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Abstract

We initiate the algorithmic study of the following “structured augmentation” question: is it
possible to increase the connectivity of a given graph G by superposing it with another given
graph H? More precisely, graph F is the superposition of G and H with respect to injective
mapping ϕ : V (H) → V (G) if every edge uv of F is either an edge of G, or ϕ−1(u)ϕ−1(v)
is an edge of H. Thus F contains both G and H as subgraphs, and the edge set of F is
the union of the edge sets of G and ϕ(H). We consider the following optimization problem.
Given graphs G, H, and a weight function ω assigning non-negative weights to pairs of
vertices of V (G), the task is to find ϕ of minimum weight ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y))

such that the edge connectivity of the superposition F of G and H with respect to ϕ is higher
than the edge connectivity of G. Our main result is the following “dichotomy” complexity
classification. We say that a class of graphs C has bounded vertex-cover number, if there is a
constant t depending on C only such that the vertex-cover number of every graph from C does
not exceed t. We show that for every class of graphs C with bounded vertex-cover number,
the problems of superposing into a connected graph F and to 2-edge connected graph F ,
are solvable in polynomial time when H ∈ C. On the other hand, for any hereditary class
C with unbounded vertex-cover number, both problems are NP-hard when H ∈ C. For the
unweighted variants of structured augmentation problems, i.e. the problems where the task
is to identify whether there is a superposition of graphs of required connectivity, we provide
necessary and sufficient combinatorial conditions on the existence of such superpositions.
These conditions imply polynomial time algorithms solving the unweighted variants of the
problems.

Keywords: connectivity augmentation, graph superposition, complexity.

1 Introduction

In connectivity augmentation problems, the input is a (multi) graph and the objective is to
increase edge or vertex connectivity by adding the minimum number (weight) of additional
edges, called links. This is a fundamental combinatorial problem with a number of important
applications, we refer to the books of Nagamochi and Ibaraki [15] and Frank [6] for a detailed
introduction to the topic. In this paper we initiate the study of a “structural” connectivity aug-
mentation problem, where the set of additional edges should satisfy some additional constrains.
For example, such constrains can be that all new edges should be visible from one vertex, i.e.
the new set of edges forms a star, forms a cycle, or can be controlled from a small set of vertices,
i.e. the graph formed by the additional edges has a small vertex cover.

It is convenient to model such an augmentation problem as a graph superposition problem.
Let G and H be simple graphs (i.e. graphs without loops and multiple edges), |V (G)| ≥ |V (H)|,
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Figure 1: For injective mapping ϕ : V (H) → V (G) such that ϕ(u1) = v1, ϕ(u2) = v4, and
ϕ(u3) = v3, we have F = G⊕ϕ H.

and let ϕ : V (H)→ V (G) be an injective mapping of the vertices of H to the set of vertices of
V (G). We say that a simple graph F is the superposition of G and H with respect to ϕ and
write F = G ⊕ϕ H if V (F ) = V (G) and two distinct vertices u, v ∈ V (F ) are adjacent in F if
and only if uv ∈ E(G) or u, v ∈ ϕ(V (H)) and ϕ−1(u)ϕ−1(v) ∈ E(H). See Fig. 1 for an example.
Thus graph F contains G and H as subgraphs, and the edge set of F is the union of the edge
sets of G and ϕ(H).

We study the algorithmic problem of increasing the edge-connectivity of graph G by super-
posing it with a graph H. We are interested in the weighted variant of the problem, where for
every pair of vertices v and u of G, mapping the endpoints of an edge of H to u and v has a
specified weight ω(uv). We consider the following problem.

Input: Graphs G and H, a weight function ω :
(
V (G)
2

)
→ N0, and a nonnegative

integer W .
Task: Decide whether there is an injective mapping ϕ : V (H) → V (G) such

that graph F = G ⊕ϕ H is connected and the weight of the mapping
ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W .

Structured Connectivity Augmentation

We also study the problem of obtaining a 2-edge connected graph F by superposing graphs
G and H. More precisely, we consider the following problem.

Input: Connected graph G and a graph H, a weight function ω :
(
V (G)
2

)
→ N0

and a nonnegative integer W .
Task: Decide whether there is an injective mapping ϕ : V (H) → V (G) of

weight at most W such that F = G⊕ϕ H is 2-edge connected.

Structured 2-Connectivity Augmentation

Our results. Our main result is the following “dichotomy” complexity classification of struc-
tured augmentation problems. We say that a class of graphs C has bounded vertex-cover number,
if there is a constant t depending on C only such that the vertex-cover number of every graph
from C does not exceed t. We show that for every class of graphs C with bounded vertex-cover
number, Structured Connectivity Augmentation and Structured 2-Connectivity
Augmentation are solvable in polynomial time when H ∈ C. We complement this result by
showing that for any hereditary class C with unbounded vertex-cover number, both problems
are NP-complete when H ∈ C. Thus for any hereditary class C both problems with H ∈ C are
NP-complete if and only if C has unbounded vertex-cover number.
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The running times of our algorithms solving Structured Connectivity Augmentation
and Structured 2-Connectivity Augmentation are of the form |V (G)|O(f(t))·logW , where
f is some function and t is the vertex cover of H. Thus our algorithms are not fixed-parameter
tractable when t is the parameter. We show that from the perspective of parameterized com-
plexity, this situation is unavoidable. More precisely, we show that both problems are W[1]-hard
when parameterized by t. We refer to the book of Downey and Fellows [3] for an introduction
to parameterized complexity.

We also consider the unweighted variants of Structured Connectivity Augmentation
and Structured 2-Connectivity Augmentation. In these cases, the weight is ω(uv) = 0
for every pair of vertices of G and W = 0. The task is to identify whether there is a superposition
of graphs G and H of edge connectivity 1 or 2, correspondingly. Here we obtain necessary
and sufficient combinatorial conditions of the existence of an injective function ϕ such that
F = G ⊕ϕ H is edge k-connected provided that G is edge (k − 1)-connected, k = 1, 2. These
conditions imply polynomial time algorithms solving the unweighted variants of the problems.

Related work. The problem of increasing graph connectivity by adding additional edges
is the classic and well-studied problem. It was first studied by Eswaran and Tarjan [4] and
Plesnik [16] who showed that increasing the edge connectivity of a given graph to 2 by adding
minimum number of additional augmenting edges is polynomial time solvable. Subsequent work
in [18, 5] showed that this problem is also polynomial time solvable for any given target value
of edge connectivity to be achieved. However, if the set of augmenting edges is restricted,
that is, there are pairs of vertices in the graph which do not constitute a new edge, or if the
augmenting edges have (non-identical) weights on them, then the problem of computing the
minimum size (or weight) augmenting set is NP-complete [4]. Augmentation problems with
constraints like simplicity-preserving augmentations, augmentations with partition constraints,
or planarity requirements can be found in the literature, see the book of Nagamochi and Ibaraki
[15] for further references.

Strongly relevant to structural augmentation is the Minimum Star Augmentation prob-
lem, see e.g. [15, Section 3.3.3] and [12]. Here one wants to increase the edge-connectivity of
a given graph by adding a new vertices and connecting it with a small number of edges to the
remaining vertices of the graph. In our setting this corresponds to the case of graph G having an
isolate vertex, and graph H being a star (a tree with vertex-cover number 1). Tibor and Szigeti
[12] studied a generalization of this problem where one wants to make a graph edge r-connected
by attaching p stars of specified degrees. In particular, they provided combinatorial conditions
which are necessary and sufficient for such an augmentation. Again, this problem can be seen
as a special case of structural augmentation, where graph G has p isolated vertices and graph
H is the union of stars of specified degrees.

2 Preliminaries

We consider only finite undirected graphs. For a graph G,
(
V (G)
2

)
denotes the set of unordered

pairs of distinct vertices of G. For uniformity, we denote the elements of
(
V (G)
2

)
in the same

way as edges, i.e., we write uv ∈
(
V (G)
2

)
. A subgraph H of G is spanning if V (H) = V (G).

For a graph G and a subset U ⊆ V (G) of vertices, we write G[U ] to denote the subgraph of G
induced by U . We write G − U to denote the graph G[V (G) \ U ]. Let S ⊆ E(G) for a graph
G. By G − S we denote by G − S the graph obtained by the deletion of the edges of S. We
write G − e instead of G − {e} for an edge e. For a vertex v, we denote by NG(v) the (open)
neighborhood of v, i.e., the set of vertices that are adjacent to v in G. Two nonadjacent vertices
u and v are (false) twins if NG(u) = NG(v). A set of edges with pairwise distinct end-vertices is
called a matching. A matching M is induced if the end-vertices of M are pairwise nonadjacent.
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A vertex v is saturated in a matching M if v is incident to an edge of M . We say that the
disjoint union of copies of K2 is a matching graph. A graph class C is said to be hereditary if
for every G ∈ C and every induced subgraph H of G, H ∈ C. A set of vertices X ⊆ V (G) is
a vertex cover of a graph G if every edge of G has at least one of its end-vertices in X. The
minimum size of a vertex cover is called the vertex-cover number of G and is denoted by β(G).

Let k be a positive integer. A graph G is (edge) k-connected if for every S ⊆ E(G) with
|S| ≤ k−1, G−S is connected. Since we consider only edge connectivity, whenever we say that
a graph G is k-connected, we mean that G is edge k-connected. We assume that every graph
is 0-connected. A set of edges S ⊆ E(G) of a connected graph G is an edge separator if G− S
is disconnected. An edge e of a connected graph G is a bridge if {e} is a separator. Clearly, a
connected graph is 2-connected if and only if it has no bridge. Let B be the set of bridges of
a connected graph G. We call a component of G − B a biconnected component of G. In other
words, a biconnected component is an inclusion-wise maximal induced 2-connected subgraph of
G. We say that a biconnected component L of a graph G is a pendant biconnected component
(or simply a pendant) if a unique bridge of G is incident to V (L). A biconnected component is
trivial if it has a single vertex. For a graph G, we denote by c(G) the number a components of
G, and for a connected graph G, p(G) is the number of pendants. We also denote by i(G) the
number of isolated vertices of G.

Let S be an inclusion-wise minimal edge separator of a connected graph G. Then G−S has
exactly two components C1 and C2. Let G be a spanning subgraph of F . We say that an edge
e ∈ E(F ) \E(G) covers a minimal separator S of G if e has its end-vertices in C1 and C2. The
following observation about separators is useful.

Observation 1. Let k ≥ 2 be an integer and let a (k − 1)-connected graph G be a spanning
subgraph of F . Then F is k-connected if and only if for each edge separator S of G with
|S| = k − 1, F has an edge that covers it.

