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Abstract. In this paper we develop a method to generate the Lyapunov function for stability analysis for chem-
ical reaction networks. Based on the Chemical Master Equation, we derive the Lyapunov Function
partial differential equations (PDEs), whose solution approximates the scaling non-equilibrium po-
tential and serves as the candidate Lyapunov function for the given network. We further prove that
for any chemical reaction network the solution (if exists) of the PDEs is dissipative. Moreover, the
proposed method of Lyapunov Function PDEs is qualified for analyzing the asymptotic stability
of complex balanced networks, all networks with 1-dimensional stoichiometric subspace and some
special networks with more than 2-dimensional stoichiometric subspace if some moderate conditions
are added. Several examples are presented to illustrate the efficiency of the method.
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1. Introduction. Chemical reactions networks (CRNs) arise abundantly in the fields in-
cluding chemistry, systems biology, process industry, and even those seemingly irrelevant to
chemistry such as mechanics and ecology. The dynamics of a CRN often appears to be
extremely complex due to chemical interactions of cellular processes but sometimes still ex-
hibiting certain regular behaviors like period solutions and stable-fixed-points. As a special
subclass, mass-action CRNs (CRNs assigned mass action kinetics, often named mass action
systems) have the dynamics of the concentrations of the various species captured by polyno-
mial ordinary differential equations (ODEs), and have received much attention since the pio-
neering work [10–12,18] emerged. A major concern over this class of systems is to understand
the relations between network structures and/or parameters and dynamical properties [6,7,28],
especially in characterizing the stability (in the sense of Lyapunov) property [1,2,18,24,27,29].
Following this line of study, we also focus on capturing stability of equilibria in mass action
systems (MASs) in the current work. Naturally, Lyapunov functions are desirable objects
to prove stability of equilibria. In the field of CRNs, one important example is the pseudo-
Helmholtz free energy function, proposed by Horn and Jackson [18]. This Lyapunov function
can be derived from the microscopic level using potential theory [2]. Here, we build further on
this, and provide a general theory that bridges between the microscopic and the macroscopic
level, thermodynamics and potential theory. Based on it, it is possible to derive or find a
Lyapunov function for any MAS.

The early work on stability analysis mainly focused on exploring causal association from
the network topology to the distribution of equilibria, and further to stability of equilibria.
Thereinto, the weakly reversible structure, a requirement of complex balanced MAS, is the
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most active one. Horn et al. [18] proved the well-known Deficiency Zero Theorem that states
a weakly reversible deficiency zero MAS to be complex balanced and to have only one equi-
librium in each positive stoichiometric compatibility class. Moreover, each equilibrium in the
complex balanced system is locally asymptotically stable, for which the pseudo-Helmholtz free
energy function is proposed as the Lyapunov function. Feinberg [12] extended this theorem to
the well-known Deficiency One Theorem that suggests a weakly reversible MAS to admit a sole
equilibrium in each positive stoichiometric compatibility class if some required conditions on
network deficiency (not necessary to be zero) are satisfied. Based on these results, the global
asymptotical stability of equilibria in a complex balanced MAS was further obtained [26,27]
if the network is assumed to be persistent [8, 11, 15, 23], i.e., no stable boundary equilibrium
if the initial point is in the interior of Rn≥0. Except for the weakly reversible structure, the
reversible one, which acts as a special case of the former and is a requirement of detailed
balanced MASs, is also the focus of attention. Feinberg [13] derived necessary and sufficient
conditions, i.e., circuit conditions and spanning forest conditions, to say a reversible MAS to
be detailed balanced. Recently, van der Schaft et al. [29] revisited this class of systems, and
reported a compact formulation to describe the dynamics utilizing the graph theory (complex
graph). The locally asymptotic stability of detailed balanced networks follows naturally from
the fact that they are also complex balanced. Still, the pseudo-Helmholtz free energy function
serves as the Lyapunov function.

An important means for stability analysis of a MAS is to construct a Lyapunov function
according to the network structure. Although the pseudo-Helmholtz free energy function is
capable for rendering asymptotical stability of MASs equipped with the weakly reversible or
reversible structure, it fails to serve for those networks, like 3S2 −→ 3S1 −→ 2S1 + S2, where
S1 and S2 are the species. Clearly, this network is neither weakly reversible nor reversible. We
name MASs with general structure (not necessarily weakly reversible or reversible) as balanced
MASs if an equilibrium is admitted. For balanced MASs, Angeli and his coauthor [1] proposed
Piecewise Linear in Rates Lyapunov Functions for stability analysis. The existence of such
functions (they defined the networks having this attribute as P network set, which is actually a
subset of balanced MASs) can guarantee stability of equilibrium, and further serves to establish
asymptotical stability within the corresponding positive stoichiometric compatibility class if
the Lyapunov function satisfies the LaSalle’s condition. Another possible solution to address
the stability problem of a balanced MAS comes from the concept of realization presented
by Szederkényi et. al. [28]. It is possible to find a complex balanced or detailed balanced
realization for the network in question, then its asymptotical stability holds based on the
dynamics equivalence between the network and its realization.

Different from all of the above investigations stemming from macroscopic deterministic
analysis, some literature contributes to explaining the system properties from a microscopic
stochastic viewpoint. Li and Yi [20,21] connected the strength of attractions to the global
attractor with the stationary distribution of a diffusion system, in which a white noise is added
to the deterministic case. In the meanwhile, Anderson et. al. [2], starting from a Markov chain
model, managed to design a Lyapunov function from a microscopic stochastic concept related
to CRNs, termed as non-equilibrium potential that equals to the minus logarithm of stationary
distribution of state. They proved that the scaling limit of non-equilibrium potential could
act as a Lyapunov function for some MASs. Moreover, such a limit value coincides with the
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well-known pseudo-Helmholtz free energy function in the case of complex balanced MASs.
This design thought is also valid for general birth-death MASs and some examples of non-
complex and non-detailed balanced MASs. These encouraging results motivate us to find a
Lyapunov function for MASs rooted in their microscopic concepts. In this paper, we take
an approximation of the scaling non-equilibrium potential directly as a possible Lyapunov
function and carry out this idea on Chemical Master Equation. A partial differential equation
(PDE) is thus derived with the solutions serving as candidate Lyapunov functions. We have
further proved the equation solutions dissipative, and able to serve as Lyapunov functions for
complex balanced MASs, all networks with 1-dimensional stoichiometric subspace and some
special networks with more than 2-dimensional stoichiometric subspace if some moderate
conditions are added.

The remainder of this paper is organized as follows. Section 2 revisits some basic concepts
about CRNs and the macroscopic deterministic dynamics of network derived from microscopic
stochastic model. This is followed by the development of the Lyapunov Function PDEs in
Section 3. Section 4 devotes to analyzing the property of solutions of the Lyapunov Function
PDEs, and applications to complex balanced MASs. In Section 5, we discuss the validity
of the Lyapunov Function PDEs for CRNs with 1-dimensional stoichiometric subspace, and
further prove their efficacy in some special examples of CRNs with more than 2-dimensional
stoichiometric subspace in Section 6. Finally, conclusions and a conjecture to say the validity
of the Lyapunov Function PDEs to general balanced MASs are summarized in Section 7.

Mathematical Notation:

Rn,Rn≥0,Rn>0 : n-dimensional real space, nonnegative and positive real space, respectively.

xv·i : xv·i =
∏d
j=1 x

vji
j , where x, v·i ∈ Rd and 00 is defined to be 1.

Ln(x) : Ln(x) = (lnx1, lnx2, · · · , lnxd)>, where x ∈ Rd>0.
⊗ : Cartesian product.
C i : The function set whose elements are i-th continuous differentiable.
0n : n-dimensional vector with every entry to be zero.

2. Preliminary on CRNs. In this section, we will sketch some basic concepts about CRNs
[14] and revisit the macroscopic dynamics of mass-action CRNs based on the microscopic
analysis [2].

2.1. Basic Concepts. Consider a network with n species, denoted by {S1, · · · , Sn}, and
r chemical reactions with the ith reaction Ri written as

Σn
j=1vjiSj −→ Σn

j=1v
′
jiSj ,

where v·i, v
′
·i ∈ Zn≥0 represent the complexes of reactant and resultant, respectively, of this

reaction. Note that we label each reaction as a unidirectional reaction, here. If the ith reaction
is reversible, the reverse reaction is naturally covered by exchanging v·i and v′·i in the reaction.

Based on the above information, some basic concepts about CRNs may be defined [14].
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Definition 1 (Chemical Reaction Network). Denote the finite sets of species, complexes and
reactions by S = {S1, S2, · · · , Sn}, C =

⋃r
i=1{v·i, v′·i} and R = {v·1 → v′·1, · · · , v·r → v′·r},

respectively, and Card(C) = c. If the following conditions hold
(i) There is no reaction v·i → v′·i ∈ R (i = 1, · · · , r) such that v·i = v′·i;
(ii) The jth (j = 1, · · · , n) entry of v·i represents the stoichiometric coefficient of species

Sj ∈ S in complex v·i,
then the triple (S, C,R) is called a chemical reaction network.

Definition 2 (Stoichiometric Subspace). For a CRN (S, C,R), the linear subspace S =
span{v·1 − v′·1, · · · , v·r − v′·r} is called the stoichiometric subspace of the network.

Definition 3 (Stoichiometric Compatibility Class). Let S be the stoichiometric subspace of
a CRN (S, C,R) and C ∈ Rn≥0 be a nonnegative n-dimensional vector, then C + S = {C +
ξ|ξ ∈ S } is a stoichiometric compatibility class of C for the network; (C + S )

⋂
Rn≥0 is a

nonnegative stoichiometric compatibility class and (C+ S )
⋂
Rn>0 is a positive stoichiometric

compatibility class.

When a CRN is assigned a mass action kinetics, the rate for reaction v·i → v′·i is evaluated
by kix

v·i , where ki ∈ R>0 is the rate constant for this reaction, x ∈ Rn≥0 is the vector of
concentrations xj of the chemical species Sj , j = 1, · · · , n, and

xv·i :=
n∏
j=1

x
vji
j .

Definition 4 (Mass Action System). Denote the set of reaction rate constants by K =
(k1, · · · , kr) with ki representing the rate constant for reaction v·i → v′·i, i = 1, · · · , r. A
CRN (S, C,R) taken together with the set of reaction rate constants K is called a mass action
system, referred to as (S, C,R,K).

The dynamics of a MAS (S, C,R,K) that captures the changes of concentrations of every
species over time t is thus expressed as

(1)
dx

dt
= ΓR(x), x ∈ Rn≥0,

where Γ ∈ Zn×r is the stoichiometric matrix, defined by Γ·i = v′·i − vi, and R(x) is r-
dimensional vector-valued function with Ri(x) = kix

v·i .

Definition 5 (Balanced MAS). For a MAS (S, C,R,K), a vector of concentrations x∗ ∈ Rn>0

is called an equilibrium if its dynamical equation (1) satisfies ΓR(x∗) = 0. A MAS that admits
an equilibrium is said to be a balanced MAS.

Definition 6 (Complex Balanced MAS). For a MAS (S, C,R,K), a vector of concentrations
x∗ ∈ Rn>0 is called a complex balanced equilibrium if at this state the combined rate of outgoing
reactions from any complex is equal to the combined rate of incoming reactions to it, i.e.

(2)
∑

{i|v·i=z}

ki(x
∗)v·i =

∑
{i|v′·i=z}

ki(x
∗)v·i , ∀ z ∈ C.

A MAS that admits a complex balanced equilibrium is said to be a complex balanced MAS.
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Eq. (1) succeeds in modeling the CRN systems in the macroscopic level. In the following
subsection, we revisit its connection with the dynamic equation that models microscopic CRN
systems.

2.2. From Microscopic Stochastic Model to Macroscopic Deterministic Dynamics. In
microscopic molecular level, a chemical reaction network system is commonly modeled by
a continuous-time Markov chain, following which every reaction takes place like a Poisson
process [4, 9]. It allows for counting the frequency that every reaction Ri (i = 1, · · · , r) takes
place from initial time 0 to time t as

(3) Fi(t) = Ωi

(∫ t

0
λi(N(τ))dτ

)
,

where N ∈ Zn≥0 is the vector of numbers of molecules Nj of every species Sj , j = 1, · · · , n,
indicating the state of the microscopic system, {Ωi(·)}i=1,...,r are independent unit-rate Poisson
processes that characterizes reactions, and λi(N) ∈ R≥0 is a intensity function reflecting the
transition extent of Ri. The update for the state N(t) is thus expressed, according to mass
balance, as

N(t) = N(0) +
r∑
i=1

Fi(t)(v
′
·i − v·i)(4)

= N(0) +
r∑
i=1

Ωi

(∫ t

0
λi(N(τ))dτ

)
(v′·i − v·i).

