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SOLITON-POTENTIAL INTERACTIONS FOR NONLINEAR SCHRÖDINGER

EQUATION IN R3

QINGQUAN DENG, AVY SOFFER AND XIAOHUA YAO

Abstract. In this work we mainly consider the dynamics and scattering of a narrow soliton of

NLS equation with a potential in R3 , where the asymptotic state of the system can be far from the

initial state in parameter space. Specifically, if we let a narrow soliton state with initial velocity υ0

to interact with an extra potential V(x), then the velocity υ+ of outgoing solitary wave in infinite

time will in general be very different from υ0. In contrast to our present work, previous works

proved that the soliton is asymptotically stable under the assumption that υ+ stays close to υ0 in a

certain manner.
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1. Introduction

Consider the following nonlinear Schrödinger (NLS) equation in R3,

i∂tψ = −
1

2
∆ψ + Vψ − Fǫ(|ψ|

2)ψ

ψ(·, 0) = ψ0.(1.1)

Here ǫ is a small positive number which will be fixed later and V is a positive smooth bump

function supported in unit ball B(0, 1) in R3. The nonlinear term is of form

Fǫ (|s|
2) =

f (s)

θǫ
− 2

p
r
+ f (s)

|s|p(1.2)

where 1 < p < 4
3
, f is a homogenous function of degree r > 0 such that 7

3
< r + p ≤ 4 and θ is a

fixed small positive number. The initial data ψ0 is a narrow soliton of form

eiῡ0·x+iγ0ǫ
− 2

p φ(
1

ǫ
(x − ā0), ǫ−2µ0)(1.3)

with given parameters {ā0, ῡ0, γ0, µ0} of order O(1) and φ = φ(·, µ), the ground state satisfying

−
1

2
∆φ − F(|φ|2)φ = −µφ,(1.4)

we use F(|s|2) to denote F1(|s|2) in (1.2). We refer to Rodnianski, Schlag and Soffer[34] for the

existence of such solution to (1.4).

In this work we mainly focus on the dynamics and scattering of a narrow soliton of equation

(1.1) in a setting which is not asymptotically stable. That is, we allow the asymptotic state of the

system to be far from the initial state in parameter space. Specifically, if we let soliton state of

form (1.3) with initial velocity ῡ0 to interact with an extra potential V(x), then the velocity υ+ of

outgoing solitary wave will in general be very different. Previous works ( see e.g. [12], [20], [30],

[34] ) required that υ+ stay close to ῡ0 in a certain manner and then the soliton is asymptotically

stable, which in contrast to our work, we allow υ+ to be very different from ῡ0.

To introduce our main result, we first make change of variables

u(x, t) = ǫ
2
pψ(ǫx, ǫ2t),(1.5)

then equivalently, the equation (1.1) describing a narrow soliton interaction with a normal poten-

tial, becomes the following NLS equation

i∂tu = −
1

2
∆u + ǫ2V(ǫ·)u − F(|u|2)u

u(·, 0) = u0 = eiῡ0ǫ·x+iγ0φ(x −
ā0

ǫ
, µ0),(1.6)

which describes actually a normal soliton interaction with a flat potential. Set σ = {a, υ, γ, µ}

and σ0 = {a0, υ0, γ0, µ0} where a0 =
ā0

ǫ
and υ0 = ǫῡ0. Let Vǫ = ǫ2V(ǫ·), we introduce the

time-independent one-soliton linearized Hamiltonian

H (σ) = H0 +V1ǫ +V2(σ)(1.7)

where

V1ǫ =

(
Vǫ 0

0 −Vǫ

)
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V2(σ) =

(
µ − F(|φ(σ)|2) − F′(|φ(σ)|2)φ(σ)2 −F′(|φ(σ)|2)φ(σ)2

F′(|φ(σ)|2)φ(σ)2 −µ + F(|φ(σ)|2) + F′(|φ(σ)|2)φ(σ)2

)

and φ(σ) = φ(x, µ) satisfying (1.4). Denote by

H1 = H0 +V1ǫ(1.8)

and

H2(σ) = H0 +V2(σ),(1.9)

We introduce some spectral assumptions on H2(σ).

Spectral assumptions: For |σ − σ0| < c with some constant c > 0, one has

(i) 0 is the only point of the discrete spectrum of H2(σ) and the dimension of the correspond-

ing root space is 8.

(ii) There are no embedded eigenvalues in specess(H2(σ)) = (−∞,−µ]∪[µ,+∞) and the points

±µ are not resonances.

Remark 1.1. ±µ are said to be a resonances of H2(σ) if there exists solutions ψ± to equation

(H2(σ) ± µ)ψ± = 0 such that 〈x〉−sψ± ∈ L2 for any s > 1/2.

Theorem 1.1. Let ǫ ≪ 1 and F as in (1.4) with a small fixed parameter θ > 0. Assume that

the linearized operator H2(σ) defined by (1.9) satisfy the spectral assumptions for all σ ∈ R8

satisfying |σ − σ0| < c for some c > 0. Then the solution to NLS equation (1.6) exists globally

and there exist σ+ ∈ R
8 and u+ ∈ H1 such that

‖u − w(x, t;σ+) − eit∆u+‖H1 → 0, t → +∞.(1.10)

The proof of Theorem 1.1 is actually a direct corollary of Theorems 2.1 and 2.2 given in

Section 2. In order to understand some key-points of our result, we would would like to give

more explanations by the following two steps:

(i) We first solve the soliton dynamics up to large but finite time T0 (see Theorem 2.1 of

Subsection 2.2), so that after time T0, the new outgoing solitary wave is far from the support of

potential Vǫ and its velocity is pointing away from Vǫ . Since one can use the classical dynamics to

describe the leading order behavior of such soliton-potential interaction (see Fröhlich, Gustafson,

Jonsson and Sigal[15]), we follow the same idea of [15] to conclude that after an appropriate time

T0, the above condition on the outgoing solitary wave applies.

(ii) It follows from the finite time results that the solution is the state of the solitary wave

with some parameter σT0
plus a perturbation rT0

, as well as the solitary wave moves away from

potential. Next, we begin with a new system with initial conditions on (σT0
, rT0

), and establish

the long time behavior of the new system, i.e. Theorem 2.2 of Subsection 2.3, which is an optimal

version of previous works on asymptotic stability (see e.g. [12], [20], [30], [34] and references

therein).

To implement this strategy, we encounter and overcome new technical difficulties. To do step

(ii), we have to know that besides the solitary wave moving away from potential (with nonzero

speed), the radiation part rT0
of the solution is small. For this we assume that in the original
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NLS equation (1.1), the soliton (1.3) is narrow which by scaling is equivalent to the potential

is small and flat in new NLS equation (1.6). By applying the method of [15], one has after

time T0 of order O(ǫ−2), the H1 norm of the radiation will be of order O(ǫ2− ). To proceed, we

linearize around soliton gives a time-dependent matrix charge transfer Hamiltonian depending on

parameter vector σ(t) and ǫ. Moreover, the initial data is only small in H1, but in general is large

in weighted spaces such as L2(〈x〉sdx) and L1. Then we would investigate the optimal Strichartz

estimates in ǫ for the time and ǫ dependent charge transfer Hamiltonian to take advantage of

the smallness of radiation in H1 norm. Furthermore, since only Strichartz estimates is applied,

we may have to use L1 norm for the derivative of parameter vector σ̇(t). This is in contrast

with the proof in [34] for example, where the authors had the Lp decay estimates in hand and

hence the localization at least in Lp for radiation is needed (as well as smoothness in higher

Sobolev norms) and the decay bounds for σ̇(t) is also used. It should be noted that the Strichartz

estimates (homogeneous and inhomogeneous) for the following time and ǫ dependent matrix

charge transfer Hamiltonian

H (t, σ̃(t)) =H0 +V1ǫ +V2(t, σ̃(t))

would be the most important part of this work. We prove these estimates are uniformly for ǫ ≪ 1.

Theorem 1.2. Let Z(t, x) solve the equation

i∂tZ =H (t, σ̃(t))Z + F

Z(·, 0) = Z0,(1.11)

where the matrix charge transfer Hamiltonian H (t, σ̃(t)) satisfies separation and spectral as-

sumptions. Assume that the bootstrap assumption (4.3) holds for ǫ ≪ 1 and Z satisfies

‖Pb(t)Z(t)‖L2
t L6

x
. B,(1.12)

with some constant B. Then for all admissible pairs (p, q) and ( p̃, q̃)
∥∥∥Z

∥∥∥
L

p
t L

q
x
. ‖Z0‖L2 + ‖F‖

L
p̃′

t L
q̃′

x
+ B.(1.13)

Moreover, the constants in both estimates (1.12) and (1.13) are independent of ǫ.

One can see Sections 4.1 and 5 for proof details. For ǫ = 1, the charge transfer models has been

extensively studied. Scattering theory and the asymptotic completeness was proved by Graf [19],

Wüller [35], Yajima [36] and Zielinski [37]. The next significant step is made by Rodinianski,

Schlag and Soffer [33] and Cai [9], who proved the point-wise decay estimates. Recently, the

Strichartz estimates has been proved in Chen [10], Deng, Soffer and Yao [14] and partially in

Cuccagna and Maeda [12]. The main idea used previously is to deduce the Strichartz estimates

from local decay estimates. In [14], the authors used the following logic:

Decay estimates⇒ Kato−Jensen⇒ Local decay⇒ Strichartz estimates,

whereas in [10] and [12], they used channel decomposition and proved local decay directly. If

we apply the same argument as the one in [14], it is necessary to trace down the ǫ-dependence

in each step, which is way to complicated. On the other hand, the procedures in [10] and [12]

would lead to ǫ-dependent in a bad way, in fact, the bound in (1.13) blows up as ǫ goes to zero.

In our work, we still reduce Theorem 1.2 to proving local decay and then by using L
6
5
,1 → L6,∞
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estimates for the solutions of linear and nonlinear Schrödinger equation with one potential (see

[6]) to prove for solution Z(x, t) to equation (1.11) in Theorem 1.2,
∥∥∥V1/2

1ǫ
Z(t)

∥∥∥2

L2
t L2

x
+

∥∥∥V1/2

2
(t)Z(t)

∥∥∥
L2

t L2
x
. ‖Z0‖L2

x
+ ‖F‖

L
p̃′

t L
q̃′

x
+ B,

where (p, q) and ( p̃, q̃) be admissible pairs and the constant above is ǫ-independent. Moreover, Vǫ

is obtained by scaling, it is small in Lp for p < 3
2
, large in Lp for p > 3

2
when ǫ ≪ 1 and invariant

in L
3
2 . Thus one cannot just deal with it as a small perturbation to get the desire estimates as in

[6]. In fact, L
3
2 is to some extent considered as the critical space for Lp decay estimates even for

scalar and one potential Schrödinger flow (see for example [7] and [17]).

Finally, let us review some of the history of soliton-potential interaction of NLS equation.

