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THE BAROTROPIC QUASI-GEOSTROPHIC EQUATION UNDER A
FREE SURFACE*

QINGSHAN CHENT

Abstract. The inviscid barotropic quasi-geostrophic equation with a free surface is considered.
The free surface mandates a non-standard boundary condition. The global existence existence and
uniqueness of a weak solution is established, thanks to the uniform in time bounds on the potential
vorticity. The solution is also shown to satisfy the initial and boundary conditions in the classical
sense.
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1. Introduction. The inviscid barotropic quasi-geostrophic equation (QG) for
large-scale geophysical flows takes the form of a scalar transport equation,

0
(1) g(ﬁu-Vq—f, M.
Here,
(2) g=Vxu+ty—1

is the QG potential vorticity (QGPV), and the transport velocity w is given by
(3) u =Vt

The streamfunction v physically represents small perturbations to the surface height.
The equation is posed on a simply-connected two-dimensional domain M. Within
the expression (2) for the QGPV ¢, V x w is the relative vorticity of the velocity
field, y the so-called beta term that arises thanks to the differential effect of the earth
rotation along the meridional direction, and 1 the surface deformation.

For the simplicity of presentation, all the variables in (1)-(3) have been non-
dimensionalized, and the dimensionless coefficients have been rounded to the constant
1, mandating that each term be of equal significance to the dynamics. In reality, of
course, the situation is much more complex. We point out that, when the horizontal
length scale is much smaller than the Rossby deformation radius, the fluctuations of
the top surface are small and their impact on the vorticity dynamics is negligible,
i.e. the classical “rigid lid” assumption holds. However, in non-homogeneous fluids,
since the horizontal length scale of the flow are close in scale to the Rossby deformation
radii of the interior layer interfaces, the deformations of the interior layer interface
are greater, and so are their impact on the vorticity dynamics. For this reason, we
want to study the well-posedness of the QG equation when the surface deformation
is included. The current work can be considered a preparation for future efforts on
more complex systems.
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Equation (1) implies that, in the absence of an external forcing, i.e. f = 0, the
QGPV is conserved along the fluid paths. There is, of course, an analogue between
the QG equation and the two-dimensional incompressible Euler equation, where the
vorticity (called the relative vorticity in the above) is conserved along the fluid paths.
The main difference between them is the appearance of the stream-function ¢ in the
QGPV, which reflects the fact that the QG actually describes a three-dimensional
body of fluids, whose top surface is free to deform, while the two-dimensional Euler
is strictly for the planar fluids. But the motions of the three-dimensional body of
fluid are assumed to be uniform across the fluid depth, and therefore the velocity field
u is two-dimensional. The third dimension only manifests itself through the varying
fluid depth. A review of the derivation of the QG (see e.g. [41, 45]) reveals that the
surface fluctuations affects the vorticity dynamics thanks to the mild compressibility
of the full two-dimensional velocity field; the w in (1), which is incompressible, is
the leading component in the asymptotic expansion of the full velocity field. Hence,
the surface fluctuation 1 in (2) is a manifestation of the additional variability in the
vertical dimension and the mild compressibility of the two-dimensional velocity field.

In a broader context, many geophysical models are derived based on the charac-
teristics of large-scale geophysical flows, such as the small vertical to horizontal aspect
ratio and the strong earth rotation. In most cases, the models demonstrate richer and
more complex dynamics than the strictly two-dimensional models, but remain much
simpler than the full three-dimensional fluid models, i.e. the three-dimensional Navier-
Stokes equations (NSE) or the Euler equations. Mathematically speaking, the two-
dimensional fluid models, i.e. the two-dimensional Navier-Stokes or Euler equations,
are well understood. The existence, uniqueness, and regularity of a global solution
to these equations are known ([46, 26, 1]). But the same cannot be said about the
three-dimensional NS or Euler equations; for a review of the limited results on these
equations, see [44, 2]. Situated between the purely two-dimensional fluid models and
the full three-dimensional models, large-scale geophysical flow models, such as the
primitive equations (PEs), the shallow water equations, and the quasi-geostrophic
equations, can offer valuable insights into the complex dynamics of fluid flows, and
help bridge the knowledge gap between two-dimensional and three-dimensional fluid
models.

Partly for the reason mentioned above, and partly for the practical interests in
the evolution of large-scale geophysical flows, geophysical fluid models have been the
subject of intense effort in the mathematical community for the past few decades.
Lions, Temam, and Wang ([37, 36, 35, 34, 33]) offered the first systematic and rigorous
treatment of the three-dimensional viscous primitive equations. Their results were
followed and improved by many subsequent works; for a review of these progresses,
see the review article [42]. In particular, Cao and Titi ([6]) and Kobelkov (]29, 28])
independently established the global existence and uniqueness of a strong solution to
the three-dimensional viscous PEs under the rigid-lid assumption.

On the side of quasi-geostrophic equations, several authors have studied the three-
dimensional QG equation under idealized settings, in the unbounded half space, or
a rectangular box. An early work is by Dutton ([17, 18]), who considered the three-
dimensional QG model in a rectangular box with periodic boundary conditions on the
sides, and homogeneous Neumann boundary conditions on the top and bottom. The
uniqueness of a classical solution, if it exists, and the global existence of a generalized
solution were established. Bourgeois and Beale ([3]) studied the equation in a similar
setting, and the existence of a global strong solution was proved. Desjardins and
Greneier ([16]) also considered the equation in a similar setting, but included in their
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model the Ekman pumping effect which effectively add diffusion to the flow. The
existence of a global weak solution is given. Puel and Vasseur ([43]) considered the
inviscid QG in the upper half space, with the non-penetration boundary condition
at the bottom of the fluid. The global existence of a weak solution was proven. In
these works, the issue of uniqueness of the solutions was left open. In a recent work,
Novack and Vasseur ([40]) considered the three-dimensional QG in the same spatial
setting as in [43], but with an added diffusion term in the boundary at z = 0 due to
the Ekman pumping effect. The existence and uniqueness of a global strong solution
is proven.

Another related model is the surface QG equation (SQG). The SQG is in fact a
generalization of the top surface boundary condition for the three-dimensional QG.
The curl form of the SQG resembles that of the three-dimensional Euler equations.
For this reason, the SQG has been intensely studied in the past twenty years or so
([11, 10, 23, 12, 13, 32, 5, 27, 20, 8, 15, 39, 31, 19, 9, 30, 7, 4]).

The current work studies the inviscid barotropic QG equation under a free sur-
face and on a general bounded domain. Without the free surface, the barotropic
QG is mathematically equivalent to the two-dimensional incompressible Euler equa-
tion, whose well-posedness has been established by various authors ([46, 26]). The
introduction of the the free surface not only changes the relation between the po-
tential vorticity ¢ and the streamfunction v, but also mandates a new and slightly
more complicated type of boundary condition for the stream function. For the two-
dimensional Euler equation, the homogeneous Dirichlet boundary conditions suffice
for the streamfunction. But this is no longer true when the top surface is left free.
The non-penetration boundary condition on the flow mandates that the streamfunc-
tion be constant along the boundary. Physically, the constant boundary value of the
streamfunction should be left free to accommodate the free deformation of the top
surface. Mathematically, that constant boundary value cannot be arbitrarily set with-
out altering the shape of the solution, unlike in the case of the two-dimensional Euler
equations. Thus, additional constraints have to be introduced to determine the value
of the streamfunction on the boundary. In this work, we determine the constant by
enforcing the mass conservation condition.

The constant but non-zero boundary condition gives rise to several technical dif-
ficulties that were absent in the case of the two-dimensional Euler equation. The
main contribution of this work is to address these difficulties and establish the well-
posedness of the barotropic QG equation with a free surface. The proof follows the
approach that was originally laid down by Yudovich ([46]). However, for the construc-
tion of the flow map, the approach from Marchioro ([38]) is adopted. The simpler
approach of Kato ([26]) does not apply because the solution of the current problem
is not sufficiently smooth.

2. The initial and boundary conditions. It will become clear later in the
analysis that the streamfunction 1 is a key quantity in the QG dynamics. In fact, the
QG equation can be expressed entirely in this quantity,

() OBy T YAty -9 =], M

Since the model is inviscid, it is natural to impose the no-flux boundary condition
on the domain boundary oM,

81/1:

(5) u~n:—E

0, oM,
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where n and 7 stand for the outer normal and positively oriented tangential vectors,
respectively, on the boundary. The condition (5) is equivalent to the requirement that
1) be constant along the boundary, i.e. for some quantity / that depends on ¢ only,

(6) Ol t) = 1(t), YxedM.

The boundary value of 1 has been left free to accommodate the free movement of
the top surface. In order to determine the value [ for each ¢, we require that the
fluctuation of the surface does not affect the overall volume of the fluid, that is,

(7) /M Ydz = 0.

This is equivalent to the condition that mass is conserved.
The initial condition is specified on the streamfunction as well,

(8) P(x,0) = o), Vre M.