This representation is often referred to as the stochastic model of a chemical reaction network
system in the sense of microscopic level. Clearly, if N(0) ∈ Rn≥0, then N(t) ∈ (C + S )

⋂
Rn≥0.

One point should be noted that the model (4) only works up to the time sup{t|Fi(N(t))<∞,∀i},
i.e., up to explosion of the process. We thus restrict the subsequent discussion in case of non-
explosive processes. In fact, this is not too strict for a Markov Chain. The explosive time can
be almost surely infinite if some conditions are satisfied, such as that every transition intensity
λi(N(t)) is bounded, and that the system is irreducible and finite time recurrent. The mass
action kinetics indicates the intensity function to be modeled by

(5) λi(N) = k̃i

n∏
j=1

Nj !

(Nj − vji)!
1{Nj≥vji},

where k̃i ∈ R>0 is termed the microscopic rate constant and 1{Nj≥vji} is the characteristic
function, defined by

(6) 1{Nj≥vji} =

{
1, Nj ≥ vji,
0, Nj < vji.

So long as the process is non-explosive, the stochastic model of (4) is equivalent to the cor-
responding Kolmogorov’s forward equation [4], often called Chemical Master Equation, that
describes the probability distribution P (N, t) of N(t) as

(7)
dP (N, t)

dt
=

r∑
i=1

λi(N + v·i − v′·i)P (N + v·i − v′·i, t)− P (N, t)
r∑
i=1

λi(N).
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Definition 7 (Stationary Distribution). A probability distribution π(N) is a stationary dis-
tribution for the Markov chain on (N(0) + S )

⋂
Rn≥0 if it satisfies

(8)

r∑
i=1

λi(N + v·i − v′·i)π(N + v·i − v′·i)− π(N)

r∑
i=1

λi(N) = 0,

where π(N + v·i − v′·i) = 0 if N + v·i − v′·i /∈ (N(0) + S )
⋂
Rn≥0.

The ergodic property of the continuous-time Markov chain states [25] that if the chain on
(N(0) + S)

⋂
Rd≥0 is irreducible and recurrent, then π(N) exists and is unique.

We then revisit the macroscopic deterministic dynamics of the underlying MAS derived
from the microscopic stochastic model of (4) by neglecting the random part under an appro-
priate scaling level. The differential form of (4) can be divided into two parts [22]: the first
one is the deterministic part Ñ(t), i.e., the drift (expectation) rate, satisfying

Ñ(t) , lim
dt→0+

E
[
N(t+ dt)−N(t)

∣∣N(t)
]

dt
=

r∑
i=1

λi
(
N(t)

)(
v′·i − vi·

)
,

while the second one is the random part N̂(t), related to the following standard deviation rate

N̂(t) ,

√
lim

dt→0+

Var
[
N(t+ dt)−N(t)

∣∣N(t)
]

dt
=

√√√√ r∑
i=1

λi
(
N(t)

)(
v′·i − v·i

)(
v′·i − v·i

)>
,

in which “Var” is the variance operator. Note that
∑r

i=1 λi
(
N(t)

)(
v′·i − v·i

)(
v′·i − v·i

)>
is

positive semi-definite, so N̂(t) must exist.
As the scale level increases, such as increasing from the molecular level to molar level, the

random part N̂(t), compared to the deterministic part Ñ(t), contributes to the system smaller
and smaller, and can be ignored at last. Also, note the fact that Nj(t)� vji, ∀i, j, then the
stochastic model of (4) can be well approximated by a deterministic one [5] that describes the

evolution of concentration vector x(t) = N(t)
Av ·V , written as

(9)
dx(t)

dt
=

r∑
i=1

k̃i(AvV )|v·i|−1

 n∏
j=1

x
vji
j

 (v′·i − v·i) =
r∑
i=1

kix
v·i(v′·i − v·i),

where Av is the Avogadro constant, V the volume of the system, |v·i| indicates the sum of
entries of vector v·i, ki = k̃i(AvV )|v·i|−1 is the reaction rate coefficient for the ith reaction
in the meaning of macroscopic level and xv·i =

∏n
j=1 x

vji
j which indicates the mass-action

kinetics. This expression is exactly the same as given in Eq. (1). More details about the
derivation from the microscopic model to the macroscopic one may be referred to [5].

One point needs to be noted that although it is a fact that the continuous-valued de-
terministic equation (9) arises from the discrete probability model (7), the transformation
between these two extremes are poorly understood. Some simulation analysis may be found
in [17], and some connections between deterministic models and stochastic counterpart can
be found in [19–21].
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3. Lyapunov Function PDEs. This section contributes to deriving Lyapunov function
PDEs for CRNs assigned mass action kinetics based on the relations between some microscopic
concepts and macroscopic ones.

3.1. Lyapunov Function Derived from Stationary Distribution for Complex Balanced
MASs. The CRNs theory [4,9] reveals that there exists close relation between the microscopic
stochastic dynamics and the macroscopic deterministic dynamics. Motivated by this fact,
Anderson et al. [2] derived a Lyapunov function, a macroscopic concept, from the stationary
distribution, a microscopic notion, for the stability analysis of complex balanced MASs.

From the viewpoint of the macroscopic dynamics (9), a MAS is complex balanced if
∃ x∗ ∈ Rn>0 such that for ∀ z ∈ C there is

(10)
∑

{i|v·i=z}

ki (x∗)v·i =
∑

{i|v′·i=z}

ki (x∗)v·i .

For this class of MASs, the pseudo-Helmholtz free energy function, defined by

(11) G(x) =
n∑
j=1

xj
(
ln(xj)− ln(x∗j )− 1

)
+ x∗j , x ∈ Rn>0,

is a frequently-used Lyapunov function [18]. Despite a macroscopic concept, the pseudo-
Helmholtz free energy function can be derived from the stationary distribution, a microscopic
notion. As an example of a complex balanced MAS that admits an equilibrium of x∗ [3], the
stationary distribution π(N) can be solved from (8) as

π(N) = M
n∏
j=1

x∗j
Nj

Nj !
,

where M ∈ R>0 is a normalization factor. The non-equilibrium potential is thus expressed as

−ln(π(N)) = −lnM −
n∑
j=1

ln
x∗j
Nj

Nj !
.

Further, Anderson et al. [2] proved that the scaling limit of non-equilibrium potential coincides
with the pseudo-Helmholtz free energy function, i.e.,

(12) lim
AvV→∞

− 1

AvV
ln
(
π(AvV x)

)
= G(x).

They also asserted that the scaling limit of non-equilibrium potential can suggest a Lyapunov
function for the birth-death processes and some other special cases of non-complex balanced
MASs [2].

Generally speaking, the scaling limit of non-equilibrium potential provides a very effec-
tive way for some MASs to achieve the Lyapunov function with a definite physical meaning.
However, it seems not easy to apply this method to more general MASs, because solving the
stationary Chemical Master Equation (8) is usually a difficult task. To avoid this difficulty, we
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propose an alternative method, that is taking an approximation of the scaling non-equilibrium
potential − 1

AvV
ln
(
π(AvV x)

)
as a candidate Lyapunov function. Note that the former is nat-

urally defined on a discrete set {x|AvV x ∈ Zn≥0} while the latter is a continuous function
defined on {x|x ∈ Rn≥0}. Obviously, the proposed method does not need to know the explicit
expression of a stationary distribution, but only requires to know that a positive stationary
distribution is existing. We will follow this idea to derive Lyapunov function PDEs, and
further solve Lyapunov functions for stability analysis of more general MASs below.

3.2. Derivation of Lyapunov Function PDEs. The approximation of the scaling non-
equilibrium potential may be performed on the Chemical Master Equation (7) of a MAS
(S, C,R,K). Through dividing (7) by −P (N, t)AvV , we can rewrite this equation as

(13)
d

dt

(
−

ln
(
P (N, t)

)
AvV

)
=

r∑
i=1

λi(N)

AvV
−

r∑
i=1

λi(N + v·i − v′·i)
AvV

P (N + v·i − v′·i, t)
P (N, t)

,

which is actually an ordinary differential equation about the scaling non-equilibrium poten-
tial. Assume that there exists a positive stationary distribution π(N) for each stoichio-
metric compatibility class characterizing the MAS of interest, i.e., the non-equilibrium po-
tential exits. For simplicity of notations, denote the scaling non-equilibrium potential by
L(x) = − 1

AvV
ln
(
π(AvV x)

)
, and then by inserting it into (13) we get

dL(x)

dt
= 0(14)

=
r∑
i=1

λi(AvV x)

AvV
− λi(AvV x+ v·i − v′·i)

AvV
exp

{
L(x)− L (x+ (v·i − v′·i) /AvV )

1/AvV

}
.

Let a continuous differentiable function f ∈ C 1(Rn≥0) approximate the above function L(x)
(x ∈ {y|AvV y ∈ Zn≥0}). Then together with the fact AvV � (vji− v′ji), ∀ i, j, it indicates the
exponential term in (14) to be approximated as

exp

{
f(x)− f (x+ (v·i − v′·i) /AvV )

1/AvV

}
≈ exp

{
(v′·i − v·i)>∇f(x)

}
.

The remaining two terms λi(AvV x)
AvV

and
λi(AvV x+v·i−v′·i)

AvV
can be thought as the same in the

macroscopic coordinated and be approximated by kix
v·i . As a result, the Chemical Master

Equation of (14) becomes a first-order partial differential equation

(15)

r∑
i=1

kix
v·i −

r∑
i=1

kix
v·i exp

{
(v′·i − v·i)>∇f(x)

}
= 0, x ∈ Rn>0.

We can alternatively express this PDE according to the complexes set

(16)
∑

{i|v·i∈C}

kix
v·i −

∑
{i|v′·i∈C}

kix
v·i exp

{
(v′·i − v·i)>∇f(x)

}
= 0, x ∈ Rn>0.
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Note that the above PDE (15) or (16) is derived from the Chemical Master Equation by
setting the solution as an approximation of the scaling non-equilibrium potential. Its existence
seems dependent on the existence of the non-equilibrium potential, i.e., on that of a stationary
distribution. Although it is quite difficult to know whether a stationary distribution is existing
in (8), it will not limit the applicability of the developed theory. We find that the Lyapunov
Function PDE (15) or (16) can be also achieved for some systems without the non-equilibrium
potential. For example, the following CRN with absorption

S1 + 2S2 → 3S2,

2S2 → S1 + S2,

there will be eventually one of the species S2 in which case none of the reactions can fire, so
the potential does not exist. However, we can write out its Lyapunov Function PDE according
to (15) or (16). A reasonable explanation may be that the solution of (8) for this network
would be to consider the QSD (quasi-stationary distribution) or a modification where the
CRN cannot jump to the state with S2 = 1. The latter has been done by Anderson et. al. [2]
for birth-death processes with absorption. We thus stipulate that for those networks without
a stationary distribution, the solution of (8) would be to consider the QSD or a modification of
the rates if the PDE is derived using potential theory. In fact, the PDE may be also generated
directly from the macroscopic dynamics of the CRN under study. In this sense, there always
exists a corresponding PDE (15) for a CRN no matter whether the non-equilibrium potential
is existing or not.

To solve a PDE, it usually needs to know the related boundary conditions. For the above
one, we still derive its boundary conditions based on the approximation to the Chemical
Master Equation. Since it is very hard to directly analyze the boundary conditions for (15),
we manage to get an insight into them through the following example of a special MAS.

Example 1. Consider a MAS including a first-order reversible reaction S1 � S2. The
species set is S = {S1, S2}, the complex set having the same form C = {S1, S2}, and the
reaction set is R = {S1 → S2, S2 → S1}. Using the notations given in Definition 1, the
last two sets might be written as C =

⋃2
i=1{v·i, v′·i} and R = {v·1 → v′·1, v·2 → v′·2}, where

v·1 = v′·2 = (1, 0)>, and v·2 = v′·1 = (0, 1)>. The domain of the stochastic model for this
network is a nonnegative discrete set {x = (x1, x2)>| AvV x1, AvV x2 ∈ Z>0}, where x is the
vector of molar concentration. It thus defines two subsets of boundary points, denoted by
M1 = {x| x1 = 0, AvV x2 ∈ Z>0} and M2 = {x| AvV x1 ∈ Z>0, x2 = 0}, respectively.

