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Abstract

We introduce new data structures for answering connectivity queries in graphs subject to
batched vertex failures. A deterministic structure processes a batch of d ≤ d? failed vertices
in Õ(d3) time and thereafter answers connectivity queries in O(d) time. It occupies space
O(d?m log n). We develop a randomized Monte Carlo version of our data structure with update
time Õ(d2), query time O(d), and space Õ(m) for any failure bound d ≤ n. This is the first
connectivity oracle for general graphs that can efficiently deal with an unbounded number of
vertex failures.

We also develop a more efficient Monte Carlo edge-failure connectivity oracle. Using space
O(n log2 n), d edge failures are processed in O(d log d log log n) time and thereafter, connectivity
queries are answered in O(log log n) time, which are correct w.h.p.

Our data structures are based on a new decomposition theorem for an undirected graph
G = (V,E), which is of independent interest. It states that for any terminal set U ⊆ V we can
remove a set B of |U |/(s − 2) vertices such that the remaining graph contains a Steiner forest
for U −B with maximum degree s.

1 Introduction

The dynamic subgraph model [Cha06, CPR11, Dua10, DP10, FI00, PT07a] is a constrained dynamic
graph model. Rather than allow the graph to evolve in completely arbitrary ways (via an unbounded
sequence of edge insertions and deletions), there is assumed to be a fixed ideal graph G = (V,E) that
can be preprocessed in advance. The ideal graph is susceptible only to the failure of edges/vertices
and their subsequent recovery, possibly with a bound d? on the number of failures at one time.
Queries naturally answer questions about the current failure-free subgraph. This model is useful
because it more accurately represents the behavior of many real-world networks: changes to the
underlying topology are relatively rare but transient failures very common. More importantly, this
model offers the algorithm designer the freedom to explore exotic graph representations. Because
preprocessing time is not the most critical measure of efficiency, it may be desirable to build a
specialized graph representation that facilitates more efficient updates and queries.

Dynamic Subgraph Connectivity. The dynamic subgraph model was introduced by Frigioni
and Italiano [FI00] who showed that when the ideal graph is planar, vertex failures/recoveries and
connectivity queries could be handled in O(log3 n) amortized time, after Õ(n) preprocessing. Their
algorithm even allowed the ideal graph to evolve via edge updates, also in O(log3 n) amortized time,

∗Supported by NSF CAREER grant CCF-0746673 and NSF grants CCF-1217338, CNS-1318294, CCF-1514383,
CCF-1637546. R. Duan is supported by a China Youth 1000-Talent grant. This paper includes material from two
extended abstracts published in STOC 2010 [DP10] and SODA 2017 [DP17].
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so long as it remained planar. Dynamic subgraph connectivity structures were later developed for
general graphs [BCCK16, Cha06, CPR11, Dua10, DZ17]. Chan, Pǎtraşcu, and Roditty [CPR11]
gave an O(m4/3)-space structure that handles vertex failures/recoveries in Õ(m2/3) amortized time
and connectivity queries in O(m1/3) time. Duan [Dua10] developed a different O(m)-space structure
with the same amortized update and query time as [CPR11], and a new Õ(m)-space structure with
worst case Õ(m4/5)-time updates and O(m1/5) time queries. More recently Duan and Zhang [DZ17]
presented a worst-case randomized (Monte Carlo) structure with update time Õ(m3/4) and query
time Õ(m1/4). Each of [CPR11, Dua10, DZ17] has an Ω(m) update time-query time product.
Baswana et al. [BCCK16] (see also [CDWZ16]) showed how to maintain a DFS tree in the dynamic
subgraph model with Õ(

√
mn) update time, which supports O(1)-time connectivity queries.

Pǎtraşcu and Thorup [PT07a] considered a situation where a batch of d edges fail simultane-
ously. They showed that an O(m)-space structure could be constructed that handles updates in
O(d log2 n log logn) time and subsequently answers connectivity queries in O(log log n) time. More-
over, they observed that the query time could not be unilaterally improved, by a reduction to the
predecessor problem [PT06, PT07b]. One downside of the Pǎtraşcu-Thorup structure is that it re-
quires exponential time to compute: it involves solving sparsest cut Õ(n) times on various subgraphs.
Using a polynomial time O(

√
log n)-approximate sparsest cut algorithm [ARV09, AHK10, She09]

instead increases the update time to O(d log5/2 n log log n). Pǎtraşcu and Thorup [PT07a] were mo-
tivated by the absence of a fully dynamic connectivity data structure with poly(log n) worst case
update time.1 Kapron, King, and Mountjoy [KKM13] discovered a randomized dynamic connec-
tivity structure with O(c · poly(log n)) update time that errs with probability n−c. Gibb, Kapron,
King, and Thorn [GKKT15] observed that this data structure can function correctly, w.h.p., with-
out actually storing the graph. This leads to a d-edge failure connectivity oracle with update and
query time similar to [PT07a], but using just Õ(n) space.

The analogous d-vertex failure connectivity problem is inherently more complex. Whereas re-
moving d edges can only increase the number of connected components by d, removing d ver-
tices can have an impact on the connectivity that is completely disproportionate to d. When
d = 1 we can use the block tree representation of biconnected components to answer connectiv-
ity queries in constant time; see [BPWN12] for data structural details. When d = 2 we can use
the SPQR tree [BT96, BPWN12] of each biconnected component to answer queries in O(1) time.
A data structure of Kanevsky et al. [KTBC91] can answer queries in O(1) time when d = 3.
Similar ad hoc solutions can also be designed for d-edge failure connectivity oracles, for constant
d ≤ 4 [DW98, GI93, PvLO93, WT92]. However, scaling these solutions up, even to an arbitrarily
large constant d, becomes prohibitively complex, even in the simpler case of edge failures. In a
λ-edge connected graph, encoding all λ-edge cuts is simple with the cactus [DKL76] representation,
but the simplicity is lost when encoding both λ- and (λ+1)-edge cuts. See [DN95, DN99a, DN99b].

In previous work [DP10] we designed a d-edge failure oracle that reduces the problem to 2D or-
thogonal range reporting. Using the range reporting structure of Chan, Larsen, and Pǎtraşcu [CLP11]
gives a d-edge failure structure with O(d2 log log n) update time, O(min{ log d

log logn ,
log logn

log log logn}) query
time, and O(m log logn) space, or a somewhat slower update time with O(m) space. By itself, this
structure compares favorably with the d-edge failure oracles of [PT07a, KKM13] when d = O(log n).

1There are dynamic connectivity structures with amortized poly(logn) update time [HHKP17, HdT01, WN13].

However, the fastest deterministic worst-case update time is O(
√

n(log logn)2

logn
) [KRKPT16], a small improvement over

the long-standing O(
√
n) bound of [Fre85, EGIN97]. See [NSWN17] for Las Vegas randomized dynamic connectivity

structures with no(1) worst case bounds.
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However, it has additional properties that make it attractive for use in d-vertex failure oracles.
Specifically, ifD is the set of failed vertices, the update time is actuallyO

(
(
∑

v∈D degT (v))2 log log n
)
,

where T is any spanning tree of the graph. In other words, the update time is quadratic in the sum
of the T -degrees, independent of their degrees in G.

If G were guaranteed to have an O(1)-degree spanning tree we would immediately have a sat-
isfactory d-vertex failure connectivity oracle with update time Õ(d2) and query time Õ(1). Of
course, there is no such guarantee. Every bridge edge appears in every spanning tree T , so a ver-
tex incident to many bridges must have high T -degree. Since bridges are easy to deal with this
is not a very convincing counterexample. One might hope that if G had sufficient connectivity,
a low-degree spanning tree could be found. This is the approach taken by Borradaile, Pettie,
and Wulff-Nilsen’s [BPWN12] d-failure connectivity oracles for planar graphs. Barnette’s theo-
rem [Bar66] states that every triconnected planar graph has a degree-3 spanning tree, which can be
found in linear time [CS97, Str97]. However, the analogues of Barnette’s theorem for general graphs
are too weak to be of any use. Czumaj and Strothmann [CS97, Str97] proved that a k-connected
graph with maximum degree ∆(G) ≤ k(∆T − 2) + 2 has a degree-∆T spanning tree, which can
be found in polynomial time. If, however, the maximum degree is at least ∆(G) ≥ k(∆T − 1) it
is NP-hard to decide if there is a degree-∆T spanning tree. Thus, even if we could force G to be
k-connected for some large constant k, it would not help to find a low-degree spanning tree.

In [DP10] we developed a d?-vertex failure connectivity oracle, that offers a tradeoff between
update time and size. For any integer parameter c ≥ 1, the space of the data structure is

O(d
1−2/c
? mn1/c−1/(c log(2d?)) log2 n) and the time to process d ≤ d? vertex failures isO(d2c+4 log2 n log logn).

Thereafter connectivity queries can be answered in O(d) time. The main drawbacks of [DP10] are
its conceptual complexity and very poor tradeoff between space and update time. Henzinger and
Neumann [HN16] recently showed how any d-vertex failure connectivity oracle could be transformed
to support fully dynamic updates in the dynamic subgraph model, where vertices fail and recover
individually.

New Results. In this paper we present dramatically better d-vertex failure connectivity oracles
that match or improve on [DP10] in every measure of efficiency except construction time. Using
space O(d?m log n), a batch D of d ≤ d? vertex failures is processed in O(d3 log3 n) time such that
connectivity queries in G−D can be answered in O(d) time.2 The construction time is O(mn log n).
Note that there is now no tradeoff between space and update time. Clearly any pair of (d? + 1)-
connected vertices cannot be disconnected by d failures. By preprocessing the graph with the
linear time Nagamochi-Ibaraki algorithm [NI92], we can replace E(G) by an equivalent subgraph
containing m̄ = min{m, (d? + 1)n} edges. Thus, the factors of m in the space and construction
time can be replaced with m̄.

In the extended abstract of this work [DP17, §7], we claimed a randomized Monte Carlo structure
that occupies Õ(m) space and has update and query times Õ(d2) and O(d). This was an erroneous
claim; we do not see any way to store this structure in less than Ω(d?m) space. In this paper we
present a different randomized Monte Carlo structure that uses space O(m log6 n), and has update
and query times O(d2 log d log2 n log logn) and O(d). This solution is more sophisticated than the
one described in [DP17, §7], and generalizes the Kapron et al. [KKM13] sketch technique in ways
that may be of independent interest. We use vertex-sampling rather than edge-sampling, and show
that sketches for certain subgraphs of a complete bipartite graph A×B can be generated “on the
fly” using space Õ(|A|+ |B|) rather than a naive bound of O(|A×B|).

2The notation G−D is short for the subgraph of G induced by V (G)−D.
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Some of the techniques used in our Monte Carlo d-vertex failure oracle can be repurposed to
improve the state-of-the-art in d-edge failure oracles [PT07a, KKM13, GKKT15]. We show that
with O(n log2 n) space, d edge failures can be processed in O(d log d log logn) time in expectation
and and thereafter support connectivity queries in O(log log n) time, which are correct w.h.p.

Our data structures are based on a new graph decomposition theorem, which is obtained from
a recursive version of the Fürer-Raghavachari [FR94] algorithm for approximating the minimum
degree spanning tree. The theorem states that for any undirected graph G = (V,E), terminal set
U ⊆ V , and integer s, there exists a set of n/(s − 2) vertices B that can be removed, such that
U −B is spanned by a degree-s Steiner forest in the graph G−B. We believe this decomposition
theorem is of independent interest.

Refer to Table 1 for a summery of d-edge failure and d-vertex failure connectivity oracles.

Lower Bounds. One question raised by [DP10] is whether it is possible for a d-vertex failure
oracle to match the Õ(1) query time of existing d-edge failure oracles [PT07a, DP10, KKM13,
GKKT15]. There is now strong circumstantial evidence that no such data structure exists with
reasonable update time. In particular, if the Integer 3SUM Conjecture3 holds then any d-vertex
failure connectivity oracle with subquadratic preprocessing and reasonable update time must have
Ω(d1/2−o(1)) query time [KPP16]. Henzinger et al. [HKNS15] showed that the OMv conjecture4 on
the hardness of online matrix-vector multiplication implies an Ω(d1−o(1)) query lower bound, even
if any polynomial preprocessing is allowed. Thus, beating O(d) query time would require refuting a
plausible conjecture. Of course, the plausibility of the 3SUM and OMv conjectures continue to be
actively scrutinized. Stronger forms of the 3SUM and OMv conjectures have already been refuted;
see [BDP08, GP14, LW17]. Whereas d-edge failure connectivity oracles can be stored in sublinear
Õ(n) space [GKKT15], this is not possible for vertex failures. It is straightforward to see that any
subgraph of the complete bipartite graph Kn,d?+1 can be reconstructed with a d?-failure oracle,
implying such an oracle occupies Ω(min{m, d?n}) bits of space.

Related Work. Much of the previous work in the d-failure model has focussed on computing
approximate shortest paths avoiding edge and vertex failures. Demetrescu et al. [DTCR08] gave
an exact shortest path oracle for weighted directed graphs subject to d = 1 failure. It occupies
O(n2 log n) space and answers queries in constant time. The construction time for this oracle
was later improved by Bernstein and Karger [BK09]. An analogous result for d = 2 failures was
presented by Duan and Pettie [DP09a], which uses space O(n2 log3 n) and query time O(log n).
Approximate distance oracles for d edge failures were given for general graphs [CLPR12], with
stretch that grows linearly in d.