Thus, equations (1)—(3) and (6)—(8) (or, equivalently, (4) and (6)—(8)) constitute
the complete initial and boundary value problem of the barotropic QG equation.

In the QG equation, the right-hand side forcing f is typically the curl of a vector
field F', representing, e.g., the wind in the physical world. Hence, we assume that f
is derived from a given vector field F' via

9) f=VXxF.

3. An non-standard elliptic boundary value problem. For regularity, we
assume that the boundary of the domain, M, is at least C? smooth.

Once the QGPYV ¢ is known, the streamfunction ¢ can be determined from an
non-standard elliptic boundary value problem,

(10a) AYp—yp=q—y, M,
(10b) b=l OM,
10 dx = 0.

(10¢) /M¢ .

We proceed by decomposition. This technique can be applied in more complex situ-
ations with holes inside the domain (see [26]). We let ¢; and 12 be solutions of the
following elliptic BVPs, respectively,

(113,) Ad}l_wl:q_yv Ma
(11b) 1 =0, oM,
and

(12a) Apy —1py = 0, M,
(12b) o =1, oM.

By the standard elliptic PDE theories, both BVPs (11) and (12) are well-posed under
proper assumptions on the forcing on the right-hand side of (11a) and on the domain
M. The solution to the original BVP (10) can be expressed in terms of 11 and 12,

(13) Y =11+ .
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The unknown constant ! can be determined using the mass conservation constraint

(10c¢)
/ z/Jd:vz/ z/Jldx—i—l/ Padx = 0,
M M M
which leads to

Prdx
(14) z——/M :

B /M %diﬂ.

We point out that the expression (14) for [ is valid because, as a consequence of the
maximum principle, 19 is positive in the interior of the domain, and the integral of
19 in the denominator of (14) is strictly positive.

The elliptic PDE (10a) is called the Helmholtz equation. The associated dif-
ferential operator, A — I, has a fundamental solution that is all regular except for a
logarithmic singularity ([14]), just like the Laplacian operator A. Thus, provided that
the boundary OM is sufficiently smooth, the Green’s function G(z,y) for the ellip-
tic BVP (11) exists, and is smooth except for a logarithmic singularity. Specifically,
G(z,y) has the following forms and estimates, for V z, y € M,

(15a) G(z,y) = a(z,y) In |z — y| + b(z, y),
9 elew)
(130) 2 ) = 22 4 (o)
(15¢) |G(z,y)| < C(M) (1 + [In|z —yl]),
(15d) gj (a:,y)‘ <CM)A+ |z —yl™), i=1,2.

In the above, a(z,y), b(z,y), c(z,y), and d(z,y) are functions that are regular over
the entire domain M, and whose maximum values depend on M only.
Using the Green’s function G(z,y), the solution ¢ of (11) can be written as

(16) i) = [ G)aw) -y
M
The solution %2 of (12) can be written as
a7) vale) =1+ [ Gla)dy
M

Substituting (16) and (17) into (14), we obtain an expression for I, as a functional of
the QGPV gq,

B /M /M G(z,y)(q(y) — y2)dyda
o |/\/l|+/M /M Gz, y)dyda '

The solution % to the non-standard BVP (10) can be expressed as

(18) 1(q)

(19) b(z) = /M G y)(aly) — y2)dy + 11+ /M G, y)dy).
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As in the case of the two-dimensional Euler equation, the QGPV is simply being
advected by the velocity field, and its maximum values are preserved in the absence
of an external forcing. As noted above on (14), the denominator on the right-hand
side of (18) is strictly positive. Thus, from (18), and making use of (15¢), one derives
an estimate on the magnitude of the constant value [ of ¥ on the boundary,

1] < (M, [ql0) 1+/ / |1n|w—y||dydx)

C(M, |gloo) ( ‘>1|nlw—yllder/y_m‘Sl|1n|:v—y||dy dx
emM yeM
C(M. o) (1+ /. / Il =yl

C(M. o) (1 I |1n|w—y||dydx>
M Jy—z|<1

1

C(M, |q]ss) (1 / / 27Tr|lnr||drda:>

C(M, |q]ss) 1+27T|./\/l|/ |lnr|dr>

C(M,|q]) (1 + w> .

To summarize, we have just shown that the value of ¢ on the boundary is bounded
by a constant that depends on the domain and the maximum norm of the QGPYV g,
that is,

(20) I < C(M, |gloo)-

Below, we shall formally state the regularity results for the elliptic boundary value
problem (10). But, in order to do so, we need to first give the precise definitions of
some relevant function spaces.

We denote by Q1 the spatial-temporal domain,

Qr = M x (0,T).

We denote by L (M), or L*>°(Q7) when time is also involved, the space of functions
that are essentially bounded. We denote by C%7 (M), with v > 0, the space of Holder-
continuous functions on M, and similarly, C%7(Qr) on Q7. C%Y(M) and C*(Qr)
are both Banach spaces under the usual Hélder norms.

We denote by V' the space of solutions to the elliptic boundary value problem
(10) with ¢ € L*(M), i.e.,

V := {4y |4 solves (10) for some q € L>(M)}.

The space V is equipped with the norm

[¥llv := | A% — ¥ Lo (ag)-
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By the continuity of the inverse elliptic operator (A — I)~1, V is a Banach space.

In the analysis, we will also encounter functions that are differentiable with con-
tinuous first derivatives. The space of these functions will be denoted as C*(M),
equipped with the usual C' norm.

When time is involved, we use L>(0,7;V) to designate the space of functions
that are essentially bounded with respect to the || - ||y norm, and L*°(0,T; C*(M))
for functions that are essentially bounded under the || - [[¢1(rq) norm.

We can now formally state the regularity result for the elliptic boundary value
problem (10).

LEMMA 3.1. Let the boundary OM € C?%, q € L>®(M). Then the solution 1)
belongs to W2P(M) for any p > 1, and the derivatives enjoy the following estimates,

(21) 1D*¥|| oy < CPIlg — Yl o),

where D denotes the first-order differential operator, and the constant C' depends on
M only, and not on p or the potential vorticity q. The first derivatives of the function
1 satisfy the Holder condition with any 0 < v < 1,

C
(22) | Dbl o (my < m”q_yHLm(M)a

and the quasi-Lipschitz condition,

(23) [DY (&) = Dp(n)] < Cx(9)llg = yll (),
where 6 = |£€ — 1|, and

(-8 i<,
X(5)_{1 if 6> 1.

This result is similar to the one given in [46] for the Euler equation. What is new
here is the presence of a free surface and its constant value on the boundary.

Proof of Lemma 3.1. The assertion (21) is part of the classical L? regularity the-
ory for the elliptic BVPs ([21]). We now verify that 1 € C'(M) and the Holder
condition (22) and the quasi-Lipschitz condition (23) hold for 1. We formally differ-
entiate (19) with respect to x;,

(21) o) = [ SE@naw -yt [ @y

M afl;l M 8$i

We call the right-hand side u(x), and we need to show that u(z) is well-defined. Using
the fact that ¢ is essentially bounded, we find that

@) < [ |5E |- - wlas-+1 [ |2 o] an

oG
< o + ko + 1) [ |55 00|00
M| OTi
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Using the estimate (15d) in the above, we proceed with the estimates,

()] < (gloo + lyloo + 1) / LIS

M|y — 2]

1 1
LA e B
- .

(Mm+wﬂm+w{Mﬂ1+/u/ —@m}
Yy—x|=r

< (laloo + ly2loo + [1]) - (IM] + 27).
Combining this estimate with the estimate (20), we reach
(25) u(z)] < C(M, |gloo)-

Hence, the right-hand side of (24) is well-defined, and the relation (24) holds.

Next, we show that the first derivative of 1 is quasi-Lipschitz continuous and
satisfies the estimates (23). We let £ and n be two arbitrary points in M. Then,
using the relation (24), we derive that

9y 9y

20 2] < o v+ ) [ 26101~ 20

(26) (&) -

2z, y)‘dy
Substituting the form (15b) into (26), and using the estimate (20) on [, one derives
that

@ 2L - 2| < cmlam (1=l + [

1 1
1)
M’w—ﬂ Iy—MI
Using the triangular inequality, one finds that, in a space of general dimension n,

o1 € —nl
ly = &n=t |y —nnt T Iy & (y)n’

where £*(y) is a point between ¢ and 7, and depends on y. We let R > 0 be such
that B(&, R), the ball centered at £ with radius R, covers the entire domain M. We
then decompose the domain into two parts, one within the small ball B(¢,24), and
the other within the annulus 20 < |y — ¢| < R, where § = |{ — ||. We estimate the
integral of the left-hand side of (28) in these two sub-domains separately.