As an example of a boundary point x̄ ∈ M1, the last state of x̄, just before the latest
reaction, might be AvV x̄+v·1−v′·1 = (1, AvV x2−1)> or AvV x̄+ v·2−v′·2 = (−1, AvV x2 +1)>.
By substituting these three states into Eq. (5), we can calculate intensity functions as follows.

λ1(AvV x̄) = λ2(AvV x̄+ v·2 − v′·2) = 0, λ1(AvV x̄+ v·1 − v′·1) 6= 0, λ2(AvV x̄) 6= 0.

Further, by inserting these intensity functions into Eq. (14), we may get a boundary condition
for the Chemical Master Equation of this MAS as

λ2(AvV x̄)

AvV
− λ1(AvV x̄+ v·1 − v′·1)

AvV
exp

{
L(x̄)− L (x̄+ (v·1 − v′·1)/AvV )

1/AvV

}
= 0, x̄ ∈M1.
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Finally, by the approximation scheme from (14) to (15), the above boundary condition can be
approximated by

(17) lim
x→x̄, x∈R2

>0

k2x
v·2 − k1x

v·1 exp
{

(v′·1 − v·1)>∇f(x)
}

= 0, x̄ ∈ {0} × R>0,

which serves as a boundary condition for the PDE of the corresponding system. Similarly, the
boundary condition at x̄ ∈M2 is presented as

(18) lim
x→x̄, x∈R2

>0

k1x
v·1 − k2x

v·2 exp
{

(v′·2 − v·2)>∇f(x)
}

= 0, x̄ ∈ R>0 × {0}.

The above example provides a clear insight into how to express the boundary conditions
for the PDE (15) or (16), i.e., identifying non-zero intensity functions with the given boundary
points set. By Eq. (5), whether or not the reaction’s intensity function λi(·) is zero depends
closely on its complexes. At any boundary point x̄, Eq. (5) tells us that the intensities of
reactions with the same reactant complex are simultaneously positive or zero. We call the set
of complexes which generate positive intensities at boundary point x̄ as a boundary complex
set of x̄, and denoted it by Cx̄ in the context. The boundary complex set may vary from point
to point. Also, from Eq. (5), we can easily find that the intensity λi(AvV x̄ + v·i − v′·i) is
positive, only if the resultant complex of the corresponding reaction v′·i lies in the boundary
complex set of x̄. In Example 1, at the boundary point (0, x2)>, only the reaction with reactant
complex (0, 1)> has positive intensity function. The boundary complex set of (0, x2)> is thus
to be {(0, 1)>}. Based on the same analysis, the boundary complex set of (x1, 0)> is {(1, 0)>}.
Also, at the boundary point (0, x2)>, the intensity function λ2(AvV x̄+ v·2− v′·2) > 0 because
the resultant complex in the second reaction lies in the corresponding boundary complex set.

With these understandings, we can rewrite Eq. (14) at any boundary point x̄ as∑
{i|v·i∈Cx̄}

λi(AvV x̄)

AvV
−

∑
{i|v′·i∈Cx̄}

λi(AvV x̄+ v·i − v′·i)
AvV

exp

{
L(x̄)− L (x̄+ (v·i − v′·i) /AvV )

1/AvV

}
= 0.

By applying the same approximation scheme used above, we arrive at the boundary condition
of the developed PDE (15)

(19) lim
x→ x̄

x ∈ (x̄ + S ) ∩ Rn
>0

∑
{i|v·i∈Cx̄}

kix
v·i −

∑
{i|v′·i∈Cx̄}

kix
v·i exp{(v′·i − v·i)>∇f(x)} = 0,

where x̄ is any boundary point lies in the union of all stoichiometric compatibility classes,
{x ∈ (y + S ) ∩ Rn≥0 | y ∈ Rn>0 and x /∈ Rn>0}. Here, the limit notation is introduced to make
the terms well defined in the case where ∇f(·) does not converge at the boundary point. In
Example 1, the boundary condition (17) can be written as

lim
x→ x̄, x ∈ R2

>0

∑
{i|v·i∈{(0,1)>}}

kix
v·i −

∑
{i|v′·i∈{(0,1)>}}

kix
v·i exp{(v′·i − v·i)>∇f(x)} = 0.

which falls into the expression (19) and illustrates the correctness of our derivation.
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Clearly, identifying the boundary complex set Cx̄ plays a key role on formulating the
boundary conditions. Generally speaking, it is not easy to identify Cx̄, especially when the
underlying CRN is complicated. A possible expression for it may be obtained from revisiting
(5) where positive intensity function requests Nj>vji, ∀ i, j. We thus can express a particular
boundary complex set as

(20) C̄x̄ = {z ∈ C | ∃ ε>0 such that ∀j = 1, · · · , n, x̄j ≥ εzj}

which is referred to as naive boundary complex set in the context.
The PDE (15) and its boundary condition (19) will serve for generating the Lyapunov

function for macroscopic deterministic mass-action CRNs. They are referred to as Lyapunov
Function PDEs throughout the paper.

4. Solutions of Lyapunov Function PDEs. This section focuses on analyzing the property
and utility of solutions of Lyapunov Function PDEs if they exist.

4.1. Conditions for Solutions to Become Lyapunov Function. We firstly analyze the dis-
sipativeness of solutions of the Lyapunov Function PDEs (15) plus (19), a necessary property
for solutions becoming Lyapunov functions, under the assumption that the solutions exist.

Theorem 8. For a MAS (S, C,R,K) described by (9), assume that there exists a solution
f ∈ C 1 for its Lyapunov Function PDEs (15) plus (19). Then, the solution f(x) satisfies

(21) ḟ (x) =
df (x)

dt
≤ 0, ∀ x ∈ Rn>0,

where the equality holds if and only if ∇f(x) ⊥ S .

Proof. Reorganize the PDE (15) to be

r∑
i=1

kix
v·i
(

1− exp
{

(v′·i − v·i)>∇f(x)
})

= 0

and further perform the Taylor expansion of exp
{

(v′·i − v·i)>∇f(x)
}

with respect to zero,
then we have

r∑
i=1

kix
v·i(v′·i − v·i)>∇f(x) +

r∑
i=1

kix
v·i

eηi

2

[
(v′·i − v·i)>∇f(x)

]2
= 0,

where ηi ∈ R lies between 0 and (v′·i − v·i)>∇f(x). Since for ∀ x ∈ Rn>0 there is

ḟ(x) = ẋ>∇f(x) =
r∑
i=1

kix
v·i(v′·i − v·i)>∇f(x),

we get

ḟ(x) = −
r∑
i=1

kix
v·i

eηi

2

[
(v′·i − v·i)>∇f(x)

]2 ≤ 0,

where the equality holds if and only if for ∀ i, (v′·i − v·i)>∇f(x) = 0, i.e., ∇f(x) ⊥ S .
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Remark 1. The dissipativeness of f(x) means that it has one of the necessary properties
to become a Lyapunov function. In addition, this property implies that −f(x) will always
increase as time goes by, which further indicates that there may be a close relation between
−f(x) and the entropy function, an important concept in thermodynamics. A possible point
of future research may be to define or derive the entropy expression based on the Lyapunov
Function PDEs instead of the Gibbs’ Equation.

We further derive the conditions that the non-dissipative point of f(x) is the equilibrium
point of the MAS.

Theorem 9. For a MAS (S, C,R,K) described by (9), assume that its Lyapunov Function
PDEs (15) and (19) admit a solution f ∈ C 2, and moreover, there exists a region D ⊂ Rn>0

such that ∀ x ∈ D and ∀ µ ∈ S we have

(22) µ>∇2f(x)µ ≥ 0 with equality hold if and only if µ = 0n.

Then, for all x ∈ D, ḟ(x) = 0 if and only if x is an equilibrium of the MAS.

Proof. The necessity is obvious. For the sufficiency, Theorem 8 suggests that for any
x ∈ D, ḟ(x) = 0 if and only if ∇f(x) ⊥ S . By taking the derivative of (15) with respect to
x on both sides, and further inserting the condition ∇f(x) ⊥ S , we have

∇2f(x)

[
r∑
i=1

kix
v·i(v′·i − v·i)

]
= 0n,

i.e., [
r∑
i=1

kix
v·i(v′·i − v·i)

]>
∇2f(x)

[
r∑
i=1

kix
v·i(v′·i − v·i)

]
= 0.

Note that the term
∑r

1 kix
v·i(v′·i − v·i) lies in S , so we get

∑r
1 kix

v·i(v′·i − v·i) = 0n from the
condition (22), which means that x ∈ D should be an equilibrium of the MAS. This completes
the proof.

Remark 2. Theorem 9 reveals that for a balanced MAS (S, C,R,K) the solution of its
Lyapunov Function PDEs (if exists) is strictly dissipative and, therefore, a good candidate for
a Lyapunov function, provided that the solution is twice differentiable and convex in D

⋂(
x∗+

S
)⋂

Rn≥0.

Finally, we give conditions which indicates the solution to be indeed a Lyapunov function.

Theorem 10. For a MAS (S, C,R,K) governed by (9), let x∗ ∈ Rn>0 be one of its equilibrium
points. Assume that the Lyapunov Function PDEs (15) and (19) of the MAS admit a solution
f ∈ C 2, and moreover, there exists a region D = N (x∗) = δ(x∗)

⋂(
x∗ + S

)⋂
Rn>0, where

δ(x∗) is a neighborhood of x∗, such that ∀ x ∈ N (x∗) the solution f(x) satisfies (22). Then
f(x) can act as a Lyapunov function rendering x∗ to be locally asymptotically stable with
respect to all initial conditions in N (x∗)

⋂
{x|f(x)< inf{y∈∂N (x∗)} f(y)}.
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Proof. Since f(x) satisfies (22) in N (x∗), f(x) is strictly convex in this region. The strict
convexity together with the fact, ∇f(x∗) ⊥ S (by Theorem 8), implies the function to be
lower bounded by f(x∗). Also, the strict convexity suggests that no other state except x∗ can
make ∇f(x) ⊥ S and, therefore, that x∗ is the sole equilibrium in this region (by Theorem
8). Thus, by theorem 9, this fact states ḟ(x) ≤ 0 with equality hold if and only if x = x∗.

For any initial point x(0) ∈ N (x∗)
⋂
{x|f(x)< inf{y∈∂N (x∗)} f(y)}, since ḟ(x) ≤ 0, the

state trajectory of the mass action system starting from x(0) will be bounded in the re-
gion N (x∗)

⋂
{x|f(x)< inf{y∈∂N (x∗)} f(y)}. Therefore, if f(x) is selected as the Lyapunov

function, then x∗ is locally asymptotically stable with respect to all initial conditions in
N (x∗)

⋂
{x|f(x)< inf{y∈∂N (x∗)} f(y)}.

It is clear that the Lyapunov Function PDEs (15) and (19) have potentials to generate a
solution serving as the Lyapunov function for MASs with some moderate conditions satisfied.
We try our hands at a class of special MASs, i.e., complex balanced MASs, to test the method
of the PDEs in the following.

4.2. Test on Complex Balanced MASs. We will demonstrate that the Lyapunov Func-
tion PDEs work for complex balanced MASs. As mentioned in Section 3.1, a complex bal-
anced MAS admits an equilibrium x∗ satisfying the relation (2). Moreover, the equilibrium
was proved locally asymptotically stable through taking the pseudo-Helmholtz free energy
function as the Lyapunov function [18, 24]. To show the power of Lyapunov function PDEs,
we verify that the pseudo-Helmholtz free energy function is one of their solutions.

Theorem 11. For a MAS (S, C,R,K) that admits a complex balanced equilibrium x∗ ∈ Rn>0,
the pseudo-Helmholtz free energy function of (11) is a solution of the corresponding Lyapuonv
Function PDEs (15) (or equivalently (16)) and (19) whatever the boundary complex set is.

Proof. For ∀ x ∈ (x(0) + S ) ∩ Rn>0, the gradient of the pseudo-Helmholtz free energy
function is

∇G(x) = Ln
( x

x∗

)
=

(
ln

(
x1

x∗1

)
, ln

(
x2

x∗2

)
, · · · , ln

(
xn
x∗n

))>
.

Plugging it into the left hand side (L.H.S) of (16) yields

L.H.S of Eq. (16) =
∑

{i|v·i∈C}

kix
v·i −

∑
{i|v′·i∈C}

kix
v·i exp

{
(v′·i − v·i)>Ln

( x

x∗

)}

=
∑
z∈C

 ∑
{i|v·i=z}

kix
v·i −

∑
{i|v′·i=z}

kix
v·i exp

{
(v′·i − v·i)>Ln

( x

x∗

)}
=
∑
z∈C

 ∑
{i|v·i=z}

kix
v·i −

( x

x∗

)z ∑
{i|v′·i=z}

ki(x
∗)v·i


=
∑
z∈C

( x

x∗

)z
·

 ∑
{i|v·i=z}

ki(x
∗)v·i −

∑
{i|v′·i=z}

ki(x
∗)v·i

 = 0,
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where the last equality follows immediately from the complex balanced condition (2). Hence,
G(x) satisfies the PDE of (16) and (15).