We also need some additional terminology and folklore observations for the augmentation
of a connected graph to a 2-connected graph. Let G be a connected graph and let x and y be
distinct vertices of G. We say that a bridge uv of G belongs to an (x, y)-path P if uv ∈ E(P ).
Similarly, a biconnected component Q is crossed by P if V (Q) ∩ V (P ) 6= ∅. The following
observation show that the choice of an (x, y)-path is irrelevant if the biconnected components
containing the end-vertices are given.

Observation 2. Let distinct {x1, y1} and {x1, y2} be pairs of distinct vertices of a connected
graph G such that x1, x2 are in the same biconnected component of G and, similarly, y1, y2
are in the same biconnected component of G. Let also P1 and P2 be (x1, y1) and (x2, y2)-paths
respectively. Then the following holds:

• a bridge uv of G belongs to P1 if and only if uv belongs to P2,

• a biconnected component Q is crossed by P1 if and only if Q is crossed by P2.

Observation 3. Let u and v be distinct nonadjacent vertices of a connected graph G and let
F be a graph obtained from G by the addition of the edge uv. Then uv covers all bridges that
belongs to a (u, v)-path P in G, and for the biconnected components Q1, . . . , Qs that are crossed
by P , F [V (Q1) ∪ . . . ∪ V (Qs)] is a biconnected component of F .

In the remaining part of the paper, we will be always assuming that in the instance of the
structured augmentation problem, we have

(i) |V (H)| ≤ |V (G)|;

(ii) Graph H has no isolated vertices.
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Indeed, if |V (H)| > |V (G)|, then there is no superposition of G and H, and thus such an instance
is a no-instance. For (ii), it is sufficient to observe that mapping of isolated vertices of H to
vertices of G does not influence the connectivity of the superposition. Another technical detail
should be mentioned here. In Theorems 1 and 2, we evaluate the running times of algorithms
as a function of |V (G)| and the vertex cover number of H. In order to do this, we should be able
to recognize within this time the (trivial) no-instances, where |V (H)| > |V (G)|. We can verify
this condition in time |V (G)|O(1) just by refuting the instances of size more than |V (G)|O(1)
after reading the first |V (G)|O(1) bits.

3 Augmenting by graphs with small vertex cover.

In this section we consider the situation when graph H is from a graph class C with bounded
vertex-cover number. In Subsection 3.1 we show that in this case Structured Connectivity
Augmentation and Structured 2-Connectivity Augmentation are solvable in polyno-
mial time. In Subsection 3.2 we show that this condition is tight by proving that for any
hereditary graph class C with unbounded vertex-cover number, both problems are NP-hard.

3.1 Algorithms

We start with a solution for Structured Connectivity Augmentation, which is simpler
than the solution for Structured 2-Connectivity Augmentation.

Structured Connectivity Augmentation. We need the following lemma.

Lemma 1. Let G and H be graphs and let ϕ : V (H)→ V (G) be an injection such that F = G⊕ϕ
H is connected. Let also X be a vertex cover of H of size t. Then there is a set Y ⊆ V (H) \X
of size at most 2(t−1) such that for graph H ′ = H[X∪Y ] and mapping ψ = ϕ|X∪Y , the vertices
of ψ(X ∪ Y ) are in the same connected component of F ′ = G⊕ψ H ′.

Proof. If |X| = 1, then the claim of the lemma is trivial. Assume that |X| ≥ 2.
Let X ′ ⊆ X be an inclusion-wise maximal set such that there is a set Y ′ ⊆ V (H)\X ′ of size

at most 2(|X ′| − 1) such that for H ′ = H[X ′ ∪ Y ′] and ψ′ = ϕ|X′∪Y ′ , the vertices of ψ′(X ′ ∪ Y ′)
are in the same component of F ′ = G⊕ψ′H ′. Notice that every one-element subset of X satisfies
this property and therefore such a set X ′ exists. If X ′ = X, then the claim of the lemma holds.
Suppose that X ′ ⊂ X. Let s = |X ′| < t. We show that in this case we can extend X ′ which
will contradict its maximality.

More precisely, we claim that there is x ∈ X \X ′ such that for X ′′ = X ′ ∪{x}, there is a set
Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ of size at most 2s such that for H ′′ = H[X ′′ ∪ Y ′′] and ψ′′ = ϕ|X′′∪Y ′′ ,
the vertices of ψ′′(X ′′ ∪ Y ′′) are in the same component of F ′′ = G⊕ψ′′ H ′′.

If there is x ∈ X \ X ′ such that x is in the same component of F ′ with the vertices of
ψ′(X ′ ∪ Y ′), then the claim holds for X ′′ = X ′ ∪ {x} and Y ′′ = Y ′. Suppose that it is not so,
that is, for every x ∈ X \ X ′, x does not belong to the component of F ′ with the vertices of
ψ′(X ′ ∪Y ′). Recall that F is connected. We select x ∈ X \X ′ and a path P joining ϕ(x) and a
vertex of ϕ(X ′) in F in such a way that P contains the minimum number of vertices of ϕ(X).

Let P be a (ϕ(x), ϕ(x′))-path for x′ ∈ X ′. Notice that P has no internal vertex in ϕ(X).
Otherwise (if there is such a vertex v) then either ϕ−1(v) ∈ X ′, or ϕ−1(v) ∈ X \ X ′. In the
first case the (ϕ(x), v)-subpath of P connects x with a vertex of ϕ(X ′), and in the second case,
the (v, ϕ(x′))-subpath of P connects a vertex of ϕ(X \X ′) with x′ ∈ ϕ(X ′). In both cases this
contradicts the choice of P . We obtain that V (P ) ∩ ϕ(X) = {x, x′}.

This implies that P contains at most 2 edges that are not edges of G. Moreover, because X
is a vertex cover of H, every such edge is incident either with ϕ(x), or with ϕ(x′). Denote by S
the set of endpoints of these edges distinct from ϕ(x) and ϕ(x′). We have that S ⊆ ϕ(V (H)\X)
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and |S| ≤ 2. Let X ′′ = X ∪ {x} and Y ′′ = Y ′ ∪ S. We obtain that Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ and
|Y ′′| ≤ |Y ′|+ 2 ≤ 2s. Let ψ′′ = ϕ|X∪Y ′′ . Observe that P is a path in F ′′ = G⊕ψ′′H ′′. It implies
that the vertices of ψ′′(X ′′ ∪ Y ′′) are in the same component of F ′′.

We obtain a contradiction that proves that X ′ = X and the lemma holds.

Let us remind, that, given a positive integer t, a graph class C has vertex-cover number at
most t if every graph H ∈ C has a vertex cover of size at most t. We are ready to prove the
main theorem about Structured Connectivity Augmentation.

Theorem 1. Let t be a positive integer and C be a graph class of vertex-cover number at most
t. Then for any H ∈ C, Structured Connectivity Augmentation is solvable in time
|V (G)|O(t) · logW .

Proof. Let G and H ∈ C be graphs and let ω :
(
V (G)
2

)
→ N0 be a weight function. We show

that we can find in time |V (G)|O(t) · logW an injective mapping ϕ : V (H) → V (G) such that
F = G⊕ϕ H is connected and ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) is minimum if ϕ exists.

Let us remind that without loss of generality, we can assume that |V (H)| ≤ |V (G)| and H
has no isolated vertices.

We start from finding a vertex cover X of size at most t in H. Since we aim for an algorithm
with running time |V (G)|O(t) · logW , vertex cover X can be found by brute-force checking of
all subsets of V (H) of size at most t. If we fail to find X of size at most t, it means that H 6∈ C,
in this case we return the answer NO and stop. Assume that X exists.

Suppose that there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is
connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 1, there is a set Y ⊆ V (H) \X
of size at most 2(t− 1) such that for H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y )
are in the same component of F ′ = G ⊕ψ H ′. Considering all possibilities, we guess Y in time
|V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the vertices of
ψ(X∪Y ) are in the same connected component of F ′ = G⊕ψH ′, where H ′ = H[X∪Y ]. Notice
that there are at most |V (G)|3t−2 such mappings that can be generated in time |V (G)|O(t). If
we fail to find ψ, we reject the current choice of Y . Otherwise, for every ψ, we try to extend it
to an injection ϕ : V (H)→ V (G) such that F = G⊕ϕH is connected, and among all extensions
we choose one that provides the minimum weight ω(ϕ).

Let Z = V (H)\(X∪Y ). The vertices of ψ(X∪Y ) are in the same component of F ′. Denote
this component by F0 and denote by F1, . . . , Fr the other components of this graphs. Recall
that Z is an independent set of H and each vertex of Z has an incident edge with one endpoint
in X. It follows that for an injection ϕ : V (H) → V (G) such that ψ = ϕ|X∪Y , F = G ⊕ϕ H is
connected if and only if for every i ∈ {1, . . . , r}, there is v ∈ V (Fi) such that v ∈ ϕ(Z). Hence,
if r > |Z|, we cannot extend ψ. In this case we discard the current choice of ψ.

Assume from now that Y and ψ are fixed, F ′ = G ⊕ψ H ′ is connected and r ≤ |Z|. For
z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

w(z, v) =
∑

u∈NG(v)∩ψ(NH(z))

ω(uv),

that is, w(z, x) is the weight of edges that is added to the weight of mapping if we decide to
extend ψ by mapping z to v. Let W = max{w(z, v) | z ∈ Z, v ∈ V (G) \ ψ(X ∪ Y )} + 1. We
construct the weighted auxiliary bipartite graph G with the bipartition (A,B) of its vertex set
and the weight function f : E(G)→ N0 as follows.

• Set A = (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fr) = V (G) \ ψ(X ∪ Y ).
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• Construct a set of vertices S0 of size |V (F0)| − |X ∪ Y | and sets Si of size |V (Fi)| − 1 for
i ∈ {1, . . . , r}.

• Set B = Z ∪ S0 ∪ . . . ∪ Sr.

• For each z ∈ Z and v ∈ A, construct an edge zv and set f(zv) = w(z, v).

• For each u ∈ S0 and v ∈ V (F0) \ ψ(X ∪ Y ), construct an edge uv and set f(uv) = W .

• For each ∈ {1, . . . , r}, do the following: for each u ∈ Si and v ∈ V (Fi), construct an edge
uv and set f(uv) = W .

We find a matching M in G that saturates every vertex of A and has the minimum weight using
the Hungarian algorithm [8, 13] in time O(|V (G)|3 · logW ).

Observe that a matching that saturates every vertex of A exists, because r ≤ Z. We can
construct such a matching by selecting one vertex in V (Fi) for each i ∈ {1, . . . , r} and matching
it with a vertex of Z. Then we complement this set of edges to a matching saturating A by
adding edges incident to S0 ∪ . . . ∪ Sr. For the matching M that has minimum weight, we can
also observe the following.