These problems have also been studied on special graph classes. Borradaile et al. [BPWN12]
described connectivity oracles for planar graphs subject to d-edge failures or d-vertex failures. See
Baswana et al. [BLM12] for exact distance oracles for planar graphs avoiding d = 1 failure, and
Abraham et al. [ACG12, ACGP16] for approximate distance oracles for planar graphs and graphs
of bounded doubling dimension.

3The 3SUM problem is, given a set A of n numbers, to determine if there exist a, b, c ∈ A for which
a + b + c = 0. There are now known to be O(n2/poly(logn)) algorithms for both integer inputs [BDP08] and
real inputs [GP14, Fre15, GS17]. The Integer 3SUM Conjecture asserts that the problem requires Ω(n2−o(1)) time,
even if A ⊂ {−n3, . . . , n3}.

4The OMv conjecture is that given a matrix M ∈ {0, 1}n×n to be preprocessed and n vectors v1, . . . , vn ∈ {0, 1}n
presented online, the total cost of preprocessing and computing the products {Mvi}1≤i≤n is Ω(n3−o(1)). Note that
fast matrix multiplication is not obviously helpful in this context since Mvi must be reported before receiving vi+1.
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Parter and Peleg [PP13] considered the problem of computing a subgraph that preserves shortest
paths from s sources after a single edge or vertex failure. They proved that Θ(s1/2n3/2) edges are
necessary and sufficient, for every s. See also [BGG+15, BCP12, BCPS15, CLPR10, DK11, Par16,
PP14] for spanners (subgraphs) that preserve approximate distances subject to edge or vertex
failures.

Very recently researchers have considered reachability problems on directed graphs subject to
vertex failures. Choudhary [Cho16] gave an optimalO(n)-space, O(1)-query time reachability oracle
for d = 2 failures. Baswana, Choudhary, and Roditty [BCR16] considered the problem of finding a
sparse subgraph that preserves reachability from a single source, subject to d vertex failures. They
proved that Θ(2dn) edges are necessary and sufficient.

1.1 Organization

In Section 2 we review the Euler Tour structure of [DP10] for handling d edge failures. We begin
Section 3 with a sketch of the Fürer-Raghavachari algorithm FR-Tree, then describe our decomposi-
tion algorithm Decomp. In Section 4 we observe that by applying Decomp iteratively, we naturally
obtain a representation of the graph as a low degree hierarchy. Section 4 describes how to build a
d-failure connectivity oracle, by supplementing the low degree hierarchy with suitable data struc-
tures. The algorithms for deleting failed vertices and answering connectivity queries are presented
in Section 5. The basic algorithm for deleting failed vertices takes Õ(d4) time using standard 2D
orthogonal range reporting data structures. In Section 6 we give three distinct ways to reduce this
to Õ(d3) using other orthogonal range searching structures. In Section 7 we present a random-
ized Monte Carlo version of our data structure with update time Õ(d2) and space Õ(m), and in
Section 7.4 we give a more efficient d-edge failure connectivity oracle. Several open problems are
discussed in Section 8.

2 The Euler Tour Structure

In this section we describe the ET-structure for handling connectivity queries avoiding multiple
vertex and edge failures. When handling only d edge failures, the performance of the ET-structure
is incomparable to that of Pǎtraşcu and Thorup [PT07a] in nearly every respect.5 The strength of
the ET-structure is that if the graph contains a low-degree tree T , the time to delete a vertex is a
function of its degree in T ; incident edges not in T are deleted implicitly. We prove Theorem 2.1
in the remainder of this section.

Theorem 2.1. Let G = (V,E) be a graph, with m = |E| and n = |V |, and let F = {T1, . . . , T|F|}
be a set of vertex disjoint trees in G. (F does not necessarily span connected components of G.)
There is a data structure ET(G,F) that supports the following operations. Suppose D is a set of
failed edges, of which d are tree edges in F and d′ are non-tree edges. Deleting D splits some subset
of the trees in F into at most 2d trees F ′ = {T ′1, . . . , T ′2d}. In O(d2q+ d′) time we can report which

pairs of trees in F ′ are connected by an edge in E − D. In O(min
{

log logn
log log logn ,

log d
log logn

}
) time we

5The ET-structure is significantly faster in terms of construction time (near-linear vs. a large polynomial or
exponential time) though it may use slightly more space: O(m log log n) vs. O(m). It handles d edge deletions
exponentially faster for bounded d (O(log log n) vs. Ω(log2 n log log n)) but is slower as a function of d: O(d2 log logn)
vs. O(d log2 n log log n) time. The query time is essentially the same for both structures, namely O(log logn). Whereas
the ET-structure naturally maintains a certificate of connectivity (a spanning tree), the Pǎtraşcu-Thorup structure
requires modification and an additional logarithmic factor in the update time to maintain a spanning tree.
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Figure 1: (A) Here T1 and T2 are two trees where Euler(T1) = (u1, . . . , u12) and Euler(T2) = (v1, . . . , v9)
list their vertices according to first appearance in some Euler tours of T1 and T2. (It does not matter which
Euler tour we pick.) There are six non-tree edges connecting T1 and T2, marked by dashed curves. If
the edges {u2, u3} and {v1, v2} are removed, T1 and T2 are split into four subtrees, say T ′

1, T
′
2, T

′
3, T

′
4, and

both Euler(T1) and Euler(T2) are split into three intervals, namely X1 = (u1, u2), X2 = (u3, . . . , u7), X3 =
(u8, . . . , u12), Y1 = (v1), Y2 = (v2, . . . , v7), and Y3 = (v8, v9). Each tree T ′

i is identified with some subset of
the intervals: T ′

1, . . . , T
′
4 are identified with {X1, X3}, {X2}, {Y1, Y3}, and {Y2}. (B) The point (i, j) (marked

by a blue dot) is in our point set if {vi, uj} is a non-tree edge. To determine if, for example, T ′
1 and T ′

4

are connected by an edge, we perform two 2D range queries, X1 × Y2 and X3 × Y2, and keep at most one
point (i.e., a non-tree edge) for each query. In general, removing d1 edges from T1 and d2 edges from T2
necessitates (2d1 + 1)(2d2 + 1) 2D range queries to determine incidences between all pairs of subtrees. In
this example we require nine 2D range queries, indicated by boxes in the point set diagram.

can determine which tree in F ′ contains a given vertex. Using space O(m log logn) the value of q
is O(log log n); using space O(m) the value of q is O(logε n).

Our data structure uses Chan, Larsen, and Pǎtraşcu’s [CLP11] structure for orthogonal range
reporting on the integer grid [U ]× [U ]. They showed that given a set of N points, there is a data
structure with size O(N log logN) such that given x, y, w, z ∈ [U ], the set of points in [x, y]× [w, z]
can be reported in O(log logU + k) time, where k is the number of reported points. If the space is
reduced to O(N) the update time becomes O(logε U + k) for any fixed ε > 0.

For a tree T , let Euler(T ) be a list of its vertices encountered during an Euler tour of T (an
undirected edge is treated as two directed edges), where we only keep the first occurrence of each
vertex. One may easily verify that removing f edges from T partitions it into f + 1 connected
subtrees and splits Euler(T ) into at most 2f+1 intervals, where the vertices of a connected subtree
are the union of some subset of the intervals. To build ET(G = (V,E),F) we build the following
structure for each pair of trees (T1, T2) ∈ F×F ; note that T1 and T2 may be the same. Let m′ be the
number of edges connecting T1 and T2. Let Euler(T1) = (u1, . . . , u|T1|), Euler(T2) = (v1, . . . , v|T2|),
and U = max{|T1|, |T2|}. We define the point set P ⊆ [U ] × [U ] to be P = {(i, j) | {ui, vj} ∈ E}.
Suppose D is a set of edge failures including d1 edges in T1, d2 in T2, and d′ non-tree edges.
Removing D splits T1 and T2 into d1 +d2 +2 connected subtrees and partitions Euler(T1) into a set
I1 = {[xi, yi]}i of 2d1 + 1 intervals and Euler(T2) into a set I2 = {[wi, zi]}i of 2d2 + 1 intervals. For
each pair i, j we query the 2D range reporting data structure for points in P ∩ ([xi, yi]× [wj , zj ]).
However, we stop the query the moment it reports some point corresponding to a non-failed edge,
i.e., one in E −D. Since there are (2d1 + 1)× (2d2 + 1) queries and each failed edge in D can only
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be reported in one such query, the total query time is O(d1d2q + d′), where q is either log log n or
logε n, depending on the space usage. See Figure 1 for an illustration.

Assuming that m′ ≥ 1, the space for the data structure restricted to T1 and T2 is O(m′ log log n)
or O(m′). In order to avoid spending any space on pairs (T1, T2) with m′ = 0, we maintain a
hash table of tree-pairs with at least one edge between them. Since each non-tree edge contributes
to the space of at most one tree pair (T1, T2), the overall space for ET(G,F) is O(m log log n)
or O(m). For the last claim of the Theorem, observe that if a vertex u lies in an original tree
T1 ∈ F , we can determine which tree in F ′ contains it by performing a predecessor search over
the left endpoints of intervals in I1. This can be accomplished in the minimum of O( log logn

log log logn)

time [PT06] or O( log d
log logn) time [PT14] after O(d2) preprocessing on a Θ(log n)-bit word-RAM.

Corollary 2.2 demonstrates how ET(G, ·) can be used to answer connectivity queries avoiding
edge and vertex failures.

Corollary 2.2. Let T be any spanning tree of G = (V,E). The data structure ET(G, {T}) occupies
space O(m log log n) (or O(m)) and supports the following operations. Given a set D ⊂ E of edge
failures, d of which are tree edges and d′ are non-tree edges, D can be processed in O(d2 log logn+d′)
time (or O(d2 logε n+d′) time) so that connectivity queries in the graph (V,E−D) can be answered

in O(min
{

log logn
log log logn ,

log d
log logn

}
) time. If D ⊂ V is a set of vertex failures, let d =

∑
v∈D degT (v) be

the sum of their T -degrees. The update time is O(d2 log log n) (or O(d2 logε n)) and the query time

is O(min
{

log logn
log log logn ,

log d
log logn

}
).

Proof. Using ET(G, {T}) we split T into d+1 subtrees and Euler(T ) into a set I of 2d+1 connected
intervals, in which each connected subtree is made up of some subset of the intervals. Using O(d2)
2D range queries, in O(d2 log log n + d′) time we find at most one edge connecting each pair in
I × I. (In the case of vertex failures, no range queries are performed for the intervals containing
singleton vertices in D.) In O(d2) time we find the connected components of E −D or V −D and
store with each interval a representative vertex from its component. To answer a query (u, v) we
only need to determine which subtree u and v are in, which involves two predecessor queries over

the left endpoints of intervals in I. This takes O(min
{

log logn
log log logn ,

log d
log logn

}
) time.

Corollary 2.2 motivates us to look for conditions under which G contains a low degree spanning
forest, say with degree at most s. In the next section we show that although G may not have a
degree-s spanning forest, there are O(n/s) critical nodes that, if they were removed, would let the
remaining graph be spanned by a degree-s spanning forest.

3 A New Graph Decomposition Theorem

Let G = (V,E) be an undirected graph and U ⊆ V be a set of terminals. We call a forest T ⊆ E a
Steiner forest for U if u, v ∈ U are connected in T if and only if they are connected in G. Fürer and
Raghavachari [FR94] proved that the minimum degree spanning forest (if U = V ) and minimum
degree Steiner forest could be approximated to within 1 of optimal in polynomial time.6

Theorem 3.1. (Fürer and Raghavachari [FR94]) Suppose G contains a Steiner forest for U with
maximum degree ∆∗. A Steiner forest T for U with maximum degree ∆∗ + 1 can be computed in
O(|U |m log |U |) time.

6Fürer and Raghavachari [FR94] claimed a running time of O(|U |mα(m,n) log |U |). The α(m,n) factor can be
removed using the incremental-tree set-union structure of Gabow and Tarjan [GT85].
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Let FR-Tree(G,U) be the procedure that computes T . Our decomposition theorem is not con-
cerned with ∆∗, but with other properties of the forest T . In order to see how these properties
arise, we sketch how the FR-Tree(G,U) algorithm works in the simpler case in which U = V . Let
∆(G′) denote the maximum degree in the graph G′.

The algorithm begins with any spanning forest T0 and iteratively tries to improve T0, yielding
T1, T2, . . . , Tω, such that (i) ∆(Ti+1) ≤ ∆(Ti), and (ii) the set of degree-∆(Ti) nodes in Ti+1 is
a strict subset of the degree-∆(Ti) nodes in Ti. The number of improvements is clearly finite.
Since any tree contains fewer than n/(k − 1) nodes with degree at least k, the total number of

improvements is at most
∑∆(T0)

k=∆(Tω) n/(k − 1) = O(n log ∆(T0)
∆(Tω)) = O(n log n).