We further verify that G(x) satisfies the boundary condition of (19). Let Cx̄ be a boundary
complex set induced by any boundary point x̄, then the left hand side of (19) is

lim
x→ x̄

x ∈ (x(0) + S ) ∩ Rn
>0

∑
{i|v·i∈Cx̄}

kix
v·i −

∑
{i|v′·i∈Cx̄}

kix
v·i exp

{
(v′·i − v·i)>Ln

( x

x∗

)}

= lim
x→ x̄

x ∈ (x(0) + S ) ∩ Rn
>0

∑
z∈Cx̄

 ∑
{i|v·i=z}

kix
v·i −

∑
{i|v′·i=z}

kix
v·i exp

{
(v′·i − v·i)>Ln

( x

x∗

)}
= lim

x→ x̄
x ∈ (x(0) + S ) ∩ Rn

>0

∑
z∈Cx̄

( x

x∗

)z
·

 ∑
{i|v·i=z}

ki(x
∗)v·i −

∑
{i|v′·i=z}

ki(x
∗)v·i

 = 0.

Note that the above equations hold independent of the choice of Cx̄, which completes the
proof.

It is well-known that the pseudo-Helmholtz free energy function is a Lyapunov function
for a complex balanced MAS and succeeds in analyzing the system’s asymptotic stability [18].
This stability result can be also reached through the method of the Lyapunov Function PDEs.

Theorem 12. For a MAS (S, C,R,K) possessing a complex balanced equilibrium x∗ ∈ Rn>0,
the Lyapunov function PDEs (15) plus (19) have a solution (11) that can serve as a Lyapunov
function to suggest this system to be locally asymptotically stable at x∗ with respect to all initial
conditions in

(
x∗ + S

)⋂
Rn>0 near x∗.

Proof. As proved in Theorem 11, the pseudo-Helmholtz free energy function G(x) defined
by (11) is a solution of the Lyapunov function PDEs (15) plus (19). Obviously, G(x) is twice
differentiable, and its Hessian matrix is calculated as

∇2G(x) =


1
x1

. . .
1
xn

 .

Clearly, ∀ x ∈
(
x∗ + S

)⋂
Rn>0, ∇2G(x) is positive definite. This means that (22) is true.

Further based on Theorem 10, the result is straightforward.

The above two theorems reveal that the Lyapunov Function PDEs method can produce
Lyapunov functions (11) for complex balanced MASs and serve for the stability analysis of
these systems very well. In this case, the Lyapunov Function PDE (16) becomes

(23)
∑
z∈C

ez
>∇G(x)

 ∑
{i|v·i=z}

kix
v·ie−v

>
·i∇G(x) −

∑
{i|v′·i=z}

kix
v·ie−v

>
·i∇G(x)

 = 0, x ∈ Rn>0.

Further by combining (2), we get kix
v·i = ki(x

∗)v·i exp
{
v>·i∇G(x)

}
. This relational expression

can be also found in Gorboan’s work [16], which connects the reaction rate at any concentra-
tion with that at the equilibrium concentration through the entropy-like function G(x). When
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∇G(x) = 0n, every complex will reach reaction balance. At this point, ∇G(x) plays a role on
driving the reaction to occur towards equilibrium for every complex.

5. Lyapunov Function PDEs for CRNS with dimS = 1. The Lyapunov function PDEs
are studied for CRNs with one dimensional stoichiometric subspace in this section.

Proposition 13. For a MAS (S, C,R,K) with dimS = 1, the Lyapunov Function PDEs
are

(24) (u− 1)

 ∑
{i|mi>0}

(kix
v·i)

mi−1∑
j=0

uj

+
∑

{i|mi<0}

(kix
v·i)

− −1∑
j=mi

uj

 = 0

plus the boundary condition

(25) lim
x→ x̄

x ∈ (x̄ + S ) ∩ Rn
>0

∑
{i|v·i∈Cx̄}

kix
v·i −

∑
{i|v′·i∈Cx̄}

kix
v·iumi = 0,

where u = exp{w>∇f}, w ∈ Rn\{0n} represents a set of bases of S and mi ∈ Z\{0}, i =
1, · · · , r, satisfy

(26) v′·i − v·i = miw.

Proof. When dimS = 1, any element among {v′·1 − v·1, · · · , v′·r − v·r} can be used to
express linearly the remaining r − 1 ones. Therefore, there must exist a w ∈ Rn\{0n} acting
as a set of bases of S such that

v′·i − v·i = miw, ∀ i = 1, · · · , r, mi ∈ Z\{0}.

In this case, the PDE of (15) becomes

r∑
i=1

kix
v·i
(

1− emi(w
>∇f(x))

)
= 0,

i.e., ∑
{i|mi>0}

kix
v·i
(

1− emi(w
>∇f(x))

)
+

∑
{i|mi<0}

kix
v·i
(

1− emi(w
>∇f(x))

)
= 0.

By setting u = ew
>∇f(x), we get the Lyapunov function PDEs (24) plus (25) for CRNs with

dimS = 1.

Corollary 14. For any constant c, f(x) = c is a solution of the PDE (24).

Proof. The result is immediate since u = 1 is a solution of the PDE.

Remark 3. If f(x) = c satisfies the boundary condition of (25), then

lim
x→ x̄

x ∈ (x(0) + S ) ∩ Rn
>0

∑
{i|v·i∈Cx̄}

kix
v·i −

∑
{i|v′·i∈Cx̄}

kix
v·i = 0

This condition is very restrictive that can be hardly reached even in the case of one dimensional
stoichiometric subspace. Therefore, the constant solution f(x) = c is usually not qualified to
follow the boundary condition (25) for a general CRN with dimS = 1.
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The above reason motivates us to consider the solution that makes the second term of the
L.H.S of (24) vanish, i.e.,

∑
{i|mi>0}

(kix
v·i)

mi−1∑
j=0

uj

+
∑

{i|mi<0}

(kix
v·i)

− −1∑
j=mi

uj

 = 0.

Proposition 15. For a MAS (S, C,R,K) with dimS = 1, let a scalar function g(x, u)
defined on Rn>0 × R>0 be

(27) g(x, u) =
∑

{i|mi>0}

(kix
v·i)

mi−1∑
j=0

uj

+
∑

{i|mi<0}

(kix
v·i)

− −1∑
j=mi

uj

 .

If the MAS admits a positive steady state x∗ ∈ Rn>0, then there exists a unique ũ ∈ C 2 such
that g(x, ũ(x)) = 0.

Proof. Since the MAS admits a positive steady state x∗, its dynamics satisfies

ẋ|x=x∗ =
r∑
i=1

ki(x
∗)v·i(v′·i − v·i)

=
∑

{i|mi>0}

ki(x
∗)v·i(miw)−

∑
{i|mi<0}

ki(x
∗)v·i(|mi|w) = 0,

which indicates that neither {i|mi > 0} nor {i|mi < 0} is an empty set. Combing this fact
and the definition (27) of g(x, u) yields that g(x, u) is continuous in Rn>0×R>0, and moreover
for ∀ x ∈ Rn>0, g(x, u) is continuous differentiable about u with

∂

∂u
g(x, u) =

∑
{i|mi>0}

(kix
v·i)

mi−1∑
j=1

juj−1

+
∑

{i|mi<0}

(kix
v·i)

 −1∑
j=mi

(−j)uj−1

 > 0.

Hence, g(x, u) is monotone increasing over u. Also, note the facts that

lim
u→0

g(x, u) = −∞ and lim
u→+∞

g(x, u) = +∞,

then based on the intermediate value theorem there exists a unique ũ(x) ∈ R>0 such that
g(x, ũ(x)) = 0. In addition, g(x, u) is also continuous differentiable about x and gu(x, u)|u=ũ 6=
0, so we have ũ ∈ C 1(Rn>0;R>0) according to the implicit function theorem and ∇ũ(x) =
−gx(x, ũ(x))/gu(x, ũ(x)). Moreover, since the functions gx and gu are also continuous differ-
entiable with respect to both parameters, the function ∇ũ(x) is also continuous differentiable
and therefore ũ ∈ C 2(Rn>0;R>0), which completes the proof.

Based on the function ũ(x), we could find a solution for the Lyapunov function PDEs (24)
plus (25) derived from a MAS with dimS = 1 and a positive equilibrium. For this purpose,
we begin with the following two lemmas.
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Lemma 16. For a MAS (S, C,R,K) with dimS = 1, let w ∈ Rn\{0n} be a set of bases
of S , and x̄ ∈ Rn≥0 represent any boundary point of any positive stoichiometric compatibility
class induced by S . Denote the index sets of positive and negative entries of w by Pw and
Nw, respectively, and the index set of zero entries of x̄ by Zx̄, then for ∀ x̄,

Zx̄ ⊆ Pw or Zx̄ ⊆ Nw.

Proof. Since x̄ is a boundary point of a positive stoichiometric compatibility class induced
by S , so there exists a nonzero constant α ∈ R such that

x̄+ αw ∈ Rn>0.

If α>0, then for ∀ i ∈ Zx̄ (Zx̄ is obviously non-empty) we have

x̄i + αwi>0⇒ wi>0⇒ i ∈ Pw.

Therefore, Zx̄ ⊆ Pw. Similarly, if α<0 then we get Zx̄ ⊆ Nw.

Lemma 17. For a MAS (S, C,R,K) with dimS = 1, a function J(y) from positive stoi-
chiometric compatibility class (x+ S )

⋂
Rn>0 to R is defined as follows

(28) J(y) =


∏
i∈Pw

yi −
∏
i∈Nw

yi, Pw, Nw 6= ∅,∏
i∈Pw

yi − 1, Pw 6= ∅, Nw = ∅,∏
i∈Nw

yi − 1, Nw 6= ∅, Pw = ∅,

where x ∈ Rn>0 represents any state of the MAS. Then, this function J(y) admits a unique
zero point in every (x+ S )

⋂
Rn>0, and moreover, the unique zero point is a twice continuous

differential function with respect to x, denoted by y† ∈ C 2(Rn>0;Rn>0). In addition, there also
exists another twice continuous differential function γ ∈ C 2(Rn>0;R), which together with y†(x)
satisfies

x = y†(x) + γ(x)w and γ(x+ δw) = γ(x) + δ, ∀ δ ∈ R,

where w is a set of bases of S .

Proof. Clearly, for ∀ y ∈ (x+S )
⋂

Rn>0 there exists a boundary point x̄ and β ∈ R, β 6= 0
such that y = x̄+ βw. We conduct the proof according to three different cases below:

1) Pw 6= ∅ and Nw 6= ∅. In every (x + S )
⋂
Rn>0, there may exist two distinct boundary

points, denoted by x̄ and x̄′, and moreover, they could reach each other through x̄′ = x̄+βMw,
where βM ∈ R but βM 6= 0. According to Lemma 16, for x̄ either Zx̄ ⊆ Pw or Zx̄ ⊆ Nw is true.
If Zx̄ ⊆ Pw, then we have βM>0 and β ∈ (0, βM ). Further, we have Zx̄′ ⊂ Nw. Following
these results, we get

lim
β→0

J(x̄+ βw)<0 and lim
β→βM

J(x̄+ βw)>0.

By the intermediate value theorem, there exist a point y† ∈ (x+S )
⋂
Rn>0 rendering J(y†) = 0.

Also, we note that d
dβJ(x̄ + βw) =

(
∂J
∂y

)>
∂y
∂β>0, the zero point y† is unique. Similarly, if

Zx̄ ⊆ Nw, the result is true too.
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2) Pw 6= ∅ and Nw = ∅. In this case Zx̄ ⊆ Pw and α ∈ (0,+∞). Thus, we have

lim
β→0

J(x̄+ βw) = −1, lim
β→+∞

J(x̄+ βw) = +∞ and
d

dβ
J(x̄+ βw)>0.

According to the intermediate value theorem and strict monotonicity, J(y) admits a unique
zero point in (x+ S )

⋂
Rn>0.

3) Nw 6= ∅ and Pw = ∅. Based on the similar reason as in case 2), we can get the result
immediately.

We continue to prove y† ∈ C 2(Rn>0;Rn>0) and γ ∈ C 2(Rn>0;R). Let the function

J̃(x, β) = J(x− βw), x− βw ∈ Rn>0.