J——
— - — | dy
mlly =&t |y —nt
/ 1
<
ly—€|<26

— dy+/
ly =&"=t |y —nnt 25<|y—£|<R
1 1 "
ly—g|<26 |V — €| ly—nl<3s Y — nl 25<|y—e|<R Y — §| ly — 5

0 % € = |
/ / dsdr—i—/ / dsdr—i—/ / 2" = —dsdr
ly—¢l=r T ly—nl=r T 26 J|y—¢l=r r

g/ wyr (= pn— 1d7°—|—/ wpr (1 pn— 1dr+/ |€ —nlr"w,r™” Ldr
0 0

<(b5+2"(InR—1n2) — 2" Ind) wy,d.

(28)

§—m 1
ly —&nt fy—n[nt

dy
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Using this estimate in (27), we obtain

o . O
6:51- 6:51-

(29) ©)

()] < M.l 1~ )5
Thus, the claim of the quasi-Lipschitz continuity is proven.

The Holder continuity is a consequence of the quasi-Lipschitz continuity. Indeed,
forany 0 < A < 1,

oY
6:51-

0
© - o

& —n*

The 0 < § < 1, the expression |Iné| - §'~* has a maximum value of e™1/(1 — \).
Hence, we have that

(n)
‘ < C(M,]qloe)(1 —1n8)5 2.

oY oY
-(§) — 5 —(n)
L Y
& —nl? - IS DY
The lemma is proven. a

In the sequel, we will need the following regularity result, which can be easily
derived from the classical L? theory for elliptic equations with Dirichlet boundary
conditions ([21]).

LEMMA 3.2. Let g € LP(M) with p > 1, and let ¢ be a solution of

_ 9y
(30a) Ay ==, M,
(30D) v =1, oM,
30 dx = 0.
(30¢) /M Vo

Then, ¥ has one generalized derivative, and

(31) l1Yllwreay < CollgllLea

4. Weak formulation and the uniqueness. We assume that 1 is a classical
solution of (4) subjecting to the constraints (6)—(8). We let ¢ € C*(Qr) with
Ylom = ¢li=r = 0. We multiply (4) with ¢ and integrate by parts to obtain

T
(32) - /M(Awo — 2o)p(z,0)dx — /O /M(Aw — zp)‘z—fdxdt

— /OT /M(M) +y— )V - Vpdodt = /OT /M fodzdt.

Thus, every classical solution of the barotropic QG equation also solves the integral
equation (32), but the converse is not true, for the QGPV ¢ = Ay 4y — ¢ may not be
differentiable either in space x or in time ¢. Solutions of (32) are called weak solutions
of the barotropic QG.

We establish the well-posedness of the barotropic QG (4), (6)—(8) by working
with its weak formulation first, whose precise statement is given here.
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Statement of the problem:

Let 1pp € V. Find ¢ € L*(0,T; V) such that (32) holds for every
¢ € C*(Qr) with glopm =0 = @li=r = 0.

We choose ¢(x,t) = g(t)y(z) in (32) with g € C*([0,T1]), g(T) = 0, and v €
C2°(M). Substituting this ¢ into (32), we have

(33)

T
(34) - g(0) /M (Ao — po)yda — / J(t) /Mw — Y)y(@)dadt

T T
_ A — Lo = .
/0 o(t) /M< bty — $)VE - Vadedt /O o) /vad:cdt

If we take g(0) = 0 as well, then (34) becomes

T
(35) - / J(t) /me—wmx)dxdt:

T
/ g9(t) / (A +y — )V - Vy + fr) ddt.
0 M

This shows that

d

@) 5 [ (0= vp(do -

/M (AY+y =)V -Vy+ fy)de  inD'(0,7T).

Thanks to the fact that C2°(M) is dense in H} (M), the above also holds for every
¢ € HY(M). Thus, we conclude that Az — 1) is weakly continuous in time in the
following sense,

/ (At — 1p)yda is continuous in time for every v € Hj(M).
M

Integrating by parts in (34), we find

T
(37)  —9(0) /M(Vwo -V +1boy)dx + /0 g'(t) /M(Vw -V + Yy)dedt =

T
/ g9(t) / (AY +y — )V - Vy + fry) dwdt.
0 M

Again, taking ¢(0) = 0 yields
(38)

T T
[ o [ (0T vndedt= [ g [ (a0 +y- 070 Ty ) dedr
0 M 0 M

Since C2°(M) is dense in the space Hg(M) under the usual H'-norm, the above
holds for every v € H}(M). Thus,
(39)

d

& @t enar =~ [ (@0 ry- 0o vt p)de wD0T)
M M
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This implies that ¢ is weakly continuous in time for the H'-norm,
/ (Vap - Vy + 1py)dz is continuous in time for every v € Hi(M).
M

To investigate the initial value of 1, we take g € C*°([0,7]) with ¢(0) # 0 and
g(T) = 0. We multiply (36) by g(t) and integrate by parts in ¢ to obtain

T
@0 9(0) [ (a0te.0) = vie0ds = [ g0 [ (@0
T T
— _ 1 . €T = Xdat.
[ a0 [ vy et St = [Tt [ pro

Comparing (40) with (34), we find that
) [ (@00 = (e 0) — (A — ) e =0, ¥ € O (M)

Since C2°(M) is dense in L?(M), the above holds for every v € L?(M). In particular,
setting v to the function in the parentheses, we reach

A —Plimg = Apg —thy  in L*(M).

Multiplying (39) by the same ¢(¢) and integrating by parts in time, we obtain

T
(42) — g(0) /M<vw<w, 0) - Ty + ¢h(x, 0)7)da + /O J(t) /M<vw V4 ) dadt
T
/’9@{/ (AY +y — )V - Vy + fry) ddt.
0 M

Comparing this equation with (37), we easily see that
@3 [ (V.0 = i) Ty + (6(0.0) ~ b)) de =0, ¥ € HY(M).
M

From the above, one can infer that the initial condition (8) is satisfied in the H'-norm.
Indeed, we let

(44) hx) = ¢(x,0) = to(x).

Both 9y and v (-,0) assume a constant value on the boundary, and so does h(z). If
h(z) vanishes on the boundary, then we can simply set v to h(x), and the conclusion
follows. If h(z) does not vanish on the boundary, then let o be its constant boundary
value, and write

(45) h(z) = h# (z) + o.

The value o is related to h# via

(46) o=—— /M h# (z)dz.
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Then h# vanishes on the boundary and belongs to H{(M). Substituting (45) and
(46) into (43), and setting v to A, we obtain

(47) /M IV (z,0)|2dz + /M IW# (2, 0)Pdar |—1| (/M W (z, O)dw)2 .

It is an easy exercise to show that

(48) W]LI (/ h (z,7) d;v) / |n# (z,7)|?dz, YT

In view of (48), the relation (47) is only possible if
[VI# (-, 0)|2(a) = [B7 (-, 0) 22 a1y = 0.
Hence,
Yli=0 = o in HY(M).

We formally summarize these results in the following lemma.

LEMMA 4.1. The solution v to the weak formulation (32), if it exists, is weakly
continuous in the following sense,

(49a) / (AY — p)ydx is continuous in time for every v € Hy(M),
M

(49Db) / (Vep - Voy + py)da is continuous in time for every v € Hg(M).
M

The initial condition is satisfied in the sense that

(50a) Aty — =0 = Atho — 1o in L*(M)
(50b) Ylt=0 = o in H*(M).

By virtue of Lemma 3.1, any weak solutions of (32) automatically have second
weak derivatives in space. In fact, it also has second temporal-spatial cross derivatives,
according to the following lemma.

LEMMA 4.2. Let ¢(x,t) be a generalized solution of (4), (6)—(8) in the sense of
(32). Then there exists generalized derivatives 0*/dx0t and, for any p > 1,

0%
51 sup ||=——= < Cp su F + [ vi '
1) 0<1oT | 31‘815””(/”) iy (IF ey + 10l L o.mvy - 1Vl Loy
Proof. We can rewrite equation (4) as an elliptic equation,
0]
o (A= Dgb = VX F =V (VHo(Ab+y — ).
Then, by Lemma 3.2,

H H < Cp (1Pl oty + 18] 0.0 | VO Locnn)) -
wilp(M)
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Taking the supreme norm in time ¢ on the right-hand side, and then on the left-hand
side, we obtain
O

sup

< Cp sup ([Fllzrom) + [0l 0.1:) VY o)) -
o<t<T

5
Ot {lwim () 0<t<T

Finally, we are in a position to address the uniqueness of the generalized solution
of (32).

THEOREM 4.3. The generalized solution to the barotropic QG equation (4), (6)—
(8) in the sense of (32), if exists, must be unique.

Proof. We let ' and 12 be two solutions to the weak problem for the same initial
data 1pg. Then, for any ¢ € [0, T] and an arbitrary ¢ € C*°(Q;) with ¢|am = (-, 1) =
0, ¥! and ? satisfy the following equations, respectively,

t
d
(53) /M(Awo—wo)cp(x,O)d;c— /0 /M(Awl—wl)a—fdxdt
T T
_ 1 Iyl _
/0 /M(Aw +y — )V - Vpdadt /0 /M fodadt,

(54) /M(Awo — o)e(z,0)dx — /0 /M(Aw2 - wz)g—?dxdt

- /OT /M (AY? +y — ) VEy? - Vpdrdt = /OT /M fodzdt.