Fröhlich, Gustafson, Jonsson and Sigal in [15] considered finite time results for soliton interacting

with a flat potential (equivalently, narrow soliton interacting with normal potential), they proved

for large but finite time, the soliton moves along almost the classical trajectory and only radiates

small energy. Their results has been improved later in one dimension by Homler and Zworski

[22]. Also, similar results for soliton interacting with a flat time-dependent potential are obtained

by Salem [3]. As far as the long time behavior, Perelman [31] considered a slow varying soliton

hits a potential in one dimension and show that such soliton would split into two parts when time

t → ±∞, which is totally different from our problem. Cuccagna and Maeda [12] proved that the

ground states are asymptotically stable if it interact with non-trapping potential weakly. There

still exist some other significant works and we will not list them all, one can see for example

[2], [5], [8], [13], [16], [18], [20], [21], [23], [24], [38] and references therein. Our work is also

related to the analysis of multi-soliton problem, see [4], [11], [27], [28], [29], [30], [32], [34].

2. The analysis of soliton-potential interactions

2.1. Some spectral results. In this subsection, we will introduce results related to the spectrum

of Hamiltonians H1 and H2(σ). Notice that Vǫ is positive and compactly supported, there is no

eigenvalue for H1, which leaves us to consider the spectral properties of H2(σ). The continuous

spectrum of H2(σ) would be (−∞, µ] ∪ [µ,+∞). Additionally, spec(H2(σ)) ⊂ R and may have

finite and finite dimensional point spectrum. Moreover, it has been proved in [33] that if φ(x, µ)

is the solution of (1.4), the convexity condition

〈
∂µφ(·, µ), φ(·, µ)

〉
> 0

holds for |µ − µ0| < c.

Zero is always a eigenvalue and admits a generalized eigenspace. It has 4 eigenvectors

η1(x;σ) =

(
φ(σ)

−φ(σ)

)
, η j(x;σ) = −i

(
∂ j−2φ(σ)

∂ j−2φ(σ)

)
, 3 ≤ j ≤ 5,(2.1)

and 4 generalized eigenvectors

η2(x;σ) = −i

(
∂µφ(σ)

∂µφ(σ)

)
, η j(x;σ) =

(
x j−5φ(σ)

−x j−5φ(σ)

)
, 6 ≤ j ≤ 8.(2.2)

One can easily see that

H2(σ)η2 = iη1 and H2(σ)η j+3 = −iη j, 3 ≤ j ≤ 5.(2.3)
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Proposition 2.1. Let F be defined as in (1.2) with ǫ = 1 and H2(σ) be defined by (1.9).

Assume that the above spectral assumption holds. Then

(I) Let L(σ) = ker(H2(σ)2) and L∗(σ) = ker(H ∗
2

(σ)2), one has

L2(R3) × L2(R3) = L(σ) + L∗(σ)⊥.

The space L∗(σ) has dimension 8 and can be expanded by ξ j(x, σ) j = 1, 2, . . . , 8, where

ξ j(x;σ) =

(
φ(σ)

φ(σ)

)
, ξ j(x;σ) =

(
i∂ j−2φ(σ)

−i∂ j−2φ(σ)

)
, 3 ≤ j ≤ 5,(2.4)

and

ξ2(x;σ) =

(
i∂µφ(σ)

−i∂µφ(σ)

)
, ξ j(x;σ) =

(
x j−5φ(σ)

x j−5φ(σ)

)
, 6 ≤ j ≤ 8.(2.5)

with

H
∗

2 (σ)ξ1(·;σ) = 0,

H
∗

2 (σ)ξ2(·;σ) = −iξ1(·;σ),

H
∗

2 (σ)ξ j(·;σ) = 0, 3 ≤ j ≤ 5,

H
∗

2 (σ)ξ j(·;σ) = iξ j−3(·;σ), 6 ≤ j ≤ 8.

Moreover, there is a natural isomorphism

J =

(
0 1

−1 0

)
(2.6)

between L(σ) and L∗(σ) and

η j = Jξ j, 1 ≤ j ≤ 8.(2.7)

(II) Let Pc(σ) denote the projection onto L∗(σ)⊥ and set Pb(σ) = I − Pc(σ), let η j and ξ j are

defined by (2.1)-(2.5) and (2.4), respectively. Then

H2(σ)Pc(σ) = Pc(σ)H2(σ)

and

Pb(σ) f =
1

n1

(
η1〈 f , ξ2〉 + η2〈 f , ξ1〉

)
+

5∑

ℓ=3

1

nℓ

(
ηℓ〈 f , ξℓ+3〉 + ηℓ+3〈 f , ξℓ〉

)
(2.8)

where n1 = 〈η1, ξ2〉 and nℓ = 〈ηℓ, ξℓ+3〉 (3 ≤ ℓ ≤ 5).

(III) The linear stability property for H2(σ) holds. That is,

sup
t∈R

∥∥∥eitH2(σ)Pc(σ)
∥∥∥ < ∞.

Proof. One can see the proof for (I) and (III) in [34, section 12] and references therein. As for

the statement (II), we refer to [30] for its proof. �
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2.2. Interactions on finite time (0, Tǫ]. We first consider equation (1.6) for finite time, that the

soliton-potential interaction happens. Notice that φ in initial data is the groundstate satisfying

(1.4) and ǫ is small enough, applying similar argument as in [15], one could find solution to

equation (1.6) which will stay close to a solitary wave of form

φ(x, t;σ) = eiυ·x+iγφ(x − a, µ),(2.9)

where σ := {a, υ, γ, µ}, a = υt + a0 and γ = µt −
|υ|2

2
t + γ0 with γ0 ∈ [0, 2π), a0 ∈ R. Specifically,

we have the following results which will be proved in the next section.

Theorem 2.1. Assume F is given by (1.4) and ǫ ≪ 1. Let I0 be any closed bounded interval

in (0,∞). Then there is a constant C > 0, independent of ǫ but possibly depend on I0 such that

for 2 ≤ δ ≤ 3 and times 0 < t < C min
{
ǫ−δ, ǫ−8+2δ

}
, the solution to equation (1.6) with initial

data for some parameter

σ0 = {a0, υ0, γ0, µ0} ∈ R
n × Rn × [0, 2π) × I0, a0 =

ā0

ǫ
, υ0 = ῡ0ǫ

is of form

u(x, t) = eiυ·x+iγ(φ(x − a, µ) + r(x − a, t)
)

(2.10)

where
∥∥∥r

∥∥∥
H1 = O(ǫ4−δ)(2.11)

and the parameters υ, a, γ and µ satisfy the following differential equations

υ̇ = −ǫ3(∇V)(ǫa) + O(ǫ8−2δ)

ȧ = υ + O(ǫ8−2δ)

γ̇ = µ −
|υ|2

2
− ǫ2V(ǫa) + O(ǫ8−2δ)

µ̇ = O(ǫ8−2δ).(2.12)

Remark 2.1. Since our potential Vǫ is flat of size O(ǫ−1) and also small in L∞ of size O(ǫ2),

the existence time interval of solution and the estimates for the remainder terms in (2.10) and

(2.12) are slightly better than the ones in [15], where the authors only assume potential is flat and

not necessarily to be small.

2.3. Post-interactions after Tǫ . The modulations equations (2.12) for parametersσ in Theorem

2.1 shows that the moving solitary wave hits a small and flat potential, it moves almost along

classic trajectory. Since the potential is a smooth bump function (one can even make it radial),

we would expect that the solitary wave will move out of the impact of the potential. In fact,

by using the modulation equation (2.12), it could be realized by the time O(ǫ−2) if one choose

quantity of initial position ā0 and velocity ῡ0 are of order 1.

Thus in the following we assume |ā0| = |ῡ0| = O(1) and choose δ = δ0 with some 2 < δ0 <
5
2

and ǫ ≪ 1 in Theorem 2.1. Now we consider equation (1.6) from time Cǫ−δ0 to +∞. Let us begin

with the equation (1.6) at time T0 = Cǫ2−δ0ǫ−2 = T ǫ−2 for large constant T ,

i∂tu = −
1

2
∆u + ǫ2V(ǫ·)ψ − F(|u|2)u

u(·, T0) = uT0
= eiυT0

·x+iγT0
(
φ(x − aT0

, µT0
) + r(x − aT0

, T0)
)
.(2.13)
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with
∣∣∣υT0

∣∣∣ =
∣∣∣υ(T0)

∣∣∣ = cῡ0,Vǫ
3−δ0 + O(ǫ8−3δ0 ) ≥ C1ǫ∣∣∣aT0

∣∣∣ =
∣∣∣a(T0)

∣∣∣ = cā0,Vǫ
3−2δ0 + O(ǫ8−4δ0 ) ≥ C2ǫ

−1

γT0
= γ(T0) = γ0 + O(ǫ8−2δ0 )

µT0
= µ(T0) = µ0 + O(ǫ8−2δ0 ),(2.14)

where C1 and C2 are large constants. We start (2.13) at t = 0 and rewrite it as

i∂tu = −
1

2
∆u + Vǫu − F(|u|2)u

u(·, 0) = u0 = eiυT0
·x+iγT0

(
φ(x − aT0

, µT0
) + r(x − aT0

, T0)
)
,(2.15)

where Vǫ(x) = ǫ2V(ǫx), the parameter σT0
= {aT0

, υT0
, γT0

, µT0
} satisfies (2.14) and r satisfies

(2.11) with δ = δ0.

Notice that the support of Vǫ is of ǫ−1 with ǫ ≪ 1, by (2.12), (2.14) and the observation that

the solitary wave moves almost along classic trajectory, we know that at the solitary wave moves

away from the potential and at t = 0 in equation (2.15) they almost separate from each other.

Thus it is reasonable to assume
∣∣∣aT0
+ υT0

t
∣∣∣ ≥ c1ǫ

−1 + c0ǫt,(2.16)

with some large positive constants c0 and c1. This also means in equation (2.15), the soliton

already sits out of the impact of potential at time t = 0 and the distance between the centers of

moving soliton and potential become far away from each other as time goes.