Clearly, for ∀ x ∈ Rn>0 there exists a sole β = γ(x) such that J(x−γ(x)w) = 0, i.e., x−γ(x)w =
y†(x) and J̃(x, γ(x)) = 0. Note that J̃(x, β) is continuous differentiable from the definition of

J(y) and ∂
∂β J̃(x, β)

∣∣∣
β=γ(x)

6= 0, then by the implicit function theorem we have γ ∈ C 1(Rn>0;R)

and ∇γ(x) = −J̃x(x, γ(x))/J̃β(x, γ(x)). In addition, since the function J̃x and J̃β are also
continuous differentiable with respect to both parameters, we can conclude that ∇γ(x) is
continuous differentiable and therefore γ ∈ C 2(Rn>0;R). Further, we get y† ∈ C 2(Rn>0;Rn>0)
from y†(x) = x− γ(x)w, i.e., x = y†(x) + γ(x)w.

Finally, we focus on proving γ(x + δw) = γ(x) + δ, ∀ δ ∈ R. Since (x + S )
⋂
Rn>0 =

(x + δw + S )
⋂
Rn>0, we have y†(x) = y†(x + δw), i.e., x + δw − γ(x + δw)w = x − γ(x)w.

Further, since w is a set of bases of S , we get γ(x+ δw) = γ(x) + δ, ∀ δ.

By means of ũ(x), y†(x) and γ(x), a solution for the Lyapunov function PDEs (24) plus
(25) is reachable.

Theorem 18. For a MAS (S, C,R,K) with dimS = 1 and a positive steady state, C̄x̄ in
the form of (20) is selected as the boundary complex set where x̄ is any boundary point of any
positive stoichiometric compatibility class induced by S . Assume that C̄x̄ = ∅ or C̄x̄ includes
at least a reactant complex and a resultant complex, then the function defined by

(29) f(x) =

∫ γ(x)

0
ln ũ(y†(x) + τw)dτ

is a solution of the Lyapunov function PDEs (24) plus (25), where y†(x), γ(x) and w share
the same meanings with those in Lemma 17.

Proof. (1) The first part serves for proving that f(x) in the form of (29) satisfies (24).
Since y†, γ, ũ ∈ C 2, f(x) is obviously a twice continuous differentiable function defined on
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Rn>0. Thus, we have

w>∇f(x) = lim
δ→0

f(x+ δw)− f(x)

δ

= lim
δ→0

1

δ

∫ γ(x+δw)

γ(x)
ln ũ(y†(x) + τw)dτ

= lim
δ→0

1

δ

∫ γ(x)+δ

γ(x)
ln ũ(y†(x) + τw)dτ

= ln ũ(y†(x) + γ(x)w).

Namely, exp{w>∇f(x)} = ũ(y†(x) + γ(x)w) = ũ(x), which obviously satisfies (24).
(2) The second part contributes to verifying that the current f(x) satisfies the boundary

condition of (25). We address this issue according to two different cases.
Case I: C̄x̄ = ∅. In this case (25) is obviously true since it is “0 = 0”.
Case II: C̄x̄ 6= ∅. In this case there include at least two complexes in C̄x̄, one acting as a

reactant complex and the other as a resultant complex. According to the definition of C̄x̄ in
(20), we have vji = 0 and v′ji′ = 0 for ∀ j ∈ Zx̄ if v·i, v

′
·i′ ∈ Cx̄. Note that i = i′ is possible.

Further, from Lemma 16 we get Zx̄ ⊆ Pw or Zx̄ ⊆ Nw. For simplicity, let Zx̄ ⊆ Pw for the
following proof.

Imitating the boundary condition of (25), for ∀ x̄ we define a function h(x, a) from(
{x̄} ∪ (x̄+ S ) ∩ Rn>0

)
× R>0 to R as

h(x, a) =
∑

{i|v·i∈Cx̄}

kix
v·i −

∑
{i|v′·i∈Cx̄}

kix
v·i+miw̃ami ,

where w̃ ∈ Rn with the jth (j = 1, · · · , n) entry satisfying w̃j = wj if j ∈ Zx̄, and w̃j = 0
otherwise, and mi shares the same meaning with (26). For the first term in the right hand
side, since for ∀ j ∈ Zx̄, vji = 0, we have x̄v·i>0. We further analyze the sign of xv·i+miw̃

in the second term. At this time v′·i ∈ Cx̄, we thus have v′ji = 0 for ∀ j ∈ Zx̄, where

v′ji = vji + miwj (based on (26)) = vji + miw̃j = 0. This means xv·i+miw̃>0 and mi<0
(j ∈ Zx̄ ⊆ Pw, w̃j>0 and vji>0) in the second term. Based on these facts, we get

lim
a→0

h(x, a) = −∞, lim
a→+∞

h(x, a) > 0 and
∂

∂a
h(x, a) > 0.

As a result, there must exist a unique positive function â(x) such that h(x, â(x)) = 0 for ∀ x
by the intermediate value theorem and monotonicity. Further, the function â(x) is continuous
differentiable by the implicit function theorem.

Based on h(x, a) we further define another continuous differentiable function h̃(x, a) from(
(x̄+ S ) ∩ Rn>0

)
× R>0 to R as

h̃(x, a) = h(x, a) +
∑

{i|v·i /∈Cx̄}

kix
v·i −

∑
{i|v′·i /∈Cx̄}

kix
v·i+miw̃ami .

For the second term in the right hand side, when v·i /∈ Cx̄ there exists j ∈ Zx̄ such that x̄j = 0
and vji>0, i.e., x̄v·i = 0. Analogously, for the third term when v′·i /∈ Cx̄ there also exists
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j ∈ Zx̄ such that x̄j = 0 and v′ji = vji +miwj = vji +miw̃j>0, i.e., x̄v·i+miw̃ = 0. Hence, for
∀ x ∈ (x̄+ S ) ∩ Rn>0 we get

lim
x→x̄

∑
{i|v·i /∈Cx̄}

kix
v·i = 0 and lim

x→x̄

∑
{i|v′·i /∈Cx̄}

kix
v·i+miw̃ = 0.

Further we have

lim
x→x̄

∂

∂a
h̃(x, â(x)) =

∂

∂a
h(x, â(x))

∣∣∣
x=x̄

>0,

which means ∂
∂a h̃(x, â(x))>0 in E1(x̄), a certain neighborhood of x̄. Based on the same

analysis, we can obtain ∂2

∂a2 h̃(x, a) ≤ 0 in another certain neighborhood of x̄, denoted by
E2(x̄).

Suppose v′·p ∈ Cx̄ and consider the neighborhood of x̄, E1(x̄) ∩ E2(x̄), within which let

θ1(x) = −

 ∑
{i|v·i /∈Cx̄}

kix
v·i −

∑
{i|v′·i /∈Cx̄}

kix
v·i+miw̃â(x)mi

/∂h̃(x, a)

∂a

∣∣∣
a=â(x)

and

θ2(x) =

∑
{i|v′·i /∈Cx̄}

(∑
mi>0 kix

v·i+miw̃[2â(x)]mi +
∑

mi<0 kix
v·i+miw̃

[
1
2 â(x)

]mi
)

kpxv·p+mpw̃â(x)mp
,

then we get

h̃(x, â(x) + θ1(x)) ≤ h̃(x, â(x)) +
∂h̃(x, a)

∂a

∣∣∣
a=â(x)

θ1(x) = h(x, â(x)) = 0.

Further let

θ3(x) = max

1,

∣∣∣∣∣1−
∑
{i|vi /∈Cx̄} kix

vi

kpxv·p+mpw̃â(x)mp
+ θ2(x)

∣∣∣∣∣
1

mp

 .

It is easy to verify that limx→x̄ θ3(x) = 1, from which we also obtain 1 < θ3(x) < 2 when x
is in a certain neighborhood of x̄, E3(x̄). Hence, for ∀ x ∈ {E1(x̄) ∩ E2(x̄) ∩ E3(x̄)} we have
h(x, θ3(x)â(x))>h(x, â(x)), 0>kpx

v·p+mpw̃ (θ3(x)â(x))mp − kpxv·p+mpw̃â(x)mp and∑
{i|v·i /∈Cx̄}

kix
v·i −

∑
{i|v′·i /∈Cx̄}

kix
v·i+miw̃(θ3(x)â(x))mi >

∑
{i|v·i /∈Cx̄}

kix
v·i

−
∑

{i|v′·i /∈Cx̄}

(∑
mi>0

kix
v·i+miw̃(2â(x))mi +

∑
mi<0

kix
v·i+miw̃

(
1

2
â(x)

)mi
)
.

Note that the sum of the left terms of these three inequalities is just expressed as

h̃(x, θ3(x)â(x)) = h(x, θ3(x)â(x)) +
∑

{i|v·i /∈Cx̄}

kix
v·i −

∑
{i|v′·i /∈Cx̄}

kix
v·i+miw̃(θ3(x)â(x))mi
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while the sum of the right terms is greater than or equal to zero, i.e.,

h̃(x, θ3(x)â(x)) ≥ 0.

Therefore, there must exist a solution between â(x) + θ1(x) and θ3(x)â(x), denoted by ã(x),
such that h̃(x, ã(x)) = 0, i.e.,

h(x, ã(x)) +
∑

{i|v·i /∈Cx̄}

kix
v·i −

∑
{i|v′·i /∈Cx̄}

kix
v·i+miw̃(ã(x))mi = 0.

This together with the definition of h̃(x, a) evaluated at a = ã(x) leads to

r∑
i=1

kix
v·i −

r∑
i=1

kix
v·i+miw̃(ã(x))mi = 0.

Comparing it to the Lyapunov PDE of (24) yields that u(x) = xw̃ã(x) is a solution of (u −
1)g(x, u) = 0. Note the facts that

lim
x→x̄

(â(x) + θ1(x)) = lim
x→x̄

(θ3(x)â(x)) = lim
x→x̄

â(x),

and limx→x̄ ã(x) lies between limx→x̄(â(x) + θ1(x)) and limx→x̄(θ3(x)â(x)), by the squeeze
theorem we thus have

lim
x→x̄

ã(x) = â(x̄) and lim
x→x̄

xw̃ã(x) = 0.

Further, there exists a certain neighborhood of x̄, E4(x̄), such that xw̃ã(x) 6= 1. Hence, if
x ∈ E1(x̄) ∩ E2(x̄) ∩ E3(x̄) ∩ E4(x̄), we have g(x, xw̃ã(x)) = 0, i.e., ũ(x) = xw̃ã(x).

Utilizing the above analysis, we get

L.H.S of Eq. (25) = lim
x→ x̄

x ∈ {x̄ + S} ∩ Rn
>0

h(x, ã(x)) = h(x̄, â(x̄)) = 0.

Therefore, f(x) in the form of (29) satisfies the boundary condition of (25).
Similarly, in the case of Zx ⊆ Nw the results hold too, which completes the proof.

The following task focuses on verifying if f(x) =
∫ γ(x)

0 ln ũ(y†(x) + τw)dτ is able to serve
as an Lyapunov function for MASs with dimS = 1.

Theorem 19. For a MAS (S, C,R,K) with dimS = 1 and a positive steady state x∗ ∈ Rn>0,
let C̄x̄ defined by (20) represent the boundary complex set where x̄ is any boundary point of
any positive stoichiometric compatibility class induced by S . If
• C̄x̄ = ∅ or C̄x̄ includes at least a reactant complex and a resultant complex;
• w> ∂

∂xg(x∗, 1)<0 with g(x, u) defined by (27),
then the Lyapunov Function PDEs (24) and (25) are qualified to generate a Lyapunov function
(29) to render this MAS to be locally asymptotically stable at x∗.
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Proof. Since gx(x, u) and ũ(x) are continuous and ũ(x∗) = ew
>∇f(x∗) = 1, by the second

condition listed in the theorem, there is a neighborhood of x∗, denoted as δ(x∗), such that
∀ x ∈ δ(x∗) we have

(30) w>
∂

∂x
g(x, ũ(x)) < 0.

Moreover, for the function f(x) given in (29), since w>∇f(x) = ln ũ(x), we have

∇2f(x)w =
∇ũ(x)

ũ(x)
.

Therefore, ∀ x ∈ δ(x∗) and ∀ µ ∈ S there is

µ>∇2f(x)µ = (µ>w)2 · w>∇2f(x)w

= (µ>w)2 · w
>∇ũ(x)

ũ(x)

= (µ>w)2 ·
−w> ∂

∂xg(x, ũ)/ ∂
∂ug(x, ũ)

ũ(x)

≥ 0,

where the last inequality follows from (30) and the equality holds if and only if µ = 0n. Thus
the condition (22) is satisfied. Theorem 18 has shown that the function (29) is a solution of
the PDEs, therefore the result holds immediately from Theorem 10.