Subtracting these two equations, and denoting h = ¢! — 12, we obtain
t Dy T
(55) — / / (Ah — h)==dxdt — / / (Ah — R)VE! - Vpdzdt
0o Jm ot 0o Jm

T
+ / / (AY? +y —*)VEh - Vodrdt = 0.
0 M

An integration by parts in space in the first term leads to
t T
(56) / / (Vh - VO + horp)dzdt — / / (Ah — h)V>o! - Vodzdt
0 JM 0 JM

T
+ / / (AY? +y —*)VEh - Vodrdt = 0.
0 M

Both ¢! and ¢? assume space-independent values on the boundary M, and so does
the difference h between them. Thus, after a shifting in the vertical direction, h will
vanish on the boundary. We denote this shifted function by h# € L*°(0,t; H}(M)).
h and h# are related via

(57) h(x,T) = h¥ (x,7) + (1), 0<7<t

for some function (7). Both ! and 1?2 have a zero average over M, and so does
their difference h. Integrating (57) over M we establish a simple relation between [
and h#,

(58) (1) = —M14—| /M h# (x, 7)dz.
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Since both ! and ¢? satisfy the same initial condition (8) in the sense of (50b), it is
easy to see that

(59) h(-,0) = h#(-,0) = 0.

Replacing h by h# + 1 in the first and third integrals of (56) yields

t

(60) / / (Vh# - Voup + h# 0y p)dudr+

0o JM
t T
/ / 10y pdxdr — / / (Ah — W)Vl - Vdrdr

0 M 0 M

T
+/ /(A¢2+y—¢2)wh#~wdm¢:o.
0 M

In view of the regularity results in the previous lemma, and the facts that h#(-,0) =
h(-,0) = 0 and ¢(-,t) = 0, we integrate by parts in time in (60) and arrive at

t
(61) —/ / (0, Vh# - Vo + Oh* p)dxdr—
0o JM
t T
/ / Oldrdr — / / (Ah — )V ! - Vodrdr
0 JM 0 M
T
+/ / (AY? +y — P> )VERT . Vdzdr = 0.
0 M

We note that each of the integrals is linear and continuous with respect to ¢ in the
norm of L2(0,7T : H}(M)). Thus, we can let ¢ tend to h# in L2(0,T; H}(M)), pass
to the limit in (61), and notice the fact that VhA# - VLh# = 0, we obtain

t t
- / / (0, Vh* - Vh# 4 0,h* W )dxdr — / / OulhT dadr
0o JM 0 JM

T
- / / (Ah — )Vl - Vh# dzdr = 0.
0 M

62 tldh#2 dtd tldh#Q d
(62) - 053” 13 (g dtdT — 05%” 122y AT

t t
—/ atz/ h#da:dT—/ / (Ah — W)Vl - Vh# dedr = 0.
0 M 0o JM

In the above, || - [[mia) = [V()llz2(m). Using the expression in (58) for I(1), we
derive that

1 1 1 [t 2

t
- / / (Ah — W)Vl - Vh# dedr = 0.
0o JM
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1 2

(64) 100l eun + I#Oscan — oo ([ ##) =
t
- 2/ / (Ah — R)V* - Vh# dadr.
0 Jm
Using the estimate (48) for 7 = ¢ in the above, one derives that
¢
(65) |\h#(~,t)|\§{é(M) < —2/ / (Ah — )V - Vh#dzdr.
0 Jm

First, we note that, with the change of variable (57),

Ah —h = Ah* — b — (7).

Thanks to the non-penetration boundary conditions on dM, we have
/ R#VEyt . Vh#de = 0,
M
/ TVt - Vh#de = 0.
M
Therefore,
/ (Ah — h)VEyl - Vh# da :/ AR#VEYL - VR da,
M M
and (65) becomes
t
(66) 1B# ()1 gy < —2/ / AR#FNEYL - VR dadr.
© 0 JM
To further investigate the integral on the right-hand side, we adopt the notations

(u1, uz) = V! = (=0up", 019").

Then, using the Einstein convention of repeated indices for 1 < i, j < 2 and the fact
that V44! - VA# vanishes on the boundary M, we proceed by integration by parts
and obtain

/ Ah#vwl-w#dx:/ OPhHu;0;h* dx
M M
= —/ (&-h#aiujajh# —l—@ih#uj@jaih#) dx
M
Z—/ 6ih#8iuj8jh#d;v.
M

Reverting back to the standard index conventions and after rearrangements, we find
that

(67) /Ah#vwl.w#dx:

M
N /M {[~(01h%)2 + (02h#)?] 01020" + D1 h# Duh# (920" — D3¢1) ) da.
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Hence, we have
0% (O

t
§2/ / {[=(01h#)? + (0:h#)?] 910290" + 01 h* Oh¥ (07" — O39") } dadr
0o JM
t
S// {2 (100h7 2 + (917 2) - 01020 | + (|01h7 2 + |9:207 ) (0701 | + |03¢" ()} daedr
0 JM
t
< [ [ IR (0201 + 10307 + 24010007 o
0 JM

We note that, according to Lemma 3.1, both V4! and V? are Holder continuous in
M and essentially bounded in (0, T'), and so is VA#. We let 0 < € < 1 be an arbitrary
parameter. Then, we have

t
I g v < IV Ly [ [ IV (0201 + 10307 + 2004000 dar.

Applying Holder’s inequality to the spatial integral on the right-hand side, we obtain

t
(68) 1 OlFsgcaey < O HH 5wy [ I )iy Il

We note that both ¢! and 1?2 belongs to L>(0,T; V), and so does h. By Lemma 3.1,
Y-, 7) € W2P(M) with p = 2/e, and Vh#, which equals Vh, is Holder continuous,
for a.e. 7. We set

My = sup [[9'(,t)]v,
0<t<T

My = sup [|h*(,)]v.
0<t<T

Then, it is inferred from (21) and (22) that

2
1
ot <CiM
S0 197Gtz 0y < CCM,

sup ||Vh#(-,t)||LooM < CMs,
0<t<T

where C' designates generic constants that are independent of 1!, 12 and e. Using
these estimates in (68) leads to

C

t
(69) 0% OBy ) < SO0 [ 2
0

We denote

Then (69) can be written as

t
(70) az(t) < ngMze/ 02_6(7')617'.
€ 0
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An estimate on o can be obtained by the Gronwall inequality. Indeed, we let
C t
F(t) = —M1M2€/ o?~¢(1)dr.
€ 0

Taking derivative of this function and using (70), we find

d €
—F(t) < ngMgFlﬁ(t).
dt €

Integration of this inequality yields

F(t) < (CMyt)< M2.

Thus,
2
(71) W% (- ) g agy < F(8) < (CMat)= M3
We take
N 1
tT = .
2C M,
Then, for 0 <t < t*,
N2
(72) I )2 g < (5> M.
This estimate holds for arbitrary ¢ > 0. Thus, ||h#(,t)||? must vanish for 0 <

Hg (M)
t < t*. The process can be repeated over subsequent tiIOne intervals of length t*,
and thus Hh#(-,t)Hf{l(M) = 0 for the whole time interval [0, T]. Combined with the
0

relations (57) and (58), it implies that

h(-,t)=0 for a.e0<t<T.

The generalized solution to the barotropic QG equation (4), (6)—(8) must be unique.0

5. Existence of a solution to the weak problem. We establish the existence
of a solution to the weak problem (32) through an iterative scheme. To get started,
we set

(73) ¢"(z,t) = qo(x),

where qq is the initial QGPV computed from the initial streamfunction io. We assume
that ¢”, for a n > 0, is known, we compute ¢" 1! as follows. First, the streamfunction
1™ corresponding to ¢" is obtained from the non-standard elliptic BVP,

(74b) Pt =1", oM,
74 "dr = 0.
(74c) /M e

The corresponding velocity field u™ is obtained through
(75) u = Viyn,
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From this velocity field, a flow mapping (or the trajectory path) ®%(a) for each a € M
is constructed,

(76a) S} a) =" (3] (0).1),

(76b) 2 (a) = a.

Finally, the QGPYV field is updated using the flow mapping,

(77) 72 (a), 1) = gola) + / f(@2(a),5)ds,  VaeM,

or, equivalently,

(78) 7 (1) = gol@7(2)) + / F@ (2).5)ds, Ve M.

The iterative scheme (73)—(78) is straightforward except for the solution of the
initial value problem (76). The elegant argument presented in [26] requires u to be
C*', which is not the case here. Given that ¢"(-,t) € L®(M), u™ is quasi-Lipschitz
according to Lemma 3.1. It is well known that (see [38]) the quasi-Lipschitz continuity
is also sufficient to ensure the global existence and uniqueness of a solution to the
IVP. Specifically, the following result is available.