The FR-Tree algorithm only searches for a particular class of improvements that can be found
in linear time, leading to an O(mn log n) time bound. Let T0 be the current spanning tree. All
vertices with degree ∆(T0) and ∆(T0) − 1 are initially marked bad and all others good. (In the
diagrams below white nodes have degree ∆(T0), gray nodes have degree ∆(T0)−1, and black nodes
have degrees less than ∆(T0)−1.) The simplest single-swap improvement arises if there is a non-T0

edge {u, v} such that u and v are good (black) and a bad vertex x with degree ∆(T0) appears on
the unique cycle of T ∪ {{u, v}}. In this case we choose any edge {x, y} incident to x on the cycle

Figure 2: A fragment of a larger tree is depicted. Swapping {u, v} for {x, y} yields a new tree with at least
one fewer node with degree ∆(T0).

and set T1 ← T0 − {{x, y}} ∪ {{u, v}}, thereby eliminating a degree-∆(T0) vertex (namely x, and
perhaps even y) but possibly increasing the number of degree-(∆(T0)− 1) vertices (namely u and
v).

In general the FR-Tree algorithm considers improvements composed of an arbitrarily large number
of edge-swaps. While there exists an unscanned edge {u, v} where both u and v are marked good,
it marks all bad vertices good on the fundamental cycle of T0 ∪ {{u, v}}. Thus, a formerly-bad
good vertex is one whose degree can be reduced by 1 via a sequence of edge-swaps that does not
introduce any degree-∆(T0) vertices. If a degree-∆(T0) vertex is ever marked good, an improvement
has been detected and the sequence of swap edges that created it can easily be reconstructed. See
Figure 3. Every time this procedure finds an improvement we obtain a new spanning tree and
begin the search for another improvement from scratch. Let Tω be the spanning tree for which this
procedure fails to find an improvement. Let B be the set of vertices still marked bad. By definition
B includes all vertices with degree ∆(Tω) and some subset of the vertices with degree ∆(Tω) − 1.
Consider what happens to G and Tω if we removed all B-vertices from the graph. FR-Tree’s search
for improvements guarantees that Tω −B is a spanning forest of the graph G−B. Indeed, if there
were an edge {u, v} connecting two distinct trees of Tω −B then all B-vertices on the fundamental
cycle of Tω ∪ {{u, v}} would have been marked good and therefore u and v would not have been in
distinct trees of Tω −B after all. In general, the output of FR-Tree(G,V ) is the pair (Tω, B).

When the terminal set U is a strict subset of V , the execution of FR-Tree(G,U) is similar, except
that T0, . . . , Tω are Steiner trees (which might not not span V ). Each improvement to Ti substitutes
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Figure 3: A fragment of a larger tree is depicted. A sequence of edge-swaps reduces the number of degree-
∆(T0) vertices but may increase the number of degree-(∆(T0)− 1) vertices.

for some edges in Ti an equal number of paths, whose intermediate vertices come from V − V (Ti).
See [FR94]. Theorem 3.2 summarizes the properties of the FR-Tree algorithm that we actually use.

Theorem 3.2. ([FR94]) The FR-Tree(G,U) algorithm returns a pair (T,B), where T is a Steiner
forest for U and B ⊂ V comprises all vertices with T -degree ∆(T ) and some subset of vertices with
T -degree ∆(T )−1. If u, v ∈ U are disconnected in T −B then they are also disconnected in G−B.

The degree ∆(T−B) is by definition at most ∆(T )−1, which may still be too large. Theorem 3.3
shows that by iteratively applying the FR-Tree algorithm to the components of T −B we can reduce
the maximum degree to any desired bound s ≥ 3, at the cost of increasing the set B of “bad”
vertices.

Theorem 3.3. (The Decomposition Theorem) Let U ⊆ V be a terminal set in a graph G =
(V,E) and s ≥ 3. There is an algorithm Decomp(G,U, s) that returns a pair (T,B) such that the
following hold.

1. T is a Steiner forest for U and T −B is a Steiner forest for U −B.

2. ∆(T −B) ≤ s.

3. |B| < |U |/(s− 2) and |B ∩ U | < |U |/(s− 1).

The running time of Decomp is O(|U |m log |U |).
In the remainder of this section we give the Decomp(G,U, s) algorithm and prove Theorem 3.3.

An invocation of Decomp consists of the following three steps.

Step 1. Let (T ′, B′) be the output of FR-Tree(G,U). If ∆(T ′) ≤ s then we are done, and return
the pair (T ′, ∅).

Step 2. Partition the edge set of T ′ into minimal trees {ti} such that the leaves of each ti are
either B′-nodes or leaves of T ′, and hence U -nodes. Let B′[ti] be the B′ nodes in ti and V [ti] be
the set of all vertices in G − B′ reachable from vertices in V (ti) − B′[ti]. (When U = V , V [ti] is
exactly V (ti) − B′[ti]; in general V [ti] may contain vertices outside of V (T ′). See Figure 4.) Let
G[ti] be the graph whose vertex set is V [ti] ∪ B′[ti] and whose edge set includes all edges induced
by V [ti] and, for each u ∈ B′[ti], the unique T ′-edge connecting u to V (ti). For each ti, obtain
a pair (Ti, Bi) by recursively calling Decomp(G[ti], (V [ti] ∩ U) ∪ B′[ti], s). Observe that B′[ti] are
included as terminals in the recursive call, even if they are not members of U . See Figure 4 for an
illustrative example.
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Figure 4: Left: the output of FR-Tree. Square green nodes are terminals; pink diamonds are B′-
nodes (and may be terminals); thick edges are part of T ′; gray vertices are outside V (T ′). Right:
detaching the edges adjacent to B′ nodes creates ten subtrees; non-V (T ′) nodes are connected to at
most one subtree; Decomp is called recursively on each subgraph; B′-nodes have degree 1 in these
recursive calls and are designated terminals (square nodes).
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Step 3. Return the pair (T,B) where

T =
⋃
i

Ti and B = B′ ∪
⋃
i

Bi.

We need to establish all the claims: that T−B is, in fact, a Steiner forest of U−B with maximum
degree s, that B has the right cardinality, and that the running time is O(|U |m log |U |).

If the algorithm halts at Step 1 then T ′ is, by Theorem 3.2, a Steiner forest for U in G. Suppose
that the algorithm does not halt at Step 1 and let P (u0, uk) be a path in T ′ between u0, uk ∈
U . Partition it into subpaths P (u0, u1), . . . , P (uk−1, uk), where u1, . . . , uk−1 are all the B′-nodes
encountered on the path. By construction, each P (ui, ui+1) is completely contained in some tree
ti and the endpoints of this path are terminals in the recursive call to Decomp(G[ti], (V [ti] ∩ U) ∪
B′[ti], s), so, by the inductive hypothesis, the tree Ti returned contains a (possibly different) path
between ui and ui+1. By Theorem 3.2 again, the graphs {G[ti]} intersect only at B′-nodes, which
necessarily occur as leaves in the {Ti} trees, so the edge-set T =

⋃
i Ti returned is, in fact, a Steiner

forest for U . By Theorem 3.2, all nodes in B have T -degree at least s and all nodes in T −B have
T -degree at most s. Moreover, if u, v ∈ U are disconnected in T −B then they are disconnected in
G − B. This follows from Theorem 3.2 if u and v are in different trees ti, tj , and by induction on
the output of Decomp(G[ti], (V [ti] ∩ U) ∪B′[ti], s) if u, v are both in ti.

We now prove that B has the claimed cardinality, using the property that all B-nodes have
degree at least s in T .

Lemma 3.4. Let T be any minimal Steiner tree for U . The number of nodes in T with T -degree
at least s is at most g(|U |) = b |U |−2

s−2 c. The number of U -nodes in T with T -degree at least s is at

most h(|U |) = b |U |−2
s−1 c.

Proof. Due to the minimality of T , all leaves are necessarily U -nodes. Moreover, we can assume
without loss of generality that all internal nodes have degree at least 3, by splicing out paths of
degree-2 vertices. When |U | ≤ s − 1 we have g(|U |) = 0 and when |U | ≤ s we have h(|U |) = 0.
The claimed bounds on g and h hold when there is exactly one internal node. In general, choose
an internal node u adjacent to exactly one internal (non-leaf) node. If u is adjacent to at least
s − 1 leaves then it contributes 1 to the g(|U |) tally; remove its incident leaves and designate u a
U -node. We preserve the property that all leaves are U -nodes, and since the net loss in the number
of U -nodes is at least s− 2, we have g(|U |) ≤ g(|U | − (s− 2)) + 1. Observe that u only contributes
to the h(|U |) tally if it is already a U -node. In this case we have a loss of s − 1 U -nodes, which
implies that h(|U |) ≤ h(|U | − (s− 1)) + 1. The claimed bounds on g and h follow by induction on
|U |.

To analyze the running time we imagine that a single global Steiner tree for U is being maintained,
which is the union of the current Steiner trees in the deepest recursive calls. The initial tree provided
to a call to FR-Tree is therefore just a fragment of the global Steiner tree, whose maximum degree is
some k ≥ s+ 1. Each iteration of this call to FR-Tree, except the last, finds an improvement, which
reduces the number of maximum-degree nodes in its fragment by at least one. Say a k-improvement
is one that reduces the number of degree-k nodes. If the current global Steiner tree has maximum
degree k, the total number of k-improvements that can be found, in all recursive calls, is at most
|U |/(k−2). The initial value of k is certainly at most |U |. Since each improvement takes linear time,

the total time for all improvements is at most O(m) ·
∑|U |

k=s+1 |U |/(k − 2) = O(|U |m log(|U |/s)).
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4 The Low Degree Hierarchy

We can apply Theorem 3.3 iteratively to create a low degree hierarchy. Fix s = 4 and generate a
set of pairs {(Ti, Bi)} as follows:

(T0, B0)← Decomp(G,V, 4),

(T1, B1)← Decomp(G,B0, 4),

· · ·
(Ti, Bi)← Decomp(G,Bi−1, 4),

· · ·
(Tp, ∅)← Decomp(G,Bp−1, 4).

In other words, the “bad” vertices for T0 form the terminal set for T1 and in general, the bad
vertices for Ti−1 form the terminal set for Ti. We end, of course, at the first Tp with degree at most
s = 4, so Bp = ∅. It follows from Theorem 3.3 that |B0| < n/3 and in general, that |Bi| < |Bi−1|/2,
so p < log n− 1 levels suffice.

Define Ti to be the set of trees in Ti −Bi and T to be the set of all trees in T0, . . . , Tp, as if each
forest were on a disjoint vertex set. Theorem 3.3 implies that the forest Ti has two useful properties:
it has maximum degree 4, and it is a Steiner forest for Bi−1 − Bi. Suppose v ∈ V (Ti) ∩ Bi−1 is a
terminal for the first time in Ti. We treat this copy of v as the “principal” copy in T ; all other
copies of v that may appear in Ti+1, . . . , Tp are dummies. For example, if e = {u, v} ∈ E(G), we
think of e joining the terminal/principal copies of u and v in T .

Definition 4.1. Suppose τi ∈ Ti and τi′ ∈ Ti′ , i ≤ i′. We say τi is a descendant of τi′ if a connected
component of G−Bi′ contains V (τi′) and at least one vertex of V (τi).

Observe that if V (τi) ∩ Bi′ = ∅ then τi can only have one ancestor at level i′; if it had two
distinct ancestors then they would be connected by a path in G−Bi′ , contradicting Theorem 3.3.
Unfortunately, it seems that V (τi) can intersect Bi′ , so in general the ancestry relation between
trees in T induces a (p + 1)-level dag, not a rooted tree. Algorithmically it is much easier to deal
with trees rather than dags. For this reason we define a variant hierarchy C that is more structured.
Both C and T are used by our data structures.

Definition 4.2. Define Ci to be the set of connected components of G− (Bi ∪Bi+1 ∪ · · · ∪Bp−1)
containing at least one Bi−1 (terminal) vertex. Suppose γi ∈ Ci and γi′ ∈ Ci′ , where i ≤ i′. We say
γi is a descendant of γi′ , written γi � γi′ , if V (γi) ∩ V (γi′) 6= ∅.

Lemma 4.3 identifies the critical properties of {Ci} used by our algorithm.

Lemma 4.3. Consider the hierarchy of components {Ci}i∈[0,p].

1. Each γ ∈ Ci has at most one ancestor in Ci′, for each i′ ∈ [i, p].

2. V (γ) ⊆ V (γ′) for each γ � γ′.

3. If {u, v} ∈ E and u ∈ V (γ), v ∈ V (γ′), then γ � γ′ or γ′ ≺ γ.

4. If γ ∈ Ci, the terminals V (γ) ∩Bi−1 are contained in a single tree in Ti, denoted τ(γ).
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Proof. For Part 1, note that any two distinct components γ′, γ′′ ∈ Ci′ have V (γ′) ∩ V (γ′′) = ∅.
Since, by construction, V (γ) ∩ (Bi′ ∪ · · · ∪ Bp−1) = ∅, γ cannot share vertices with both γ′ and
γ′′. We now turn to Part 2. Suppose γ ∈ Ci, γ′ ∈ Ci′ with i < i′. If γ and γ′ share one vertex
then V (γ) ⊂ V (γ′) since γ is connected and V (γ) ∩ (Bi′ ∪ · · · ∪ Bp−1) = ∅. If Part 3 were false
then γ and γ′ would be unrelated. Let γ′′ be the ancestor of γ at the same level as γ′, so γ′, γ′′

are two distinct components in some Ci. Part 2 implies u ∈ V (γ′′), meaning γ′ and γ′′ are joined
by an edge {u, v}, and are therefore not distinct components in Ci. For Part 4, consider a tree
τ ∈ Ti = Ti − Bi. By Theorem 3.3, τ spans the terminals (Bi−1-nodes) in a connected component
of G−Bi. A γ ∈ Ci represents a connected component in G− (Bi∪· · ·∪Bp−1), so if V (γ) intersects
V (τ) at one terminal, every terminal of V (γ) must be contained in V (τ).