Remark 4. The condition w> ∂
∂xg(x∗, 1)<0 essentially characterizes some behaviors of the

MAS system after linearization. From the dynamic equation (9) in the case of dimS = 1

ẋ(t) =

r∑
i=1

kix
v·i(v′·i − v·i) =

r∑
i=1

kix
v·imiw,

we get the linearized form at x = x∗ as

ẋ(t) = w

(
∂g(x∗, 1)

∂x

)>
(x− x∗).

It is clear that the coefficient matrix w
(
∂g(x∗,1)
∂x

)>
is of rank one and thus has only two

eigenvalues w> ∂
∂xg(x∗, 1) plus 0 if n 6= 1. Therefore, the condition w> ∂

∂xg(x∗, 1)<0 means that
the coefficient matrix need have a negative eigenvalue, which, namely, requests the linearized
system of the MAS to be necessarily stable (but not necessarily asymptotically stable unless
n = 1) at x = x∗.

Another point should be noted that the solution (29) of the Lyapunov Function PDEs has
the similar form with the Lyapunov function constructed in Anderson and his coworkers’ paper
for Birth-Death processes [2]. Both functions are established by integrating a logarithmic
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function. The possible reasons are that the birth-death process studied in [2] is also a 1-
dimensional CRN, and that the Lyapunov function PDEs and the scaling limit of the non-
equilibrium potential have the same origin. This phenomenon conversely implies that the
PDEs can work for Birth-Death processes.

We further demonstrate the efficiency of Lyapunov Function PDEs for CRNs with dimS =
1 through two examples.

Example 2. For the MAS

S1
k1−→ S2, 2S2

k2−→ 2S1,

we have the species set S = {S1, S2}, the complex set C = {v·1, v′·1, v·2, v′·2}, the reaction set
R = (v·1 → v′·1, v·2 → v′·2), and the kinetics set K = (k1, k2), where

v·1 =

(
1
0

)
, v′·1 =

(
0
1

)
, v·2 =

(
0
2

)
, v′·2 =

(
2
0

)
, dimS = 1.

By the mass-action kinetics, the dynamics of the system is expressed as{
ẋ1(t) = −k1x1 + 2k2x

2
2,

ẋ2(t) = k1x1 − 2k2x
2
2.

By choosing w = (−1, 1)> as the basis for S , we can write the Lyapunov Function PDEs
in the form of (24) where m1 = 1 and m2 = −2. Moreover, from Proposition 15 we have

Pw = {2}, Nw = {1} and g(x, u) = k1x1 − k2x
2
2u
−1 − k2x

2
2u
−2.

Furthermore, utilizing Lemma 17 and setting g(x, u) = 0 we get auxiliary functions

y†(x) =
1

2

(
1
>
2

1
>
2

)
x, γ(x) =

w>x

2
and ũ(x) =

k2x
2
2 + x2

√
k2

2x
2
2 + 4k1k2x1

2k1x1
.

For the considered MAS, there include two types of boundary points, one type of points are
x̄ = (x̄1, 0)> with x̄1 > 0, the other type of points are x̄ = (0, x̄2)> with x̄2 > 0. Following the
definition of C̄x̄ in (20), we set

C̄x̄ =

{
{v·1, v′·2} , x̄ = (x̄1, 0)> with x̄1 > 0;
{v·2, v′·1} , x̄ = (0, x̄2)> with x̄2 > 0.

Finally, we obtain a solution, based on Theorem 18, as

f(x) =

∫ γ(x)

0
ln
k2[y†(x) + τw]v·2 +

√
k2

2[y†(x) + τw]2v·2 + 4k1k2[y†(x) + τw]v·1+v·2

2k1[y†(x) + τw]v·1
dτ

for the Lyapunov Function PDEs (24) plus (25).
Let x∗ ∈ R2

>0 be an equilibrium in (x∗ + S ) ∩ R2
>0. According to Theorem 19, since

w> ∂g(x
∗,1)

∂x = −k1 − 4k2x
∗
2 < 0, the current f(x) is an available Lyapunov function for sug-

gesting the studied system to be locally asymptotically stable at x∗.
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Note that the condition w> ∂g(x
∗,1)

∂x = −k1 − 4k2x
∗
2<0 in Eaxmple 2 is always true, which

in turn means it reasonable to set the condition of w> ∂g(x
∗,1)

∂x <0 in Theorem 19.

Example 3. This 1-dimensional MAS only contains a single species S1 and has a reversible
reaction structure, given by

0
k1

GGGGGGBFGGGGGG

k2

S1, 2S1

k3
GGGGGGBFGGGGGG

k4

3S1.

Denote Ri by the reaction with the rate coefficient ki, i = 1, · · · , 4, then v·1 = v′·2 = 0,
v·2 = v′·1 = 1, v·3 = v′·4 = 2, and v·4 = v′·3 = 3. Further by setting k1 = k4 = 2 and
k2 = k3 = 1, the dynamics of this MAS is written as

ẋ1(t) = 2− x1 + x2
1 − 2x3

1.

Clearly, the system admits a unique equilibrium point x∗1 = 1. Note that this equilibrium
is not complex balanced since at it the zero complex does not balance between the reaction
rate 2 and the production rate 1. The pseudo-Helmholtz free energy function is thus not an
appropriate Lyapunov function for stability analysis. Instead, we use the current Lyapunov
Function PDEs for 1-dimensional CRNs to produce the Lyapunov function, i.e., Eq. (29).
We set w = 1 as the base for the stoichiometric subspace, then m1 = m3 = 1, m2 = m4 = −1
and g(x, u) = 2 + x2 − 1

u(x+ 2x3). Further, we get

y†(x) = 1, γ(x) = x− 1, ũ(x) =
x+ 2x3

2 + x2
and C̄x̄ = {0}.

Finally, based on on Theorem 18, the solution for the Lyapunov Function PDEs (24) plus
(25) is expressed as

f(x) =

∫ x−1

0
ln

(
(1 + τ) + 2(1 + τ)3

2 + (1 + τ)2

)
dτ.

Since w> ∂g(x
∗,1)

∂x = 2x∗ − 1 − 6(x∗)2 = −5 ≤ 0, the above function f(x) is a valid Lyapunov
function for suggesting the studied system to be locally asymptotically stable at x∗ = 1.

6. Lyapunov Function PDEs for some CRNS with dimS ≥ 2. For general CRNs with
dimS ≥ 2, we are not able to prove that the Lyapunov Function PDEs (15) plus (19) work
validly in this paper. However, they are shown valid for some special CRNs with dimS ≥ 2.

6.1. CRNs of dimS ≥ 2 Composed of a Complex Balanced CRN and a series of CRNs
of dimS = 1. Consider a MAS (S, C,R,K) as a combination of a complex balanced MAS,
labeled as (S(0), C(0),R(0),K(0)), and a few MASs of 1-dimensional stoichiometric subspace,
denoted by (S(p), C(p),R(p),K(p)) (p = 1, · · · , `), respectively. These sub-networks are assumed
to be independent each other. Namely, for ∀ p, q ∈ {0, · · · , `}, if p 6= q, then S(p) ∩ S(q) = ∅.
We define this class of CRNs as “Com-`Sub1” CRNs, and the corresponding MASs are named
“Com-`Sub1” MASs.

In every sub-network (S(p), C(p),R(p)), let np, rp represent the number of species and
of reactions, v·i(p) the reactant complex and v′·i(p) the resultant complex of the ith reaction
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(i = 1, · · · , rp), respectively. Also, denote

n =
∑̀
p=0

np, v
(p)
·i =

p−1⊗
q=0

0nq

⊗
v·i(p)

⊗̀
q=p+1

0nq and v′·i
(p)

=

p−1⊗
q=0

0nq

⊗
v′·i(p)

⊗̀
q=p+1

0nq ,

where
⊗

is the Cartesian product, and nq = 0 if q<0 or q>`, then the MAS (S, C,R,K)
under consideration is expressed as

(31) S =
⋃̀
p=0

S(p), C =
⋃̀
p=0

rp⋃
i=1

{v(p)
·i , v

′
·i

(p)} and R =
⋃̀
p=0

rp⋃
i=1

{v(p)
·i

k
(p)
i−→ v′·i

(p)}

with the dynamics to be

(32) ẋ =
∑̀
p=0

rp∑
i=1

k
(p)
i xv

(p)
·i

(
v′·i

(p) − v(p)
·i

)
,

where the state x =
⊗`

p=0 x
(p) ∈ Rn≥0 and x(p) ∈ Rnp

≥0 is the state of the mass action system

{S(p), C(p),R(p),K(p)}. Note that for ∀ p, q ∈ {0, · · · , `} if p 6= q then{ rp⋃
i=1

{v(p)
·i

k
(p)
i−→ v′·i

(p)}

}⋂{ rq⋃
i=1

{v(q)
·i

k
(q)
i−→ v′·i

(q)}

}
= ∅.

Therefore, the number of reactions contained in the MAS of (31) is r =
∑`

p=0 rp.
In the following, we will expound that the Lyapunov Function PDEs induced by Com-

`Sub1 MASs also work validly for stability analysis by generating a solution as the Lyapunov
function.

Lemma 20. The stoichiometric subspace S of a Com-`Sub1 MAS satisfies

(33) S =
⊗̀
p=0

S (p) and dimS =
∑̀
p=0

dimS (p) = dimS (0) + `,

where S (p) is the stoichiometric subspace of (S(p), C(p),R(p),K(p)).

Proof. Since

S = span

⋃̀
p=0

rp⋃
i=1

{v(p)
·i − v

′
·i

(p)}


=
∑̀
p=0

span

{ rp⋃
i=1

{v(p)
·i − v

′
·i

(p)}

}

=

l∑
p=0

p−1⊗
q=0

0nq

⊗
S (p)

⊗̀
q=p+1

0nq


=

l⊕
p=0

p−1⊗
q=0

0nq

⊗
S (p)

⊗̀
q=p+1

0nq

 ,
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we have S =
⊗`

p=0 S (p) and dimS =
∑`

p=0 dimS (p) = dimS (0) + `. Here,
⊕

is the direct
sum.

Lemma 21. For any state x ∈ Rn≥0 of a Com-`Sub1 mass action system, if x ∈ ∂(x+S )∩Rn
>0

((x+ S ) ∩ Rn>0 6= ∅), then for ∀ p ∈ {0, · · · , `} we have x(p) ∈ Rn>0 or x(p) ∈ ∂(x(p)+S (p))∩Rn
>0

.

Furthermore, there exists at least one q ∈ {0, · · · , `} such that x(q) ∈ ∂(x(q)+S (q))∩Rn
>0

.

Proof. Since (x+ S ) ∩ Rn>0 6= ∅, based on Lemma 20, we get

(x+ S )
⋂

Rn>0 =

⊗̀
p=0

x(p) +
⊗̀
p=0

S (p)

⋂⊗̀
p=0

Rnp

>0


=
⊗̀
p=0

[
(x(p) + S (p))

⋂
Rnp

>0

]
6= ∅.

Hence, (x(p) + S (p))
⋂
Rnp

>0 6= ∅, i.e., x(p) ∈ Rnp

>0 or x(p) ∈ ∂(x(p)+S (p))∩Rn
>0

for ∀ p.
Besides, if x(p) ∈ Rnp

>0 for ∀ p, then x =
⊗`

p=0 x
(p) ∈ Rn>0, which contradicts with the

condition x ∈ ∂(x+S )∩Rn
>0

. Thus, there exists at least one q ∈ {0, · · · , `} such that x(q) ∈
∂(x(q)+S (q))∩Rnq

>0
.

Corollary 22. For any boundary point x̄ ∈ ∂(x̄+S )
⋂

Rn
>0

((x̄+ S ) ∩ Rn>0 6= ∅) of a Com-

`Sub1 MAS, there exists an index set Px̄ ⊆ {0, · · · , `} such that if p ∈ Px̄ then x(p) ∈
∂(x(p)+S (p))∩Rnq

>0
, which is denoted by x̄(p) in the following.

Lemma 23. For a Com-`Sub1 MAS, let x̄ represent any boundary point of any positive
stoichiometric compatibility class, the naive boundary complex set of x̄ is

(34) C̄x̄ =
⋃
p∈Px̄


p−1⊗
q=0

0nq

⊗
z
⊗̀
q=p+1

0nq

∣∣z ∈ C̄(p)

x̄(p)

 ⋃
p/∈Px̄


p−1⊗
q=0

0nq

⊗
z
⊗̀
q=p+1

0nq

∣∣z ∈ C(p)

 ,

where C̄(p)

x̄(p) is the naive boundary complex set of x̄(p) for (S(p), C(p),R(p),K(p)).