To deal with equation (2.15), we first linearize it around soliton. Let u(x, t) be the solution

near moving soliton and make ansatz

u(x, t) = eiθ(x,t;σ(t))φ(x − y(t;σ(t)), µ(t)) + R(x, t) := w(x, t;σ(t)) + R(x, t).(2.17)

Here

θ(x, t;σ(t)) = υ(t) · x −

∫ t

0

(
υ̇(s) · y(s;σ(s)) +

|υ(s)|2

2
− µ(s)

)
ds + γ(t)

y(t;σ(t)) =

∫ t

0

υ(s)ds + a(s).(2.18)

We will write

w(σ(t)) = w(x, t;σ(t)) = eiθ(σ(t))φ(σ(t))(2.19)

where

θ(σ(t)) = θ(x, t;σ(t))(2.20)

and

φ(σ(t)) = φ(x − y(t;σ(t)), µ(t)),(2.21)

It is easy to see

i∂t

(
w(σ(t)) + R(x, t)

)
= −

(
υ̇(t) · (x − y(t;σ(t))) −

1

2
|υ(t)|2 + µ(t) + γ̇(t)

)
w(σ(t))

− ieiθ(σ(t))(υ(t) + ȧ(t)
)
∇φ(σ(t))

+ ieiθ(σ(t))µ̇(t)∂µφ(σ(t)) + i∂tR
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and

∆
(
w(σ(t)) + R(x, t)

)
= |υ(t)|2w(σ(t)) − eiθ(σ(t))∆φ(σ(t)) − 2ieiθ(σ(t))υ(t)∇φ(σ(t)) − ∆R,

which imply the equation for R(x, t),

i∂tR = −
∆

2
R + VǫR − F(|w(σ(t))|2)R − F′(|w(σ(t))|2)|w(σ(t))|2R − F′(|w(σ(t))|2)w(σ(t))2R

+
(
υ̇(t) · (x − y(t;σ(t)))w(σ(t)) + γ̇(t)w(σ(t))

+ iȧ(t)eiθ(σ(t))∇φ(σ(t)) − ieiθ(σ(t))µ̇(t)∂µφ(σ(t))
)

+ Vǫw(σ(t)) + O(|R|q) + O(|R|2|w(σ(t))|q−2).(2.22)

Rewriting the equation (2.22) as a system for Z = (R,R)T ,

i∂tZ =H (t, σ(t))Z +N (σ(t)) + Vǫ(σ(t)) + O(|Z|q) + O(|Z|2|w(σ(t))|q−2).(2.23)

Here 7
3
< q ≤ 5 and the matrix charge transfer model

H (t, σ(t)) =H0 +V1ǫ +V2(t, σ(t))(2.24)

with matrixes

H0 =

(
− 1

2
∆ 0

0 1
2
∆

)
, V1ǫ =

(
Vǫ 0

0 −Vǫ

)
(2.25)

and

V2(t, σ(t))

=


−F(|w(σ(t))|2) − F′(|w(σ(t))|2)|w(σ(t))|2 −F′(|w(σ(t))|2)w(σ(t))2

F′(|w(σ(t))|2)w(σ(t))
2

F(|w(σ(t))|2) + F′(|w(σ(t))|2)|w(σ(t))|2

 .

We would take both N (σ(t)) and Vǫ(σ(t)) as nonlinear terms, which are interpreted as

N (σ(t)) =

(
f

− f

)
(2.26)

with

f = υ̇(t) · (x − y(t;σ(t)))w(σ(t)) + γ̇(t)w(σ(t)) + iȧ(t)eiθ(σ(t))∇φ(σ(t)) − ieiθ(σ(t))µ̇(t)∂µφ(σ(t))

and

Vǫ(σ(t)) =

(
Vǫw(σ(t))

−Vǫw(σ(t))

)
.(2.27)

Definition 2.1. Let σ(t) be an admissible path and θ(x, t;σ(t)) and y(t;σ(t)) be defined as in

(2.18). Then we define

ξ1(x, t;σ(t)) =

(
eiθ(x,t;σ(t))φ(x − y(t;σ(t)), µ(t))

e−iθ(x,t;σ(t))φ(x − y(t;σ(t)), µ(t))

)
,

ξ2(x, t;σ(t)) =

(
ieiθ(x,t;σ(t))∂µφ(x − y(t;σ(t)), µ(t))

−ie−iθ(x,t;σ(t))∂µφ(x − y(t;σ(t)), µ(t))

)
,

ξ j(x, t;σ(t)) =

(
ieiθ(x,t;σ(t))∂x j−2

φ(x − y(t;σ(t)), µ(t))

−ie−iθ(x,t;σ(t))∂x j−2
φ(x − y(t;σ(t)), µ(t))

)
, 3 ≤ j ≤ 5

and

ξ j(x, t;σ(t)) =

( (
x j−5 − y j−5(t;σ(t)

)
eiθ(x,t;σ(t))φ(x − y(t;σ(t)), µ(t))(

x j−5 − y j−5(t;σ(t)
)
e−iθ(x,t;σ(t))φ(x − y(t;σ(t)), µ(t))

)
, 6 ≤ j ≤ 8
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Proposition 2.2. Let Z satisfy the system (2.24) and ξ j be defined as in Definition 2.1. Suppose

for all t ≥ 0,
〈
Z(t), ξ j(x, t;σ(t))

〉
= 0(2.28)

where ξ j is defined as in Definition 2.1. Then we have the following system for parameter vector

σ̃(t),

−2iµ̇(t)
〈
∂µφ(σ(t)), φ(σ(t))

〉
+

〈
Z(t), σ̇(t)Φ1(σ(t))

〉

=
〈
Vǫ(σ(t)), ξ1(·, t;σ(t))

〉
+

〈
O(|Z|q) + O(|Z|2|w(σ(t))|q−2), ξ1(·, t;σ(t))

〉
,

2iγ̇(t)
〈
∂µφ(σ(t)), φ(σ(t))

〉
+

〈
Z(t), σ̇(t)Φ2(σ(t))

〉

=
〈
Vǫ(σ(t)), ξ2(·, t;σ(t))

〉
+

〈
O(|Z|q) + O(|Z|2|w(σ(t))|q−2), ξ2(·, t;σ(t))

〉
,

υ̇ j−3(t)
∥∥∥φ(σ(t))

∥∥∥2

L2 +
〈
Z(t), σ̇(t)Φ j(σ(t))

〉

=
〈
Vǫ(σ(t)), ξ j(·, t;σ(t))

〉
+

〈
O(|Z|q) + O(|Z|2|w(σ(t))|q−2), ξ j(·, t;σ(t))

〉
, 3 ≤ j ≤ 5,

ȧ j−5(t)
∥∥∥φ(σ(t))

∥∥∥2

L2 +
〈
Z(t), σ̇(t)Φ j(σ(t))

〉

=
〈
Vǫ(σ(t)), ξ j(·, t;σ(t))

〉
+

〈
O(|Z|q) + O(|Z|2|w(σ(t))|q−2), ξ j(·, t;σ(t))

〉
, 6 ≤ j ≤ 8,

(2.29)

where 7
3
< q ≤ 5, w(σ(t)) and φ(σ(t)) are defined by (2.19) and (2.21) respectively and for all j

∣∣∣Φ j(σ(t))
∣∣∣ ≤ C

(
|φ(σ(t))| + |Dφ(σ(t))| + |D2φ(σ(t))| + |D∂µφ(σ(t))|

)
.(2.30)

For post-interaction region, we have the following statement:

Theorem 2.2. Let F as in (1.4) with a small fixed parameter θ > 0. Assume that the linearized

operator H2(σ) defined by (1.9) satisfies the spectral condition for all σ ∈ R8 with |σ−σ(0)| < c

and ǫ ≪ 1. Then solution to equation (2.15) is of form

u(x, t) = w(x, t;σ(t)) + R(x, t)(2.31)

with w(x, t;σ(t)) defined as in (2.17),

‖R‖L2
t W

1,6
x ∩L∞t H1

x
. ǫα and ‖σ̇‖L1

t
. ǫ2α,(2.32)

for some 0 < α < 4 − δ0, 2 < δ0 <
5
2
. Moreover, there exist σ+ and u+ ∈ H1 such that

‖u − w(x, t;σ+) − eit∆u+‖H1 → 0, t → +∞,(2.33)

where w(x, t;σ+) = eiθ+(x,t)φ(x −
∫ t

0
υ(s)ds − a+, µ+) with

θ+(x, t) = υ+ · x −

∫ t

0

(
υ̇(s) · y(s;σ(s)) +

|υ(s)|2

2
− µ(s)

)
ds + γ+.

3. The proof of Theorem 2.1

In this section, to make our paper self-contained, we will sketch the proof of Theorem 2.1 by

using the method of [15]. We first note that by the spectral assumptions, it is easy to verify all the

assumptions in [15]. And then the proof of Theorem 2.1 will be divided into several subsections.
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3.1. Hamiltonian and solitary manifold. Consider nonlinear Schrödinger equation (1.6)

i∂tu = −
1

2
∆u + ǫ2V(ǫ·)u − F(|u|2)u

and define its associated Hamiltonian functional on H1(R3,C)

W(u) :=
1

4

∫

R3

|∇u|2dx +
1

2

∫

R3

Vǫ |u|
2dx − F (u)(3.1)

where Vǫ(x) = ǫ2V(ǫx) and F ′(u) = F(|u|2)u. Here let us review some basic facts of H1(R3,C).

It is equipped with form

ω(u, v) := Im

∫

R3

uv̄dx,(3.2)

which is considered as a real space

H1(R3,R2) = H1(R3,R) ⊕ H1(R3,R), u 7→ (Re u, Im u).(3.3)

It also has real inner product

〈u, v〉 := Re

∫

R3

uv̄dx,(3.4)

so that ω(u, v) = 〈u,J−1v〉, where

J =

(
0 1

−1 0

)
(3.5)

is an complex structure on H1(R3,R2) corresponding to the operator i−1 on H1(R3,C) and we

also use J = i−1. Thus the equation (1.6) can be written as

∂tu = JW
′(u).(3.6)

The HamiltonianW(u) enjoys the conservation of energy and mass, that is,W(u) = const and

N(u) = const with

N =

∫

R3

|u|2dx.(3.7)

Notice that the groundstate φµ = φ(·, µ) defined by

−
1

2
∆φµ − F(|φµ|

2)φµ = −µφµ,

for some µ ∈ I ⊂ R is the critical point of the functional

E(u) :=
1

4

∫

R3

|∇u|2 +
µ

2
|u|2dx − F (u).(3.8)

The Hessian of E(u) at φµ is the operator

Lµ = −
1

2
∆ + µ − (F(|φµ|

2)φµ)′.(3.9)

and

Lµ =

(
L+ 0

0 L−

)
(3.10)

in complex and real expression, respectively. Here

L− = −
1

2
∆ + µ − F(|φµ|

2)(3.11)
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and

L+ = −
1

2
∆ + µ − 2F′(|φµ|

2)φ2
µ − F(|φµ|

2).(3.12)

Now we introduce the manifold of solitary waves. Let σ := (a, υ, µ, γ) and

φσ := φaυµγ = Saυγφµ = TaTυTγφµ(x) = eiυ(x−a)+iγφµ(x − a)(3.13)

where

Tau(x, t) = u(x − a, t), Tυu(x, t) = eiυ·xu(x, t) and Tγu(x, t) = eiγu(x, t).(3.14)

The manifold of solitary waves is defined as

Ms :=
{
φaυµγ : (a, υ, µ, γ) ∈ R3 × R3 × [0, 2π] × I

}
,(3.15)

and then the tangent space to this manifold at φµ ∈ Ms is given by

Tφµ Ms := span
(
za, zυ, zγ, zµ

)
,(3.16)

where

za = −∇φµ, zυ = −Jxφµ, zγ = −Jφµ and zµ = ∂µφµ.(3.17)

Here we have to note that J = i−1 if one takes the complex expression of Lµ and J is of

form (3.5) and φµ = (φµ, 0) if one uses the real representation of Lµ, we will use the complex

representation of Lµ in the rest of Section 5. Moreover, it follows

Lµza = 0, Lµzγ = 0, Lµzυ = izt, Lµzµ = izγ(3.18)

and

L2
µzυ = 0, L2

µzµ = 0.(3.19)

3.2. Skew-orthogonal decomposition. In this subsection, we will decomposition the solution to

equation (1.6) along manifold Ms into a solitary wave and a fluctuation which is skew-orthogonal

to the soliton manifold and derive the equations for the fluctuation and parametersσ = (a, υ, µ, γ).

