bias at equilibrium for the invariant measure in the
absence of damping, as shown in (37). We emphasise however that this exactness results holds
only for linear problems, and a positive damping parameter 7 should be used for nonlinear SDEs
for stabilization, as shown in Sections 3 and 5.1.

6.4 Nonglobally Lipschitz Brownian dynamics

To illustrate the advantage of the PSK-ROCK method applied to nonglobally Lipschitz ergodic
Brownian dynamics, we next consider the following double well potential V (z) = (1 —22)%/4 and
the corresponding one-dimensional Brownian dynamics problem

dX = (X3 + X)dt +V2dW,  X(0) =0, (56)

In Figure 8, we compare the performances of SSROCK, S-ROCK2 considered in [8] (a method
with weak order 2 for general SDEs), and the new SK-ROCK and PSK-ROCK methods at short
time 7' = 0.5 (Figures 8(a)(b)) and long time 7" = 10 (Figures 8(c)(d)). As we focus on invariant
measure convergence and not on strong convergence, we consider here discrete random increments
with P(&, = £v3) = 1/6,P(¢, = 0) = 2/3, which has the correct moments so that Theorem
5.4 remains valid. Our numerical tests indicate that it makes PSK-ROCK with modified stage
(42) more stable. For a fair comparison, we use the same discrete random increments for all
schemes. We plot the second moment error versus the time stepsize h and versus the average
cost which is the total number of function evaluations during the time integration divided by the
total number number of samples. Indeed, the number of function evaluations depends on the
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Figure 8: Second moment errors versus the average number of drift function evaluations for
problem (56) using S-ROCK, S-ROCK2 and the new method SK-ROCK and its postprocessed
version PSK-ROCK. We use discrete random increments and 10® samples.

trajectories because the stage parameter s is adaptive at each time step. For short time, we can
see that the SSROCK and the SK-ROCK method have order 1 (Figure 8(a)) and exhibit similar
performance with nearly identical error versus cost curves in Figure 8(b), while PSK-ROCK is
less advantageous for short time. This illustrates that the postprocessing has no advantage for
short times. The S-ROCK2 method is the most accurate for small time steps, and it has order
2 as shown in Figures 8(a)(c), but at the same time it has a larger average cost as observed in
Figures 8(b)(d) due to its smaller stability domain with size ~ 0.42 - s?. For long time, the SK-
ROCK and S-ROCK both exhibit order 1 of accuracy (Figure 8(c)), with an advantage in terms
of error versus cost for the SK-ROCK method that is about 10 times more accurate for large
time steps. In contrast, the postprocessed scheme PSK-ROCK exhibits order 2 of convergence
(Figure 8(c)) which corroborates Theorem 5.4. Since the postprocessing overcost is negligible
(two additional vector field evaluations per timestep due to the modified stage K; in (42)), this
makes PSK-ROCK the most efficient in terms of error versus cost, as shown in Figure 8(d). The
S-ROCK2 method has order 2 here but with poor accuracy compared to the PSK-ROCK method
with approximately the same cost. Note that typically the SK-ROCK method used s = 1,2,3
stages in contrast to the SSROCK method using s = 2,...,6 stages per timesteps.
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Figure 9: SPDE problem (57) using the space discretization stepsize Ax = 1/100.

6.5 Stochastic heat equation with multiplicative space-time noise

Although our analysis applies only to finite dimensional systems of SDEs, we consider the following
stochastic partial differential equation (SPDE) obtained by adding multiplicative noise to the heat
equation,

Ouit,) _ Oulhx) | ity (ta) € 0.7 x [0,1]

o 022
u(0,z) = 5cos(mz), x € [0,1],
u(t,0) = 5, 8“6()21) _0, telo,T], (57)

where W (t,z) denotes a space-time white noise that we discretize together with the Laplace
operator with a standard finite difference formula [14]. We obtain the following stiff system of
SDEs where u(x;,t) ~ u;(t), with x; = iAz, Az = 1/N,
Uiyl — 2U; + Ui U;
du; = A2 dt + NN
where the Dirichlet and the Neumann conditions impose uyp = 5 and uy11 = un—_1, respectively.
Here, wy,...,wy are independent standard Wiener processes and dw; indicates It6 noise. In
Figure 9(a), we plot one realization of the SPDE using space stepsize Az = 1/100 and timestep
size At = 1/50. Note that the Lipchitz constant associated to the space-discretization of (57)
has size p = 4Az~2, and the stability condition is fulfilled for s = 22 stages. For comparison,
the standard S-ROCK method would require s = 46 stages, while applying the standard Euler-
Maruyama with a smaller stable timestep At/s would require s > Atp/2 = 400 intermediate
steps. Notice that the initial condition in (57) satisfies the boundary conditions, which permits
a smooth solution close to time ¢ = 0. Taking alternatively an initial condition that does not
satisfy the boundary conditions (for instance u(x,0) = 1) yields an inaccurate numerical solution
with large oscillations close to the boundary x = 0. A simple remedy in such a case is to consider
a larger damping parameter 7, as described in Remark 6.1.
In Figure 9(b), we compare the number of vector field evaluations of the standard S-ROCK
and new SK-ROCK methods when applied to the SPDE (57) with finite difference discretization

dw,-, ’iIl,...,N,
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(a) n =0.05, s = 22. (b) n =10, s = 44.

Figure 10: SPDE problem (57) with the initial condition u«(0,z) = 1. One realization with
SK-ROCK using At = 1/50, Az = 1/100 for different values of the damping parameter 7.

with parameter Az = 1/100. The better performance of SK-ROCK with damping n = 0.05 is due
to its larger stability domain with size ~ 1.94 - s?> compared to the size ~ 0.33 - s for S-ROCK.
Observing the ratio of the two costs in Figure 9(b), we see that the new SK-ROCK methods has
a reduced cost for stabilization by an asymptotic factor of about 1/1.94/0.33 ~ 2.4 for large s
and large stepsizes, which confirms the stability analysis of Section 3. The convergence analysis
of the SK-ROCK method for the stochastic heat equation is the topic of future work.

Remark 6.2. Notice that SK-ROCK with s = 1 stage has the optimal mean-square stability
length (L =2 for n =0) as defined in (20). In contrast, the S-ROCK method with s =1 has the
smaller stability length L = 3/2, while the standard Euler-Maruyama has L = 0. This explains
why for the smallest considered stepsize At = 27 in Figure 9(b), we have s = 1 for SK-ROCK
while S-ROCK uses s = 2 stages.

In Figure 10 we consider again one realization with SK-ROCK of the SPDE problem (57)
but with a different initial condition u(0,z) = 1 not fulfilling the boundary conditions, i.e. that
is outside the domain of the Laplace operator, as considered in [3]. We compare the result for
the same sets of random numbers but for for different values of the damping parameter 7. We
observe numerically high oscillations in time and space for the small damping value = 0.05 in
Figure (10a) while the larger damping n = 10 yields a smoother solution in Figure (10b). This
illustrates again Remark 6.1 showing that the damping parameter n can be increased in the case
of severely stiff problems, adjusting the stage parameter accordingly with (54).
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