Lemma 4.3(1) (unique ancestors) shows that the ancestry relationship on C0, . . . , Cp can be suc-
cinctly encoded as a forest of rooted trees. Let C be the component hierarchy defined by the ≺
relation. The nodes of C are in one-to-one correspondence with the components of C0, . . . , Cp, where
C0 form the leaves of C. Slightly abusing notation, we shall say “γ ∈ C” to mean that γ is a node
in C or that γ is a component in some Ci.

4.1 Stocking the Low Degree Hierarchy

Our goal is to supplement C and T with useful data structures that allow us to reconnect the graph
after a set of vertices fail. Recall that T is composed of trees with maximum degree at most 4. If
a single tree τ ∈ T experiences the failure of some vertex set D ⊂ V , we can find individual edges
that reconnect the subtrees of τ − D using O(|D|2) 2D range queries (Theorem 2.1). However,
individual edges are, in general, insufficient to reconnect the subtrees. There could be long paths
that go through vertices that appear in ancestors or descendants of τ in T . In order to quickly
detect the existence of these paths we follow an idea from [CPR11] and introduce artificial edges
that capture connectivity via paths. We do not want to add too many artificial edges, for two
reasons. First, they take up space, which we want to conserve, and second, after deleting vertices
from the graph the validity of many artificial edges may be cast into doubt. Any invalid artificial
edges must be ignored when reestablishing connectivity, so it is important that the algorithm not
encounter too many of these edges. Before saying exactly how artificial edges are added we must
introduce the concept of a d?-adjacancy list. Recall that d? is the maximum number of vertex
failures.

Definition 4.4. Let L = (v1, v2, . . . , vr) be a list of vertices and d? ≥ 1 be an integer. The
d?-adjacency edges Λd?(L) connect all vertices at distance at most d? + 1 in the list L:

Λd?(L) = {{vi, vj} | 1 ≤ i < j ≤ r and j − i ≤ d? + 1}.

Lemma 4.5. The following properties hold for any vertex list L:

1. Λd?(L) contains fewer than (d? + 1)|L| edges.

2. If a set D of at most d? vertices are removed from L then the subgraph of Λd?(L) induced by
L−D remains connected.

3. Suppose L is partitioned into consecutive sublists L1 and L2. Then at most O(d2
?) edges from

Λd?(L) cross the partition (L1, L2).
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Proof. Part (1) is trivial, as is (2), since each pair of consecutive undeleted vertices is at distance
at most d? + 1, and therefore adjacent. Part (3) is also trivial: the number of edges connecting any
prefix and suffix of L is at most (d? + 1)(d? + 2)/2.

Fix a γi ∈ Ci and let γi+1, . . . , γp be its ancestors in C. Recall that the terminals of γi are
contained in a single tree τ(γi) ∈ Ti. The mapping τ is not necessarily injective: one tree in Ti
could be the host for many components in Ci. Define A(γi, γj) to be a list of the terminals in V (γj)
that are adjacent to at least one vertex in V (γi), listed according to an Euler tour Euler(τ(γj)).
(Recall that the terminals in V (γj) are exactly those vertices in V (γj)∩ (Bj−1− (Bj ∪· · ·∪Bp−1)).)
Let A(γi) be the concatenation of A(γi, γi+1), . . . , A(γi, γp). We interpret elements of A(γi) as the
terminal copies of vertices in T .

Definition 4.6. The multigraph H is on the vertex set of T . For each {u, v} ∈ E, H contains an
original edge connecting the terminal copies of u and v. For each component γ ∈ C, H includes

Λ(γ)
def
= Λd?(A(γ)). Each edge in H is labeled with its provenance: either original, or the name of

a γ if it appears in Λ(γ). Note that H may contain multiple edges with the same endpoints, but
with different provenance.

Lemma 4.7 exhibits the two salient properties of Λ(γ): that it encodes useful connectivity in-
formation and that it is economical to effectively destroy Λ(γ) when it is no longer valid, often in
time sublinear in |Λ(γ)|.

Lemma 4.7. Consider a Λ(γi) ⊂ E(H).

1. Suppose d ≤ d? vertices fail, none of which are in V (γi), and suppose u and v are in compo-
nents of ancestors of γi and are each adjacent to at least one vertex in V (γi). Then u and v
remain connected in the original graph and remain connected in H.

2. Suppose the proper ancestors of γi are γi+1, . . . , γp and a total of f edges are removed from
τ(γi+1), . . . , τ(γp), breaking their Euler tours into intervals I1, . . . , Ip−i+2f . Then at most
O(d2

?(p+ f)) edges of Λ(γi) connect distinct intervals Ij , Ij′.

Proof. For Part (1), the vertices u and v are connected in the original graph because they are
each adjacent to vertices in V (γi) and, absent any failures, all vertices in V (γi) remain connected.
By Definition 4.6, u and v appear in Λ(γi) and, by Lemma 4.5, Λ(γi) remains connected after
the removal of any d vertices. Turning to Part (2), recall from Definition 4.6 that A(γi) was the
concatenation of A(γi, γi+1), . . . , A(γi, γp) and each A(γi, γi′) was ordered according to an Euler tour
of τ(γi′) ∈ Ti′ . Removing f edges from τ(γi+1), . . . , τ(γp) separates their Euler tours (and, hence,
the lists {A(γi, γi′)}i′) into at most 2f + p− i intervals. By Lemma 4.5 at most (2f + p− i) ·O(d2

?)
edges from Λ(γi) connect distinct intervals. In other words, in order to “logically” delete Λ(γi)
it suffices to delete O(d2

?(p + f)) edges from Λ(γi) since all remaining edges do not add to the
connectivity of the remaining graph.

We apply Theorem 2.1 and generate an ET-structure ET(H, T ) for H. Lemma 4.8 bounds the
space for the overall data structure.

Lemma 4.8. Given a graph G with m edges, n vertices, and a parameter d? ≥ 1, the d?-failure
connectivity oracle consists of C,ET(H, T ), and various linear-space data structures supporting
navigation around C. The space required by the oracle is O(d?m log n log logn) or O(dm log n),
depending on the 2D range searching structure used in ET(H, T ), and its construction time is
O(mn log n).
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Proof. The number of vertices in H is at most (p+ 1)n, n per Ti. (This is a pessimistic bound. We
are unable to conceive of any graph G for which this is achieved.) The number of original edges in
H is m. Each original edge contributes a vertex to at most p lists A(γ), and each member of A(γ)
contributes at most d?+1 edges to Λ(γ). The number of vertices and edges in H is therefore at most
m+(p+1)n+p(d?+1)m = O(d?m log n). By Theorem 2.1, each edge in H contributes O(log log n)
or O(1) space to ET(H, T ). Regarding construction time, by Theorem 3.3 the time to compute
(T0, B0) is O(mn log n), and more generally, the time to compute (Ti+1, Bi+1) is O(m|Bi| log |Bi|)
time, where |Bi| < n/(s− 2)i = n/2i decays geometrically with i. Thus, the total time to compute
T and C is O(mn log n).

5 Recovery From Failures

In this section we describe how, given a set of d ≤ d? failed vertices, the data structure can be
updated in time Õ(d2d2

?) such that connectivity queries can be answered in O(d) time. Section 5.1
gives the algorithm to delete failed vertices and Section 5.2 gives the query algorithm and proof of
correctness. In Section 6 we describe several ways to improve the update time to Õ(d3).

5.1 Deleting Failed Vertices

Let D ⊂ V be the set of d failed vertices.

Step 1. Begin by marking any γ ∈ C affected if V (γ) ∩D 6= ∅, and mark the corresponding tree
τ(γ) ∈ T affected as well. For each affected τ(γ), mark each D-node and its incident tree edges as
deleted. This breaks up τ(γ) into affected subtrees, which must be reconnected, if possible.

Lemma 5.1. The number of affected trees is at most d(p+ 1). The number of affected subtrees is
at most 4d(p+ 1).

Proof. By Lemma 4.3, any u ∈ D appears in at most p+1 components of C. Since all failed vertices
have degree at most s = 4 in the T trees in which they appear, there are at most 4d(p+ 1) affected
subtrees.

Recall from the discussion above that if γ is affected then V (γ) contains failed vertices and the
connectivity provided by Λ(γ) is presumed invalid. By Lemma 4.7 we can logically delete Λ(γ)
by ignoring O(d2

?) edges for each of O(pd) breaks in the list A(γ). Since there are at most O(pd)
affected (sub)trees, the number of edges that need to be ignored is O((pd)2d2

?). Let H ′ denote the
graph H with these O((pd)2d2

?) edges removed.

Step 2. We now attempt to reconnect all affected subtrees using valid edges, i.e., those in H ′. Let
R be a graph whose vertex set V (R) represents the O(pd) affected subtrees such that {t1, t2} ∈ E(R)
if t1 and t2 are connected by an edge in H ′. Using the structure ET(H, T ) (see Theorem 2.1) we
populate the edge set of R in time O(|V (R)|2q + (pd)2d2

?), where q = log log n or logε n, depending
on the space of the 2D range structure [CLP11]. For each 2D range query, we halt the enumeration
of points/edges as soon as an H ′-edge is reported. Recall that a point/edge is tagged with its prove-
nance, so we can check in O(1) time whether it came from an affected Λ(γ) and must be discarded.
Since |V (R)| = O(pd) and p < log n, the time to perform these queries is O(d2(q + d2

?) log2 n). In
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O(|E(R)|) = O((pd)2) time we determine the connected components of R.

This concludes the deletion algorithm. The running time is dominated by Step 2.

5.2 Answering a Connectivity Query

To answer a connectivity query between u and v we first check to see if there is a path between
them that avoids affected trees, then consider paths that intersect one or more affected trees.

Step 1. We first find the components in C containing u and v as terminals; let them be γ(u) and
γ(v). If γ(u) is unaffected, let γ̂(u) be the most ancestral unaffected ancestor of γ(u), and let γ̂(v)
be defined analogously. If γ̂(u), γ̂(v) exist and are equal, then V (γ̂(u)) contains u and v but no
failed vertices. If this is the case we declare u and v connected and stop.

We can find γ̂(u) and γ̂(v) in O(log p) = O(log log n) time using a binary search over the ancestors
of γ(u) and γ(v). Alternatively, we can find them in time O(log d), independent of n, using relatively
simple data structures. Fix any postordering of the nodes of C. Find the predecessor γpred and
successor γsucc of γ(u) among all components whose terminal set contains a D-vertex. There are
at most d such nodes, so the cost to find them is O(log d) via binary search. Let γlca

pred, γ
lca
succ be the

least common ancestors of γ(u) and γpred, γsucc, respectively. Without loss of generality suppose
γlca

pred is closer to γ(u). Since V (γlca
pred) ∩ D 6= ∅, γlca

pred is affected. If γlca
pred is at depth k from its

root in C, the node γ̂(u) that we are looking for is the ancestor of γ(u) at depth k + 1. Refer
to [BFC00, BFC04] for linear space data structures for least common ancestor and level ancestors.

Step 2. We now try to find vertices u′ and v′ in affected subtrees that are connected to u and
v respectively. If γ(u) is affected then u′ = u clearly suffices, so we only need to consider the
case when γ(u) is unaffected and γ̂(u) exists. Recall from Definition 4.6 that A(γ̂(u)) is the list
of terminals in proper ancestors of γ̂(u) that are adjacent to some vertex in V (γ̂(u)). We scan
A(γ̂(u)) looking for any non-failed vertex u′ adjacent to V (γ̂(u)). Since V (γ̂(u)) is unaffected, u is
connected to u′, and since all of γ̂(u)’s proper ancestors are affected, u′ must appear in an affected
subtree in T . Since there are at most d failed vertices we must inspect at most d + 1 elements of
A(γ̂(u)). This takes O(d) time to find u′ and v′, if they exist. If one or both of u′ and v′ does not
exist we declare u and v disconnected and stop.

Step 3. We have the terminal copies of u′ and v′ in T . In O
(

min
{

log logn
log log logn ,

log d
log logn

})
time we

find the affected subtrees t′1 and t′2 containing u′ and v′, respectively, via predecessor search over
the left endpoints of the Euler-tour intervals that remain after deleting D and their incident tree
edges. Note that t′1 and t′2 are vertices in R, from Step 2 of the deletion algorithm. We declare u
and v to be connected if and only if t′1 and t′2 are in the same connected component of R. This
takes O(1) time.

Lemma 5.2. The query algorithm correctly determines whether u and v are connected in G−D,
in O(d) time.

Proof. If the query algorithm halts in Step 1 it is because both u and v are in the unaffected
component γ̂(u), and since V (γ̂(u)) ∩D = ∅, all vertices in γ̂(u) are still connected. If the query
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algorithm halts in Step 2 it is because u ∈ V (γ̂(u)), v 6∈ V (γ̂(u)), and A(γ̂(u)) − D = ∅. Since
A(γ̂(u)) contains all vertices adjacent to γ̂(u) there can be no path from u to v in G−D.