To this end, let us define the δ− neighborhood

Uδ =
{
u ∈ H1 : inf

σ∈Σ0

‖u − φσ‖H1 ≤ δ
}
,(3.20)

where

Σ0 := R3 × R3 × [0, 2π]× (I \ ∂I).

Then we have the following so called skew-orthogonal decomposition for all u ∈ Uδ with small

enough δ and refer the reader to [15, Proposition 5.1] for the proof.

Lemma 3.1. Let u ∈ Uδ for sufficiently small δ > 0. There exists a unique σ = σ(u) ∈

C(Uδ,Σ) such that

ω(u − φσ, z) = 〈u − φσ,J
−1z〉 = 0, ∀z ∈ Tφσ Ms.(3.21)

Now given a solution u to equation (1.6) such that u ∈ Uδ, it follows from Lemma 3.1

u − φσ⊥JTφσ Ms.(3.22)

Set

u − φσ = Saυγr and ϕ := S−1
aυγu.(3.23)
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We introduce operators

(K1,K2,K3) = ∇, (K4,K5,K6) = −J(x1, x2, x3), K7 = −J , K8 = ∂µ(3.24)

with coefficients

(α1, α2, α3) = ȧ − υ, (α1, α2, α3) = −υ̇ − ∇Vǫ (a),

α7 = µ −
1

2
υ2 + ȧ · υ − Vǫ(a) − γ̇, α8 = −µ̇.(3.25)

Lemma 3.2. The fluctuation r defined as in (3.23) satisfies the equation

ṙ = (JLµ +

7∑

j=1

α jK j + RV )r + Nµ(r) +J

8∑

j=1

α jK jφσ + RVφσ(3.26)

and the parameter σ satisfy the equations

ȧk = υk + (m(µ))−1(〈xkφµ,JNµ(r) +JRV r〉 +

8∑

j=1

〈α jK jxkφµ, r〉
)

υ̇k = −∂kVǫ(a) + (m(µ))−1〈∂kφµ,Nµ(r) + RVr〉 −

8∑

j=1

〈α jK j∂kφµ,Jr〉 + 〈∂kφµ,RVφµ〉

γ̇ = µ −
1

2
υ2 + ȧ · υ − Vǫ(a) − (m′(µ))−1〈∂µφµ,Nµ(r) + RV r〉 −

8∑

j=1

〈α jK j∂µφµ,Jr〉

+ 〈∂µφµ,RVφµ〉

µ̇ = (m′(µ))−1〈φµ,JNµ(r) +JRV r〉 −

8∑

j=1

〈α jK jφµ, r〉,

(3.27)

where

RV := Vǫ(x + a) − Vǫ(a) − ∇Vǫ(a) · x, m(µ) =

∫

R3

|φµ|
2dx(3.28)

and

Nµ(r) = F(|r + φµ|
2)(r + φµ) − F(|φµ|

2)(φµ) − (F(|φµ|
2)(φµ))′r.(3.29)

Moreover, let |α| = max j=1,...,8 |α j| with α j defined by (3.25), we have

|α| = O(|α|‖r‖H1 + ǫ4 + ‖r‖2
H1 ).(3.30)

Proof. Actually, (3.26), (3.27) and (3.30) are obtained by the same procedures as the ones in

[15]. Precisely, one only need to substitute V by Vǫ and correspondingly use the estimate

RV := Vǫ(x + a) − Vǫ(a) − ∇Vǫ(a) · x = O(ǫ4x2).

in the whole proof. �
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3.3. The completion of proof. We will use an approximate of Lyaponuv functional to obtain

an explicit estimates for r and σ and then finish the proof of Theorem 2.1. The whole process

is based on the analysis in [15], except we have to keep track of extra ǫ which comes from the

potential Vǫ . Let recall the decomposition for u ∈ Uδ,

ϕ := S−1
aυγu = φµ + r,(3.31)

and then we prove that the Lyapunov functional E(ϕ) − E(φµ) is approximately conserved.

Lemma 3.3. Let u ∈ Uδ be the solution to equation (1.6) and ϕ, r and φµ be defined as in

(3.31). Then

∂t(E(ϕ) − E(φµ)) = O(|α|‖r‖2
H1 + ǫ

4‖r‖H1 + ǫ3‖r‖2
H1 ).(3.32)

Proof. Let u be the solution to equation (1.6), we first notice that

∂t

∫

R3

Vǫ |u|
2dx = 〈(∇Vǫ)iu,∇u〉

and the Ehrenfest’s theorem

∂t〈u,−i∇u〉 = −〈(∇Vǫ)u, u〉,

which follows from the nonlinear Schrodinger equation (1.6). Then by using the same trick as

the one in the proof of [15, Lemma 3], we have

∂tE(ϕ) =
1

2
µ̇‖ϕ‖2

L2 −
1

2
〈(υ̇ + ∇Vǫ (· + a))ϕ,∇ϕ〉.(3.33)

On the other hand, since φµ is the critical point of functional E(ϕ) and thus

∂tE(φµ) =
1

2
µ̇‖φµ‖

2
L2 .(3.34)

Applying (3.33) and (3.34), we obtain

∂t(E(ϕ) − E(φµ)) =
1

2
µ̇
(
‖ϕ‖2

L2 − ‖φµ‖
2
L2

)
−

1

2
〈(υ̇ + ∇Vǫ(· + a))ϕ,∇ϕ〉

:= J1 − J2.(3.35)

It follows from the skew-orthogonal decomposition (3.31) that

J1 =
1

2
µ̇‖r‖2

L2 = O(|α|‖r‖2
L2 ).(3.36)

As for J2,

2J2 = 〈(υ̇ + ∇Vǫ (· + a))r,∇r〉 + 〈(∇Vǫ(· + a))iφµ,∇r〉 + 〈(∇Vǫ(· + a))ir,∇φµ〉

= 〈(υ̇ + ∇Vǫ (a))r,∇r〉 + 〈(∇Vǫ(· + a) − ∇Vǫ(a))r,∇r〉

+ 〈(∇Vǫ(· + a) − ∇Vǫ (a))iφµ,∇r〉 + 〈(∇Vǫ(· + a) − ∇Vǫ(a))ir,∇φµ〉,

where in the first equality above we use 〈i∇φµ, r〉 = 〈izt, r〉 = 0 and 〈iqr,∇r〉 = 0 for any real-

valued function q ∈ L∞, and in the second equality we apply

∇Vǫ(a)〈ir, i∇φµ〉 = ∇Vǫ(a)〈iφµ,∇r〉 = 0.

Notice that

∇Vǫ = O(ǫ3) and ∇Vǫ(x + a) − ∇Vǫ(a) = O(ǫ4|x|),

it is easy to see

J2 = O(|α|‖r‖2
H1 + ǫ

4‖r‖H1 + ǫ3‖r‖2
H1 ).(3.37)
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Combining (3.36) and (3.37), we finish the proof. �

Next we introduce the lower bound for E(ϕ) − E(φµ) due to [15].

Lemma 3.4. Let u ∈ Uδ be the solution to equation (1.6) and ϕ, r and φµ be defined as in

(3.31). Then there exist positive constants ρ and c independent of ǫ such that for ‖r‖H1 ≤ 1,
∣∣∣E(φµ + r) − E(φµ)

∣∣∣ ≥ ρ‖r‖2
H1 − c‖r‖3

H1 .(3.38)

Now we present our main result.

Proposition 3.1. Let u ∈ Uδ be the solution to equation (1.6) and ϕ, r and φµ be defined as in

(3.31). Assume that ǫ is sufficiently small. Then there exist positive constants c,C independent of

ǫ such that for 2 ≤ δ ≤ 3 and t ≤ C min
{
ǫ−δ, ǫ−8+2δ},
‖r‖H1 ≤ cǫ4−δ

‖α‖L∞ ≤ cǫ8−2δ.(3.39)

Proof. Notice that for ‖r‖H1 ≤ 1, it follows from Lemmas 3.3 and 3.4

ρ‖r(t)‖2
H1 ≤ c1t

(
ǫ4‖r(t)‖H1 + (ǫ3 + |α|)‖r(t)‖2

H1

)
+ c2‖r(t)‖3

H1 ,(3.40)

where ρ defined as in Lemma 3.4 and c1, c2 are positive constants. We rewrite (3.40)

C‖r(t)‖2
H1 ≤ t

(
ǫ4‖r(t)‖H1 + (ǫ3 + |α|)‖r(t)‖2

H1

)
+ ‖r(t)‖3

H1 ,(3.41)

for some constant C > 0. For t ≤ C
2

(ǫδ + |α|)−1 := τ with 2 ≤ δ ≤ 3, it follows from (3.41) that

C

4
t8−2δ −

C

4
‖r(t)‖2

H1 + ‖r(t)‖3
H1 ≥ 0.

Take X = supt∈[0,τ] ‖r(t)‖2
H1 and then we have C

4
t8−2δ − C

4
X2 + X3 ≥ 0, which leads to

X ≤ cǫ4−δ,(3.42)

with some constant c > 0 for sufficiently small ǫ. Now putting (3.43) back in (3.30), we have

sup
t∈[0,τ]

|α(t)| ≤ cǫ8−2δ,

which finishes the proof. �

The proof of Theorem 2.1: Choose ǫ such that cǫ4−δ < 1
2
h where the constant c is the one in

(3.39) and h is given in Lemma 3.1. Then there exists a maximal T0 > 0 such that the solution

u of equation (1.6) belongs to Uh for all t ≤ T0. It follows from Lemma 3.2 and Proposition 3.1

that Theorem 2.1 is true for t ≤ min{T0, cǫ
8−2δ}, which combined the inequality cǫ4−δ < 1

2
h imply

Theorem 2.1 holds for t ≤ cǫ8−2δ.