Proof. According to the definition of the naive boundary complex set in (20), the one for
the Com-`Sub1 MAS is

C̄x̄ =
⋃̀
p=0

[{
v

(p)
·i | ∀{j}

n
1 ,∃ε>0, x̄j ≥ εv(p)

ji

}⋃{
v′·i

(p) | ∀{j}n1 ,∃ε>0, x̄j ≥ εv′ji
(p)
}]

=
⋃̀
p=0

[
p−1⊗
q=0

0nq

⊗
v·i(p)

⊗̀
q=p+1

0nq | ∀{j}
np

1 ,∃ε > 0, x
(p)
j ≥ εvji(p)


⋃

p−1⊗
q=0

0nq

⊗
v′·i(p)

⊗̀
q=p+1

0nq | ∀{j}
np

1 , ∃ε > 0, x
(p)
j ≥ εv

′
ji(p)


]

=
⋃
p∈Px̄


p−1⊗
q=0

0nq

⊗
z
⊗̀
q=p+1

0nq

∣∣z ∈ C̄(p)

x̄(p)

 ⋃
p/∈Px̄


p−1⊗
q=0

0nq

⊗
z
⊗̀
q=p+1

0nq

∣∣z ∈ C(p)

 .
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Therefore, the result is true.

Lemma 24. For a Com-`Sub1 MAS, if the boundary complex set is chosen as the naive
one given in Lemma 23, the Lyapunov Function PDEs are

(35)
∑̀
p=0

( rp∑
i=1

Θ1(i, p)−
rp∑
i=1

Θ2(i, p)

)
= 0

and ∑
p∈Px̄

lim
x(p) → x̄(p)

x(p) ∈ (x̄(p) + S (p)) ∩ Rnp
>0

( ∑
{i|v·i(p)∈C̄

(p)

x̄(p)
}

Θ1(i, p)−
∑

{i|v′
·i(p)
∈C̄(p)

x̄(p)
}

Θ2(i, p)

)
(36)

+
∑
p/∈Px̄

( rp∑
i=1

Θ1(i, p)−
rp∑
i=1

Θ2(i, p)

)
= 0,

where

Θ1(i, p) = k
(p)
i x(p)v·i(p)

, Θ2(i, p) = k
(p)
i x(p)v·i(p)

exp

{
(v′·i(p) − v·i(p))>

∂f(x)

∂x(p)

}
,

x =
⊗`

p=0 x
(p) ∈ Rn>0, and x̄ represents any boundary point of any positive stoichiometric

compatibility class.

Proof. Referring to the Lyapunov Function PDE of (15), we can write the version for the
case of a Com-`Sub1 MAS to be

∑̀
p=0

( rp∑
i=1

k
(p)
i xv

(p)
·i −

rp∑
i=1

k
(p)
i xv

(p)
·i exp

{
(v′·i

(p) − v(p)
·i )>∇f(x)

})
= 0.

Since x =
⊗`

q=0 x
(q) ∈ Rn>0 and v

(p)
·i =

⊗p−1
q=0 0nq

⊗
v·i(p)

⊗`
q=p+1 0nq , we have

xv
(p)
·i =

⊗̀
q=0

x(q)


⊗p−1

q=0 0nq

⊗
v·i(p)

⊗`
q=p+1 0nq

= x(p)v·i(p)
.

Also, we have

(v′·i
(p) − v(p)

·i )>∇f(x) =

p−1⊗
q=0

0nq

⊗(
v′·i(p) − v·i(p)

)> ⊗̀
q=p+1

0nq

>⊗̀
q=0

∂f(x)

∂x(p)


=
(
v′·i(p) − v·i(p)

)> ∂f(x)

∂x(p)
.

Hence, we get (35).
By choosing (34) as the boundary complex set and referring to (19), we can write the

boundary condition for the Lyapunov function PDE (35) to be (36).

27



Clearly, the Lyapunov Function PDEs (35) and (36) for a Com-`Sub1 MAS are a com-
bination of those PDEs of all sub-systems (S(p), C(p),R(p),K(p))`p=0. An immediate idea is to
set a solution of the current Lyapunov Function PDEs also as a combination of the solutions
obtained from the Lyapunov Function PDEs of all sub-systems.

Theorem 25. For a Com-`Sub1 mass action system, the sub-system (S(0), C(0),R(0),K(0))
is assumed to admit a positive complex balanced equilibrium while every other sub-system
(S(p), C(p),R(p),K(p)) (p = 1, · · · , `) is supposed to have a positive equilibrium. Further let

every sub-network from p = 1 to ` possess the naive boundary complex set C̄(p)

x̄(p) as the respective

boundary complex set, and also, C̄(p)

x̄(p) = ∅ or C̄(p)

x̄(p) includes at least a reactant complex and
a resultant complex. Then the Lyapunov Function PDEs (35) and (36) for this Com-`Sub1
MAS admit a twice continuous differentiable solution in the form of

(37) f(x) =
∑̀
p=0

fp(x
(p)),

where x =
⊗`

p=0 x
(p) ∈ Rn>0, and fp(x

(p)) is a solution defined by (11) in case of p = 0
and by (29) in case of others p for the Lyapunov Function PDEs of every sub-network
(S(p), C(p),R(p),K(p)).

Proof. According to Theorems 11 and 18, under the known conditions the Lyapunov
Function PDEs of every sub-system included in the Com-`Sub1 MAS have a twice continuous
differentiable solution defined by (11) in case of p = 0 and (29) in case of others p in the area
Rnp

>0. Denote these solutions by fp(x
(p)) from p = 0 to ` respectively, and further substitute

each one into the corresponding Lyapunov Function PDEs, then we get

rp∑
i=1

k
(p)
i x(p)v·i(p) −

rp∑
i=1

k
(p)
i x(p)v·i(p)

exp
{

(v′·i(p) − v·i(p))>∇fp(x(p))
}

= 0.

Combining the sum of these equations from p = 0 to ` and the fact that f(x) =
∑`

p=0 fp(x
(p))

leads to ∂f(x)

∂x(p) = ∇fp(x(p)) will yield the current f(x) with x =
⊗`

p=0 x
(p) ∈ Rn>0 satisfying

the Lyapunov Function PDE of (35).
Consider any boundary point x̄ of any positive stoichiometric compatibility class for this

network system. According to Corollary 22, there exists a nonempty Px̄ ⊆ {0, · · · , `} so
that when p ∈ Px̄ the pth entry of x̄ is a boundary point of a certain positive stoichiometric
compatibility class of the sub-system (S(p), C(p),R(p),K(p)). For those p ∈ Px̄ since fp(x

(p))
satisfies the boundary condition (25), we have

lim
x(p) → x̄(p)

x(p) ∈ (x̄(p) + S (p)) ∩ Rnp
>0

∑
{i|v·i(p)∈C̄

(p)

x̄(p)
}

Θ1(i, p)−
∑

{i|v′
·i(p)
∈C̄(p)

x̄(p)
}

Θ2(i, p) = 0.

Namely, the first term in the left hand of (36) is equal to 0. The second term is also equal to
0 since for those p /∈ Px̄ every fp(x

(p)) supports the Lyapuonv function (15). This completes
the proof.
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Lemma 26. A state x∗ =
⊗`

p=0 x
(p)∗ ∈ Rn>0 is a positive equilibrium of a Com-`Sub1 MAS

if and only if for any p = 1, · · · , `, x(p)∗ ∈ Rnp

>0 is a positive equilibrium of the sub-system

(S(p), C(p),R(p),K(p)).

Proof. The result is immediate by inserting the state x∗ =
⊗`

p=0 x
(p)∗ ∈ Rn>0 into the

dynamics of the Com-`Sub1 MAS (32).

Theorem 27. For any ` ≥ 1, consider a Com-`Sub1 mass action system with the sub-
system (S(0), C(0),R(0),K(0)) admitting a complex balanced equilibrium x(0)∗ ∈ Rn0

>0 and other

sub-systems (S(p), C(p),R(p),K(p))`p=1 respectively admitting an equilibrium x(p)∗ ∈ Rnp

>0. Also,

for any sub-system (S(p), C(p),R(p),K(p)) (p ∈ {1, · · · , `}) the boundary complex set is chosen

as the naive boundary complex set C̄(p)

x̄(p) defined by (20), and C̄(p)

x̄(p) = ∅ or C̄(p)

x̄(p) includes both

reactant complexes and resultant complexes. If for all {p}`1 the conditions

w>p
∂

∂x(p)
gp(x

(p), 1)
∣∣∣
x(p)=x(p)∗

<0

are true, then the Lyapunov Function PDEs induced by this Com-`Sub1 MAS are able to
produce a solution (37) as a Lyapunov function serving for analyzing the local asymptotic
stability of the network system. Here, wp ∈ Rnp\{0np} is a set of bases of S (p) and gp(x

(p), u)
is defined according to (27).

Proof. From Lemma 26, since all sub-systems included in the Com-`Sub1 MAS have an
equilibrium x(p)∗ ∈ Rnp

>0 (∀ p ∈ {0, · · · , `}), the Com-`Sub1 MAS admits a positive equilibrium

x∗ =
⊗`

p=0 x
(p)∗ ∈ Rn>0. Further from Theorem 25, f(x) =

∑`
p=0 fp(x

(p)) defined by (37) is a
twice continuous differentiable solution of the Lyapunov Function PDEs (35) plus (36). From

the condition of w>p
∂

∂x(p) gp(x
(p), 1)

∣∣∣
x(p)=x(p)∗

<0 and the continuity of g(x, u) with respect to

u, there exist neighbourhoods of x(p)∗, denoted as δ(x(p)∗) (p = 1, · · · , `), such that for all
x(p) ∈ δ(x(p)∗) we have

w>p
∂

∂x(p)
gp(x

(p), ũ(p)(x(p))) < 0,

where ũ(p)(x(p)) makes gp(x
(p), u) = 0. Hence, let µ =

⊗`
p=0 µ

(p) ∈ S then for any x ∈
{Rn0

>0

⊗`
p=1 δ(x

(p)∗)}
⋂

(x∗ + S )
⋂
Rn>0 we get

µ>∇2f(x)µ = µ(0)>diag
{

1/x
(0)
1 , · · · , 1/x(0)

n0

}
µ(0)

+
∑̀
p=1

(µ(p)>wp)
2 ·
−w>p ∂

∂x(p) gp(x
(p), ũ(p))/ ∂

∂u(p) gp(x
(p), ũ(p))

ũ(x(p))
≥ 0.

Clearly, the above equality holds if and only if µ = 0n. This means that all conditions in
Theorem 10 are satisfied, and the result is thus shown.
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Example 4. Consider a Com-`Sub1 MAS (` = 1) with the reaction route following

(38)

S
(0)
2

k
(0)
2

  

S
(0)
1

k
(0)
1

>>

S
(0)
3

k
(3)
3oo

S
(1)
1

k
(1)
1 // S

(1)
2 ,

2S
(1)
2

k
(1)
2 // 2S

(1)
1 .

The sub-system (S(0), C(0),R(0),K(0)) is complex balanced that has complexes as

v·1(0) = v′·3(0) =

 1
0
0

 , v·2(0) = v′·1(0) =

 0
1
0

 , v·3(0) = v′·2(0) =

 0
0
1


and admits a complex balanced equilibrium x(0)∗ =

(
k

(0)
2 k

(0)
3 , k

(0)
1 k

(0)
3 , k

(0)
1 k

(0)
2

)>
. In addition,

the sub-system (S(1), C(1),R(1),K(1)) (the same as in Example 2) is of 1-dimensional stoichio-
metric subspace with complexes

v·1(1) =

(
1
0

)
, v′·1(1) =

(
0
1

)
, v·2(1) =

(
0
2

)
, v′·2(1) =

(
2
0

)

and an equilibrium x(1)∗ =

(
2k

(1)
2 ,

√
k

(1)
1

)>
. Moreover, the naive boundary complex set is set

as

C̄x̄(1) =


{
v·1(1) , v′·2(1)

}
, x̄(1) = (x̄1(1) , 0)> with x̄1(1) > 0;{

v·2(1) , v′·1(1)

}
, x̄(1) = (0, x̄2(1))> with x̄2(1) > 0.