First, note that

every vertex of Z is saturated by M. (1)

Indeed, targeting towards a contradiction, assume that z ∈ Z is not saturated. Since |V (H)| ≤
|V (G)|, there is uv ∈ M such that u ∈ S0 ∪ . . . ∪ Sr and v ∈ A. We replace uv by zv in M .
Because f(uv) = W > w(zv), we obtain a matching with a smaller weight. This contradicts
the choice of M .

Next, we claim that

there is zv ∈M such that z ∈ Z and v ∈ V (Fi). (2)

Indeed, this is because the vertices of V (Fi) are adjacent to |V (Fi)| − 1 vertices of Si and all
other their neighbors are in Z.

Finally, we have that among all matching saturating A, M is a matching satisfying (1) and
(2) such that for M ′ = {zv ∈M | z ∈ Z}, f(M ′) is minimum. To see it, observe that f(uv) = W
for uv ∈ M \M ′. Hence, f(M \M ′) = (|A| − |Z|)W , because |M \M ′| = |A| − |Z| by (1).
Therefore, f(M ′) = f(M)− f(M \M ′) = f(M)− (|A| − |Z|)W .

For every z ∈ Z, we define ϕ(z) = v, where zv ∈M ′ and ϕ(x) = ψ(x) for x ∈ X∪Y . Clearly,
ϕ is an extension of ψ. By (1), ϕ is an injective mapping of V (H) to V (G). By (2) and the choice
of X and Y , we obtain that G⊕ϕH is connected. We claim that ϕ is an extension of ψ such that
F = G⊕ϕ H is connected that has the minimum total weight ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)).

Recall that by the definition of the weight function f , f(zv) = w(z, v) for z ∈ Z and v ∈ A,
and w(z, v) =

∑
u∈NG(v)∩ψ(NH(z)) ω(uv) in this case. Let R =

∑
xy∈E(H), x,y∈X∪Y ω(ψ(x)ψ(y)).

It follows that

ω(ϕ) =
∑

xy∈E(H)

ω(ϕ(x)ϕ(y)) =
∑

xy∈E(H), x,y∈X∪Y

ω(ψ(x)ψ(y)) +
∑

xz∈E(H),x∈X,z∈Z

ω(ψ(x)ϕ(z))

=R+
∑
zv∈M ′

w(x, z) = R+ f(M ′). (3)

Suppose that ϕ′ : V (H) → V (G) is an injection that extends ψ such that F ′ = G ⊕ϕ′ H is
connected. We construct the matching M̃ in G as follows. For every z ∈ Z, we include zϕ′(z) in
M̃ . Denote by M̃ ′ the obtained matching. Notice that every vertex of Z is saturated in M̃ ′ and,
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therefore, A has |Z| saturated in M̃ ′ vertices. Hence, M̃ ′ satisfies (1). Since F ′ is connected, at
least one vertex of V (Fi) is saturated for i ∈ {1, . . . , r} and, therefore, M̃ ′ satisfies (2). Then we
complement M̃ ′ to M̃ : for every nonsaturated vertex v ∈ A, we arbitrarily pick a nonsaturated
neighbor u ∈ B\Z and include vu in M̃ . This choice is possible, because |S0| = |V (F0)|−|X∪Y |
and |Si| = |V (Fi)| − 1 for i ∈ {1, . . . , r}. Since M̃ ′ and, therefore, M̃ satisfies (1) and (2), we
obtain that f(M) ≤ f(M̃) and f(M ′) ≤ f(M̃ ′). In the same way as in (3), we have that
ω(ϕ′) = R+ f(M̃ ′). Then ω(ϕ′) ≥ ω(ϕ) by (3) and this proves the claim.

Recall that we try all possible choices of Y and for every choice of Y , we consider all possible
choices of ψ. If we fail to find an injection ϕ : V (H) → V (G) such that ϕ is an extension of ψ
and F = G⊕ϕ H is connected we return the answer NO. Otherwise, we return ϕ that provides
the minimum weight.

To complete the proof, observe that the total running time of the algorithm is |V (G)|O(t) ·
logW .

Structured 2-Connectivity Augmentation. The algorithm for Structured 2-Connectivity
Augmentation is more technical. We start with a lemma, which is similar to Lemma 1.

Lemma 2. Let G and H be graphs such that G is connected, and let ϕ : V (H) → V (G) be an
injection such that F = G⊕ϕH is connected. Suppose that X is a vertex cover of H and t = |X|.
Then there is a set Y ⊆ V (H) \X of size at most 2(t − 1) such that for H ′ = H[X ∪ Y ] and
ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y ) are in the same biconnected component of F ′ = G⊕ψ H ′.

Proof. For |X| = 1 lemma is trivial, so we assume that |X| ≥ 2.
Let X ′ ⊆ X be an inclusion-wise maximal set among all sets with the following property:

there is a set Y ′ ⊆ V (H) \ X ′ of size at most 2(|X ′| − 1) such that for H ′ = H[X ′ ∪ Y ′] and
ψ′ = ϕ|X′∪Y ′ , the vertices of ψ′(X ′∪Y ′) are in the same biconnected component of F ′ = G⊕ψ′H ′.
Since every one-element subset of X satisfies this property such a set X ′ exists.

In order to prove the lemma, we prove that X ′ = X.
Targeting towards a contradiction, suppose that X ′ is a proper subset of X. Let s < t be the

size of X ′. We show that then we can extend X ′ contradicting its maximality. More precisely, we
claim that there is x ∈ X \X ′ such that for X ′′ = X ′∪{x}, there is a set Y ′ ⊆ Y ′′ ⊆ V (H)\X ′′
of size at most 2s such that for H ′′ = H[X ′′∪Y ′′] and ψ′′ = ϕ|X′′∪Y ′′ , the vertices of ψ′′(X ′′∪Y ′′)
are in the same biconnected component of F ′′ = G⊕ψ′′ H ′′.

If there is x ∈ X \ X ′ such that x is in the same biconnected component of F ′ with the
vertices of ψ′(X ′ ∪ Y ′), then the claim holds for X ′′ = X ′ ∪ {x} and Y ′′ = Y ′. Suppose that it
is not so, that is, for every x ∈ X \X ′, x does not belong to the biconnected component of F ′

with the vertices of ψ′(X ′ ∪ Y ′).
Recall that G is connected. Therefore, F ′ is connected as well. Since the vertices of ϕ(X)

do not belong to the same biconnected component, F ′ is not 2-connected. Let B be the set of
bridges of F ′.

Suppose that there is an edge x′y ∈ E(H) with x′ ∈ X ′ such that there is a biconnected
component Q of F ′ that is crossed by a (ϕ(x′), ϕ(y))-path P in F ′ and Q contains a vertex
v ∈ ϕ(X \ X ′). Let x = ϕ−1(x). Consider X ′′ = X ′ ∪ {x} and Y ′′ = Y ′ ∪ {y}. Clearly,
Y ′ ⊆ Y ′′ ⊆ V (H) \ X ′′ and |Y ′′| ≤ 2s. Let H ′′ = H[X ∪ Y ′′] and ψ′′ = ϕ|X∪Y ′′ . Then
by Observation 3, the vertices of ψ′′(X ′′ ∪ Y ′′) are in the same biconnected component of
F ′′ = G⊕ψ′′ H ′′. This contradicts the choice of X ′.

Suppose now that there is an edge xy ∈ E(H) with x ∈ X \X ′ such that the biconnected
component Q of F ′ that contains the vertices of ϕ(X ′ ∪ Y ′) is crossed by a (ϕ(x), ϕ(y))-path P
in F ′. Consider X ′′ = X ′ ∪ {x} and Y ′′ = Y ′ ∪ {y}. We have that Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ and
|Y ′′| ≤ 2s. Let H ′′ = H[X ∪Y ′′] and ψ′′ = ϕ|X∪Y ′′ . Then again by Observation 3, we have that
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the vertices of ψ′′(X ′′ ∪Y ′′) are in the same biconnected component of F ′′ = G⊕ψ′′ H ′′. Again,
this contradicts the choice of X ′.

Now we assume that the two previous cases do not hold. In particular, in this situation,
not all bridges of F ′ are covered by edges pq ∈ E(F ) \ E(F ′) with ϕ−1(p) ∈ X ′ or ϕ−1(q) ∈ X ′
and not all bridges of F ′ are covered by edges pq ∈ E(F ) \ E(F ′) with ϕ−1(p) ∈ X \ X ′ or
ϕ−1(q) ∈ X \X ′. Since F is 2-connected, by Observation 1 all bridges of G should be covered
by edges of F . Hence, there are distinct uv, u′v′ ∈ B such that u, u′ ∈ V (Q) for some biconnected
component Q of F ′, uv is covered by pq ∈ E(F )\E(F ′) with ϕ−1(p) ∈ X \X ′ and u′v′ is covered
by p′q′ ∈ E(F ) \ E(F ′) with ϕ−1(p′) ∈ X ′. Let x = ϕ−1(u), y = ϕ−1(v) and y′ = ϕ−1(v′).
Consider X ′′ = X ′ ∪ {x} and Y ′′ = Y ′ ∪ {y, y′}. Clearly, Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ and |Y ′′| ≤ 2s.
Let H ′′ = H[X ∪ Y ′′] and ψ′′ = ϕ|X∪Y ′′ . By Observation 3, the vertices of ψ′′(X ′′ ∪ Y ′′) are in
the same biconnected component of F ′′ = G ⊕ψ′′ H ′′, which, again, this contradicts the choice
of X ′.

Hence X ′ = X and the lemma holds.

Theorem 2. Let t be a positive integer and C be a graph class of vertex-cover number at most
t. Then for any H ∈ C, Structured 2-Connectivity Augmentation is solvable in time
|V (G)|O(2t) logW .

Proof. Let G and H be graphs such that G is connected and H ∈ C. Let ω :
(
V (G)
2

)
→ N0

be a weight function. Similarly to the proof of Theorem 1 we show that we can find in time
|V (G)|O(2t)·logW the minimum value of ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) for an injective mapping

ϕ : V (H)→ V (G) such that F = G⊕ϕ H is connected if such a mapping ϕ exists.
The first steps of our algorithm are the same as in the proof of Theorem 1. Again, we remind

that |V (H)| ≤ |V (G)| and that H has no isolated vertices.
Next, we find a vertex cover X of minimum size in H of size at most t in time |V (G)|O(t).

If we fail to find X of size at most t, then H 6∈ C. We return NO and stop. From now on we
assume that X exists.