4. The proof of Theorem 2.2

This section is devoted to the proof of Theorem 2.2, the asymptotic behavior of the solution for

post-interaction region. First of all, we have obtained the following matrix Schrödinger equation

(see also equation (2.23))

i∂tZ =H (t, σ(t))Z +N (σ(t)) + Vǫ(σ(t)) + O(|Z|q) + O(|Z|2|w(σ(t))|q−2),

Z(0) = (R(0),R(0))T ,(4.1)
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with 7
3
< q ≤ 5, N (σ(t)) and Vǫ(σ(t)) defined by (2.26) and (2.27) respectively, and

∥∥∥Z(0)
∥∥∥

H1 = O(ǫ4−δ0 ),

as well as the ODE system for σ (see Proposition 2.2).

Bootstrap assumptions: There exist a sufficiently large constant C0 such that for soma 0 <

α < 4 − δ0 ∥∥∥Z
∥∥∥

L2
t W

1,6
x ∩L∞t H1

x
≤ C−1

0 ǫα.(4.2)

‖σ̇‖L1
t
≤ ǫ2α,(4.3)

where δ0 ∈ (2, 5
2
) defined in Section 2.3.

4.1. End-point Strichartz estimates. In this subsection, we always assume that the bootstrap

assumption (4.3) holds for ǫ ≪ 1 which will be verified in the next subsection. let us introduce a

new charge transfer Hamiltonian,

H (t, σ̃(t)) =H0 +V1ǫ +V2(t, σ̃(t))(4.4)

where H0 andV1ǫ are defined as in (2.24) and

V2(t, σ̃(t))

=


−F(|w(σ̃(t))|2) − F′(|w(σ̃(t))|2)|w(σ̃(t))|2 −F′(|w(σ̃(t))|2)w(σ̃(t))2

F′(|w(σ̃(t))|2)w(σ̃(t))
2

F(|w(σ̃(t))|2) + F′(|w(σ̃(t))|2)|w(σ̃(t))|2

 ,

with

w(σ̃(t)) = eĩθ(t,x,σ̃(t))φ(x − ỹ(t, σ̃(t))),(4.5)

θ̃(x, t; σ̃(t)) = υT0
· x + γT0

+
(
µT0
−
|υT0
|2

2

)
t −

∫ t

0

( |υ(s) − υT0
|2

2
− (µ(s) − µT0

)
)
ds,

ỹ(t; σ̃(t)) =

∫ t

0

(
υ(s) − υT0

)
ds + aT0

+ υT0
t.(4.6)

Let T0(t) and T (t) be operators defined by the following formulas:

T0(t) = Bβ0(t),y0(t),υ0
, T (t) = Bβ(t),y(t),0, (Bβ,y,υ f )(x) = eiβ̺+iυ·x̺ f (x − y)(4.7)

where

̺ =

(
1 0

0 −1

)
,

β0(t) = γT0
+

(
µT0
−
|υT0
|2

2

)
t, y0(t) = aT0

+ υT0
t,

β(t) =

∫ t

0

(
−
|υ(s) − υT0

|2

2
+ µ(s) − µT0

)
ds, y(t) =

∫ t

0

(
υ(s) − υT0

)
ds.(4.8)

Thus defined, we have

Bβ,y,υ f = Bβ,0,υB0,y,0 f

and

B∗β,y,υ f = B−β,−y,0B0,0,−υ f .

Denote

Pb(t) = T0(t)T (t)Pb(σT0
)T ∗(t)T ∗0(t)(4.9)
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and

Pc(t) = T0(t)T (t)Pc(σT0
)T ∗(t)T ∗0(t)(4.10)

where Pc(σT0
) defined as in Proposition 2.1 is the projection onto the subspace of the continu-

ous spectrum of H2(σT0
) (see (1.9) for definition) and Pb(σT0

) = I − Pc(σT0
) defined by (2.8).

Moreover, let

ξ̃ j(x, t; σ̃(t)) = T0(t)T (t)ξ j(x, σT0
)

and

η̃ j(x, t; σ̃(t)) = T0(t)T (t)η j(x, σT0
),

where ξ j(x, σT0
) and η j(x, σT0

) are defined in section 2.1. It follows from (4.9) and (2.8) that

Pb(t) f =
1

n1

(̃
η1(x, t; σ̃(t))〈 f , ξ̃2(x, t; σ̃(t))〉 + η̃2(x, t; σ̃(t))〈 f , ξ̃1(x, t; σ̃(t))〉

)

+

5∑

ℓ=3

1

nℓ

(̃
ηℓ(x, t; σ̃(t))〈 f , ξ̃ℓ+3(x, t; σ̃(t))〉 + η̃ℓ+3(x, t; σ̃(t))〈 f , ξ̃ℓ(x, t; σ̃(t))〉

)
.(4.11)

Now we introduce the end-point Strichartz estimates for the new Hamiltonian (4.4). The

admissible pair (p, q) for Strichartz estimates satisfies

2

p
=

3

2
−

3

q
, 2 ≤ p ≤ ∞.(4.12)

In particular, the endpoint admissible pair (p, q) = (2, 6) is crucial in our paper.

Since we study the soliton-potential problem in H1, it is necessary to consider the end-point

Strichartz estimates in the following form which will be obtained by applying Theorem 1.2.

Proposition 4.1. Let Z(t, x) be the solution of equation (1.11) and satisfy (1.12). Then for all

admissible pairs (p, q) and ( p̃, q̃)
∥∥∥Z

∥∥∥
L

p
t W

1,q
x
. ‖Z0‖H1 + ‖F‖

L
p̃′

t W
1,q̃′

x
+ B,(4.13)

where B is the constant in (1.12).

Proof. Our main idea is apply the Strichartz estimates Theorem 1.2 for ∂kZ (k = 1, 2, 3). To this

end, differentiating the equation (1.11) we obtain the following equation for ∂kZ,

i∂t∂kZ =H (t, σ̃(t))∂kZ +
(
∂kV1ǫ + ∂kV2(t, σ̃(t))

)
Z + ∂kF.(4.14)

On the other hand, it follows from (4.11) that

Pb(t)∂kZ(t) = −
1

n1

(
η̃1(x, t; σ̃(t))〈Z(t), ∂kξ̃2(x, t; σ̃(t))〉 + η̃2(x, t; σ̃(t))〈Z(t), ∂kξ̃1(x, t; σ̃(t))〉

)

−

5∑

ℓ=3

1

nℓ

(
η̃ℓ(x, t; σ̃(t))〈Z(t), ∂kξ̃ℓ+3(x, t; σ̃(t))〉

+η̃ℓ+3(x, t; σ̃(t))〈Z(t), ∂kξ̃ℓ(x, t; σ̃(t))〉
)
.

which combined the endpoint Strichartz estimates for Z (see Theorem 1.2) lead to
∥∥∥Pb(t)∂kZ(t)

∥∥∥
L2

t L6
x
.

∥∥∥Z
∥∥∥

L2
t L6

x
. ‖Z0‖L2 + ‖F‖

L
p̃′

t L
q̃′

x
+ B := B̃.(4.15)
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That is, ∂kZ (k = 1, 2, 3) satisfies (1.12) for some constant B̃. Finally, Using the endpoint

Strichartz estimates (1.13) again we have
∥∥∥∂kZ

∥∥∥
L

p
t L

q
x
.

∥∥∥∂kZ0

∥∥∥
L2 +

∥∥∥(∂kV1ǫ + ∂kV2(t, σ̃(t))
)
Z
∥∥∥

L2
t L

6/5
x
+

∥∥∥∂kF
∥∥∥

L
p̃′

t L
q̃′

x
+ B̃

.

∥∥∥∂kZ0

∥∥∥
L2 +

∥∥∥Z
∥∥∥

L2
t L6

x
+

∥∥∥∂kF
∥∥∥

L
p̃′

t L
q̃′

x
+ B̃

. ‖Z0‖H1 + ‖F‖
L

p̃′

t W
1,q̃′

x
+ B.(4.16)

Thus we finish the proof. �

4.2. The completion of proof. We first close the estimate for σ by the following proposition.

Proposition 4.2. Assume the separation(2.16) and spectral assumptions hold. Let σ̃, Z be any

choice of functions that satisfy the bootstrap assumptions for sufficiently small ǫ > 0. Then

‖σ̇‖L1
t
≤

1

2
ǫ2α.

Proof. By the convexity condition (see (II) of Proposition 2.1) and the bootstrap assumption

(4.2), the left hand side of the system (2.29) is of form B(t) ˙̃σ with B(t) an invertible matrix of

order O(1). Then we have for 7
3
< q ≤ 5,

‖σ̇‖L1
t
≤

∑

j

(∥∥∥〈Vǫ(σ(t)), ξ j(·, t;σ(t))
〉∥∥∥

L1
t

+
∥∥∥〈O(|Z|q) + O(|Z|2|w(σ(t))|q−2), ξ j(·, t;σ(t))

〉∥∥∥
L1

t

)

Notice that for each 7
3
< q ≤ 5, we can always choose n > 3

2
such that 2 ≤ n(q − 2) ≤ 6 and then

∥∥∥〈O(|Z|q) + O(|Z|2|w(σ(t))|q−2), ξ j(·, t;σ(t))
〉∥∥∥

L1
t

≤ C
∥∥∥|Z|2

∥∥∥
L1

t L3
x
+C

∥∥∥|Z|2
∥∥∥

L1
t L3

x

∥∥∥|Z|q−2
∥∥∥

L∞t Ln
x

≤ C
∥∥∥Z

∥∥∥2

L2
t L6

x
+C

∥∥∥Z
∥∥∥2

L2
t L6

x

∥∥∥Z
∥∥∥q−2

L∞t L
n(q−2)
x

≤ CC−2
0 ǫ2α ≤

1

2
ǫ2α,

where we use the fact that C0 is a sufficiently large constant in the last inequality. On the other

hand, by bootstrap assumption, we have σ(t) ∼ σT0
for all t, which combined the exponentially

decay of φ, supp V ⊂ B(0, 1) and the separation inequality (2.16) lead to

∥∥∥〈Vǫ(σ(t)), ξ j(·, t;σ(t))
〉∥∥∥

L1
t

≤ C
∥∥∥∥
∫

Rn

e−µ(0)|x−(a(0)+υ(0)t)|Vǫ(x)dx
∥∥∥∥

L1
t

≤ C

∥∥∥∥
∫

Rn

e−µ(0)(|(a(0)+υ(0)t)|−|x|)Vǫ(x)dx

∥∥∥∥
L1

t

≤ Cǫk(4.17)

for any k > 0. Hence we finish the proof. �

It remains to verify the bootstrap assumption (4.2) for the perturbation Z. We first rewrite the

equation (4.1) for Z as follows,

i∂tZ =H (t, σ̃(t))Z + F(t),

Z(0) = (R(0),R(0))T ,(4.18)
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where

F(t) =
(
H (t, σ(t)) −H (t, σ̃(t))

)
Z +N (σ(t)) + Vǫ(σ(t)) + O(|Z|q) + O(|Z|2|w(σ(t))|q−2)

with 2 < q ≤ 5 and N (σ(t)) and Vǫ(σ(t)) defined by (2.26) and (2.27), respectively. And then

by using the already proved bootstrap estimates for σ and the Strichartz estimates for matrix

Schrödinger equation (4.18) (see Theorem 1.2 and Proposition 4.1), we could finally finish the

proof. To do this, let us begin with the following lemma which verifies the assumption (1.12) in

Theorem 1.2.