By Theorem 25, there exists a solution supporting the Lyapunov Function PDEs induced from
this Com-`Sub1 MAS, written as

f(x) = f0(x(0)) + f1(x(1)),

where x(0) = (x1(0) , x2(0) , x3(0))>, x(1) = (x1(1) , x2(1))>, x = x(0)
⊗
x(1),

f0(x(0)) = x(0)>Ln

(
x(0)

x(0)∗

)
− 1>3

(
x(0) − x(0)∗

)
and

f1(x(1)) =

∫ γ(x(1))

0
ln
k

(1)
2 ŷv·2(1) +

√(
k

(1)
2

)2
ŷ2v·2(1) + 4k

(1)
1 k

(1)
2 ŷv·1(1)+v·2(1)

2k
(1)
1 ŷv·1(1)

dτ.

In the above equation, ŷ = y†
(
x(1)

)
+ τw1 and

y†
(
x(1)

)
=

1

2

(
1
>
2

1
>
2

)
x(1), γ

(
x(1)

)
=
w>1 x

(1)

2
, w1 = (−1, 1)>.
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Further, from g1

(
x(1), u

)
= k

(1)
1 x1(1) − k(1)

2 (x2(1))
2 u−1 − k(1)

2 (x2(1))
2 u−2 we have

w>1
∂

∂x(1)
g1

(
x(1), u

) ∣∣∣
x(1)=x(1)∗

= −k(1)
1 − 4k

(1)
2 x∗

2(1)<0.

Therefore, based on Theorem 27, f(x) is an available Lyapunove function for the given Com-

`Sub1 CRN and could suggest its equilibrium
(
x(0)∗, x(1)∗

)>
to be locally asymptotically stable.

6.2. Other Two Special CRNs with dimS ≥ 2.

Example 5. Consider a CRN of the form

2S1
k1−→ S1 + S2, 2S2

k2−→ S2 + S3, 2S3
k3−→ S3 + S1.

We have the species set S = {S1, S2, S3}, complex set C = {v·1, v′·1, v·2, v′·2, v·3, v′·3}, reaction
set R = (v·1 → v′·1, v·2 → v′·2, v·3 → v′·3) and kinetic set K = (k1, k2, k3), where

v·1 =

 2
0
0

 , v′·1 =

 1
1
0

 , v·2 =

 0
2
0

 , v′·2 =

 0
1
1

 , v·3 =

 0
0
2

 , v′·3 =

 1
0
1

 ,

By the mass-action kinetics, the dynamics of the system is expressed as

(39) ẋ(t) =
3∑
i=1

kix
v·i
(
v′·i − v·i

)
, x ∈ Rn>0.

Therefore, we have dimS = dim span(v′·1−v·1, v′·2−v·2, v′·3−v·3) = 2. Obviously, this network
does not belong to any type of CRNs mentioned above. However, it has some special properties.

Lemma 28. In every positive stoichiometric compatibility class induced by any given x̃ ∈
Rn>0 and the stoichiometric subspace S of the MAS governed by (39), any state x of this MAS
is constrained by 1

>
3 x = 1

>
3 x̃.

Proof. From S = span(v′·1−v·1, v′·2−v·2, v′·3−v·3), we have that the orthogonal complement
space S ⊥ of S is of one dimension, and (1, 1, 1)> can act as a set of bases of S ⊥, i.e.,
(1, 1, 1)> ⊥ S . Therefore, for every positive stoichiometric compatibility class (x̃+S )

⋂
Rn>0

induced by any given x̃ ∈ Rn>0 and S , the state x of the MAS satisfies x − x̃ ∈ S , i.e.,
(x− x̃) ⊥ (1, 1, 1)>. We get 1>3 x = 1

>
3 x̃.

Lemma 29. The MAS governed by (39) admits a unique equilibrium in each positive sto-
ichiometric compatibility class. Furthermore, this sole equilibrium, denoted by x∗ ∈ R3

>0,
satisfies

√
k1x
∗
1 =
√
k2x
∗
2 =
√
k3x
∗
3.

Proof. Let (x̃+S )
⋂

Rn>0 represent any positive stoichiometric compatibility class in which
the state of the MAS following (39) evolves. If the equilibrium x∗ ∈ R3

>0 exists, then it must
satisfy

1
>
3 x
∗ = 1

>
3 x̃ and k1 (x∗1)2 = k2 (x∗2)2 = k3 (x∗3)2 .
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Denote

K =

 1 1 1√
k1 −

√
k2 0√

k1 0 −
√
k3

 ,

then the above two relations can be integrated together and rewritten as

Kx∗ = 1
>
3 x̃.

Since det(K) =
√
k1k2 +

√
k2k3 +

√
k1k3 6= 0, x∗ exists and is also unique in (x̃+ S )

⋂
Rn>0.

Furthermore, x∗ supports the relation
√
k1x
∗
1 =
√
k2x
∗
2 =
√
k3x
∗
3, and

x∗ =
1
>
3 x̃√

k1k2 +
√
k2k3 +

√
k1k3

(√
k2k3,

√
k1k3,

√
k1k2

)>
.

Based on these two properties, it is not difficult to find a solution for the Lyapunov function
PDEs (15) and (19) of this MAS.

Theorem 30. For the MAS described by (39), if the boundary complex set Cx̄ is set to
be empty, then the Lyapunov function PDEs (15) and (19) generated by this MAS admit a
solution

(40) f(x) = 2x>Ln
( x
x∗

)
− 21>3 (x− x∗),

where x∗ ∈ R3
>0 is an equilibrium of the MAS under consideration. Moreover this solution

can behave as the Lyapunov function to suggest the MAS locally asymptotically stable at x∗.

Proof. Substituting ∇f(x) = 2Ln
(
x
x∗

)
into the L.H.S. of (15) yields

L.H.S of Eq. (15) = k1x
2
1 + k2x

2
2 + k3x

2
3 − k1

(
x∗1
x∗2

)2

x2
2 − k2

(
x∗2
x∗3

)2

x2
3 − k3

(
x∗3
x∗1

)2

x2
1

= k1x
2
1 + k2x

2
2 + k3x

2
3 − k2x

2
2 − k3x

2
3 − k1x

2
1

= 0.

Hence, f(x) = 2x>Ln
(
x
x∗

)
− 21>3 is a solution of the PDE (15). In the meanwhile, the

boundary condition of (19) is naturally true with Cx̄ = ∅. Moreover, the Hessian matrix of
f(x) is expressed as

∇2f(x) =

 2
x1

2
x2

2
x3


which is positive definite in Rn>0. Hence, the condition (22) is satisfied for every state, and
the asymptotic stability holds immediately from Theorem 10.

Remark 5. The solution f(x) = 2x>Ln
(
x
x∗

)
− 21>3 (x − x∗) is actually a function similar

to the pseudo-Helmholtz free energy function. It can be rewritten as f(x) = 2G(x).
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Example 6. The second CRN has 3-dimensional stoichiometric subspace and is given by

3S1
k1−→ 2S1 + S2, 2S2

k2−→ S2 + S3, S3
k3−→ S1, 0

k4−→ S3
k5−→ 0

with the complexes being

v·1 =

 3
0
0

 , v′·1 =

 2
1
0

 , v·2 =

 0
2
0

 , v′·2 =

 0
1
1

 , v·3 =

 0
0
1

 , v′·3 =

 1
0
0

 ,

v·4 = v′·5 =

 0
0
0

 , v·5 = v′·4 =

 0
0
1

 .

By setting k1 = k2 = k3 = k4 = k5 = 1 for simplicity, the dynamical equation follows
ẋ1(t) = −x3

1 + x3,
ẋ2(t) = x3

1 − x2
2,

ẋ3(t) = x2
2 − 2x3 + 1

and the Lypunov Function PDE is

x3
1 + x2

2 + 2x3 + 1− x3
1 exp

{
− ∂f

∂x1
+

∂f

∂x2

}
− x2

2 exp

{
− ∂f

∂x2
+

∂f

∂x3

}
− x3 exp

{
∂f

∂x1
− ∂f

∂x3

}
− exp

{
∂f

∂x3

}
− x3 exp

{
− ∂f

∂x3

}
= 0.

We choose the boundary complex to be empty set at any boundary point, then the boundary
condition (19) vanishes.

It is not difficult to verify that the following function

f(x) = 3 (x1 lnx1 − x1) + 2 (x2 lnx2 − x2) + (x3 lnx3 − x3)

is a solution of the above Lyapunov Function PDE. Moreover, this solution meets all conditions
given in Theorem 10, so it can work for analyzing the asymptotic stability of the MAS.

6.3. Computational verification for a 2-dimensional CRN. The last CRN has the form

2S1
k1−→ S2

k2−→ S1
k3←− 0,

where the complexes are

v·1 =

(
2
0

)
, v′·1 =

(
0
1

)
, v·2 =

(
0
1

)
, v′·2 =

(
1
0

)
, v·3 =

(
0
0

)
, v′·3 =

(
1
0

)
.

We also set k1 = k2 = k3 = 1 for simplicity, and thus write the dynamics as{
ẋ1(t) = −2x2

1 + x2 + 1,
ẋ2(t) = x2

1 − x2.
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Although this CRN looks simple and the dimension of its stoichiometric subspace is only 2,
to our knowledge it is difficult to find a solution for its Lyapunov Function PDE

(41) x2
1 + x2 + 1− x2

1 exp

{
−2

∂f

∂x1
+

∂f

∂x2

}
− x2 exp

{
∂f

∂x1
− ∂f

∂x2

}
− exp

{
∂f

∂x1

}
= 0.

We thus try to make a computational verification for this example.
Note that (x∗1, x

∗
2)> = (1, 1)> is the unique equilibrium in the network system, and there

are three types of native boundary complex sets according to the boundary points considered,
that is

C̄x̄ =


{

(0, 0)>, (0, 1)>
}
, x̄ = (x̄1, 0)> with x̄1 > 0;{

(0, 0)>, (1, 0)>, (2, 0)>
}
, x̄ = (0, x̄2)> with x̄2 > 0;

{(0, 0)>}, x̄ = (0, 0)>.

In order to observe whether f(x) has the potential to act as the Lyapunov function, we make
a Taylor expansion about it at the equilibrium (1, 1)>. For simplicity but without loss of
generality, the expansion is made up to the third order. Fig. 1 exhibits the simulation results
about f(x) in sub-figure (a) and about the minimum eigenvalue, denoted by λmin, of its
Hessian matrix in sub-figure (c). From the sub-figure (a) and the corresponding contours sub-
figure (b), it is suggested that f(x) is convex with the minimum evaluated at the equilibrium.
Further from the sub-figure (c) and the corresponding contours sub-figure (d), there exists a
neighbourhood around the equilibrium in which f(x) is strictly convex. This indicates that
f(x) meets all conditions requested in Theorem 10. Hence, the computational simulation also
supports that the Lyapunov Function PDE method is valid.

7. Conclusion and a Conjecture. This paper is devoted to developing the Lyapunov
function with clear physical meaning for stability analysis for chemical reaction networks.
We have attempted to address this issue by establishing approximation from a microscopic
concept of CRNs, the scaling non-equilibrium potential, to the macroscopic notation of the
candidate Lyapunov function. After rewriting the Chemical Master Equation skillfully, we
have succeeded in implementing the approximation and transformed the ODE into a PDE,
which together with the developed boundary condition yields the Lyapunov Function PDEs.
And then, we have proved that the solution (if exists) of the PDEs is dissipative, and thus has
great potential to become a Lyapunov function. Next, we have applied the Lyapunov Func-
tion PDEs to complex-balanced CRNs and general CRNs with 1-dimensional stoichiometric
subspace. For both cases, we construct their solutions that can act as Lyapunov functions
rendering the respective system to be locally asymptotically stable. Finally, we have extended
the applications of the Lyapunov Function PDEs to some special CRNs with more than 2-
dimensional stoichiometric subspace, and showed that the PDEs also work validly for them
in stability analysis.

Notwithstanding the performance illustrated by the Lyapunov Function PDEs is very
encouraging, there are still some problems needed to be explored in the future. One of the
most urgent problems is to prove that the Lyapunov Function PDEs CAN or CANNOT serve
for general CRNs with more than 2-dimensional stoichiometric subspace. This may be an
extremely arduous task, however, we are inclined to think they can. We summarize the proof

34



Figure 1. Simulation results for the Lyapunov Function PDE (41): (a) f(x); (b) the contours of f(x); (c)
λmin; (d) the contours of λmin.

task as a conjecture: “For any mass action system that admits a stable positive equilibrium,
if the boundary complex set is equipped properly, then the Lyapunov Function PDEs induced
by this system have a solution qualified as a Lyapunov function to suggest the system to be
locally asymptotically stable at the equilibrium.” The converse problem is also interesting, i.e.,
will all Lyapunov functions be solutions to the PDEs in some sense?
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