LEMMA 5.1. Assume the velocity field u™ is uniformly bounded in Qr and quasi-
Lipschitz continuous in M, i.e. u™(x,t) < C forV (z,t) € Qr, |[u"(x1,t)—u"(22,1t)| <
Cx(|z1 — 22]), with C independent of x ort. Then the initial value problem (76) has
a global unique solution.

The proof is recalled in Appendix A. We note that, since u™ is divergence free,
the corresponding flow mapping preserves area, by virtue of the Liouville Theorem
(see e.g. [22]).

We now show that the sequence (¢", ¥™, u™) generated by the iterative scheme
converges, and the limit solves the weak problem (32). We follow the procedure laid
out in [38], and start with the convergence of the flow mapping ®7(-).

LEMMA 5.2. Asn — oo,
O} (a) — Py(a) strongly in L>(0,T; L' (M)).

Proof. We first write the IVP (76) in the integral form, From (122),
t
(79) D} (a) =a+ / u" (D7 (a), s)ds.
0
We subtract ®7(a) and ®7*(a),

(80) @7 (a) — 2} (a) = /0 (u"(®5(a), 8) — u"(®(a), 5)) ds.
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where G(x,y) is the Green’s function for A — I with Dirichlet boundary conditions
on M. Then, using the relation (19),

(82) w"(®%(a),s) = V' U (Pi(a),s) =
/ K(®5(a),y)(q"(y,s) — y2)dy + l(q")/ K(®%(a),y)dy.
M M
Thus,
u" (D% (a),s) —u" (@Y (a), )
= /M (K (@7 (a), 1)a" (3, 5) — K (87 (a), 1)a" (9, 5)) dy—

[ (@) = K@ 0).0) vad+

/M (Ha™) K (®(a), ) — 1" K (@7 (a), ) yady

Using (77), the difference between K (®"(a),y)q"(y,s) and K (@7 (a),y)q" (v, s)
can be split into three parts,

[ (K@@ 00" 05) = K@ @) )" .9)) dy =
/M (K (®%(a),y) — K(®5(a),y)) ¢"(y, 5)dy+
[ K@ @) (0@ ) = (872 0) o+
[ w@an [ (@i - s drdy.

Thus, the difference in the velocity fields u™(®%(a), s) and u" 1 (®7"1(a), s) is split
into four parts, labeled as I — I'V below,

(53) W (@2(a)5) w8 a)) =
[ (K@)~ K@ @).0)) (" (09) = o+ 1) d+

[ K@ @.0) (@@ ) ~ (@5 (w)) dy+
/ K@ (a). ) / T (F@ () r) — F(@2(y), 7)) drdy+
M 0

/M K@ (a),y) (1g") — Uq")) dy
=1+ II+ 1T+ 1IV.

We now estimate each of these four parts. For the first term I, it is clear from the
proof of Lemma (3.1) that [, , K (x,y)dy is quasi-Lipschitz continuous. Also using the
fact that ¢™ is essentially bounded, we proceed,

1] < 1¢" — y2 + oo /M |K(®%(a),y) — K(®2 7' (a),y)| dy

<Clg" =2 + oo (14 [ [@F () — 27 (a)]]) - [F (@) — 277 (a)]-



20 QINGSHAN CHEN

We define

(84) 57 (a) = |7 (a) — @27 (a)].
Then, for the term I we have

(85) 1] < C(M, [golso [ floo)x (67 (a)) ,

We apply change of variables in II, utilizing that fact that the mapping y = ®7(b) is
area preserving,

1= /M K (@27 (a),y) a0 (2" (v)) dy — /MK (27" (a),y) qo (2% (y)) db
— [ (@ @0 o) )b~ [ K (200,01 20) ao () b
M M
= [ @ ). 927 0) — K (827 (0).9272(0)) a0 ()

Integrating I7 in a over M, we find that

/M |I1|da < |q0|oo/M /M |K (z,@77(b))) — K (2, 977(b)) | dadb

Again, with the quasi-Lipschitz continuity of [ v K (z,y)dy, we derive that

(36) J e < ko [ x@2

Also applying the change of variable and integration to I11,

IIT = / / K (227 (a),y) f (®2-L(y), 7) dydr — / / K (227 Ya),y) f (®722(y), 7) dydT
/ / K (227 Ya), @2~} (a)) f (b, T dde—/ / K (2 (a), ®2=2(b)) f (b, 7) dbdT
/ / K (9" a), @271 (b)) — K (@27 (a), ®222(b))) f (b, 7) dbdr.

By mtegratmg |[I1I] over M, and, again using the quasi-Lipschitz continuity of
S K (z,y)dy, we reach

(87) /|HI|da<|f|oo// (67~ (b))drdb.

Using the formula (18) for I(q), we find that

fM fM n(ya ) - qn_l( ))dyd:v
|M| +fM S G, y)dyda

n—1

(88) Wq™) —Ug" ") = -

Using the formula (78) for ¢" and ¢ in the above, and the mapping provided by
@7 and @f_l, we obtain that, after some changes of variables,

1
M|+ [ S G(x,y)dydx.

(/ / q0(a) (G(z, @77 (a)) — G(z, 9} *(a))) dx da+
/ / / G (z, @227 (a) — G(x,@?:f(a))) f(a,T)dexda>.

q") = Uq" ") =~
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Using the assumptions that gp and f are essentially bounded, in M and Qr, respec-
tively, we obtain

— |QO|oo + |f|00
l n —l n—1 _ X
&™) = U™ O = 5 T Gl s

(/M / |G(z, 977 (a) — Gz, 2} 7*(a))| dz da+
/ / / |G 2322 G(xvq)?—f(a))‘dexda>_

It is also clear from the proof of Lemma 3.1 that [, G(z,y)dz is C'. Therefore, we
have that

1™ — 1" )| < C(M. g0, f) < /M (@7 (a) — 87 2(a)| dat

//ycbn Ha) — L72( )]dnza).

Using the notation introduced in (84), one can write the above estimate as
) e -t < e ) ([ o [ [ w ).
Thus,

[TV| < C(M,|q0loos | floo) </ S )da+/ / 5 1dadT)-/MK(q>g—1(a),y)dy

In the analysis leading to the estimate (25), it is clear that the last integral on the
right-hand side is uniformly bounded, and the bound depends on the domain M only.
Therefore, we can simply write the above relation as

(00)  IV] < C(M, [golocs | floc) (/ 571(a da+/ / 571 dad7>.

Using the relation (83) and the estimates (85), (86), (87), and (90) in (80), we
obtain

(91) /M\¢?<a>—q>“ 0)] da < C(M, [goloer | floc) /t</Mx<62<a>>da+

/ (6" (a da+// (6"~ (a)dadr+
/ sm( da+/ / o dadT>
We define

no 1 "(a) —d" (a a=L "(a)da
(92) = o L Jor@) 9 @) da = [ e

We note that, thanks to the convexity of x,

(93) o [y s (o [ ) = xen.
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Then (91) can be written as
(94)

t s
i< COM ol 71) | (x<ps>+x<ps-1>+p:—l+ [xtoizhar+ | pz-:df) ds.
0 s 0

For an arbitrary n > 0, we define

(95) e"(t) = sup py.
k>n

Therefore, for a fixed ¢, pi < e™(t), and €™ (t) is monotonically decreasing in n. We
also note that, since x(+) is a monotonically increasing function,

X(p8) < x(e"(s)) < x(e"(s))-
Using these relations in (94), one finds that

t

(96) €"(t) < C(M,]qo|so, |f|oo)‘/0 (2)((6”71(8)) +€n71(8)

+ /O (€ (s — 7))dr + /0 (s — T)dr> ds.

For an arbitrary scalar function h(-), we note that

/Ot/osh(S—T)des_/Ot(t_s)h(s)d&

Thus one can replace the double integrals in (96) with single integrals, and after
rearrangements, one obtains
t

(97) e"(t) < C(M,IQO|oo=|f|oo)/0 ((t=s+2)x(e" () + (t = s+ 1)e" ! (s)) ds.

Using the inequality (126) on the function y, one obtains from (97) that

e"(t) < O(M,|qo|oo,|f|oo)/0 ((t=s5+2)(=Ine-e""(s) +¢) + (t —s+1)e"'(s)) ds
< C(./\/l,|qo|oo,|f|oo)/D (3 (—lne-e"_l(s)—i—e) +2€n_1(8)) ds

< CM, [go] o |f|oo)/0 ((—3Ine+2)-e"'(s) + 3¢) ds

Focusing on small ¢’s, say t € [0, 1], one derive from the above that

(98) e"(t) < C(M,|qolso, |floo) (—Ine + 1)/0 e"1(s)ds + Cet.