Lemma 4.1. Let Z satisfies the bootstrap assumption (4.2) and the orthogonality condition
〈
Z(t), ξ j(x, t;σ(t))

〉
= 0(4.19)

with respect to an admissible path σ(t) obeying the bootstrap estimates (4.3). Then we have

‖Pb(t)Z(t)‖L2
t L6

x
. ǫ3α.(4.20)

Proof. Notice that for all t > 0
∣∣∣θ(x, t;σ(t)) − θ̃(x, t; σ̃(t))

∣∣∣

≤
∣∣∣γ(t) − γ(0)

∣∣∣ +
∣∣∣(υ(t) − υ(0)

)(
x − y(t;σ(t))

)∣∣∣ +
∫ t

0

∣∣∣(υ(s) − υ(0)
)
ȧ(s)

∣∣∣ds

≤ ‖σ̇‖L1

(
1 + ‖σ̇‖L1 +

∣∣∣x − y(t, σ(t))
∣∣∣)(4.21)

and
∣∣∣y(t;σ(t)) − ỹ(t; σ̃(t))

∣∣∣ ≤ ‖σ̇‖L1 .(4.22)

On the other hand, it follows from (4.11) and the orthogonality condition (4.19) that

Pb(t)Z(t) =
1

n1

(
η̃1(x, t; σ̃(t))〈Z(t), ξ̃2(x, t; σ̃(t))〉 + η̃2(x, t; σ̃(t))〈Z(t), ξ̃1(x, t; σ̃(t))〉

)

+

5∑

ℓ=3

1

nℓ

(
η̃ℓ(x, t; σ̃(t))〈Z(t), ξ̃ℓ+3(x, t; σ̃(t))〉

+η̃ℓ+3(x, t; σ̃(t))〈Z(t), ξ̃ℓ(x, t; σ̃(t))〉
)

=
1

n1

(
η̃1(x, t; σ̃(t))〈Z(t), ξ̃2(x, t; σ̃(t)) − ξ2(x, t;σ(t))〉

+ η̃2(x, t; σ̃(t))〈Z(t), ξ̃1(x, t; σ̃(t)) − ξ1(x, t;σ(t))〉
)

+

5∑

ℓ=3

1

nℓ

(
η̃ℓ(x, t; σ̃(t))〈Z(t), ξ̃ℓ+3(x, t; σ̃(t)) − ξℓ+3(x, t;σ(t))〉

+ η̃ℓ+3(x, t; σ̃(t))〈Z(t), ξ̃ℓ(x, t; σ̃(t)) − ξℓ(x, t;σ(t))〉
)
.(4.23)

Moreover, by using (4.21)-(4.22), we have
∣∣∣̃ξ1(x, t; σ̃(t)) − ξ1(x, t;σ(t))

∣∣∣ .
∣∣∣eĩθ(t,x,σ̃(t))φ(x − ỹ(t, σ̃(t))) − eiθ(t,x,σ(t))φ(x − y(t, σ(t)))

∣∣∣

.

∣∣∣eĩθ(t,x,σ̃(t))φ(x − ỹ(t, σ̃(t))) − eĩθ(t,x,σ̃(t))φ(x − y(t, σ(t)))
∣∣∣

+
∣∣∣eĩθ(t,x,σ̃(t))φ(x − y(t, σ(t))) − eiθ(t,x,σ(t))φ(x − y(t, σ(t)))

∣∣∣
. ‖σ̇‖L1

(
2 + ‖σ̇‖L1 +

∣∣∣x − y(t, σ(t))
∣∣∣)φ(x − y(t, σ(t))),(4.24)
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similar estimates also hold for 2 ≤ j ≤ 8. Thus by (4.23)-(4.24), it follows
∥∥∥Pb(t)Z(t)

∥∥∥
L2

t L6
x
. ‖Z‖L2

t L6
x
‖σ̇‖L1 . ǫ3α.(4.25)

�

Proposition 4.3. Let Z be a solution of the equation (4.18) satisfying the bootstrap assumption

(4.2). We also assume (due to Proposition 4.2) that the admissible path σ(t) obey the estimate

(4.3). Then we have the following estimates

∥∥∥Z
∥∥∥

L2
t W

1,6
x ∩L∞t H1

x
≤ C−1

0

ǫα

2
.(4.26)

Proof. Notice that when 7
3
< q ≤ 5,

∥∥∥|Z|q
∥∥∥

L2
t W

1, 6
5

x

≤ ‖Z‖
L2

t W
1,6
x
‖Z‖

5−q

2

L∞t L2
x

‖Z‖
3q−7

2

L∞t L6
x

and similarly to (4.24)
∥∥∥(H (t, σ(t)) −H (t, σ̃(t))

)
Z
∥∥∥

L2
t W

1, 6
5

x

≤
∥∥∥(V2(t, σ(t)) −V2(t, σ̃(t))

)
Z
∥∥∥

L2
t W

1, 6
5

x

.

∥∥∥σ̇
∥∥∥

L1

∥∥∥Z
∥∥∥

L2
t W

1,6
x
≤ C−1

0 ǫ3α.

Moreover, by using Proposition 4.2 and similar procedures as in (4.17), we obtain
∥∥∥N (σ(t))

∥∥∥
L1

t W
1,2
x
. ǫ2α

and for any k > 0
∥∥∥Vǫ(σ(t))

∥∥∥
L2

t W
1, 6

5
x

. ǫk.

Then it follows from the endpoint Strichartz estimates (4.1) and Lemma 4.1 that
∥∥∥Z

∥∥∥
L2

t W
1,6
x ∩L∞t H1

x
.

∥∥∥Z0

∥∥∥
H1 +

∥∥∥(H (t, σ(t)) −H (t, σ̃(t))
)
Z
∥∥∥

L2
t W

1, 6
5

x

+
∥∥∥N (σ(t))

∥∥∥
L1

t W
1,2
x

+
∥∥∥Vǫ(σ(t))

∥∥∥
L2

t W
1, 6

5
x

+
∥∥∥|Z|q

∥∥∥
L2

t W
1, 6

5
x

+
∥∥∥|Z|2|w(σ(t))|q−2

∥∥∥
L2

t W
1, 6

5
x

+ B

. ǫ4−δ0 +C−1
0 ǫ3α + ǫ2α + ǫk +C

−q

0
ǫqα +C−2

0 ǫ2α + ǫ3α

≤ C−1
0

ǫα

2
,

where B is defined as in (1.12). �

Finally, we prove the scattering. To this end, we rewrite the solution to equation (2.15) as

u(x, t) = w(x, t;σ+) +
(
w(x, t;σ(t)) − w(x, t;σ+)

)
+ R(x, t)(4.27)

where

w(x, t;σ+) = eiθ+(x,t)φ(x −

∫ t

0

υ(s)ds − a+, µ+)

with

θ+(x, t) = υ+ · x −

∫ t

0

(
υ̇(s) · y(s;σ(s)) +

|υ(s)|2

2
− µ(s)

)
ds + γ+.

Take σ+ = limt→+∞ σ and notice that

|w(x, t;σ(t)) − w(x, t;σ+)|
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≤
∣∣∣eiθ(x,t;σ(t)) − eiθ+(x,t)

∣∣∣φ(x −

∫ t

0

υ(s)ds − a(t), µ(t))

+
∣∣∣φ(x −

∫ t

0

υ(s)ds − a(t), µ(t)) − φ(x −

∫ t

0

υ(s)ds − a+, µ(t))
∣∣∣

+
∣∣∣φ(x −

∫ t

0

υ(s)ds − a+, µ(t)) − φ(x −

∫ t

0

υ(s)ds − a+, µ+)
∣∣∣,

it is easy to see

‖w(x, t;σ(t)) − w(x, t;σ+‖H1 → 0, t → +∞

in H1. On the other hand, R(x, t) verifies an nonlinear Schrödinger equation

i∂tR = −
1

2
∆R + V(x, t)R + F

R(x, 0) = eiυT0
·x+iγT0 r(x − aT0

, T0) := R0,(4.28)

with spatially exponentially localized potential V and F the scalar version of the one in (4.18). It

has been shown that R satisfies ∥∥∥R
∥∥∥

L2
t W

1,6
x ∩L∞t H1

x
. ǫα.

Then it follows from a standard small data scattering theorem, there exists u+ ∈ H1 constructed

by

u+ = R0 − lim
t→+∞

∫ t

0

e−
i
2
∆(V(x, ·)R(x, ·) + F(x, ·))ds(4.29)

such that

‖u − w(x, t;σ+) − eit∆u+‖H1 → 0, t → +∞.

Thus we finish the proof of Theorem 2.2.

5. The proof of Theorem 1.2

5.1. Some key lemmas. We introduce one soliton adiabatic propagators U2(t, s):

iU2t(t, s) =H2(t)U2(t, s), U2(t, t) = I, H2(t) =H0 +V2(t, σ̃(t)) + E(t)

E(t) = iT0(t)
[
P
′

c(t), Pc(t)
]
T ∗0 (t), Pc(t) = T (t)Pc(σT0

)T ∗(t).(5.1)

Here Pc(σT0
) defined as in Proposition (2.1) is the projection onto the subspace of the continuous

spectrum of H2(σT0
) (see (1.9) for definition), P

′

c(t) is the derivative of the projector Pc(t) with

respect to t and the operators T0(t), T (t) are given by (4.7). It is known that (see [Per])

U2(t, s)Pc(s) = Pc(t)U2(t, s), Pc(t) = T0(t)Pc(t)T ∗0 (t)(5.2)

and

V2(t, σ̃(t)) = T0(t)T (t)V2(σT0
)T ∗(t)T ∗0 (t).(5.3)

Moreover, one has

U2(t, s) = T0(t)U2(t, s)T ∗0 (s)(5.4)

where U2(t, s) is the propagator associated to the equation

iU2t(t, s) = H2(t)U2(t, s), U2(t, t) = I,(5.5)

H2(t) = H0 + T (t)V2(σT0
)T ∗(t) + i

[
P
′

c(t), Pc(t)
]
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= T (t)
(
H0 +V2(σT0

)
)
T ∗(t) + i

[
P
′

c(t), Pc(t)
]

:= T (t)H2(σT0
)T ∗(t) + i

[
P
′

c(t), Pc(t)
]
.(5.6)

The adiabatic theorem (see [1], [26], [30] for exmple) says that

Pc(t)U2(t, s) = U2(t, s)Pc(s).(5.7)

Lemma 5.1. Let φ(t) be the solution of Schrödinger equation

iφt(t) =H2(t)φ(t) +G(t)(5.8)

with initial data φ(0) = f and ǫ ≪ 1. Then have
∥∥∥Pc(t)U2(t) f

∥∥∥
L∞t L2

x∩L2
t L6

x
. ‖ f ‖L2(5.9)

and
∥∥∥∥
∫ t

0

U2(t, s)Pc(s)G(s)ds

∥∥∥∥
L2

t L6
x

. ‖G‖
L2

t L
6/5
x
.(5.10)

Moreover, ∫

R

∥∥∥U2(t, s)Pc(s) f
∥∥∥

L6,∞dt . ‖ f ‖L6/5,1(5.11)

uniformly for all s ∈ R.