At Step 3 we have discovered u′, v′ such that u is connected to u′, which appears as a terminal in
some affected subtree t′1 and similarly for v, v′, and t′2. Since t′1, t

′
2 are vertices in R, the correctness

of the query algorithm hinges on whether the graph R correctly represents the connectivity between
affected subtrees.

We first argue that if t′1 and t′2 are connected by a path in R then they are connected in G−D.
Each edge on this path is either an original edge or a Λ(γ)-edge for some unaffected γ. All original
edges not incident to D are still valid and each Λ(γ) edge can, when γ is unaffected, be replaced
by a path in G−D using intermediate nodes in V (γ).

We now argue that if P = (u′ = u0, u1, . . . , u|P | = v′) is a u′-v′ path in G−D, that there exists
a t′1-t′2 path in R. Partition P = P1P2 . . . Pω into maximal subpaths (Pi = (ua(i), . . . , ub(i))) such
that V (Pi) is either (i) contained in a single affected subtree, or (ii) contained in V (γ) for some
unaffected γ ∈ C. Observe that because of the maximality criterion, no two type-(ii) subpaths can
be adjacent. Since P1 and Pω contain u′ and v′, they must be type-(i) subpaths. We want to show
that all type-(i) subpaths are connected in R by considering how consecutive type-(i) subpaths
could be connected by valid edges in H ′. (Recall that H ′ is H after deleting all Λ(γ) edges for
affected γ ∈ C.) There are two cases to consider.

Case 1. Suppose Pi and Pi+1 are type-(i) subpaths. Then {ub(i), ua(i+1)} is an original edge in
H ′, so it or some other edge will be discovered that puts the affected subtrees of Pi and Pi+1 in the
same connected component in R.

Case 2. Suppose Pi and Pi+2 are type-(i) subpaths, but Pi+1 is a type-(ii) subpath. Let γ ∈ C be
the component for which V (Pi+1) ⊂ V (γ), so ub(i), ua(i+2) 6∈ V (γ). It must be that ub(i), ua(i+2) ∈
A(γ), and since Λ(γ) remains connected after any d vertex deletions, ub(i) and ua(i+2) are connected
by a path in Λ(γ)−D. All the Λ(γ)−D edges straddling two affected subtrees are eligible to be
discovered when populating the edge-set of R, so the affected subtrees of Pi and Pi+2 must be in
the same connected component in R.

6 Improving the Update Time

In this section we present not one, not two, but three different methods to reduce the update time
from Õ(d2d2

?) to Õ(d3). Each of the three methods uses a different, more sophisticated orthogonal
range searching structure. In Section 6.1 we show how Õ(d3) time can be achieved with a 2D colored
(aka categorical) range searching structure [LvW13]. Section 6.2 uses a 2D range counting [CW13]
data structure, and Section 6.3 uses a 3D range emptiness data structure [CLP11]. The method of
Section 6.3 was suggested to us by Shiri Chechik.

6.1 Method 1: Colored Range Searching

We use the following theorem from Larsen and van Walderveen [LvW13].

Theorem 6.1. ([LvW13]) Given a multiset P ⊂ [U ] × [U ] of n points and coloring φ : P →
N, there is a data structure occupying space O(n log n) that answers the following type of query.
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Given x, x′, y, y′, report the color set Φ = {φ(p) | p ∈ P ∩ [x, y] × [x′, y′]}. The query time is
O(log logU + |Φ|).

Assign each component γ ∈ C a distinct color φ(γ) ∈ {1, . . . , |C|}. Recall that each edge in H is
tagged with its provenance. All original edges receive color zero and all Λ(γ) edges receive color
φ(γ). Each 2D range query now returns a list of colors in the query rectangle. We halt the search
the moment it returns color 0 (an original edge), or the color of any unaffected component. Since
there are at most d(p + 1) affected components, each of the O((pd)2) 2D range queries is halted
after time O(log log n+ pd).

Using Method 1 the space of our d?-failure connectivity oracle becomes O(d?m log2 n) and the
update time becomes O((pd)3) = O(d3 log3 n).

6.2 Method 2: 2D Range Counting

We use the following theorem of JaJa, Mortensen, and Shi [JMS04].

Theorem 6.2. ([JMS04]) Given a multiset P ⊂ [U ]× [U ] of n points there is an O(n)-space data
structure answering the following type of query in O(log n/ log logn) time. Given x, x′, y, y′, report
the number k = |P ∩ [x, y]× [x′, y′]|.

Consider an affected component γi and recall that its adjacency list A(γi) is the concatenation
of A(γi, γi+1), . . . , A(γi, γp), where γi+1, . . . , γp are its ancestors in C. The 2D range queries that
are influenced by Λ(γi) involve two trees, say τ = τ(γj) and τ ′ = τ(γj′) where i < j ≤ j′ ≤ p. Each
query is the product Q = I × I ′ of an interval I ⊂ Euler(τ) and another I ′ ⊂ Euler(τ ′). Given
the indices of the first and last elements of A(γi, γj) ∩ I and A(γi, γj′) ∩ I ′, we can determine in
O(1) time how many Λ(γi) edges (points) appear in Q. Call these affected points. For each affected
component γ and each query Q to be performed by the update algorithm, we calculate the number
of affected Λ(γ) points in Q. This takes time O(pd · (pd)2) = O(d3 log3 n).

Let kQ be the total number of affected points in Q, over all affected γ. In O(log n/ log log n) time
we compute the number k of points in Q. If k = kQ then there are no unaffected points in Q, and
if k > kQ we deduce that there is an unaffected point (a valid edge connecting the two intervals).
The total time for all O((pd)2) queries is therefore O(d2 log3 n/ log log n) time. The bottleneck in
this approach is computing the set {kQ} of critical thresholds.

Using Method 2 the space of our d?-failure connectivity oracle is O(d?m log n) and the update
time is O(d3 log3 n).

6.3 Method 3: 3D Range Emptiness

We use the following theorem of Chan, Larsen, and Pǎtraşcu [CLP11].

Theorem 6.3. ([CLP11]) Given a set P ⊂ [U ]×[U ]×[U ] of n points there is an O(n log1+ε n)-space
data structure answering queries of the following type in O(log logU) time. Given x, x′, x′′, y, y′, y′′,
determine if P ∩ [x, y]× [x′, y′]× [x′′, y′′] = ∅.

List the nodes in C as {γ1, . . . , γ|C|}. Suppose that {u, v} is an original edge in H and τu, τv are
the trees in T containing the terminal copies of u and v, where u appears at position i in Euler(τu)
and v appears at position j of Euler(τv). Rather than map {u, v} to the point (i, j) in the 2D
structure of ET(H, T ) we map it to the 3D point (i, j, 0). If {u, v} is an edge of Λ(γk) we map it
to the point (i, j, k).
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Let (γk1 , γk2 , . . . , γkd(p+1)
) be the affected components and Q be a 2D query performed by the

update algorithm. We are interested in knowing whether there is a point whose first two coordi-
nates are in Q and whose third coordinate is not a member of {k1, . . . , kd(p+1)}. Thus the 2D query
Q can be reduced to d(p + 1) 3D emptiness queries Q × [0, k1), Q × (k1, k2), and so on. Each 3D
query is answered in O(log log n) time, so the total update time is O(d3 log3 n log log n).

With the current state-of-the-art range searching data structures [CLP11, CW13, JMS04, LvW13],
Method 2 is always strictly superior to Methods 1 and 3 in update time or space or both. Method
2 also leaves the most room for improvement since the bottleneck is not range counting queries per
se, but computing the critical thresholds {kQ} for the queries.

7 A Monte Carlo Connectivity Oracle

In the extended abstract [DP17] of this work, we claimed a Monte Carlo d?-failure connectivity
oracle with near optimum space Õ(m), update time Õ(d2), and query time O(d). The data structure
described in [DP17, §7] functions correctly, but occupies space Ω(d?m), not Õ(m).7 In this section
we present the first Monte Carlo connectivity oracle that achieves the claimed specifications of
[DP17, §7]. Our data structure is inspired by the graph sketching techniques of Ahn et al. [AGM12]
and Kapron et al. [KKM13], but applies the ideas differently. In particular, by using vertex-
sampling rather than edge-sampling, we show that it is possible to form sketches of complete
bipartite subgraphs “on the fly” using minimal storage.

Let us first take one step back and discuss why achieving near-linear space is difficult. Recall
from Section 4 that A(γ) is a list of all vertices adjacent to the component γ, and D is the
set of failed vertices. So long as γ suffers no vertex failures, we want the subgraph induced by
A(γ)−D to remain connected. On the other hand, if γ does suffer a vertex failure, we want to be
able to efficiently dispose of any suspect edges induced by A(γ). Adding the d?-adjacency edges
Λd?(A(γ)) solved both problems, but with some significant losses in efficiency. The space required
to store Λd?(A(γ)) is Ω(d? · |A(γ)|), and in order to ignore suspect edges, the update times for our
deterministic solutions are Ω(d3). It seems very difficult to avoid an Ω(d?) factor overhead in space.
Indeed, if |A(γ)| = d+ 2 and all but 2 random elements of A(γ) fail, we want to be able to quickly
determine that those last two elements are still connected. In this situation, is it possible to avoid
storing a clique on A(γ)?

By introducing Monte Carlo randomness, we are able to save both space and time simultaneously.
The high-level ideas are as follows.

• Rather than use a d?-adjacency list Λd?(A(γ)) to maintain connectivity information within
A(γ), we pick a random subset B(γ) ⊆ A(γ) and represent the complete bipartite graph
A(γ) × B(γ).8 The total number of edges in the multigraph, over all γ (i.e.,

∑
γ |A(γ) ×

B(γ)|) could be quite large. One property of our graph sketch is that the space is actually
proportional to the number of distinct edges in

⋃
γ A(γ) × B(γ), not counting multiplicity,

which is just Õ(m).

7After showing that a certain data structure S[τ, τ ′] occupies O(m log4 n) space, we stated [DP17, p. 505] “By a
similar analysis, the space for S[v, τ ] and S[γ, τ ] are also upper bounded by O(m log4 n).” Unfortunately, we see no
way to store S[v, τ ] in less than Õ(d?m) space.

8Throughout this section we abusively write A×B to be the set of undirected edges {u, v} with u ∈ A, v ∈ B.
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• Observe that a complete bipartite graph A(γ) × B(γ) preserves the connectivity on A(γ) iff
B(γ) − D 6= ∅, i.e., if at least one non-failed vertex is (randomly) selected for inclusion in
B(γ). In some situations we can guarantee that this property holds, w.h.p. For example, if
|A(γ)| ≥ 2|D| and Ω(log n) vertices are included in B(γ) then w.h.p. one vertex in A(γ)−D
is included in B(γ). However, in general it is impossible to guarantee this property w.h.p.,
short of setting B(γ) = A(γ). Our solution depends on a particular accounting scheme used
in choosing the B(·) sets. We process the components γ1, . . . , γ|C| in an arbitrary sequential
order. When it is γj ’s turn we examine the subgraph induced by A(γj) and choose |B(γj)| such
that the expected number of new edges contributed by A(γj) × B(γj) is Õ(|A(γj)|). Every
time a new edge is added we label it with its owner “γj .” These labels are not simply used
for accounting. We prove that for any failed set D, at least one of the following two events
occurs, w.h.p., (i) either B(γj) −D 6= ∅ (and connectivity information via γ is maintained),
or (ii) at least |A(γj)| pairs in

(
D
2

)
are owned by γj . Event (ii) is a happy outcome because

it reveals a small number of components whose connectivity information was not maintained
as in (i), and those components can be processed separately in O(|D|2) total time.

• When γ suffers a vertex failure, the entire bipartite graph contributed by γ, namely A(γ) ×
B(γ) is suspect. Our sketch has the property that complete bipartite subgraphs of A(γ)×B(γ)
can be efficiently generated by a data structure occupying space Õ(|A(γ)| + |B(γ)|) rather
than O(|A(γ)| · |B(γ)|). Thus, it is efficient to subtract from all relevant graph sketches the
contribution of edges from affected components.

Organization of Section 7. In Section 7.1 we show how the B-sets are chosen and analyze their
properties. In Section 7.2 we introduce two sketches. Original graph edges are sketched exactly
as in Kapron et al. [KKM13], but “artificial” edges in A(γ) × B(γ) are sketched in a new way.
The total size of all sketches and their attendant data structures is O(m log6 n). In Section 7.3
we show how to handle a batch of d vertex failures in O(d2 log6 n) time, and subsequently answer
connectivity queries in O(d) time. In Section 7.4 we observe that it is often unnecessary to explicit
form complete graph sketches. This allows us to reduce the update time of the best d-edge failure
oracles [PT07a, KKM13, GKKT15, DP10] to O(d log d log log n) expected time, and reduce the
update time of Section 7.3 to O(d2 log d log2 n log log n) expected time.