Suppose that there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is
2-connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 2, there is a set Y ⊆ V (H)\X
of size at most 2(t− 1) such that for H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y )
are in the same biconnected component of F ′ = G⊕ψH ′. Considering all possibilities, we guess
Y in time |V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the vertices
of ψ(X ∪ Y ) are in the same biconnected component of F ′ = G ⊕ψ H ′ where H ′ = H[X ∪ Y ].
Notice that there at most |V (G)|3t−2 such mappings that can be generated in time |V (G)|O(t).
If we fail to find ψ, we reject the current choice of Y . Otherwise, for every ψ, we try to extend
it to an injection ϕ : V (H) → V (G) such that F = G ⊕ϕ H is 2-connected, and among all
extensions we choose one that provides the minimum weight ω(ϕ).

Let Z = V (H)\(X∪Y ). The vertices of ψ(X∪Y ) are in the same biconnected component of
F ′. Denote this biconnected component by F0 and denote by F1, . . . , Fr the pendant biconnected
components of F ′ that are distinct from F0. Recall that Z is an independent set of H and each
vertex of Z has an incident edge with one endpoint in X. By Observation 1, we obtain the
following crucial property.

For an injection ϕ : V (H)→ V (G) such that ψ = ϕ|X∪Y , F = G⊕ϕH is 2-connected if and
only if

(i) for every i ∈ {1, . . . , r}, there is v ∈ V (Fi) such that v ∈ ϕ(Z), and

(ii) if v is the unique element of V (Fi)∩ϕ(Z) and v is incident to a bridge vu of G, then there
is x ∈ X such that ϕ(x) 6= u and x is adjacent to ϕ−1(v) in H.
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Similarly to the proof of Theorem 1, we solve auxiliary matching problems to find the
minimum weight of ϕ but now, due the condition (ii), the algorithm becomes more complicated
and we are using dynamic programming.

For z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

w(z, v) =
∑

u∈NG(v)∩ψ(NH(z))

ω(uv), (4)

that is, w(z, x) is the weight of edges that is added to the weight of mapping if we decide to
extend ψ by mapping z to v. Our aim is to find the extension ϕ of ψ that satisfies (i) and (ii)
such that the total weight of the mapping of the vertices of Z to verices of V (G) \ψ(X ∪ Y ) by
ϕ is minimum.

Since X is a vertex cover of H of size t, the set Z can be partitioned into s ≤ 2t classes
of false twins Z1, . . . , Zs. Let pi = |Zi| for i ∈ {1, . . . , s}. We exploit the following property of
false twins in Z: if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ).

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi, for i ∈ {1, . . . , s} and each
h ∈ {0, . . . , r}, we define

αh(q1, . . . , qs) = min
ξ

∑
z∈Z′

w(z, ξ(z)), (5)

where Z ′ ⊆ Z such that |Z ′ ∩ Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken over all
injective mappings ξ : Z ′ → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) such that the following
conditions are satisfied:

(a) for every i ∈ {1, . . . , h}, there is v ∈ V (Fi) such that v ∈ ξ(Z ′), and

(b) if v is a unique element of V (Fi) ∩ ξ(Z ′) for some i ∈ {1, . . . , h} and v is incident to a
bridge vu of G, then there is x ∈ X such that ψ(x) 6= u and x is adjacent to ξ−1(v) in H.

If such a mapping ξ does not exist, then we assume that αh(q1, . . . , qs) = +∞. Recall that
if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ). It implies that the function
αh(q1, . . . , qs) depends only on the values of q1, . . . , qs.

We claim that computing αr(p1, . . . , ps) is equivalent to finding an extension ϕ of ψ of
minimum weight such that F = G⊕ϕ H is 2-connected.

Assume that αr(p1, . . . , ps) < +∞. Notice that Z ′ = Z if qi = pi for i ∈ {1, . . . , s}. Let
ξ : Z → (V (F0) \ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh) be an injection that provides the minimum in
(5), that is, αr(p1, . . . , ps) =

∑
z∈Z w(zξ(z)). We define ϕ(z) = ξ(z) for z ∈ Z and ϕ(x) = ψ(x)

for x ∈ X ∪ Y . Clearly, ϕ is an extension of ψ. Because ξ is an injection, we have that ϕ is
an injective mapping. Since ξ satisfies (a) and (b), we obtain that ϕ satisfies (i) and (ii) and,
therefore, F = G ⊕ϕ H is 2-connected. Let R =

∑
xy∈E(H), x,y∈X∪Y ω(ψ(x)ψ(y)). Then using

(4), we have that

ω(ϕ) =
∑

xy∈E(H)

ω(ϕ(x)ϕ(y)) =
∑

xy∈E(H), x,y∈X∪Y

ω(ϕ(x)ϕ(y)) +
∑

xz∈E(H), x∈X,z∈Z

ω(ϕ(x)ϕ(y)) =

=R+
∑
z∈Z

w(z, ϕ(z)) = R+
∑
z∈Z

w(z, ξ(z)) = R+ αr(p1, . . . , ps). (6)

Let ϕ′ : V (H) → V (G) be an injection that extends ψ such that F ′ = G⊕ϕ′ H is 2-connected.
We define ξ′ : Z → (V (F0) \ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh) by setting ξ′(z) = ϕ′(z) for z ∈ Z.
Since ϕ′ is an injection, ξ′ is also an injection. Because F ′ is 2-connected, ϕ satisfies (i) and
(ii). This implies that ξ′ satisfies (a) and (b). Therefore,

∑
z∈Z w(z, ξ′(z)) ≥ αr(p1, . . . , ps).

Similarly to (6), we have that ω(ϕ′) = R+
∑

z∈Z w(z, ξ′(z)) ≥ R+αr(p1, . . . , ps). We conclude
that ϕ is an extension ϕ of ψ of minimum weight such that F = G⊕ϕ H is 2-connected.
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Suppose that αr(p1, . . . , ps) = +∞. It implies that there is no injection ξ : Z → (V (F0) \
ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh) satisfying (a) and (b). But this immediately implies that there
is no injective extension ϕ of ψ satisfying (i) and (ii). This completes the proof of the claim.

We use dynamic programming to compute αh consequently for h = 0, 1, . . . , r.
We start with computing α0(q1, . . . , qs) for each s-tuple (q1, . . . , qs). Notice that the condi-

tions (a) and (b) are irrelevant in this case, because they concern only h ≥ 1. We construct the
auxiliary complete bipartite graph G0 with the bipartition (V (F0) \ ψ(X ∪ Y ), Z ′) of its vertex
set and define the weight of each edge zv for z ∈ Z ′ and v ∈ V (F0) \ ψ(X ∪ Y ) as w(z, v). We
find a matching M in G0 that saturates every vertex of Z ′ and has the minimum weight using
the Hungarian algorithm [8, 13] in time O(|V (G)|3 · logW ). If there is no matching saturating
Z ′, we set α0(q1, . . . , qs) = +∞. Otherwise, α0(q1, . . . , qs) = w(M). It is straightforward to
verify the correctness of computing α0(q1, . . . , qs) by the definition of this function.

Assume that h ≥ 1 and we already computed the table of values of αh−1(q1, . . . , qs). We
explain how to construct the table of values of αh−1(q1, . . . , qs). The the computation is based
on the observation that an injective mapping ξ : Z ′ → (V (F0) \ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh)
can be seen as the union of two injections ξ′ : Z ′′ → (V (F0) \ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh−1)
and λ : Z ′′′ → V (Fh) for the appropriate partition (Z ′′, Z ′′′) of Z ′.

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi for i ∈ {1, . . . , s}, we define

α′h(q1, . . . , qs) = min
λ

∑
z∈Z′

w(z, ξ(z)), (7)

where Z ′ ⊆ Z such that |Z ′ ∩ Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken over all
injective mappings λ : Z ′ → V (Fh) such that the following conditions are fulfilled:

(a∗) there is v ∈ V (Fh) such that v ∈ λ(Z ′), and

(b∗) if v is the unique element of V (Fh) ∩ λ(Z ′) and v is incident to a bridge vu of G, then
there is x ∈ X such that ψ(x) 6= u and x is adjacent to λ−1(v) in H.

If such a mapping λ does not exist, then we assume that α′h(q1, . . . , qs) = +∞. As for
αh(q1, . . . , qs), α

′
h(q1, . . . , qs) depends only on the values of q1, . . . , qs, because if x, y ∈ Zi,

then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ).
Let uv be the unique bridge of G with v ∈ V (Fh). Suppose that for an s-tuple (q1, . . . , qs), we

obtain that |Z ′| = 1 and for the unique vertex z ∈ Z ′, z has a unique neighbor x ∈ X in H and
ψ(x) = u. Then we set α′h(q1, . . . , qs) = +∞ if |V (Fh)| = 1 and α′h(q1, . . . , qs) = min{w(zv′) |
v′ ∈ V (Fh)\{v}} otherwise. For other s-tuples (q1, . . . , qs), we compute α′h(q1, . . . , qs) as follows.
We construct the auxiliary complete bipartite graph Gh with the bipartition (V (Fh), Z ′) of its
vertex set and define the weigh of each edge zv for z ∈ Z ′ and v ∈ V (F0) \ ψ(X ∪ Y ) as w(zv).
We find a matching M in Gh that saturates every vertex of Z ′ and has the minimum weight using
the Hungarian algorithm [8, 13] in time O(|V (G)|3 · logW ). If there is no matching saturating
Z ′, we set α′h(q1, . . . , qs) = +∞. Otherwise, α′h(q1, . . . , qs) = w(M). It is again straightforward
to verify the correctness of computing α′h(q1, . . . , qs) using the definition of this function.

Now, to compute αh(q1, . . . , qs), we use the equation:

αh(q1, . . . , qs) = min{αh−1(q′1, . . . , q′s) + α′h(q′′1 , . . . , q
′′
s )}, (8)

where the minimum is taken over all s-tuples (q′1, . . . , q
′
s) and (q′′1 , . . . , q

′′
s ) such that qi = q′i + q′′i

for i ∈ {1, . . . , s}.
To show correctness, we prove first that

αh(q1, . . . , qs) ≥ min{αh−1(q′1, . . . , q′s) + α′h(q′′1 , . . . , q
′′
s )}. (9)
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The inequality is trivial if αh(q1, . . . , qs) = +∞. Assume that αh(q1, . . . , qs) < +∞. Then there
is an injective mappings ξ : Z ′ → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) satisfying (a) and
(b) such that αh(q1, . . . , qs) =

∑
z∈Z′ w(z, ξ(z)). Let Z ′′ = {z ∈ Z | ξ(z) ∈ (V (F0)\ψ(X ∪Y ))∪

V (F1) ∪ . . . ∪ V (Fh−1)} and Z ′′′ = {z ∈ Z | ξ(z) ∈ V (Fh)}. Denote by ξ′ the restriction of ξ on
(V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh−1) and let λ = ξ|Z′′′ .