Proof. Let us first consider (5.9). Notice that by using (5.4), it suffices to prove that (5.9) hold for

Pc(t)U2(t) with U2(t, s) defined as in (5.5) and U2(t) = U2(t, 0). To this end, consider the linear

equation (5.5) and and denote by ψ(t) = Pc(t)U2(t) f ∈ RanPc(t), it follows from [6, Theorem

1.7] that
∥∥∥ψ(t)

∥∥∥
L∞t L2

x∩L2
t L6

x
. ‖ f ‖L2 +

∥∥∥[P′c(t), Pc(t)
]
ψ(t)

∥∥∥
L2

t L
6/5
x
+ ‖Pb(t)ψ(t)‖L2

t L6
x

(5.12)

The last terms in (5.12) disappears naturally. On the other hand,
[
P
′

c(t), Pc(t)
]
=

[
P
′

b(t), Pb(t)
]
,(5.13)

with Pb(t) = T (t)Pb(σT0
)T ∗(t) and

T ′(t) = T (t)
(
iβ′(t) − y′(t)∇

)
.

As a consequence, we have
[
P
′

b(t), Pb(t)
]
= T (t)

[
[iβ′(t) − y′(t)∇, Pb(σT0

)], Pb(σT0
)
]
T ∗(t)

and there exist some localized functions Φ j and Ψk centered at b(t) such that

[
P
′

b(t), Pb(t)
]
f =

(
β′(t) − y′(t)

)∑

j,k

Φ j

〈
Ψk, f

〉
,(5.14)

where

b(t) = y0(t) + y(t),(5.15)

and the sum is finite. Moreover,

‖β′(t)‖L∞t + ‖y
′(t)‖L∞t . ‖σ̇(t)‖L1

t
≤ ǫ2α.(5.16)

Thus,

∥∥∥[P′c(t), Pc(t)
]
ψ(t)

∥∥∥
L2

t L
6/5
x
. ǫ2α‖ψ(t, s)‖L2

t L6
x
≤

1

2
‖ψ(t, s)‖L2

t L6
x
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which combining (5.12) lead to desire estimates.

As far as (5.10). Notice that
∫ t

0

U2(t, s)Pc(s)G(s)ds ∈ RanPc(t),

applying [6, Theorem 1.7] for equation (5.8) with initial data f = 0 and the same argument as

above we obtain (5.10).

Concerning (5.11), we only need to prove it for U2(t, s)Pc(s). Let ψ(t) = Pc(t)U2(t) f ∈

RanPc(t) be defined as before, it follows from [6, Theorem 1.7] that

‖ψ(t)‖
L1

t L
6,∞
x
. ‖ f ‖L6/5,1 +

∥∥∥[P′c(t), Pc(t)
]
ψ(t)

∥∥∥
L1

t L
6/5,1
x
+ ‖Pb(t)ψ(t)‖

L1
t L

6,∞
x
.

The last term disappears and

∥∥∥[P′c(t), Pc(t)
]
ψ(t)

∥∥∥
L1

t L
6/5,1
x
. ǫ2α‖ψ(t)‖L1

t L
6,∞
x
≤

1

2
‖ψ(t)‖

L1
t L

6/5,1
x
,

which imply that
∥∥∥Pc(t)U2(t) f

∥∥∥
L1

t L
6,∞
x
. ‖ f ‖L6/5,1 .(5.17)

We now prove (5.11) uniformly in s ∈ R. Consider the linear equation (5.5) and denote by

ψ(t, s) = Pc(t)U2(t, s) f , it follow from Duhamel’s formula and the commutative property (5.7)

that

∥∥∥ψ(t, s)
∥∥∥

L1
t L

6,∞
x
≤

∥∥∥U0(t − s) f
∥∥∥

L1
t L

6,∞
x
+

∥∥∥
∫ t

s

U0(t − τ)T (τ)V2(σT0
)T ∗(τ)ψ(τ)dτ

∥∥∥
L1

t L
6,∞
x

+
∥∥∥
∫ t

s

U0(t − τ)[P
′

c(τ), Pc(τ)
]
ψ(τ)dτ

∥∥∥
L1

t L
6,∞
x

. ‖ f ‖L6/5,1 .(5.18)

Here U0(t) is the linear propagator of H0 and in the second inequality, we use the fact that∥∥∥U0(t)
∥∥∥

L
6/5,1
x →L

6,∞
x
∈ L1 (see [6, Proposition 1.2]), (5.17) and Young’s inequality.

�

Lemma 5.2. Let U1(t) be the linear flow of Schrödinger equation

iψt(t) =
(
H0 +V1ǫ

)
ψ(t) +G(t)

with initial data ψ(0) = f . Then we have for admissible pairs (p, q) and ( p̃, q̃),

∥∥∥U1(t) f
∥∥∥

L
p
t L

q
x
. ‖ f ‖L2 and

∥∥∥∥
∫ t

0

U1(t, s)G(s)ds

∥∥∥∥
L

p
t L

q
x

. ‖G‖
L

p̃′

t L
q̃′

x
.(5.19)

Moreover, ∫

R

∥∥∥U1(t, s) f
∥∥∥

L6,∞dt . ‖ f ‖L6/5,1(5.20)

uniformly for all s ∈ R.

Proof. It suffices to prove this lemma for s = 0 and the proof would be done by using scaling

since Vǫ(·) = ǫ
2V(ǫ·). Specifically, it is easy to see that ψǫ (t) = ψ(ǫ−1 x, ǫ−2t) is the solution of

Schrödinger equation

i∂tψǫ (t) =
(
H0 +V1

)
ψǫ (t) +Gǫ (t),
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ψǫ (s) = f (ǫ−1·) := fǫ .

Notice that for admissible pairs (p, q), it follows from [6, Theorem 1.3]

‖ψǫ‖Lp
t L

q
x
. ‖ fǫ‖L2 + ‖Gǫ‖Lp̃′

t L
q̃′

x
,

which imply the desire Strichartz estimates (5.19). Furthermore, we have (see [6, Theorem 1.3])
∫

R

∥∥∥ψǫ
∥∥∥

L6,∞dt . ‖ fǫ‖L6/5,1 + ‖Gǫ‖
L1

t L
6
5
,1

x

,

which combing the same argument as the one in the proof of Lemma 5.1 lead to (5.20). �

5.2. The completion of proof. In order to finish the proof of Theorem 1.2, we divide the proof

into several steps as follows:

Proof. Step I. Reduce to local decay estimates. Let (p, q) and ( p̃, q̃) be admissible pairs. Assume

that
∥∥∥V1/2

1ǫ
Z(t)

∥∥∥2

L2
t L2

x
+

∥∥∥V1/2

2
(t)Z(t)

∥∥∥
L2

t L2
x
. ‖Z0‖L2

x
+ ‖F‖

L
p̃′

t L
q̃′

x
+ B.(5.21)

We write equation (1.12) as

i∂tZ(t) =H0Z(t) +V2(t)Z(t) +V1ǫZ(t) + F(t),

the Duhamel formula leads to

‖Z(t)‖Lp
t L

q
x
≤

∥∥∥U0(t)Z0

∥∥∥
L

p
t L

q
x
+

∥∥∥∥
∫ t

0

U0(t, s)F(s)ds
∥∥∥∥

L
p
t L

q
x

+

∥∥∥∥
∫ t

0

U0(t, s)
(
V1ǫ +V2(t)

)
Z(s)ds

∥∥∥∥
L

q
t L

q
x

.

∥∥∥Z0

∥∥∥
L2 +

∥∥∥F(t)
∥∥∥

L
p̃′

t L
q̃′

x
+

∥∥∥(V1ǫ +V2(t))Z(t)
∥∥∥

L2
t L

6
5
x

.

∥∥∥Z0

∥∥∥
L2 +

∥∥∥F(t)
∥∥∥

L
p̃′

t L
q̃′

x
+ B,

where in the last inequality we the fact (follows from (5.21)) that
∥∥∥(V1 +V2(t))Z(t)

∥∥∥
L2

t L
6
5
x

.

∥∥∥V1/2

1ǫ

∥∥∥
L3

x

∥∥∥V1/2

1ǫ
Z(t)

∥∥∥2

L2
t L2

x
+

∥∥∥V1/2

2
(t)

∥∥∥
L∞t L3

x

∥∥∥V1/2

2
(t)Z(t)

∥∥∥
L2

t L2
x

. ‖Z0‖L2
x
+ ‖F‖

L
p̃′

t L
q̃′

x
+ B.

Step II. Local decay estimates. We will prove for arbitrary compact supported smooth function

V1 and localized function V2, the local decay estimates hold. Let δ > 0 be some fixed small

number and b(t) be defined by (5.63) we introduce a partition of unity associated with the sets

Bδǫt(0) =
{
x : |x| < δǫt

}
, Bδǫt(b(t)) =

{
x : |x − b(t)| < δǫt

}

and

R
3 \

(
Bδǫt(0) ∪ Bδǫt(b(t))

)
.

Let χ1(t, x) be a cut-off function such that

χ1(t, x) = 1, x ∈ Bδǫt(0) and χ1(t, x) = 0, x ∈ R3 \ B2δǫt(0)
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and define

χ2(t, x) = χ1(t, x − b(t)), χ3(t, x) = 1 − χ1(t, x) − χ2(t, x).

Observe that the supports of χ2(t, ·) andV1ǫ(·) are disjoint andV2(t, σ̃(t))χ1(t, ·) is arbitrary small

since the separation condition (2.16) holds, which will be used in the further.

It follows the decomposition of the solution Z(t):

Z(t) = χ1(t, ·)Z(t) + χ2(t, ·)Pb(t)Z(t) + χ2(t, ·)Pc(t)Z(t) + χ3(t, ·)Z(t).