This inequality is now very similar to the inequality (127). When n = 1, by the
definition (95) and the relation (80), one derives that

et(t) = sup () =swp - [ [@k(a) — 0} ()] da
E>1 k=1 M|

t
<swp o [ [ k@@, s) — w @ 0), )] dsda.
M S o

k>1
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From above, and the uniform boundedness of u*, one deduces that

(99) el(t) < C(M7 |q0|oou |f|oo)t

We now temporarily omit the dependence of C'(M, |go|so, | f|oo), and simply write C,
for the sake of conciseness. By induction, one can derive that

n—1
n n n— tn
(100) e"(t) < C"(—lne+1) 1H+ezck(—lne+l) L
k=1

Majorizing the last summation on the right-hand side, one obtains that

< C-t(C(—lne+1)t)" "

1-Ct Ct
] +C - t-e -e™t.

(101) e (t)

As € can be arbitrary, we take ¢ = e~ (1) and find that

(102) enpy < G0t

+C-t-e (10 g
n!

Applying the Stirling formula (130) in the above, one obtains that

(103) e”l(t) S M + C-t-e- e—n(l—ct).
2mnz

We let

1
t"=ming —-,1,T .
mln{2ce, , }

Then, for all 0 <t < t*,

(104) (0 < —— (%) O T e,
V 2T 2

Thus, e"(t) is a geometrically converging sequence independent of the time ¢, and so
is p™(t). We therefore have that

(105) 7 (a) — y(a) strongly in L>(0,t*, LY(M)).

We note that t* can be taken independently of €, and it depends on M, |go|so, and
| f]oo, and therefore the above process can be repeated over intervals of length ¢*, until
the whole interval [0, T is covered. The lemma is thus proven. a

We now study the convergence of ¢". We define

(106) q(z,t) = qo(P_¢(x)) —|—/0 f(@s_t(x), s)ds, Yo € M.

It is clear that ¢ € L*°(Qr), provided that f € L*(Qr). We have the following
result.

LEMMA 5.3. Assume that f € L*°(0,T;C(M)). Then, for any g € C(M),

(107) /M g(x)g" (z,t)de — /M g(x)q(z, t)dx as n — Q.

The convergence is uniform in t.
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Proof. We subtract (106) from (78),
(1)~ (@, 1) = 0(®7(2)) — ao(@—o(w)) + / (F@ (), ) — F(Dy_i(2),5)) ds.
Multiplying the above equation with a g € C*(M), and integrate over M, we obtain
[ 9@ (@0 - a(a. 1) do
M
= [ 0(0) (@@ @) 0 (@-1(2))) o+
/ [ o) (1@ ().9) = 1(®i(@).)) s
— [ wl@) 9(@F @) - g(®u(a) dot
M
[ o) (1@ (@).5) = @ems(a), ) dads.
0 JM

For the moment, we assume that g € C1(M) and f € L>(0,T;C'(M)). Then, we
derive that

’/M 9(x) (a" " (,t) = (. 1)) da

<Vgloe - lg0leo / 1B (a) — By (a)] dat
M

t
|9]oc - IVfIOO/O /M |7, (x) — @y ()| duds.

By the strong convergence of ®7 in L>°(0,T; L*(M)), the right-hand side above con-
verges to zero as n — co. Then, by a continuity argument, one can show that, for
any g € C(M) and f € L*°(0,T;C(M)),

O
/ 9(x)(q" (z,t) — q(z,t))dz — 0, as n —» oo.
M

We now verify the convergence of the velocity field u™. Using the QGPV ¢, we
define

(108) u(z, 1) / K(2),9)(a(y.t) — y2)dy + 1(q / K (2), y)dy.
LEMMA 5.4. Asn — oo,
u"(z,t) — u(z,t) strongly in L>(0,T; L' (M)).

Proof. Subtracting (108) from (82), we have

(100) w"(z.t) - ula,t) = /M K(2),9)(@ () — aly, ) dy+
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From (18), one obtains

Tt S G 9)(q™ (y) — q(y))dydz
IMI+ [y Jog G, y)dyde

We note that [,, G(x,y)dx is continuous in y. Thus, by (107), we confirm that

Uq") = 1U(q) = —

1(¢")—1(q) — 0 as n — o0.

We also note that | m K (2, y)dy is uniformly bounded. Therefore, we have
(110) (I(¢g™) — l(q))/ K(z,y)dy — 0 uniformly in z.
M

For the first term on the right-hand side of (109), we substitute specifications (78)
and (106) for ¢" and ¢, respectively, apply changes of variables, and we find that

/ K(2),9)(@" (1) — ay,1))dy = / (K (2,2 (a)) — K (2, 4(a))) qo(a)dat
M
/ / z, 977 (b)) — K(z, ®4—4(b))) f(b, s)dbds.

Integrating the absolute value of the left-hand side on M, and using the relation
above, we derive that

/ '/ K(x),y)(q"(y, t) — q(y, t))dy
<|q0|oo/ / (z, @} (a)) — K(z, ®i(a))| dadz+

Fleo / | Km0 - Ko o) i dbas
Cllalos s ([ 300 o+ [ t J @ iwaas).

The function 67 is defined in (84). Using the bound (126) on x, we derive from the
above that

dx

\ | K@ w0 - atv. 00y d
M M

t
<10l | Floos M) <—lne/ 5g*1(a)da_1ne// 5$;(b))dbds+e|/\4|+e.t|/\4|>.
M 0o JM

Thanks to the uniform (in t) convergence (105) of ®F, it is clear that, for any € > 0,
there exists N such that, for any n > N,

(111) ] [ K@ ) - . 0)a

d.’II S C(M, |q0|oo7 |f|oouT) "€

The constant C' is independent of e. Combining (110) and (111), we conclude that

(112) u"(z,t) — w(z,t)  strongly in L>(0,T; L' (M)). a0
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It remains to show that the limit ®;(a) of ®}(a) is indeed the flow mapping for
the limit velocity field w(x,t) of u™(z,t), i.e. they satisfy the IVP (76) in a certain
sense.

LEMMA 5.5. For a.e. t € (0,T), the flow mapping ®+(a) and the velocity field u
satisfy the following relation,

(113) Oi(a)=a —|—/0 u(Ps(a), s)ds in LY(M).

Proof. Formally, equation (113) is the limit of the integral equation (79). It has
been shown that ®7" converges to ®; in L' (M), uniformly for ¢ € (0,7). We only need
to show that the integral on the right-hand side of (79) converges to the integral on
the right-hand side of (113) in L'(M) as well. To this end, we evaluate the L!'-norm
of the difference of these two integrals,

J.

da <

/0 (u" (37 (a), 5) — w(®y(a), ) ds

/M /Ot [u™ (@7 (a), s) — u"(®4(a), )| dsda+
/M /ot [u"(®s(a),s) — u(®s(a), s)| dsda.

By Lemma 3.1, each u” is quasi-Lipschitz continuity, and the continuity parameter
depends on M, |go|so and |f|e only, and not on n. Therefore, we can write that

/.

t
C(M, |gol) / /M (17 (@) — B4 (a)|dsda + / jun( ) any B3

t |(I)n (I) | 1
<CM. k) M] | X( |M|L <M>>ds+/ ' ( )|y ds

The convexity of the scalar function x(-) has been used in deriving the last estimate.
By the continuity of the function x(-), the L' convergence of ®" and u", we conclude
that the above expression goes to zero as n goes to infinity, uniformly in ¢ € (0,7).
The claim is thus proven. a

t

; (u(®%(a), s) — u(Ps(a),s))ds|da

It is straightforward to verify that, if everything is smooth, then the QGPV ¢
solves the transport equation. Indeed,

d
7 2t(a)
= —q(® t
dtq( t(a)a )
= f(®i(a),1).
However, in general, ®; and u do not satisfy (76a) in the classical sense, and the

so-defined QGPYV ¢ is not necessarily differentiable in time. We now show that ¢
satisfies the transport equation in a weaker sense. Indeed, using the change of variable

0
tq+Vq

—|—u~Vq*a

&q
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x = ®y(a), we verify that ¢(z,t) satisfies the weak formulation (32),

T
/ / q(z,t) <% +u- ch) dxdt
0o Jm ot

=[] (wler+ [ 560,515 So@utar
__ /M do(a)p(a, 0)da — /0 ' /M F(@1(a), )o(®, (a), t)dadt

__ /M g0 () (x, 0)da — /OT /M P, D, t)dudt.

The process goes through thanks to the fact that the mapping @ = ®;(a) preserves
area. Thus we have proven the following result.

THEOREM 5.6. Assume that f € L*°(0,T;C(M)). Then there exists a solution
to the weak problem (33) in L>°(0,T;V).

In the previous section, we have shown that the initial and boundary conditions
are only satisfied in a weak sense. We will now show that the solution ¥ actually enjoys
better regularity, and satisfies the initial and boundary conditions in the classical
sense.

THEOREM 5.7. The initial and boundary conditions (6)—(8) are satisfied in the
classical sense, and A, 8% /0z0t are strongly continuous with respect to t on [0,T]
in LP(M) for any p > 1.