We have that ξ′ is an injective mapping of Z ′′ to (V (F0)\ψ(X ∪Y ))∪V (F1)∪ . . .∪V (Fh−1)
such that the following holds:

(a′) for every i ∈ {1, . . . , h− 1}, there is v ∈ V (Fi) such that v ∈ ξ′(Z ′′), and

(b′) if v is a unique element of V (Fi)∩ ξ′(Z ′) for some i ∈ {1, . . . , h− 1} and v is incident to a
bridge vu of G, then there is x ∈ X such that ψ(x) 6= u and x is adjacent to ξ′−1(v) in H.

Let q′i = |Z ′′ ∩ Zi| for i ∈ {1, . . . , s}. By the definition of αh−1, we have that

αh−1(q
′
1, . . . , q

′
s) ≤

∑
z∈Z′′

w(z, ξ′(z)). (10)

Similarly, we obtain that λ is an injective mapping of Z ′′′ to V (Fh) such that the following
holds:

(a∗∗) there is v ∈ V (Fh) such that v ∈ λ(Z ′′′), and

(b∗∗) if v is the unique element of V (Fh) ∩ λ(Z ′′′) and v is incident to a bridge vu of G, then
there is x ∈ X such that ψ(x) 6= u and x is adjacent to λ−1(v) in H.

Let q′′i = |Z ′′′ ∩ Zi| for i ∈ {1, . . . , s}. By the definition of α′h, we obtain that

α′h(q′′1 , . . . , q
′′
s ) ≤

∑
z∈Z′′′

w(z, λ(z)). (11)

Using (10) and (11), we conclude that

αh(q1, . . . , qs) =
∑
z∈Z′

w(z, ξ(z)) =
( ∑
z∈Z′′

w(z, ξ′(z))
)

+
( ∑
z∈Z′′′

w(z, λ(z))
)

≥αh−1(q′1, . . . , q′s) + α′h(q′′1 , . . . , q
′′
s ),

and this immediately implies (9).
Now we prove that

αh(q1, . . . , qs) ≤ min{αh−1(q′1, . . . , q′s) + α′h(q′′1 , . . . , q
′′
s )}. (12)

Consider s-tuples (q′1, . . . , q
′
s) and (q′′1 , . . . , q

′′
s ) such that qi = q′i + q′′i for i ∈ {1, . . . , s} for which

the minimum in the right part of (12) is achieved. If αh−1(q
′
1, . . . , q

′
s) = +∞ or α′h(q′′1 , . . . , q

′′
s ) =

+∞, then (12) is trivial. Assume that αh−1(q
′
1, . . . , q

′
s) < +∞ and α′h(q′′1 , . . . , q

′′
s ) < +∞.

Since αh−1(q
′
1, . . . , q

′
s) < +∞, there is an injective mappings ξ′ : Z ′′ → (V (F0) \ψ(X ∪Y ))∪

V (F1) ∪ . . . ∪ V (Fh−1) satisfying (a′) and (b′) such that αh−1(q
′
1, . . . , q

′
s) =

∑
z∈Z′′ w(z, ξ(z)),

where Z ′′ ⊆ Z with |Z ′′ ∩ Zi| = q′i for i ∈ {1, . . . , s}. Because α′h(q′′1 , . . . , q
′′
s ) < +∞, there

is an injection λ of Z ′′′ to V (Fh) such that (a∗∗) and (b∗∗) are fulfilled and α′h(q′′1 , . . . , q
′′
s ) =∑

z∈Z′′′ w(z, λ(z)) for Z ′′′ ⊆ Z with |Z ′′′ ∩ Zi| = q′i for i ∈ {1, . . . , s}.
Recall that the values of αh−1(q

′
1, . . . , q

′
s) and α′h(q′′1 , . . . , q

′′
s ) depend only on the values

of q′1, . . . , q
′
s and q′′1 , . . . , q

′′
s respectively, because if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈
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V (G) \ ψ(X ∪ Y ). Hence, we can assume that (Z ′′, Z ′′′) is a partition of Z ′. We define ξ : Z ′ →
(V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ . . . ∪ V (Fh) by setting

ξ(z) =

{
ξ′(z), if z ∈ Z ′′,
λ(z), if z ∈ Z ′′′.

Because ξ′ and λ are injections and ξ′(Z ′′)∩λ(Z ′′′) = ∅, ξ is an injection. Since ξ′ and λ satisfy
(a′), (b′) and (a∗∗), (b∗∗) respectively, ξ satisfies (a) and (b). Therefore,

αh(q1, . . . , qs) ≤
∑
z∈Z′

w(z, ξ(z)) =
( ∑
z∈Z′′

w(z, ξ′(z))
)

+
( ∑
z∈Z′′′

w(z, λ(z)))

=αh−1(q
′
1, . . . , q

′
s) + α′h(q′′1 , . . . , q

′′
s ),

and (12) follows.
Combining (9) and (12), we obtain that (8) holds, and this completes the correction proof

of our algorithm.
To evaluate the running time, observe that there are at most |V (G)|s s-tuples (q1, . . . , qs).

Since s ≤ 2t, it implies that the table of values of α0(q1, . . . , qs) can be computed in time
|V (G)|O(2t) · logW . Similarly, the table of values of α′h(q1, . . . , qs) for each h ∈ {1, . . . , r} can be
computed in the same time. To compute αh(q1, . . . , qs) for a given s-tuple (q1, . . . , qs) using (8),
we have to consider at most |V (G)|s pairs of s-tuples (q′1, . . . , q

′
s) and (q′′1 , . . . , q

′′
s ). Hence, we

can compute the table of values αh(q1, . . . , qs) from the tables of values of αh−1(q1, . . . , qs) and
α′h(q1, . . . , qs) in time |V (G)|O(2t) · logW for each h ∈ {1, . . . , r}. We conclude that the total

running time is |V (G)|O(2t) · logW .

3.2 Hardness of structured augmentation

In this section we show that Theorems 1 and 2 are tight in the sense that if the vertex-cover
number of graphs in a hereditary graph class C is unbounded, then both structured augmentation
problems are NP-complete. Our hardness proof actually holds for for any k-edge connectivity
augmentation. For a positive integer k, we define the following problem:

Input: GraphsG andH such thatG is edge (k−1)-connected, a weight function
ω :
(
V (G)
2

)
→ N0 and a nonnegative integer W .

Task: Decide whether there is an injective ϕ : V (H) → V (G) such that F =
G ⊕ϕ H is edge k-connected and the weight of the mapping ω(ϕ) =∑

xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W .

Structured k-Connectivity Augmentation

Let us note that for k = 1 this is Structured Connectivity Augmentation and for
k = 2 this is Structured 2-Connectivity Augmentation. Also we observe that it is
unlikely that we can avoid the dependency on t in the exponents of polynomial bounding
the running time when solving Structured k-Connectivity Augmentation for H with
β(H) ≤ t.

Recall that the Subgraph Isomorphism problem asks, given two graphs G and H, whether
G contains H as a (not necessarily induced) subgraph. We can observe that Structured k-
Connectivity Augmentation when H restricted to be in a graph class C is at least as hard
as Subgraph Isomorphism with the same restriction.

Lemma 3. Let C be a graph class. If Subgraph Isomorphism is NP-complete for H ∈ C, then
for every positive integer k, Structured k-Connectivity Augmentation is NP-complete
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for H ∈ C even if the weight of every pair of vertices of G is restricted to be ether 0 or 1. Also
if Subgraph Isomorphism is W[1]-hard for H ∈ C when parameterized by |V (H)|, then so is
Structured k-Connectivity Augmentation.

Proof. Let k be a positive integer, and let (G,H) be an instance of Subgraph Isomorphism.
Assume without loss of generality that |V (G)| > k. We construct the complete graph F with
the set of vertices V (G) and define the weight function ω :

(
V (G)
2

)
→ {0, 1} by setting

ω(uv) =

{
0, if uv ∈ E(G),

1, if uv /∈ E(G).

Then we let W = 0. Notice that F is k-connected and H is a subgraph of G if and only if
there is an injection ϕ : V (H) → V (G) with ω(ϕ) =

∑
xy∈E(G) ω(ϕ(x)ϕ(y)) = 0. Then (G,H)

is a yes-instance of Subgraph Isomorphism if and only if (G,H, ω,W ) is a yes-instance of
Structured k-Connectivity Augmentation and the claim follows.

The Clique problem asks, given a graph G and a positive integer k, whether G has a clique
of size k or, in other words, whether the complete graph Kk is a subgraph of G. It is well-known
that Clique is NP-complete [9]. Then Lemma 3 implies the following lemma.

Lemma 4. Let C be a hereditary graph class that contains Kn for arbitrary positive integer
n. Then for every positive integer k, Structured k-Connectivity Augmentation is NP-
complete for H ∈ C even if the weight of every pair of vertices of G is restricted to be ether 0
or 1.

Let us note that Clique is W[1]-hard when parameterized by k, see the book of Downey
and Fellows [3] for an introduction to parameterized complexity. Notice that β(Kk) = k − 1.
Then Lemma 3 implies the following proposition.

Proposition 1. For every positive integer k, Structured k-Connectivity Augmentation
is W[1]-hard when parameterized by β(H) even if the weight of every pair of vertices of G is
restricted to be ether 0 or 1.

This proposition implies that unless FPT =W[1], we cannot solve Structured k-Connectivity
Augmentation for k = 1, 2 in time f(β(H)) · |V (G)|O(1). Hence the running time of the form
|V (G)|f(t) of algorithms solving Structured k-Connectivity Augmentation for graphs H
with β(H) ≤ t is probably unavoidable.

The Balanced Biclique asks, given a graph G and a positive integer k, whether G contains
Kk,k as a subgraphs. It is known that Balanced Biclique is NP-complete [9]. Using Lemma 3
we obtain the next lemma.

Lemma 5. Let C be a hereditary graph class that contains Kn,n for arbitrary positive integer
n. Then for every positive integer k, Structured k-Connectivity Augmentation is NP-
complete for H ∈ C even if the weight of every pair of vertices of G is restricted to be ether 0
or 1.

Now we consider Structured k-Connectivity Augmentation for k ≥ 1 for matching
graphs.

Lemma 6. Let C be a hereditary graph class that contains a matching graph of arbitrary size.
Then Structured Connectivity Augmentation is NP-complete for H ∈ C even if the
weight of every pair of vertices of G is at most 2.
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Proof. Clearly, it is sufficient to prove that Structured Connectivity Augmentation is
NP-complete if H is a matching graph. We reduce from the Hamiltonian Path problem.
Recall that this problem asks whether a graph G has a path containing all the vertices of G.
Hamiltonian Path is known to be NP-complete for cubic graphs [9].