7.1 The B-sets and Their Properties

Recall that the “artificial” edges associated with γ ∈ C will be a complete bipartite graph A(γ)×
B(γ). The algorithm for generating B(γ) ⊆ A(γ) is as follows. Choose an arbitrary order γ1, . . . , γ|C|
of the components. Each pair {u, v} ∈

(
V
2

)
(regardless of whether it is in E or not) is initially

unlabeled, and may become labeled as we proceed. After B(γ1), . . . , B(γj−1) have been selected we

consider the pairs on elements of A(γj). Let n′ = |A(γj)| and let m′ ∈ [0,
(
n′

2

)
] be the number of

unlabeled pairs in
(A(γj)

2

)
. The set B(γj) is selected by sampling each vertex in A(γj) independently

with probability min{1, n′·c lnn
m′ }, where c is a sufficiently large constant that controls the error

probability n−Ω(c). Every unlabeled pair in the set {{u, v} | u ∈ A(γj), v ∈ B(γj)} is now owned
by γj and labeled “γj .”

Lemma 7.1. For each γ ∈ C, O(|A(γ)| log n) pairs are labeled “γ” in expectation. The total number
of pairs in

⋃
γ A(γ)×B(γ) is O(m log2 n) in expectation.
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Proof. The probability that an unlabeled pair {u, v} with u, v ∈ A(γ) is labeled “γ” is exactly the
probability that either u or v (or both) is selected for inclusion in B(γ). Recalling the definitions of
n′ and m′, the number of edges labeled γ is, by linear of expectation, at most m′ · (2n′ · c lnn)/m′ =
O(|A(γ)| log n).

Every pair {u, v} ∈
⋃
γ A(γ) × B(γ) must be owned by some component. By the first part of

the lemma, ∣∣∣∣∣⋃
γ

A(γ)×B(γ)

∣∣∣∣∣ ≤ ∑
γ

O(|A(γ)| log n) = O(m log2 n).

The last equality holds because each edge contributes one element to at most p < log n A(·)-lists.

By design, the B-sets are chosen to keep the total number of owned pairs Õ(m). Lemma 7.2
indicates why this method of choosing B-sets is useful when vertices fail.

Lemma 7.2. Fix any γ and any set D of (failed) vertices such that A(γ)−D 6= ∅. With probability
1− n−Ω(c), one of the following two events occurs.

1. B(γ)−D 6= ∅.

2. The number of pairs in
(
D
2

)
owned by γ is at least |A(γ)|.

Proof. Consider the moment in the algorithm just before B(γ) is selected, and let n′,m′ be defined
as usual. We consider two possible scenarios, depending on how many of the m′ pairs are completely
contained in D or straddle/lie outside of D.

Case I. At leastm′/2 of the unlabeled pairs contain at least one vertex in A(γ)−D. There must be
at least (m′/2)/n′ vertices inA(γ)−D, and each one is sampled with probability min{1, cn′ lnn/m′}.
The probability that some vertex in A(γ)−D is sampled into B(γ) is

1−
(

1−min

{
1,
cn′ lnn

m′

}) m′
2n′

> 1− n−c/2,

in which case part (1) of the lemma holds.

Case II. At least m′/2 of the unlabeled pairs are contained in
(
D
2

)
. We can assume without loss

of generality that m′ ≥ cn′ lnn for otherwise B(γ) = A(γ) and part (1) of the lemma is already
satisfied. Assign each unlabeled pair in

(
D
2

)
to one of its endpoints, and let deg′(v) be the number of

pairs assigned to v, so
∑

v deg′(v) = m′/2. Partition the vertices into blog n′c+1 classes where class
i contains those vertices for which deg′(v) ∈ [2i, 2i+1). Let the sum of degrees in class i be εi(m

′/2),
i.e.,

∑
i εi = 1. The number of vertices in class i is at least εim

′/2i+2 since each accounts for at
most 2i+1 distinct edges. The expected number of vertices in class i included in B(γ) is therefore
at least εicn

′ lnn/2i+2, and by a Chernoff bound, the probability that at least half the expected
number are sampled is 1− exp(−εicn′ lnn/2i+5). If so, this contributes at least εicn

′ lnn/25 pairs
owned by γ. Call a class i good if εicn

′ lnn/2i+5 ≥ (c/27) lnn, or equivalently, if εi ≥ 2i−2/n′.

The fraction of pairs contributed by bad classes is at most
∑blogn′c

i=0 2i−2/n′ < 1/2. Thus, with
probability 1 − n−Ω(c), the number of unlabeled pairs in

(
D
2

)
that are covered by B(γ)-vertices in

good classes (which become owned by γ) is at least (1/2) · cn′ lnn/25 > n′. This satisfies part (2)
of the lemma.
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Remark 7.3. The proof of Case II of Lemma 7.2 is necessarily ad hoc. We are trying to lower bound
a sum X = X1 + · · ·+Xk of independent random variables, which seems to be well suited to some
variant of the Azuma-Hoeffding inequality [DP09b]. However, in our case E[X] is small, but the
variances V [Xi] large. In this regime the standard concentration bounds do not offer strong enough
guarantees.

7.2 Graph Sketches

We use the graph sketch of Kapron et al. [KKM13, GKKT15, Wan15] to store original edges, but
develop a new sketch for artificial edges of the form A(γ)× B(γ). It is convenient to re-name the
vertex ids in {1, . . . , n}. For each τ ∈ T , the ids of the terminals in V (τ) occupy a contiguous
interval of [1, n], and moreover, their ids are consistent with the ordering of Euler(τ).

7.2.1 Sketching Original Edges

An edge e = {u, v} is represented by the bit string 〈e〉 = 〈min{u, v},max{u, v}〉. For i ∈
[0, logm), j ∈ [1, c log n), the edge sets E = E0,j ⊇ E1,j ⊇ · · · ⊇ Elogm−1,j are generated such
that all edges are sampled for inclusion in Ei,j independently with probability 2−i. The sketch ΥE′

for an edge set E′ ⊆ E is a logm× c log n matrix in which

ΥE′(i, j) =
⊕

e∈E′∩Ei,j

〈e〉 .

I.e., the (i, j)th entry contains the bit-wise XOR of all edge names in E′ ∩ Ei,j . Clearly sketches
are additive: for any E′, E′′, ΥE′⊕E′′ = ΥE′ ⊕ΥE′′ . Lemma 7.4 illustrates why this sketch is useful
for quickly finding edges crossing cuts.

Lemma 7.4. Define Eu to be the edges incident to u. For any subset S ⊂ V , define Υ =
⊕

u∈S ΥEu

to be the component-wise XOR of all ΥEu sketches. For each j, there exists some i, such that with
constant probability Υ(i, j) is the name of some edge crossing the cut (S, V − S).

Proof. Edges with two endpoints in S contribute nothing to Υ since 〈e〉 ⊕ 〈e〉 = 〈0〉. Let i be
such that the number of edges crossing the cut is between 2i and 2i+1 − 1. Then with constant
probability, exactly one such edge is sampled for inclusion in Ei,j .

When a batch D of vertices fail we get a set {tl} of O(|D| log n) affected subtrees. For each tl, we
need to be able to obtain a sketch of all edges {u, v} where u ∈ tl, v ∈ tl′ , l′ 6= l. The data structures
V and C report sketches of edges incident to one vertex and one component, respectively.

C (γ, I) : The input is a component γ ∈ C and an interval I of some Euler(τ), where τ could be
equal to τ(γ). Define Eu,γ to be the original edges joining u to the terminals of V (γ). Report
the sketch Υ =

⊕
u∈I ΥEu,γ .

V (v, I) : The input is a vertex v and an interval I of some Euler(τ). Let Ev,I be the original edges
joining v to the terminals in I. Report the sketch ΥEv,I .

Lemma 7.5. The structures V ,C occupy O(m log2 n) space and answer queries in O(log2 n) time.
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Proof. First consider a fixed v ∈ V (γ). Let Lv = (v1, . . . , vdeg(v)) be a list of v’s neighbors, in
increasing order of vertex id. By how we chose the vertex id assignment, any interval I of some
Euler(τ) corresponds to an interval of Lv. Let Υr be the sketch for the single edge {v, vr}. In
O(deg(v) log2 n) space we store all prefix sums (α1, . . . , αdeg(v)), where αk =

⊕
r≤k Υr. To answer

a query V (v, I), we simply need to identify the sublist of (v1, . . . , vdeg(v)) covered by interval I, say

it is (vk, . . . , vl), and report αl ⊕ αk−1 in O(log2 n) time.
We now turn to C . As before, let Lγ = (v1, v2, . . .) be a list of all neighbors of terminals in V (γ),

listed in increasing order of vertex id, let Υr be the sample matrix for Evr,γ , and let βk =
⊕

r≤k Υr.
Suppose the query is C (γ, I). We do a binary search to find the sublist of (v1, v2, . . .) covered by
I, then report the interval-sum in O(log2 n) time by XORing two β-sketches.

Each original edge {u, v} may contribute two O(log2 n)-size sketches to V and C . The total
space is therefore O(m log2 n).

7.2.2 Sketching Artificial Edges

Artificial edges are encoded differently than original edges. Let e = {u, v} be an artificial edge
in A(γ) × B(γ). The encoding 〈e〉 = 〈u, v, γ〉 puts u ∈ A(γ) before v ∈ B(γ), and includes the
provenance identifier γ.9 Given a bit-string 〈u, v, γ〉, we can easily verify whether it corresponds to
a legitimate edge by checking whether u ∈ A(γ), v ∈ B(γ).

The sketches for artificial edges are obtained via vertex sampling rather than edge sampling. For
i ∈ [0, log n), and j ∈ [1, c log n], we choose sets Ai,j , Bi,j , Ci,j such that

V = A0,j ⊇ A1,j ⊇ · · · ⊇ Alogn−1,j ,

V = B0,j ⊇ B1,j ⊇ · · · ⊇ Blogn−1,j ,

C = C0,j ⊇ C1,j ⊇ · · · ⊇ Clogn−1,j .

Each γ ∈ C is included in Ci,j independently with probability 2−i. Similarly, each u ∈ V is included
in Ai,j and Bi,j independently with probability 2−i. Define Eia,ib,ic,j to be the edge set

Eia,ib,ic,j = {〈u, v, γ〉 | u ∈ Aia,j , v ∈ Bib,j , γ ∈ Cic,j}.

Let Ê = E0,0,0,· be the union of all edges contained in A(γ)×B(γ) over all γ ∈ C.10 The sketch

of E′ ⊂ Ê is a 4-dimensional matrix Υ̂E′ , where

Υ̂E′(ia, ib, ic, j) =
⊕

e∈E′∩Eia,ib,ic,j

〈e〉 .

Lemma 7.6 is the analogue of Lemma 7.4 for vertex-sampled sketches.

Lemma 7.6. Let Eu be the edges adjacent to u in Ê, and Υ̂Eu be the sketch for Eu. Suppose that
for S ⊂ V , the cut (S, V − S) is non-empty, and let Υ̂ =

⊕
u∈S Υ̂Eu be the component-wise XOR

of the sketches of S-vertices. For each j, with constant probability there exists ia, ib, ic such that
Υ̂(ia, ib, ic, j) is the name of some edge crossing the cut (S, V − S).

9Here “γ” refers to a logn-bit identifier for the component γ.
10Because each edge in A(γ)× B(γ) is tagged with its provenance γ, edges with the same endpoints but different

provenances are distinguishable edges. Thus, we usually think of Ê as a set rather than a multiset.
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Proof. In contrast to the proof of Lemma 7.4, there is not necessarily a specific triple (ia, ib, ic)
that satisfies the lemma; we only claim that one of the O(log3 n) triples will work, with constant
probability. Let C ⊆ C be the subset of components such that for each γ ∈ C, some edge of
A(γ) × B(γ) crosses the cut. With constant probability, |Cic,j ∩ C| = 1, where ic = blog |C|c.
Suppose that γ ∈ C is the component isolated by Cic,j . Let A′ ⊆ A(γ) be the subset of vertices
adjacent to edges with provenance γ crossing the cut. Note that A′ may include vertices on both
sides of the cut. With constant probability |Aia,j ∩ A′| = 1, where ia = blog |A′|c. Let va ∈ A′ be
the vertex isolated by Aia,j , and let B′ ⊆ B(γ) be the neighbors of va on the other side of the cut.
With constant probability |Bib,j ∩ B′| = 1, where ib = blog |B′|c, isolating some vertex vb ∈ B′.

Thus, in this case Υ̂(ia, ib, ic, j) = 〈va, vb, γ〉 is the name of an edge crossing the cut.

The structures Ĉ and V̂ are analogues of C and V , but report sketches of edges in Ê. The
structure B̂ is new, and is used to efficiently generate sketches of complete bipartite subgraphs of
A(γ)×B(γ) on the fly.

Ĉ (γ, I) : The input is a component γ ∈ C and interval I of some Euler(τ). Define Eu,γ to be the

Ê-edges joining u to the terminals of V (γ). Report the sketch Υ̂ =
⊕

u∈I Υ̂Eu,γ .

V̂ (v, I) : The input is a vertex v and interval I of some Euler(τ). Let Ev,I be the Ê edges joining

v to terminals in I. Report the sketch Υ̂Ev,I .

B̂(γ, I,D) : The input is a component γ, an interval I ⊆ A(γ), and a set D of failed vertices such
that I ∩ D = ∅. Let EI,D = I × (B(γ) − D) ⊕ (A(γ) − D) × (I ∩ B(γ)) be the subset of
provenance-γ edges in (A(γ)−D)× (B(γ)−D) crossing the cut (I, A(γ)− I); see Figure 5.
Report the sketch matrix Υ̂EI,D .

Lemma 7.7. The structures V̂ , Ĉ , and B̂ occupy O(m log6 n) space. The query time for V̂ and
Ĉ is O(log4 n), whereas the query time of B̂ is O(|D| log2 n+ log4 n).