Proof. We let ¢ € C2°(M). We multiply (4) by ¢ and integrate over M x [y, T2]
for some 0 <7 <7 < T,

(A% — §, @)lemrs — (A — 1, Plmm — / ’ /Mw y— $)Ve - Vidadt

-/ | s et

(q(-;m2), ) = (q(-,71), ) = /T2 /M qV*o - Vo + foddt.

We note that ¢ € L*(0,T; V), ¢ is bounded in L>®(Qr), and V14 is uniformly
bounded in @Qp. Thus, as 79 — 71,

(114) q(-,72) = q(-,71)  inany LP(M).
Writing (106) over the interval |71, 72], one can easily derive that, for Vp > 1,

T2

l9(72) Loty < 12 ) oery + / £ Ly dt.

T1

From this estimate we conclude that

limr, o, [q( 72) o) < laCm1) Lo m)-

In view of this estimate and the weak convergence (114), the Radon-Riesz theorem
applies, and we have

(115) g(- 1) € C([0,T), LP(M)),  ¥p > L.
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Concerning the continuity of §%/9z0t, we rewrite (4) as

(A—I)%U):VXF—V'(VLﬂJ(Al/J—I—y—l/))).

Then,
v%z; =VA-I)'VxF-V(A-D)7'V- (V(AY +y — ),

where (A — I)~! is the solution operator of the elliptic boundary value problem (10).
We note that ¢ = At +y —1) is continuous in ¢ in any L?(M) with p > 1, and V14 is
uniformly bounded in Q7. Thus, thanks to the continuity of the differential operator
V(A —I)7tV(+), and provided that F is continuous in ¢ as well,

9y

(116) Voo

(1) € C([0,T]; LP(M)), Vp > 1.

By Lemma 3.1,

[V(,m2) =P m)lw2e ) < Opla(c,m2) — g 1) L (-

Thus, as 79 — 74,

"/’('77—2) — ¢(= Tl) in Wz)p(M)v

Thus the initial condition (8) is satisfied in a stronger norm,

Y(-,0) =vo(-)  in WHP(M).
We also note that ¢ € L>(0,7;V) implies that

(117) g—i’ € L0, T; WhHP(M)).

From Lemma 4.2, we have

0%

oo TP P
(118) 500 L*>(0,T; LP(M)) C LP(Qr).
Combining (117) and (118), we derive that

0
(19) D ew (@), vp>1.
ox
We take a p > 3. Then, by the Sobolev imbedding theorem,
9 _ on
(120) o € C°MNQr) for some 0 < X < 1.
x

Thus, the streamfunction v is continuous in the spatial-temporal domain, and the
initial and boundary conditions are satisfied in the classical sense.
Finally, (115) combined with (120) implies that

(121) A € C([0,T); LP(M)). O

We point out that, thanks to (115), the QGPV ¢ assumes its initial value ¢ in
the LP-norm, for any p > 1, which is an improvement over (50a).
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6. Concluding remarks. So far, theoretical studies of geophysical models have
largely focused on those with “rigid” lids on the top. Models with free or deformable
top surfaces are much harder, and belong to the class of free boundary problems.
Results on such problems are still scarce. The few published results concern the local
existence and uniqueness for the viscous PEs with a free top surface ([25, 24]). This is
not surprising. When a top surface is left free, it may break, as it does in reality. The
current work deals with the inviscid barotropic QG equation. The free top surface
enters the dynamics through its effect on the QGPV, thanks to Kelvin’s Circulation
Theorem. The current work confirms that, when the free surface is included in this
way, the QG model remains globally well-posed.

The current work is part of a project to address the well-posedness of invicid QG
equations. The other QG models that are being or will be considered include the
multi-layer QG model and the three-dimensional QG model. Within the multi-layer
QG model, besides the top surface, the interior layer interfaces are also free to deform.
Physically, the deformation of the interior interfaces can be much more significant
than those of the top surface, thanks to the reduced gravity in the interior of the fluid
([41]). A mathematical challenge posed by the multi-layer QG model is the fact that
the linear differential operator in the QGPYV specification is not negative definite, a
departure from the barotropic case. The three-dimensional QG equations are posed on
a truly three-dimensional domain, but its velocity field remains horizontal. Hence this
system is much more complex than the barotropic or multi-layer QG equations, but
are notably simpler than fully three-dimensional fluid models, including the Navier-
Stokes/Euler equations, and the primitive equatons. These problems will be addressed
in forthcoming papers.

Appendix A. Proof of Lemma 5.1. The proof is by the Picard iteration
technique. For the moment, we drop the super index from (76), and write the initial
boundary value problem in the integral form,

(122) Di(a)=a —l—/o u(P4(a), s)ds.
We let
(123) ®a)=a, t>0.

Assuming that ®7~!(a) is known, we compute ®f by

t
(124) Pk (a) =a +/ w(®*1(a), s)ds.
0
When n = 1, using (123) and (124), and the uniform boundedness of u, we obtain
¢
(125) 21(0) = 0@ < [ Ju(®} ), 9)lds < Ct.
0

We estimate the difference ®¥(a) — ®*~!(a) using (124) and the quasi-Lipschitz con-
dition on u,

25 - 0 @) < [ Ju@d @), - u(@h (@), o)lds
0

<c / ¥ (1957 () — @52 (a)]) ds.
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Here, C is, by assumption, independent of a or ¢, and the scalar function x is defined
in Lemma 3.1. We note that, for an arbitrary 0 < € < 1, this scalar function is
bounded by

(126) x(r) < —Ine-r+e¢,  Vr>0.

Hence, we have
t

(127) |®F(a) — ®F1(a)| < —C’lne/ |®51(a) — ®%2(a)|ds + Cet.
0

Using (125), we find that

2
®2(q) — dl(a §—1n6-02t—+06t.
| t t 2

Then, by induction, we find that
k

k—1
_ k— th k_1t
(128) | (a) — ®F(a)] < CF (—Ine) 1a+e§:ck(—ln6) 15.
k=1

The summation on the right-hand side can be bounded by an exponential function,
k—1 tk
k—1 - _
eZC’k (—1Ine) pl < Cete Ot — Ot =1,
k=1

Thus,
(—Clne-t)F1

+ Cte! ¢,
n!

(129) | (a) — @17 (a)| < Ct

This estimate holds for arbitrary 0 < e < 1. We take ¢ = e~*. We derive from (129)
that

tk
|} (a) = &FH(a)| < CF -0 — 4 Cte HIOD,
n:

By the Stirling formula,

k-1 o
(130) - < —
Thus,
|®F(a) — ®F 1 (a)| < \(/621_67:]22 1 Ctek1=C1)
We choose
PP
2Ce
Then

)

1 1
Cet* = = d 1-Ct"> -
e 5 an 2 5
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and, for all 0 <t < ¢*,

k k—1 1 1" w —1k

|7 (a) — P77 (a)] < NGETE (2> + Ct*e™ 2",
Thus, for 0 < t < t*, |®F(a) — ®¥1(a)| is a convergent geometric sequence, and
therefore ®F(a) is Cauchy and converges to a limit function ®;(a), which solves the
integral equation (122) and thus the IVP (76) on the interval [0, t*]. The choice of
t* depends on the generic constant C' only, and is independent of the initial position
a. Hence, the same procedure can be applied to extend the solution ®.(a), for every

a € M, to the whole time interval [0, T.
For uniqueness, we assume that U;(a) is another solution satisfying

(131) Ui(a) = a—l—/o u(Us(a), s)ds,

and U;(a) differs from ®,(a) for every ¢t € (0, o) for some o > 0. If this is not the
case, we can always move the initial point to where ®;(a) and ¥;(a) start to fork.
Subtracting this equation from (122), and using the quasi-Lipschitz condition on u,
we find

t
[D:(a) — Te(a)| < —Clne/ |Ps(a) — Uys(a)|lds + Cet, V0O <e<l.
0

One can obtain an estimate on the difference using the Gronwall inequality,

€
|<I)t(a) — \Ilt(a)| < m (Q*Ctlne _ 1) )

This inequality holds for arbitrary 0 < e < 1, and for all ¢ € [0,T]. We take ¢ = e
for some integer n > 0. Then

e ® Ctn 1 (Ct—1)n e ”
|¢t(a) — \I/t(a)| S T (6 — 1) = ﬁe — T
We set t* = ! The
S =50 n
1
Cth —1=—=
2
and for 0 < ¢ < t*,
1 —k
1B, (a) — Uy(a)| < Ee_%k - 67

We note that this estimate holds for arbitrary k’s. For this to be possible, ®;(a) and
U, (a) must agree on [0, t*], which contradicts the assumption on ¥,. Hence ®;(a) is
a unique solution.

REFERENCES

[1] C. BARrDOS, Existence et unicité de la solution de l’équation d’Euler en dimension deuz, J.
Math. Anal. Appl., 40 (1972), pp. 769-790.



32

2]

[3]

[4]

[6]
7]

(8]

23]
[24]
23]
[26]
[27]
28]
[29]
[30]

31]

QINGSHAN CHEN

C. BARDOS AND E. S. TiTI, Euler equations for an ideal incompressible fluid, Rossi\uiskaya
Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh
Nauk, 62 (2007), pp. 5-46.