Let G be a cubic graph with n vertices. We construct the graph G′ as follows.

• Construct a copy of V (G).

• For each edge e = uv ∈ E(G), construct two vertices ue and ve and make them adjacent
to u and v respectively.

Notice that G′ is the disjoint union of n copies of K1,3. We define H to be the matching

graph with 2n − 1 edges. Now we define ω :
(
V (G′)

2

)
→ N0. For each edge e ∈ E(G), we set

ω(uue) = ω(vve) = 0 and ω(ueve) = 1. For all remaining pairs of distinct vertices x and y, we
set ω(xy) = 2. Finally, let W = n− 1.

We claim that G has a Hamiltonian path if and only if (G′, H, ω,W ) is a yes-instance of
Structured Connectivity Augmentation.

Suppose that P = v1 . . . vn is a Hamiltonian path in G. Denote by x1y1, . . . , x2n−1y2n−1 the
edges of H. We consider the following injection ϕ : V (H)→ V (G′):

• for i ∈ {1, . . . , n− 1}, set ϕ(xi) = v
vivi−1

i and ϕ(yi) = v
vivi+1

i+1 ,

• for each i ∈ {1, . . . , n}, find an edge e in G incident to vi such that e /∈ E(P ) and then set
ϕ(xn−1+i) = vi and ϕ(yn−i+1) = vei+1.

It is straightforward to verify that F = G′⊕ϕH is connected and ω(ϕ) =
∑

xy∈E(H) ω(ϕ(x)ϕ(y)) =
n− 1 ≤W .

Assume now that there is an injection ϕ : V (H)→ V (G′) such that F = G′⊕ϕH is connected
and ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤ n − 1 = W . Let A = E(F ) \ E(G′). Observe that

|A| ≥ n− 1, because G′ contains n components. For each a ∈ A, ω(a) ≥ 1 and ω(a) = 1 if and
only if a = ueve for some edge e = uv ∈ E(G). Then A contains exactly n − 1 edges and for
each a ∈ A, there is ea = uv ∈ E(G) such that a = ueavea . Notice that the edges ea for a ∈ A
are pairwise distinct, because ϕ is an injection. Let X = {xy ∈ E(H) | ϕ(x)ϕ(y) ∈ A} and
Y = E(H)\X. Since H has 2n−1 edges and |A| = n−1, |Y | = n. Because ω(A) = W , we have
that for each xy ∈ Y , ω(ϕ(x)ϕ(y)) = 0, that is, ϕ(x)ϕ(y) ∈ E(G′). Because each component
of G′ is a copy of K1,3, we have that for each vertex u ∈ V (G), there is an edge e incident to
u in G such that for an edge xy ∈ Y , ϕ({x, y}) = {u, ue}. Because ϕ is an injective mapping,
this implies that at most two edges of A have their endpoints in the same component of G′.
Therefore, every vertex v ∈ G is incident to at most two edges of the set B = {ea | a ∈ A}.
Since F is connected, we conclude that the edges of B compose a Hamiltonian path in G.

Lemma 7. Let C be a hereditary graph class that contains a matching graph of arbitrary size.
Then for every k ≥ 2, Structured k-Connectivity Augmentation is NP-complete for
H ∈ C in the strong sense.

Proof. Let k ≥ 2 be an integer. Clearly, it is sufficient to prove that Structured k-Connectivity
Augmentation is NP-complete if H is a matching graph. We reduce from the Biconnectivity
Augmentation problem that asks, given a graph G, a weight function c :

(
V (G)
2

)
\E(G)→ N0

and a positive integer w, whether there is A ⊆
(
V (G)
2

)
\E(G) with c(A) ≤ w such that the graph

G′ obtained from G by the addition of edges of A is 2-connected. This problem was shown to be
NP-complete by Frederickson and JáJá in [7] even if G restricted to be a tree and c(uv) ∈ {1, 2}
for uv ∈

(
V (G)
2

)
\ E(G).

Let (T, c,W ) be an instance of Biconnectivity Augmentation where T is a tree and
c :
(
V (T )
2

)
\ E(T )→ {1, 2}. Let r = max{k,W}. We construct the graph G as follows.
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• Construct a copy of V (T ).

• For each e ∈ E(T ), construct a clique Qe of size k and make the vertices of Q adjacent to
u and v.

• For each u ∈ V (T ), construct a cliqueRu of size 2r, denote its vertices by xu1 , . . . , x
u
r , y

u
1 , . . . , y

u
r

and make them adjacent to u.

Observe that G is (k − 1)-connected and its minimum edge separators correspond to the edges
of T . More precisely, for an edge e = uv ∈ V (T ), G has two minimum separators S1 = {uz ∈
E(G) | z ∈ Qe} and S2 = {vz ∈ E(G) | z ∈ Qe}. We define H to be the matching graph
with W edges and denote its edges by p1q1, . . . , pW qW . Finally, we define the weight function(
V (G)
2

)
→ N0 as follows.

• For each uv ∈
(
V (T )
2

)
\ E(T ), ω(xui y

v
j ) = c(uv) for i, j ∈ {1, . . . , r}.

• For each u ∈ V (T ), ω(xui yi) = 0.

• We set ω(pq) = C + 1 for the remaining pairs of distinct vertices of G.

We claim that (T, c,W ) is a yes-instance of Biconnectivity Augmentation if and only
if (G,H, ω,W ) is a yes-instance of Structured k-Connectivity Augmentation.

Suppose that (T, c,W ) is a yes-instance of Biconnectivity Augmentation. Then there
is A ⊆

(
V (G)
2

)
\ E(G) with c(A) ≤ w such that the graph T ′ obtained from T by the addition

of edges of A is 2-connected. Let A = {a1b1, . . . asbs}. Since c(e) ∈ {1, 2} for e ∈ E(G), s ≤W .
We construct the injective mapping ϕ : V (H)→ V (G) as follows.

• For i ∈ {1, . . . , s}, if aibi = uv for nonadjacent distinct u, v ∈ V (T ), then set ϕ(pi) = xiu
and ϕ(qi) = xiv.

• For i ∈ {s+ 1,W}, select u ∈ V (T ) and set ϕ(pi) = xui and ϕ(qi) = yui .

By the definition of ω, ω(ϕ) =
∑w

i=1 ω(ϕ(pi)ϕ(qi)) = c(A) ≤W . Consider F = G⊕ϕH. Recall
that T ′ is 2-connected. Then for every bridge uv of T , that is, for every edge uv, there is aibi
that covers uv by Observation 1. By the definition of ϕ, there is an edge e ∈ E(F ) \E(G) with
its endpoints in Rai and Rbi . Then this edges covers the separators S1 = {uz ∈ E(G) | z ∈ Quv}
and S2 = {vz ∈ E(G) | z ∈ Quv}. It implies that all edge separators of G of size k−1 are covered
by edges of E(F ) \ E(G). By Observation 1, we conclude that F is k-connected. Therefore,
(G,H, ω,W ) is a yes-instance of Structured k-Connectivity Augmentation.

Suppose now that (G,H, ω,W ) is a yes-instance of Structured k-Connectivity Aug-
mentation. Then there is an injection ϕ : V (H) → V (G) such that ω(ϕ) ≤ W and F =
G ⊕ϕ H is k-connected. By Observation 1, we have that for each edge uv ∈ E(T ), there
is e ∈ E(F ) \ E(G) such that e covers the separator {uz ∈ E(G) | z ∈ Quv} of G. Since
ω(e) ≤ W , we obtain that e has its end vertices in xiu′ and xjv′ for some i, j ∈ {1, . . . , r} and
two nonadjacent u′, v′ ∈ V (T ). Denote ae = u′v′. Notice that if we add ae to T , then ae covers
uv in the obtained graph. Observe also that c(ae) = ω(e). We consider the set A of distinct
ae ∈

(
V (T )
2

)
\E(T ) constructed in the described way for e ∈ E(F )\E(G) covering the separators

{uz ∈ E(G) | z ∈ Quv} of G. We have that the graph T ′ obtained from T by the addition of
the edges of A is 2-connected by Observation 1. Since c(A) ≤ ω(E(F ) \ E(G)) ≤ ω(ϕ) ≤ W ,
we conclude that (T, c,W ) is a yes-instance of Biconnectivity Augmentation.

To classify the computational complexity of Structured k-Connectivity Augmenta-
tion for hereditary graph classes, we use the Ramsey’s theorem (see, e.g., [1] for the introduc-
tion). For two positive integers p and q, we denote by R(p, q) the Ramsey number, that is, the
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smallest n such that every graph on n vertices has either a clique of size p or an independent
set of size q. Those numbers are all finite by the Ramsey’s theorem. In particular, Marx and
Wollan in [14] observed the following corollary.

Lemma 8. Let H be a graph and n ≥ 1 a positive integer. If H contains a matching with 510n

edges, then H either contains the matching graph with n edges as an induced subgraph or H
contains Kn,n as a subgraph.

Now we are ready to prove the main theorem of this section.

Theorem 3. Let k be a positive integer. Let also C be a hereditary graph class. Then if the
vertex-cover number of C is unbounded, then Structured k-Connectivity Augmentation
is NP-complete for H ∈ C in the strong sense.

Proof. Suppose that the vertex-cover number of C is unbounded. It means that for any positive
integer n, C contains a graph with a matching M of size at least n. Lemma 8 implies that either
C contains matching graphs of arbitrary size, or for any positive n, C contains a graph H that
has a spanning subgraph isomorphic to Kn,n. If C contains matching graphs of arbitrary size,
then Structured k-Connectivity Augmentation is NP-complete for H ∈ C by Lemmata 6
and 7 for k = 1 and k ≥ 2 respectively. Suppose that for any positive n, C contains a graph
H that has a spanning subgraph isomorphic to Kn,n. If Kr ∈ C for r ≥ 1, then Structured
k-Connectivity Augmentation is NP-complete for H ∈ C by Lemma 4. Assume that there
is a constant p ≥ 1 such that Kr /∈ C for r ≥ p. Then for any positive q, we have that C contains
a graph H that has a spanning subgraph isomorphic to Kn,n for n = R(p, q). It immediately
implies that Kq,q is an induced subgraph of H. Therefore, for every positive n, Kn,n ∈ C, and
Structured k-Connectivity Augmentation is NP-complete for H ∈ C by Lemma 5.

4 Augmenting unweighted graphs

In this section we investigate unweighted Structured Connectivity Augmentation and
Structured 2-Connectivity Augmentation. Let us remind that in the unweighted cases of
the structured augmentation problems the task is to identify whether there is a superposition of
graphs G and H of edge connectivity 1 or 2, correspondingly. In other words, we have the weight
ω(uv) = 0 for every pair of vertices of G and W = 0. We obtain structural characterizations of
yes-instances for both problems.