Proof. The implementation of V̂ (v, I) is exactly like V (v, I), except that Υ̂r occupies O(log4 n)
space, and is the sketch for all edges joining v and vr (with different provenances). According to
Lemma 7.1, the number of edges in Ê (ignoring multiplicity) is O(m log2 n). Thus, the space for
V̂ is O(m log6 n). The query time is still linear in the sketch size: O(log4 n).

The implementation of Ĉ (γ, I) is also similar to C (γ, I), with a O(log4 n) query time. We now
analyze its space. Let γ be a component and v be a neighbor of γ that is a terminal in V (γ′).
Each such pair (v, γ) contributes O(log4 n) space to Ĉ . We consider the pairs when γ′ � γ and
γ′ � γ separately. There are at most O(pn) pairs (v, γ) when γ′ � γ since v has at most p ancestral
components, so the contribution of these is O(pn log4 n) = O(n log5 n). Now suppose γ′ � γ. Let u
be some vertex in V (γ) adjacent to v, and let γ′′ be the provenance of the edge {u, v}. It must be
that γ′′ ≺ γ is a strict descendant of γ, and that both u, v ∈ A(γ′′). This also implies that v ∈ A(γ),
hence the contribution of all pairs (v, γ) when γ′ � γ is O(|A(γ)| log4 n), which is O(m log5 n) over
all γ.

We now turn to the new structure that answers the query B̂(γ, I,D). Let Υ̂0 be the sketch for
I × (B(γ) −D) and Υ̂1 be the sketch for (A(γ) −D) × (I ∩ B(γ)). The output sketch is exactly
Υ̂0⊕ Υ̂1. We focus on the computation of Υ̂0; computing Υ̂1 is symmetric. Figure 5(a,b) illustrate
Υ̂0 and Υ̂1 respectively.

25



(a) (b)

Figure 5: (a) The complete bipartite graph I × (B(γ) − D) sketched by Υ̂0, (b) The complete
bipartite graph (I ∩ B(γ)) × (A(γ) −D) sketched by Υ̂1. Note that in Υ̂ = Υ̂0 ⊕ Υ̂1, edges with
both endpoints in I are included twice, and cancel each other out.

If γ 6∈ Cic,j then Υ̂0(ia, ib, ic, j) = 〈0〉. Otherwise, define A′ = I ∩Aia,j and B′ = B(γ)∩Bib,j−D.
Then

Υ̂0(ia, ib, ic, j) =

〈(⊕
u∈A′
〈u〉

)|B′|
,

(⊕
v∈B′
〈v〉

)|A′|
, 〈γ〉|A

′|·|B′|

〉

where xk is short for

k︷ ︸︸ ︷
x⊕ · · · ⊕ x. Note that to compute this entry of Υ̂0, we only need to be able

to compute the parities of |A′| and |B′|, and the sums
⊕

u∈A′ 〈u〉 and
⊕

v∈B′ 〈v〉.
Let A(γ) = (u1, . . . , u|A(γ)|) and B(γ) = (v1, . . . , v|B(γ)|). We store parity prefix sum matrices

(σk)k∈[1,|A(γ)|] and (σ′k)k∈[1,|B(γ)|] and name prefix sum matrices (ρk)k∈[1,|A(γ)|], and (ρ′k)k∈[1,|B(γ)|],
where

σk(ia, j) = |{u1, . . . , uk} ∩Aia,j | mod 2

σ′k(ib, j) = |{v1, . . . , vk} ∩Bib,j | mod 2

ρk(ia, j) =
⊕

k′∈[1,k]:uk′∈Aia,j

〈uk′〉

ρ′k(ib, j) =
⊕

k′∈[1,k]:vk′∈Bib,j

〈vk′〉

Suppose I = (uk, . . . , ul) is the query interval. First compute the parity matrices σ = σl ⊕ σk−1

and σ′ = σ′|B(γ)| in O(log2 n) time, and then compute σ′′ in O(|D| log2 n) time, where σ′′(ib, j) =

|D ∩Bib,j | mod 2. Next compute name matrices ρ = ρl ⊕ ρk−1 and ρ′ = ρ′|B(γ)| in O(log2 n) time,

and ρ′′ in O(|D| log2 n) time, where ρ′′(ib, j) =
⊕

v∈D∩Bib,j
〈v〉. One may easily verify that σ, ρ are

the correct parity and name matrices for I, and that σ′ ⊕ σ′′, ρ′ ⊕ ρ′′ are the correct parity and
name matrices for B(γ)−D. Each entry of the output matrix Υ̂0 is then computed in O(1) time
as follows:

Υ̂0(ia, ib, ic, j)

=

{
〈0〉 if γ 6∈ Cic,j〈

(ρ(ia, j))
σ′(ib,j)+σ

′′(ib,j), (ρ′(ib, j)⊕ ρ′′(ib, j))σ(ia,j), 〈γ〉σ(ia,j)·(σ′(ib,j)+σ′′(ib,j))
〉

otherwise

The overall time to compute Υ̂0 is therefore O(|D| log2 n+ log4 n).
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Remark 7.8. Observe that in the proof of Lemma 7.7, the matrices σ′′, ρ′′ depended only on D,
not I. Thus, once they are computed we can answer a query for a different triple (γ, I ′, D) in just
O(log4 n) time. This fact will be used in Sections 7.3 and 7.4.

7.3 Update and Query Algorithms

At a high level, the deletion algorithm has four major steps.

1. The first task is to mark up to (p + 1)d ≤ d log n components γ1, . . . , γ(p+1)d as affected, as
well as the corresponding trees τ1, . . . , τ(p+1)d. (Because the component-to-tree mapping is
not injective, the number of distinct trees may be smaller.) We mark all tree edges incident
to D as deleted, which breaks up Euler(τ1), . . . ,Euler(τpd) into O(pd) intervals, call them
I1, . . . , IO(pd), with the property that each affected subtree (i.e., those in τ1−D, . . . , τ(p+1)d−
D) is the union of some subset of the intervals.

2. The next task is to generate two sketches Υ[Iq], Υ̂[Iq] for each interval representing valid edges

in E and Ê, respectively, joining Iq to another interval. In other words, we do not want to
consider original or artificial edges adjacent to D, nor invalid artificial edges with provenance
γ for some affected γ, nor valid artificial edges joining Iq to an unaffected tree in T . The

structures V ,C , V̂ , Ĉ , B̂ are used to build these sketches.

3. Let t1, . . . , tO(pd) be the affected subtrees. We form the sketches Υ[tq] and Υ̂[tq] for each tree,
by XORing the sketches of the constituent intervals of tq. According to Lemmas 7.4 and 7.6,
these sketches reveal one edge crossing the cut defined by V (tq), with constant probability.
We can implement a probabilistic version of Bor̊uvka’s algorithm in order to compute the
connected components among the affected subtrees. The jth Bor̊uvka step only examines
parts of the sketch with matching j-coordinate. Using “fresh” randomness for each Bor̊uvka
step is essential for showing the procedure succeeds w.h.p.

4. Lastly, we must account for any unaffected components γ ∈ C that were unlucky enough to
see all vertices in B(γ) fail. According to Lemma 7.2, at least |A(γ)| of the pairs in

(
D
2

)
are

owned by γ, w.h.p. We scan all
(|D|

2

)
labels, tallying up how many times each owner label

occurs. Any owner label γ that appears |A(γ)| times might provide additional connectivity
not captured by the components discovered at the end of step 3. We merge any connected
components from step 3 that contain at least one A(γ) vertex. This takes O(|A(γ)|) time to
process γ, and hence O(d2) time overall.

7.3.1 Generating sketches

We show how to generate Υ̂[Iq]. The process for Υ[Iq] is analogous, but simpler and faster. For each

z ≤ (p+ 1)d, consult with Ĉ to get a sketch Υ̂(γz, Iq) covering edges in Ê joining Iq to terminals in
V (γz). These sketches include two types of edges we must subtract off (i) those incident to D, and
(ii) those with provenance γ for some affected γ.11 For each v ∈ D, consult with V̂ to get a sketch
Υ̂(v, Iq) covering edges in Ê joining Iq to v. These sketches cover type (i) bad edges. Suppose I is
an interval containing terminals of V (γy). For each z ≤ (p + 1)d, if γz ≺ γy is a strict descendant

11Note that the intersection of (i) and (ii) is generally non-empty, so it is not sufficient to subtract off (i) and (ii)
separately as this will inadvertently add back edges in (i) ∩ (ii).
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of γy, consult B̂ to get a sketch Υ̂(γz, Iq, D). This covers all remaining edges with provenance γz
not already covered by {Υ̂(v, Iq)}v∈D. Finally, we compute Υ̂[Iq] by combining these sketches.

Υ̂[Iq] =

 ⊕
z≤(p+1)d

Υ̂(γz, Iq)

⊕(⊕
v∈D

Υ̂(v, Iq)

)
⊕

 ⊕
z≤(p+1)d

Υ̂(γz, Iq, D)


For the time analysis, recall that there are O(pd) affected components, O(pd) affected subtrees,

and O(pd) relevant Euler tour intervals. By Lemma 7.7, the time to compute all Υ̂(γz, Iq) sketches

is O((pd)2 log4 n) = O(d2 log6 n), and the time to compute Υ̂(v, Iq) sketches O(pd2 log4 n) =

O(d2 log5 n). By Lemma 7.7 and Remark 7.8, the time to compute all Υ̂(γz, Iq, D) sketches is
O((pd)d log2 n+ (pd)2 log4 n) = O(d2 log6 n).

7.3.2 Executing Bor̊uvka’s algorithm

Once the sketches for each interval are generated we can combine them to form sketches Υ[tl], Υ̂[tl]
for each affected subtree tl.

We proceed as in Bor̊uvka’s MST algorithm [Bor26] and many parallel connectivity algorithms
that use the “hook and contract” technique [CHL01, CL95, JM97, PR02]. In each round, each
affected subtree will pick an arbitrary edge joining it to a different affected subtree. The affected
subtrees will be merged into larger affected subtrees, which participate in the next round. Under
error-free conditions—which we do not have—this process will halt after log2(O(dp)) rounds since
each round reduces the number of non-isolated affected subtrees by at least half.

The formal procedure is as follows. Let Cj−1 = {tj−1,1, tj−1,2, . . . , tj−1,|Cj−1|} be the affected
trees after j − 1 rounds, where C0 = {t0,1, . . . , t0,O(dp)}. We maintain the invariant that we have,

for each tj−1,l, sketches Υ[tj−1,l], Υ̂[tj−1,l] covering original and artificial edges joining tj−1,l to a
different tree. In the jth round, loop over each tj−1,l ∈ Cj−1 and look for the name of any valid orig-

inal/artificial edge in the log n entries of Υ[tj−1,l](?, j) and the log3 n entries of Υ̂[tj−1,l](?, ?, ?, j).
Such an edge ej−1,l, if it exists, has one endpoint in V (tj−1,l). Let Cj be the components induced
by the Cj−1 trees and the inter-tree edges {ej−1,l} just selected. Suppose the constituent trees
of some tj,r ∈ Cj are S ⊆ Cj−1. The sketches for tj,r are computed as Υ[tj,r] =

⊕
t∈S Υ[t] and

Υ̂[tj,r] =
⊕

t∈S Υ̂[t]. The total time to compute sketches for Cj is just O((|Cj−1| − |Cj |) log4 n).
Observe that just before executing the jth round we have only examined sketch entries whose

final coordinate is in {1, . . . , j − 1}. Hence, the contents of the sketches with final coordinate j
reflect “fresh” randomness, and we can apply Lemmas 7.4 and 7.6. If there exists at least one edge
crossing the cut defined by tj−1,l, then with constant probability, either Υ[tj−1,l] or Υ̂[tj−1,l] will
reveal the name of one such edge. Letting ‖Ck‖ denote the number of non-isolated components in
Ck, we have E[‖Cj‖] ≤ (1− ε)‖Cj−1‖ for some absolute constant ε > 0. Thus, after c log n rounds
E[‖Cc logn‖] ≤ (1 − ε)c logn‖C0‖ < n−Ω(c) and by Markov’s inequality, the probability that Cc logn

has non-isolated components (an error) is n−Ω(c).

7.3.3 Recapitulation

The high level update algorithm in Section 7.3 was divided into four major steps. Step 1 (marking
affected components and subtrees, enumerating relevant intervals) takes O(d log n) time. Step 2
(generating sketches) takes O(d2 log6 n) time. Step 3 (Bor̊uvka’s algorithm) takes time linear in the
sum of the sketches: O(d log4 n). Finally, Step 4 (processing γ with B(γ) ⊆ D) takes O(d2) time.
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Observe that due to the probabilistic nature of Lemmas 7.2, 7.4, and 7.6, Steps 3 and 4 can have
both detected and undetected errors, with probability n−Ω(c).12

The final output of this algorithm (a partition of the affected subtrees into connected components)
is exactly the same as in the deterministic algorithms of Sections 4–6. Thus, the same deterministic
query algorithm works in O(d) time. In the next section we shall see some general methods to shave
poly(log n)-factors off some algorithms that use graph sketches.