A. J. BOURGEOIS AND J. T. BEALE, Validity of the quasigeostrophic model for large-scale flow
in the atmosphere and ocean, STAM J. Math. Anal., 25 (1994), pp. 1023-1068.

T. BUCKMASTER, S. SHKOLLER, AND V. VICOL, Nonuniqueness of weak solutions to the SQG
equation, arXiv:1610.00676, (2016), https://arxiv.org/abs/1610.00676.

L. CaFFaRreLLL, C. Luis, AND V. ALEXIS, Drift diffusion equations with fractional diffusion and
the quasi-geostrophic equation, Ann. Math., 171 (2010), pp. 1903-1930.

C. Cao AND E. S. Trit1, Global well-posedness of the three-dimensional viscous primitive equa-
tions of large scale ocean and atmosphere dynamics, Ann. Math., 166 (2007), pp. 245-267.

A. CasTRO, D. CORDOBA, AND J. GOMEZ-SERRANO, Global smooth solutions for the inviscid
SQG equation, arXiv:1603.03325, (2016).

D. CHAE, P. CONSTANTIN, D. CORDOBA, F. GANCEDO, AND J. WU, Generalized surface quasi-
geostrophic equations with singular velocities, Commun. Pure Appl. Math., 65 (2012),
pp- 1037-1066.

A. CHESKIDOV AND M. DAL, Determining modes for the surface Quasi-Geostrophic equation,
arXiv preprint arXiv:1507.01075, (2015), https://arxiv.org/abs/1507.01075.

P. CONSTANTIN, A. J. MAJDA, AND E. TABAK, Formation of strong fronts in the 2-D quasi-
geostrophic thermal active scalar, Nonlinearity, 7 (1994), pp. 1495-1533.

P. CONSTANTIN, A. J. MaJpA, AND E. G. TABAK, Singular front formation in a model for
quasigeostrophic flow, Phys. Fluids, 6 (1994), pp. 9-11.

P. CoNSTANTIN, Q. NIE, AND N. SCHORGHOFER, Nonsingular surface quasi-geostrophic flow,
Phys. Lett. A, 241 (1998), pp. 168-172.

P. CONSTANTIN AND J. WU, Behavior of solutions of 2D Quasi-Geostrophic equations, STAM
J. Math. Anal., 30 (1999), pp. 937-948.

R. COURANT AND D. HILBERT, Methods of mathematical physics. Vol. II, Wiley Classics Library,
John Wiley & Sons, Inc., New York, 1989.

M. DaBkOwsSKI, A. KISELEV, AND V. VicoL, Global well-posedness for a slightly supercritical
surface quasi-geostrophic equation, Nonlinearity, 25 (2012), p. 1525.

B. DESJARDINS AND E. GRENIER, Derivation of quasi-geostrophic potential vorticity equations,
Adv. Differential Equations, 3 (1998), pp. 715-752.

J. A. DUTTON, The nonlinear quasi-geostrophic equation- Ezistence and uniqueness of solutions
on a bounded domain, J. Atmos. Sci., 31 (1974), pp. 422-433.

J. A. DUTTON, The Nonlinear Quasi-Geostrophic Equation. Part II: Predictability, Recurrence
and Limit Properties of Thermally-Forced and Unforced Flows, J. Atmos. Sci., 33 (1976),
pp. 1431-1453.

C. L. FEFFERMAN AND J. L. RoDprIiGO, Construction of Almost-Sharp fronts for the surface
Quasi- Geostrophic equation, Arch. Ration. Mech. Anal., 218 (2015), pp. 123-162.

S. FRIEDLANDER AND V. VICOL, Global well-posedness for an advection-diffusion equation aris-
ing in magneto-geostrophic dynamics, Annales de I'Institut Henri Poincare (C) Non Linear
Analysis, In Press, Corrected Proof (2011), pp. —.

D. GILBARG AND N. S. TRUDINGER, Elliptic partial differential equations of second order, 1983.

P. HARTMAN, Ordinary Differential Equations, Classics in Applied Mathematics, Society for
Industrial and Applied Mathematics, 1 Jan. 2002.

I. M. HELD, R. T. PIERREHUMBERT, S. T. GARNER, AND K. L. SWANSON, Surface quasi-
geostrophic dynamics, J. Fluid Mech., 282 (1995), pp. 1-20.

H. HoNDA, Small-time solvability of primitive equations for the ocean with spatially-varying
vertical mizing, Esaim Math. Model. Numer. Anal., 49 (2015), pp. 875-919.

H. HONDA AND A. TANI, Small-time existence of a strong solution of primitive equations for

the ocean, Tokyo J. Math., 35 (2012), pp. 97-138.
Karo AND K. Tosio, On classical solutions of the two-dimensional non-stationary euler
equation, Arch. Ration. Mech. Anal., 25 (1967).

. KISELEV AND F. NAZAROV, Global regularity for the critical dispersive dissipative surface

quasi-geostrophic equation, Nonlinearity, 23 (2010), p. 549.

. KOBELKOV, Euzistence of a solution ‘in the large’ for the 3D large-scale ocean dynamics

equations, C. R. Math., 343 (2006), pp. 283-286.

. M. KOBELKOV, Ezistence of a Solution “in the Large” for Ocean Dynamics Equations, J.

Math. Fluid Mech., 9 (2007), pp. 588-610.

I. KukavicA AND F. WaNG, Weighted decay for the surface quasi-geostrophic equation, Com-
mun. Math. Sci., 13 (2015), pp. 1599-1614.

O. LAZAR, Global existence for the critical dissipative surface Quasi-Geostrophic equation,

o = 8


https://arxiv.org/abs/1610.00676
https://arxiv.org/abs/1507.01075

[32]
33
[34]
[35]
[36]

37]

THE BAROTROPIC QUASI-GEOSTROPHIC EQUATION UNDER A FREE SURFACE 33

Commun. Math. Phys., 322 (2013), pp. 73-93.

D. L1 AND J. RODRIGO, Blow up for the generalized surface Quasi-Geostrophic equation with
supercritical dissipation, Commun. Math. Phys., 286 (2008), pp. 111-124.

J. L. Lions, R. TEMAM, AND S. WANG, New formulations of the primitive equations of atmo-
sphere and applications, Nonlinearity, 5 (1992), pp. 237-288.

J. L. Lions, R. TEMAM, AND S. WANG, On the equations of the large-scale ocean, Nonlinearity,
5 (1992), pp. 1007-1053.

J. L. Lions, R. TEMAM, AND S. WANG, Models of the coupled atmosphere and ocean (CAO I).
I, Computational mechanics advances, 1 (1993), pp. 5-54.

J. L. LioNs, R. TEMAM, AND S. WANG, Numerical analysis of the coupled atmosphere-ocean
models (CAO II). II, Computational mechanics advances, 1 (1993), pp. 55-119.

J. L. Lions, R. TEMAM, AND S. WANG, Mathematical theory for the coupled atmosphere-ocean
models (CAO III), Journal de Mathématiques Pures et Appliquées. Neuvieme Série, 74
(1995), pp. 105-163.

C. MARCHIORO AND M. PULVIRENTI, Mathematical theory of incompressible nonviscous fluids,
vol. 96 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994.

C. M1A0o AND L. XUE, Global well-posedness for a modified critical dissipative quasi-geostrophic
equation, J. Differ. Equ., 252 (2012), pp. 792-818.

M. D. NovAack AND A. F. VASSEUR, Global in time classical solutions to the 3D quasi-
geostrophic system for large initial data, arXiv:1610.04764, (2016), https://arxiv.org/abs/
1610.04764.

J. PEDLOSKY, Geophysical fluid dynamics, Springer, 2 ed., 1987.

M. PeETcu, R. M. TEMAM, AND M. ZIANE, Some mathematical problems in geophysical fluid
dynamics, in Special Volume: Computational Methods for the Atmosphere and the Oceans,
vol. 14 of Handbook of Numerical Analysis, Elsevier, 2009, pp. 577-750.

M. PUEL AND A. F. VASSEUR, Global Weak Solutions to the Inviscid 8D Quasi-Geostrophic
Equation, Commun. Math. Phys., 339 (2015), pp. 1063-1082.

R. TEMAM, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, 2001.

G. K. VALLIS, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, 2006.

V. I. YubovicH, Non-stationary flow of an ideal incompressible liquid, USSR, Computational
Mathematics and Mathematical Physics, 3 (1963), pp. 1407-1456.


https://arxiv.org/abs/1610.04764
https://arxiv.org/abs/1610.04764

	1 Introduction
	2 The initial and boundary conditions
	3 An non-standard elliptic boundary value problem
	4 Weak formulation and the uniqueness
	5 Existence of a solution to the weak problem
	6 Concluding remarks
	Appendix A. Proof of Lemma 5.1
	References