4.1 Unweighted Structured Connectivity Augmentation

It is convenient to consider the special case when H is connected separately.

Lemma 9. Let G and H be graphs such that |V (H)| ≤ |V (G)| and H is connected. Then there
is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is connected if and only if
c(G) ≤ |V (H)|.

Proof. Suppose that there is an injective mapping ϕ : V (H)→ V (G) such that F = G⊕ϕ H is
connected. Then for each component G′ of G, there is v ∈ V (G′) such that v ∈ ϕ(V (H)). Since
ϕ is injective, then c(G) ≤ |V (H)|.

Assume now that c(G) ≤ |V (H)|. Let G1, . . . , Gs be the components of G. Since |V (H)| ≤
|V (G)|, there are distinct vertices x1, . . . , xs ∈ V (H). We select arbitrarily a vertex vi ∈ V (Gi)
for i ∈ {i, . . . , s}. We construct the injective mapping ϕ : V (H) → V (G) as follows. We set
ϕ(xi) = vi for i ∈ {1, . . . , s} and then extend ϕ on other vertices of H selecting their images in
V (G)\{v1, . . . , vs} arbitrarily. It is straightforward to verify that F = G⊕ϕH is connected.
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Now we consider the case when H is not connected.

Lemma 10. Let G and H be graphs such that |V (H)| ≤ |V (G)|, H has no isolated vertices and
is disconnected. Then there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H
is connected if and only if

(i) i(G) ≤ |V (H)| − c(H), and

(ii) c(G) ≤ |V (H)| − c(H) + 1.

Proof. Suppose that there is an injective mapping ϕ : V (H)→ V (G) such that F = G⊕ϕ H is
connected.

We prove (i) by contradiction. Assume that i(G) > |V (H)| − c(H). Then there is a com-
ponent H ′ of H such that every vertex of ϕ(V (H ′)) is an isolated vertex of G. We obtain that
F [ϕ(V (H ′))] isomorphic to H ′ is a component of F contradicting the connectivity of F .

To show (ii), denote by G1, . . . , Gs and H1, . . . ,Hr the components of G and H respec-
tively. Consider the auxiliary bipartite graph R whose vertices are the components of G and H,
{G1, . . . , Gs} and {H1, . . . ,Hr} form the bipartition of the vertex set, and Gi is adjacent to Hj

if and only if ϕ maps a vertex of Hj to a vertex of Gi. Since F is connected, we obtain that R is
connected as well. Therefore, |V (R)| ≤ |E(R)|+ 1. Because ϕ is an injection, |E(R)| ≤ |V (H)|.
Then

c(G) + c(H) = s+ r = |V (R)| ≤ |E(R)|+ 1 ≤ |V (H)|+ 1

and (ii) follows.
Suppose now that (i) and (ii) are fulfilled. Denote by H1, . . . ,Hr the components of H.
Assume that i(G) = |V (H)|−c(H). By (ii), we have that G has at most i(G)+1 components.

Hence, because |V (H)| ≤ |V (G)|, G has exactly i(G) + 1 components: i(G) isolated vertices
and a component G′ with at least c(H) vertices. We select a vertex xi in each component Hi

for i ∈ {1, . . . , s} and s distinct vertices v1, . . . , vs in G′. We construct the injective mapping
ϕ : V (H) → V (G) as follows. We set ϕ(xi) = vi for i ∈ {1, . . . , s} and then extend ϕ on other
vertices of H by mapping them into isolated vertices of G. It is straightforward to verify that
F = G⊕ϕ H is connected.

Suppose from now that i(G) < |V (H)| − c(H). We select the minimum h ∈ {1, . . . , r}
such that (

∑h
j=1 |V (Hj)|) − h > i(G). For each i ∈ {1, . . . , h − 1}, we select xi ∈ V (Hi) if

h > 1. We start constructing the injective mapping ϕ : V (H)→ V (G) by mapping the vertices
of V (Hi) \ {xi} to isolated vertices of G. Then we map |V (Hh)| −∑h−1

i=1 (|V (Hi)| − 1) vertices
of Hh to the remaining isolated vertices of G. Notice that by the choice of h, at least 2 vertices
of Hh and the vertices of Hh1 , . . . ,Hr are not mapped yet. Denote by W the set of these
vertices. Recall also that each component of H has at least 2 vertices. Denote by G1, . . . , Gs
the components of G with at least 2 vertices each. Since |V (H)| ≤ |V (G)|, we have that these
components exist and that the total number of vertices in these components is at leastW+(h−1).
By (ii), we have that s+ i(G) ≤ |V (H)| − c(H) + 1. Therefore, s ≤ |W | − (r − h+ 1) + 1.

If s ≤ r − h + 2, then we select vi ∈ V (Gi) for i ∈ {1, . . . , s − 1} and v′i ∈ V (Gi) for
i ∈ {2, . . . , s} such that vi 6= v′i. Then for each i ∈ {1, . . . , s − 1}, we pick two vertices in
Hh+i−1 and map them to vi and v′i+1 respectively. The remaining vertices of W and the vertices
x1, . . . , xh−1 are mapped into distinct vertices of G that were not used for constructing ϕ yet.
It is again straightforward to see that F = G⊕ϕ H is connected.

Suppose that s > r − h+ 2. We select vi ∈ V (Gi) for i ∈ {1, . . . , r − h+ 1} and v′i ∈ V (Gi)
for i ∈ {2, . . . , r−h+ 2} such that vi 6= v′i. Then for each i ∈ {h, . . . , r}, we pick two vertices in
Hi and map them to vi−h+1 and v′i−h+2 respectively. For every i ∈ {r− h+ 3, . . . , s}, we pick a
vertex ui ∈ Gi and yi ∈W that is not mapped yet. Notice that since s ≤ |W | − (r− h+ 1) + 1,
this selection is possible. Then we set φ(yi) = ui for i ∈ {r − h + 3, . . . , s}. The remaining
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vertices of W and the vertices x1, . . . , xh−1 are mapped into distinct vertices of G that were not
used for constructing ϕ yet. Again, we have that F = G⊕ϕ H is connected.

Lemmata 9 and 10 immediately imply the following theorem.

Theorem 4. Let G and H be graphs such that H has no isolated vertices and |V (H)| ≤ |V (G)|.
Then there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is connected if
and only if c(G) ≤ |V (H)| − c(H) + 1 and one of the following holds:

(i) H is connected,

(ii) H is disconnected graph and i(G) ≤ |V (H)| − c(H).

The next statement is a straightforward corollary of Theorem 4.

Corollary 1. Unweighted Structured Connectivity Augmentation is solvable in time
O(|V (G)|+ |E(G)|+ |E(H)|).

4.2 Unweighted Structured 2-Connectivity Augmentation

Now we consider the case Structured 2-Connectivity Augmentation. Our structural
results are based on the following observation.

Observation 4. Let G and H be graphs and let ϕ : V (H) → V (G) be an injective mapping
such that F = G⊕ϕH is 2-connected. Then for every pendant biconnected component G′ of G,
there is x ∈ V (H) such that ϕ(x) ∈ V (G′).

In particular, Observation 4 implies the following.

Observation 5. Let G and H be graphs and let ϕ : V (H)→ V (G) be an injective mapping with
the property that F = G⊕ϕ H is 2-connected. Then p(G) ≤ |V (H)|.

To simplify the proofs of our structural lemmata, we use the following straightforward ob-
servation.

Observation 6. Let G and H be graphs such that |V (H)| ≤ |V (G)|. If H has a subgraph H ′

such that there is an injective mapping ϕ : V (H ′)→ V (G) with the property that F ′ = G⊕ϕH ′
is k-connected, then for every injective extension ψ of ϕ on V (H), F = G⊕ϕH is k-connected.

This allows us to use the following strategy to increase the connectivity of a graph G.
Let ` = p(G) ≥ 2. We select ` pairwise nonadjacent vertices v1, . . . , v` in distinct pendant
biconnected components of G. Then we find an induced subgraph H ′ of H with ` vertices
and construct a bijection ϕ : V (H ′) → {v1, . . . , v`} with the property that F = G ⊕ϕ H ′ is
2-connected. Notice that if H1, . . . ,Hr are the components of H ′, then F = G ⊕ϕ H ′ =
(. . . ((G⊕ϕ1 H1)⊕ϕ2 H2) . . .⊕ϕr Hr where ϕi = ϕ|V (Hi) for i ∈ {1, . . . , r}. The construction of
ϕ is inductive and is based on the following lemma.

Lemma 11. Let G be a connected graph with ` = p(G) ≥ 2. Let also P = {P1, . . . , P`} be the set
of pendant biconnected components of G, vi ∈ V (Pi) for i ∈ {1, . . . , `} and v1, . . . , v` are pairwise
nonadjacent. Let also H be a connected graph such that 2 ≤ |V (H)| ≤ ` and ` − |V (H)| 6= 1.
Then there is an injective mapping ϕ : V (H)→ {v1, . . . , v`} such that for F = G⊕ϕ H, the set
of pendant biconnected components is P \ {Pi | vi ∈ ϕ(V (H))}.
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Proof. Suppose first that |V (H)| = `. Because H is connected and the vertices v1, . . . , v` are
pairwise nonadjacent, we have that for any bijection ϕ : V (H) → {v1, . . . , v`}, F = G ⊕ϕ H is
2-connected by Observations 1 and 3. Then the set of pendant biconnected components of F is
empty and the claim of the lemma holds.

Assume from now that |V (H)| < `. Since `− |V (H)| 6= 1, |V (H)| ≤ `− 2.
Consider the graph T obtained by contracting edges of each biconnected component of

G. To simplify notations, assume that the vertex obtained by contracting of each Pi is vi for
i ∈ {1, . . . , `}. Notice that v1, . . . , v` are the leaves of T . Notice also that the edges of T are
exactly the bridges of G. Also for every e ∈ E(T ), we have the following property: e belongs to
a (vi, vj)-path in G if and only if e belongs to the unique (vi, vj)-path in T .

Since ` ≥ |V (H)| + 2 ≥ 4, there are two distinct leaves vs and vt of T such that for the
unique (vs, vt)-path P in T , there are two leaves vi and vj that are in the distinct components
of T − V (P ). We select L ⊆ {v1, . . . , v`} of size |V (H)| such that vs, vt ∈ L and vi, vj /∈ L.
Let ϕ : V (H)→ L be a bijection. Because H is connected, by Observation 3, the vertices of G
from the biconnected components that are crossed by (vp, vp)-paths in G for vp, vq ∈ L induce
a biconnected component Q of F = G ⊕ϕ H. Moreover, because of the choice of vi and vj , at
least two bridges of G have incident vertices in Q. Therefore, P \ {Pi | vi ∈ ϕ(V (H))} is the set
of pendant biconnected components of F .