7.4 Improving Update Times with On-demand Sketching

Recall that existing d-edge failure connectivity oracles have update times that are linear in d
but have poly(logn) factors (O(d log2 n log log n) [PT07a] or O(d log d log3 n) [KKM13]) or have a
quadratic dependence on d, but better dependence on n, namely O(d2 log logn) [DP10]. In this
section we show how to improve all of these bounds and use sublinear space, as in [GKKT15].

Theorem 7.9. A connectivity oracle for G = (V,E) with size O(n log2 n) can be constructed in
O(m log n+n log2 n) time. Any set D ⊆ E(G) of d edges can be processed in O(d log d log log n) time
in expectation (and O(d log n log logn) time w.h.p.) such that connectivity queries in (V,E−D) can
be answered in O(min{log logn, log d/ log logn}) time. With high probability, the query is answered
correctly.

Proof. Because the space is sublinear in n we cannot afford to store the graph, nor can we explicitly
record for each edge which samples it appears in. Assume the initial vertex ids are {1, . . . , n}. We
assign u the bit-string φ(u), where φ : {1, . . . , n} → {0, 1}c logn is a uniformly random injective
function. The encoding of an edge e = {u, v} is 〈e〉 = 〈min{φ(u), φ(v)},max{φ(u), φ(v)}〉.

Sketching. We use hash functions to decide whether to include edges in sampled sets. Choose
pairwise independent hash functions h1, . . . , hc logn : {0, 1}2 logn → {0, . . . , 2w − 1}, and for each
i ∈ [0, logm) and j ∈ [1, c log n], let Ei,j be the edge set

Ei,j = {e ∈ E | hj(e) ∈ [0, 2w−i)}

The sketch ΥE′ is a logm× c log n matrix defined exactly as before. Pairwise independence suffices
to guarantee the claim of Lemma 7.4, that for any set E′ ⊂ E and any j, there exists an i such
that with constant probability, ΥE′(i, j) is the name of one edge in E′. (See [GKKT15, Appendix
A]) for a short proof.) Moreover, since E = E0,j ⊇ · · · ⊇ Elogm−1,j , the right value of i is, with
high probability, the unique value for which ΥE′(i, j) 6= 〈0〉 and ΥE′(i+ 1, j) = 〈0〉. We also need
to be able to tell that a bit string ΥE′(i, j) encodes an edge rather than garbage. Since φ assigns
random c log n-bit strings, the XOR of multiple edge names is a random 2c log n-bit string. Thus,
the probability that a garbage string looks like an legitimate edge name is n−2(c−1).

The Construction. At preprocessing time, choose an arbitrary spanning tree T ⊆ E(G), and
an arbitrary tour Euler(T ) = (v1, . . . , vn). Initialize sketch matrices Υv1 , . . . ,Υvn to be all zero.
For each e = (vk, vl) ∈ E(G), evaluate h1(e), . . . , hc logn(e) to determine which sets Ei,j contain
e. If e ∈ Ei,j , update Υvk(i, j) ← Υvk(i, j) ⊕ 〈e〉 and likewise with Υvl(i, j). Finally, compute all

12One undetected error that has nothing to do with sketching is if B(γ) ⊆ D, but γ is not processed in Step 4.

An undetected sketch failure occurs if tj,l is not an isolated tree, but nonetheless Υ[tj,l] and Υ̂[tj,l] are the all-zero
matrices. A detected error would be if Υ[tc logn+1,l] or Υ[tc logn+1,l] were not the all-zero matrices, indicating that
c logn Bor̊uvka steps failed to detect all connected components.
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prefix sum sketches (µ1, . . . , µn), where µk =
⊕

k′≤k Υvk′ . The data structure stores T,Euler(T ),

and (µk). The space is dominated by (µk), which takes O(n log2 n) words. The construction time
is O(m log n+n log2 n) in expectation. Observe that each edge causes just O(c log n) entries of the
sketches to be updated, in expectation, and that computing (µk) takes O(n log2 n) time once the
(Υvk) are computed.

Handling Edge Failures. Suppose a subset D ⊆ E(G) of edges are deleted.13 Removing D
partitions Euler(T ) into a set of 2|D ∩ T | + 1 intervals, call them I. For each interval I ∈ I,
suppose it is {vp, . . . , vq}, we compute its initial sketch Υ[I] ← µq ⊕ µp−1, then proceed to delete
D from the sketches. For each e = (vk, vl) ∈ D, find the intervals I, I ′ ∈ I containing vk, vl
respectively, and for each Ei,j 3 e, update Υ[I](i, j) ← Υ[I](i, j) ⊕ 〈e〉 and update Υ[I ′] likewise.
Once we have sketches for all intervals, we execute Bor̊uvka’s algorithm as in Section 7.3.2. The
time to generate the sketches and execute Bor̊uvka’s algorithm takes time linear in the size of all
sketches, namely O(d log2 n).

To improve the update time we calculate entries in sketch matrices in an on-demand fashion.
Suppose t is a tree encountered during Bor̊uvka’s algorithm. We maintain a linked list L[t] of
sketches satisfying the invariant Υ[t] =

⊕
σ∈L[t] σ. (For example, before the 1st Bor̊uvka step, t is

an interval in I and L[t] consists of two µ sketches and possibly several single-edge sketches, one
for each edge in D with an endpoint in t.) Thus, any entry Υ[t](i, j) can be looked up in |L[t]|
time. In the jth Bor̊uvka step, for each current tree t we do a binary search for the maximum i
such that Υ[t](i, j) 6= 〈0〉, and check whether it is a legitimate encoding of an edge. In this Bor̊uvka
step, if trees t1, . . . , tr are merged into one tree t′, we simply set L[t′] to be the concatenation of
L[t1], . . . ,L[tr].

The number of basic sketches appearing in any list L[·] is O(d): there are at most 2|I| = O(d)
µ-sketches of interest, and at most d single-edge sketches for edges in D. If Bor̊uvka’s algorithm
terminates after b steps, then we have probed O(b log logn) locations in each of the basic sketches,
for a total time of O(db log logn). The claimed update time follows from the fact that b is O(log d)
in expectation and O(log n) with high probability.

Queries. A query (uk, ul) simply needs to find the intervals I, I ′ containing uk, ul, respectively,
and check whether I, I ′ are in the same connected component discovered by Bor̊uvka’s algo-
rithm. Finding I, I ′ can be done with predecessor search, in O(log log n) time [vEBKZ77] or
O(log d/ log log n) time [PT14].

The same technique allows us to shave four log factors off the update time from Section 7.3.

Theorem 7.10. A connectivity oracle for G = (V,E) with size O(m log6 n) can be constructed in
O(mn log n) time. Any set D ⊆ V (G) of d vertices can be processed in O(d2 log d log2 n log logn)
time in expectation (and O(d2 log3 n log log n) time w.h.p.) such that connectivity queries in G−D
can be answered in O(d) time. With high probability, the query is answered correctly.

Proof. Consider how we construct the sketch matrix Υ̂[I] for an interval I. For each affected
component γz, Υ̂(γz, I) is the sum of two β sketches, and for each v ∈ D, Υ̂(v, I) is the sum of two
α sketches. Recall that entries of Υ̂(γz, I,D) are computable in O(1) time, given matrices σ, σ′, ρ, ρ′,

13We are promised that D ⊆ E(G), which cannot be verified with only Õ(n) space. Strictly speaking, we will be
preparing a data structure that answers connectivity queries in G′ = (V,E ⊕ D), i.e., any edge e ∈ E(G) − D is
treated as an insertion, not a deletion.
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and σ′′, ρ′′. The first four matrices depend only on γz and entries in them can be computed in O(1)
time. The last two matrices depend on both γz and D, and each of their entries takes O(d) time
to compute. Thus, if b Bor̊uvka steps suffice, it takes O(bd2 log2 n) time to compute the relevant
entries of the σ′′, ρ′′ matrices, over all O(d log n) affected γz.

Now consider a tree t in the jth Bor̊uvka step. We look for an edge with one endpoint in
t via three binary searches over Υ̂[t]. We find the maximum ic for which Υ̂[t](0, 0, ic, j) 6= 〈0〉,
then find the maximum ia for which Υ̂[t](ia, 0, ic, j) 6= 〈0〉, then find the maximum ib for which
Υ̂[t](ia, ib, ic, j) 6= 〈0〉. With constant probability, this entry contains the name of an edge with one
endpoint in t. Thus, each of the O((d log n)2) basic sketches is probed in O(b log logn) locations,
for a total time of O(d2b log2 n log logn). Once again, b is O(log d) in expectation and O(log n)
w.h.p.

8 Conclusions

In this paper we illustrated the power of a new graph decomposition theorem by giving time- and
space-efficient connectivity oracles for graphs subject to vertex failures. Our data structures perform
well in all the major measures of efficiency (space, update time, query time, and preprocessing time)
but leave many opportunities for improvement. The following open problems are quite challenging.

• The Fürer-Raghavachari [FR94] algorithm FR-Tree for computing near-minimum degree span-
ning tree takes O(mn log n) time, which is the main bottleneck in our construction. Is it
possible to reduce the running time of FR-Tree to Õ(m), or compute spanning trees with
similar decomposition properties in Õ(m) time? Would such a result contradict a popular
hardness conjecture?14

• The conditional lower bounds of [KPP16, HKNS15] show that any connectivity oracle with
reasonable update time cannot have Õ(1) query time, independent of d, but they do not
preclude a data structure having both query and update time Õ(d). Is it possible to reduce
the update time below O(d2) without disturbing the space or query time?

• Is it possible to reduce the space of our deterministic d?-failure connectivity oracle to Õ(m)
(independent of d?) or perhaps Õ(d?n)?

A more accessible problem is to eliminate log-factors, especially in our Monte Carlo structure,
which still has an extra log6 n factor in space and log2 n factor in update time.
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[FR94] M. Fürer and B. Raghavachari. Approximating the minimum-degree steiner tree to
within one of optimal. J. Algor., 17(3):409–423, 1994.

[Fre85] G. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM J. Comput., 14(4):781–798, 1985.

[Fre15] A. Freund. Improved subquadratic 3SUM. Algorithmica, pages 1–19, 2015.

34



[GI93] Z. Galil and G. Italiano. Maintaining the 3-edge-connected components of a graph
on-line. SIAM J. Comput., 22(1):11–28, 1993.

[GKKT15] D. Gibb, B. M. Kapron, V. King, and N. Thorn. Dynamic graph connectivity with
improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.

[GP14] A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proceedings
55th IEEE Symposium on Foundations of Computer Science (FOCS), pages 621–630,
2014.

[GS17] O. Gold and M. Sharir. Improved bounds for 3SUM, K-SUM, and linear degeneracy.
In Proceedings 25th Annual European Symposium on Algorithms (ESA), 2017.

[GT85] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci., 30(2):209–221, 1985.

[HdT01] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001.

[HHKP17] S.-E. Huang, D. Huang, T. Kopelowitz, and S. Pettie. Fully dynamic connectivity in
O(log n(log log n)2) amortized expected time. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 510–520, 2017.

[HKNS15] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication
conjecture. In Proceedings 47th Annual ACM Symposium on Theory of Computing
(STOC), pages 21–30, 2015.

[HN16] M. Henzinger and S. Neumann. Incremental and fully dynamic subgraph connec-
tivity for emergency planning. In Proceedings 24th Annual European Symposium on
Algorithms (ESA), pages 48:1–48:11, 2016.

[JM97] D. B. Johnson and P. Metaxas. Connected components in O(log3/2 n) parallel time
for the CREW PRAM. J. Comput. Syst. Sci., 54(2):227–242, 1997.

[JMS04] J. JaJa, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms for multi-
dimensional dominance reporting and counting. In Proceedings 15th Int’l Symposium
on Algorithms and Computation (ISAAC), pages 558–568, 2004.

[KKM13] B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1131–1142, 2013.

[KPP16] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM con-
jecture. In Proceedings 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1272–1287, 2016.

[KRKPT16] C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie, and M. Thorup. Faster worst case
deterministic dynamic connectivity. In Proceedings 24th European Symposium on Al-
gorithms (ESA), pages 53:1–53:15, 2016.

35



[KTBC91] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of
the four-connected components of a graph. In Proceedings 32nd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 793–801, 1991.

[LPW16] M. Lewenstein, S. Pettie, and V. V. Williams. Structure and Hardness in P (Dagstuhl
Seminar 16451). Dagstuhl Reports, 6(11):1–34, 2016.

[LvW13] K. G. Larsen and F. van Walderveen. Near-optimal range reporting structures for
categorical data. In Proceedings 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 265–276, 2013.

[LW17] K. G. Larsen and R. R. Williams. Faster online matrix-vector multiplication. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2182–2189, 2017.

[NI92] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.

[NSWN17] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic minimum spanning for-
est with subpolynomial worst-case update time. In Proceedings 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2017.

[Par16] M. Parter. Fault-tolerant logical network structures. Bulletin of the EATCS, 118,
2016.

[PP13] M. Parter and D. Peleg. Sparse fault-tolerant BFS trees. In Proceedings 21st Annual
European Symposium on Algorithms (ESA), pages 779–790, 2013.

[PP14] M. Parter and D. Peleg. Fault tolerant approximate BFS structures. In Proceedings
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1073–
1092, 2014.

[PR02] S. Pettie and V. Ramachandran. A randomized time-work optimal parallel algorithm
for finding a minimum spanning forest. SIAM J. Comput., 31(6):1879–1895, 2002.
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