Using Lemma 11, we obtain the next lemma.

Lemma 12. Let G be a connected graph with ` = p(G) ≥ 2. Let also P = {P1, . . . , P`} be
the set of pendant biconnected components of G, vi ∈ V (Pi) for i ∈ {1, . . . , `} and v1, . . . , v`
are pairwise nonadjacent. Let also H be a graph with ` vertices such that each component of
H contains at least 2 vertices. Then there is a bijection ϕ : V (H) → {v1, . . . , v`} such that
F = G⊕ϕ H is 2-connected.

Proof. The proof is by the induction on the number of components of H. If H is connected,
them Lemma 11 implies the claim. Assume that H is disconnected and let H ′ be a component
of H.

Because each component of H has size at least 2 and |V (H)| = `, |V (H ′)| ≥ 2 and ` −
|V (H)| 6= 1. By Lemma 11, there is an injective mapping ϕ′ : V (H ′) → {v1, . . . , v`} such that
for G′ = G⊕ϕ′H ′, the set of pendant biconnected components is P ′ = P \{Pi | vi ∈ ϕ′(V (H ′))}.
Let `′ = |P ′|.

Consider H ′′ = H − V (H ′). Clearly, H ′′ has less components than H. We also have that
|V (H ′′)| = `′ and each component of H ′′ has size at least 2. We apply the inductive hypothesis
for G′ and H ′′. Hence there is a bijection ϕ′′ : V (H)→ {v1, . . . , v`} \ {vi | vi ∈ ϕ′(V (H ′))} such
that F = G′ ⊕ϕ′′ H ′′ is 2-connected.

For x ∈ V (H), let

ϕ(x) =

{
ϕ′(x), if x ∈ V (H ′),

ϕ′′(x), if x ∈ V (H ′′).

Clearly, ϕ maps V (H) to {v1, . . . , v`} bijectively. Then F = G′⊕ϕ′′ H ′′ = (G⊕ϕ′ H ′)⊕ϕ′′ H ′′ =
G⊕ϕ H and is 2-connected.

Now we are ready to prove the main structural results for unweighted Structured 2-
Connectivity Augmentation. First, we observe that the case when G is 2-connected is
trivial.

Observation 7. Let G and H be graphs such that |V (H)| ≤ |V (G)| and G is 2-connected.
Then for any injection ϕ : V (H)→ V (G), F = G⊕ϕ H is 2-connected.

20



From now we can assume that G is connected but not 2-connected. In particular, p(G) ≥ 2.
It is convenient to consider separately the case when H is a matching graph.

Lemma 13. Let G be a connected graph and let H be a matching graph with 2 ≤ p(G) ≤
|V (H)| ≤ |V (G)|. Then there is an injection ϕ : V (H) → V (G) such that F = G ⊕ϕ H is
2-connected unless G is a star K1,n where n is odd.

Proof. If G is a star K1,n where n is odd, then because p(G) ≤ |V (H)| ≤ |V (G)|, |V (H)| =
|V (G)|. Then for every injection ϕ : V (H) → V (G), there is an edge xy ∈ E(H) such that
u = ϕ(x) is the central vertex of the star G and v = ϕ(y) is a leaf of G. We have that uv is a
bridge of F = G⊕ϕ H and, therefore, F is not 2-connected. Assume from now that G is not a
star with the odd number of leaves.

Let P = {P1, . . . , P`} be the set of pendant biconnected components of G. We select
vi ∈ V (Pi) for i ∈ {1, . . . , `} in such a way that v1, . . . , v` are pairwise nonadjacent. Notice
that it always can be done because G is distinct from K2 as this is the star K1,1.

Suppose that ` is even. Since ` ≤ |V (H)|, H has an induced subgraph H ′ that contains `/2
components with ` vertices. By Lemma 12, there is a bijection ϕ : V (H ′) → {v1, . . . , v`} such
that G⊕ϕH ′ is 2-connected. By Observation 6, ϕ can be extended to V (H) in such a way that
F = G⊕ϕ H is 2-connected.

Assume now that ` is odd. Let H ′ be a component of H and denote by x and y its vertices.
Consider a shortest (v1, v2)-path in G. Notice that this path contains a vertex u that does not
belong to the biconnected components P1 and P2. Moreover, this vertex does not belong to any
pendant biconnected component of G. Define ϕ′(x) = v` and ϕ′(y) = u. Let G′ = G ⊕ϕ′ H ′.
Observe that G′ has `′ = ` − 1 pendant biconnected components P ′1, . . . , P

′
`′ . Since `′ is even,

we can use the already proved claim and obtain that there is an injection ϕ′′ : V (H ′′)→ V (G′)
such that F = G′ ⊕ϕ H ′′ is 2-connected for H ′′ = H − {x, y}. Let

ϕ(x) =

{
ϕ′(x), if x ∈ V (H ′),

ϕ′′(x), if x ∈ V (H ′′);

for x ∈ V (H). We have that F = G′ ⊕ϕ′′ H ′′ = (G ⊕ϕ′ H ′) ⊕ϕ′′ H ′′ = G ⊕ϕ H and is 2-
connected.

Lemma 14. Let G and H be graphs with 2 ≤ p(G) ≤ |V (H)| ≤ |V (G)| such that G is connected,
H has no isolated vertex and has a component with at least 3 vertices. Then there is an injection
ϕ : V (H)→ V (G) such that F = G⊕ϕ H is 2-connected.

Proof. Let P = {P1, . . . , P`} be the set of pendant biconnected components ofG. Observe thatG
is distinct from K2. Otherwise, we have that H = K2, i.e., this is a matching graph contradicting
the condition that H has a component with at least 3 vertices. We select vi ∈ V (Pi) for
i ∈ {1, . . . , `} in such a way that v1, . . . , v` are pairwise nonadjacent. Notice that it always can
be done because G is distinct from K2.

Let H1, . . . ,Hr be the components of H and assume that |V (H1)| ≤ . . . ≤ |V (Hr)|. Since
` ≤ |V (H)|, there is minimum s ∈ {1, . . . , r} such that p =

∑s
i=1 |V (Hi)| ≥ `. Denote by

q =
∑s−1

i=1 |V (Hi)|. We construct the induced subgraph H ′ of H as follows. If p = `, then H ′ is
the subgraph of H composed by the components H1, . . . ,Hs. Suppose that p > `. If `− q ≥ 2,
then we find a connected induced subgraph H ′s of Hs and define H ′ as the subgraph of H with
the components H1, . . . ,Hs−1, H

′
s. Let ` − q = 1. Notice that this implies that s ≥ 2. We

consider two cases depending on |V (Hs−1)|.
Suppose that |V (Hs−1)| = 2. Recall that H has a component Hi with at least 3 vertices and

i ≥ i − 1 by the ordering of the components. We find a connected induced subgraph H ′i of Hi

with 3 vertices. Then we define H ′ as the subgraph of H with the components H1, . . . ,Hs−1, H
′
i.
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Assume now that t = |V (Hs−1)| ≥ 3. We find a connected induced subgraph H ′s−1 of Hs

with t− 1 vertices and a connected iduced subgraph H ′s of Hs with 2 vertices. Then H ′ is the
subgraph of H with the components H1, . . . ,Hs−2, H

′
s−1, H

′
s.

In all the cases, H ′ has exactly ` vertices and each component of H ′ has at least 2 vertices.
By Lemma 12, there is a bijection ϕ : V (H) → {v1, . . . , v`} such that F = G ⊕ϕ H ′ is 2-
connected. By Observation 6, ϕ can be extended to V (H) in such a way that F = G ⊕ϕ H is
2-connected.

Recall that the bridges and biconnected components of a graph G can be found in linear time
by the algorithm of Tarjan [17]. Combining this fact with Observations 5 and 7 and Lemmas 13
and 14 we obtain the following theorem.

Theorem 5. Let G and H be graphs such that G is connected, H has no isolated vertices and
|V (H)| ≤ |V (G)|. Then there is an injective mapping ϕ : V (H)→ V (G) such that F = G⊕ϕH
is 2-connected if and only if one of the following holds:

(i) G is 2-connected,

(ii) G is not 2-connected and p(G) ≤ |V (H)|,

unless G is a star K1,n where n is odd and H is a matching graph.

Theorem 5 immediately implies the next corollary.

Corollary 2. Unweighted Structured 2-Connectivity Augmentation is solvable in time
O(|V (G)|+ |E(G)|+ |E(H)|).

5 Conclusion

We initiated the investigation of the structured connectivity augmentation problems where the
aim is to increase the edge connectivity of the input graphs by adding edges when the added
edges compose a given graph. In particular, we proved that Structured Connectivity Aug-
mentation and Structured 2-Connectivity Augmentation are solvable in polynomial
time when H is from a graph class C with bounded vertex-cover number. It is natural to ask
about increasing connectivity of a (k−1)-connected graph to a k-connected graph for every pos-
itive integer k. For the “traditional” edge connectivity augmentation problem (see [6, 15]), the
augmentation algorithms are based on the classic work of Dinits, Karzanov, and Lomonosov [2]
about the structure of minimum edge separators. However, for the structural augmentation,
the structure of the graph H is an obstacle for implementing this approach directly. Due to
this, we could not push further our approach to establish the complexity of Structured k-
Connectivity Augmentation for k > 2 when H is of bounded vertex cover. This remains a
natural open question. Recall that our hardness results showing that it is NP-hard to increase
the connectivity of a (k−1)-connected graph to a k-connected graph when H belongs to a class
with unbounded vertex cover number are proved for every k.

As the first step, it could be interesting to consider the variant of the problem for multigraphs.
In this case, we allow parallel edges and assume that for a mapping φ : V (H) → V (G), the
multiplicity of φ(x)φ(y) in G ⊕φ H is the sum of the multiplicities of φ(x)φ(y) in G and xy in
H. Notice that all our algorithmic and hardness results can be restated for this variant of the
problem. Actually, some of the proofs for this variant of the problem become even simpler.

The question of obtaining a k-connected graph for k ≥ 3 is also open for the unweighted
problem. Here we ask whether it is possible to derive structural necessary and sufficient condi-
tions for a (k−1)-connected graph G and a graph H such that there exists an injective mapping
φ : V (H)→ V (G) such that G⊕φ H is k-connected.
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Another direction of the research is to consider vertex connectivity. As it is indicated by the
existing results about vertex connectivity augmentation (see, e.g., [10, 11]), this variant of the
problem could be more complicated.
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