Thus it suffices to estimate the L2
t L2

x norm of

V
1/2

2
(t, σ̃(t))χ1(t, ·)Z(t), V

1/2

2
(t, σ̃(t))χ2(t, ·)Pb(t)Z(t),

V
1/2

2
(t, σ̃(t))χ2(t, ·)Pc(t)Z(t), V

1/2

2
(t, σ̃(t))χ3(t, ·)Z(t)(5.22)

and

V
1/2

1ǫ
χ1(t, ·)Z(t), V

1/2

1ǫ
χ2(t, ·)Pb(t)Z(t),

V
1/2

1ǫ
χ2(t, ·)Pc(t)Z(t), V

1/2

1ǫ
χ3(t, ·)Z(t).(5.23)

Notice that
∥∥∥V1/2

2
(t, σ̃(t))χ2(t, ·)Pb(t)Z(t)

∥∥∥
L2

t L2
x
+

∥∥∥V1/2

1ǫ
χ2(t, ·)Pb(t)Z(t)

∥∥∥
L2

t L2
x

≤
∥∥∥V1/2

2
(t, σ̃(t))χ2(t, ·)

∥∥∥
L∞t L3

x

∥∥∥Pb(t)Z(t)
∥∥∥

L2
t L6

x
+

∥∥∥V1/2

1ǫ
χ2(t, ·)

∥∥∥
L∞t L3

x

∥∥∥Pb(t)Z(t)
∥∥∥

L2
t L6

x
. B,

we only need to estimate the rest of the terms in (5.22) and (5.23). Here and in the following, we

will useV2(t) and χi instead ofV2(t, σ̃(t)) and χi(t) (i = 1, 2, 3).

Consider the homogeneous equation

i∂tZ(t) =H (t, σ̃(t))Z(t) + F(t) =H2(t)Z(t) +V1ǫZ(t) − E(t)Z(t) + F(t)

Z(0) = Z0(5.24)

with ‖Pb(t)Z(t)‖L2
t L6

x
. B where Pb(t) is defined by (4.9). Denote byU (t) the propagator of the

homogeneous equation (5.24) (with F = 0).

By using Duhamel’s formula

Z(t) = U0(t)Z0 − i

∫ t

0

U0(t, s)
(
V2(s) +V1ǫ

)
Z(s)ds − i

∫ t

0

U0(t, s)F(s)ds,

(5.25)

we obtain

∥∥∥V1/2

1ǫ
Z(t)

∥∥∥
L2

x
≤

∥∥∥V1/2

1ǫ
U0(t)Z0

∥∥∥
L2

x
+

∫ t

0

∥∥∥V1/2

1ǫ
U0(t, s)

(
V2(s) +V1ǫ

)
Z(s)

∥∥∥
L2

x
ds

+

∫ t

0

∥∥∥V1/2

1ǫ
U0(t, s)F(s)

∥∥∥
L2

x
ds

≤
∥∥∥V1/2

1ǫ
U0(t)Z0

∥∥∥
L2

x
+

∥∥∥V1/2

1ǫ

∥∥∥2

L
3,2
x

∫ t

0

∥∥∥U0(t, s)
∥∥∥

L
6/5,1
x →L

6,∞
x

∥∥∥V1/2

1ǫ
Z(s)

∥∥∥
L2

x
ds

+
∥∥∥V1/2

1ǫ

∥∥∥
L

3,2
x

∥∥∥V1/2

2
(t)

∥∥∥
L

3,2
x

∫ t

0

∥∥∥U0(t, s)
∥∥∥

L
6/5,1
x →L

6,∞
x

∥∥∥V1/2

2
(s)Z(s)

∥∥∥
L2

x
ds

+
∥∥∥V1/2

1ǫ

∥∥∥
L3

x

∥∥∥
∫ t

0

U0(t, s)F(s)ds
∥∥∥

L6
x
.(5.26)
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Denote by

g(t) =
∥∥∥V1/2

1ǫ
Z(t)

∥∥∥
L2

x
+

∥∥∥V1/2

2
(t)Z(t)

∥∥∥
L2

x
,(5.27)

d0(t) =
∥∥∥V1/2

1ǫ
U0(t)Z0

∥∥∥
L2

x
+

∥∥∥V1/2

2
(t)U0(t)Z0

∥∥∥
L2

x
+

∥∥∥
∫ t

0

U0(t, s)F(s)ds
∥∥∥

L6
x

and

h0(t) =
∥∥∥U0(t)

∥∥∥
L

6/5,1
x →L

6,∞
x
,

it follows that d0 ∈ L2
t with

‖d0‖L2
t
.

(∥∥∥V1/2

1ǫ

∥∥∥
L3

x
+

∥∥∥V1/2

2
(t)

∥∥∥
L3

x

)∥∥∥U0(t)Z0

∥∥∥
L2

t L6
x
+

∥∥∥
∫ t

0

U0(t, s)F(s)ds
∥∥∥

L2
t L6

x

. ‖Z0‖ + ‖F‖Lp̃′

t L
q̃′

x
,

h ∈ L1
t and

g(t) ≤ C
(
d0(t) +

∫ t

0

h0(t − s)g(s)ds
)
.

Then for fix large enough T , by using Gronwall’s inequality we can find a large constant C(T )

such that
∫ T

0

∥∥∥V1/2

1ǫ
Z(t)

∥∥∥2

L2
x
dt +

∫ T

0

∥∥∥V1/2

2
(t)Z(t)

∥∥∥
L2

x
dt ≤ C2(T )

(
‖Z0‖

2

L2
x
+

∥∥∥F
∥∥∥2

L
p̃′

t L
q̃′

x

)
.(5.28)

which combing Duhamel’s formula (5.25) further imply that for any localized function V and

c(t) = 0 or b(t),
∫ T

0

∥∥∥V(· − c(t))Z(t)
∥∥∥2

L2
x
dt ≤ C2(T )

(
‖Z0‖

2

L2
x
+

∥∥∥F
∥∥∥2

L
p̃′

t L
q̃′

x

)
.(5.29)

Next we will show that the constant C(T ) in (5.28) can be taken independent of T , this could

be done by following the bootstrap argument in [RSS] which is based on the observation that it

is enough to show if (5.28) holds for C(T ), it also hold for C(T )/2. Actually, one only need to

prove (5.28) for
∫ T

M̃
for some large positive constant M̃ ≪ T which is independent of T . We will

do it channel by channel and begin with the estimates forV
1/2

2
(t)χ2Pc(t)Z(t).

II1. Local decay forV
1/2

2
(t)χ2Pc(t)Z(t). Assume that A is a large constant to be fixed later and

A≪ T , it follows from Duhamel’s formula that

V
1/2

2
(t)χ2Pc(t)Z(t) = V

1/2

2
(t)χ2Pc(t)U2(t)Z0 − iV

1/2

2
(t)χ2

∫ t−A

0

U2(t, s)Pc(s)V1ǫZ(s)ds

− iV
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫZ(s)ds

+ iV
1/2

2
(t)χ2

∫ t

0

U2(t, s)Pc(s)E(s)Z(s)ds

− iV
1/2

2
(t)χ2

∫ t

0

U2(t, s)Pc(s)F(s)ds(5.30)

By using Lemma 5.1, we have
∥∥∥V1/2

2
(t)χ2Pc(t)U2(t, 0)Z0

∥∥∥
L2

t L2
x

≤
∥∥∥V1/2

2
(t)χ2

∥∥∥
L∞t L3

x

∥∥∥Pc(t)U2(t, 0)Z0

∥∥∥
L2

t L6
x
. ‖Z0‖L2 .(5.31)
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and
∥∥∥V1/2

2
(t)χ2

∫ t

0

U2(t, s)Pc(s)F(s)ds
∥∥∥

L2
t L2

x

≤
∥∥∥V1/2

2
(t)χ2

∥∥∥
L∞t L3

x

∥∥∥
∫ t

0

U2(t, s)Pc(s)F(s)ds
∥∥∥

L2
t L6

x
. ‖F

∥∥∥
L

p̃′

t L
q̃′

x
.(5.32)

Now let us give the formula for E(t),

E(t) = iT0(t)
[
P
′

c(t), Pc(t)
]
T ∗0(t) = iT0(t)

[
P
′

b(t), Pb(t)
]
T ∗0(t),(5.33)

with Pb(t) = T (t)Pb(σT0
)T ∗(t) and

T ′(t) = T (t)
(
iβ′(t) − y′(t)∇

)
.

Then similarly to (5.16), there exist some localized functions Φ̃ j and Ψ̃k centered at b(t) such that

E(t) f =
(
β′(t) − y′(t)

)∑

j,k

Φ̃ j

〈
Ψ̃k, f

〉
,(5.34)

where the sum is finite. Thus it follows Lemma 5.2, (5.16), (5.28) and Shur’s Lemma that
∥∥∥∥χ2

∫ t

0

∥∥∥V1/2

2
(t)U2(t, s)Pc(s)E(s)Z(s)

∥∥∥
L2

x
ds

∥∥∥∥
L2

t

≤
∥∥∥V1/2

2
(t)

∥∥∥
L

3,2
x

∥∥∥∥
∫ t

0

h2(t, s)‖E(s)Z(s)‖
L

6/5,1
x

ds
∥∥∥∥

L2
t

.

∥∥∥σ̇‖L1
t

∥∥∥∥
∫ t

0

h2(t, s)
∥∥∥VZ(s)

∥∥∥
L2

x
ds

∥∥∥∥
L2

t

. ǫ2αC(T )
(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x
) ≤

C(T )

2

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x
),(5.35)

with some localized functionV and

h2(t, s) =
∥∥∥U2(t, s)Pc(s)

∥∥∥
L

6/5,1
x →L

6,∞
x
.(5.36)

For the second term in (5.30),

V
1/2

2
(t)χ2

∫ t−A

0

U2(t, s)Pc(s)V1ǫZ(s)ds

= V
1/2

2
(t)χ2

( ∫ A

0

U2(t, s)Pc(s)V1ǫZ(s)ds +

∫ t−A

A

U2(t, s)Pc(s)V1ǫZ(s)ds
)
.(5.37)

It follows from Schur’s Lemma and the bootstrap assumption (5.28) that
∫ T

0

∥∥∥V1/2

2
(t)χ2

∫ A

0

U2(t, s)Pc(s)V1ǫZ(s)ds
∥∥∥2

L2
x
dt

≤

∫ 2A

0

∥∥∥V1/2

2
(t)χ2

∫ A

0

U2(t, s)Pc(s)V1ǫZ(s)ds
∥∥∥2

L2
x
dt

+

∫ T

2A

∥∥∥V1/2

2
(t)χ2

∫ A

0

U2(t, s)Pc(s)V1ǫZ(s)ds
∥∥∥2

L2
x
dt

.

∥∥∥V1/2

2
(t)χ2

∥∥∥2

L∞t,x

∥∥∥V1/2

1ǫ

∥∥∥2

L∞x

∫ 2A

0

( ∫ A

0

∥∥∥U2(t, s)Pc(s)
∥∥∥

L2→L2

∥∥∥V1/2

1ǫ
Z(s)

∥∥∥
L2

x
ds

)2
dt

+
∥∥∥V1/2

2
(t)χ2

∥∥∥2

L∞t L3
x

∥∥∥V1/2

1ǫ

∥∥∥2

L3
x

∫ T

2A

( ∫ A

0

h2(t, s)
∥∥∥V1/2

1ǫ
Z(s)

∥∥∥
L2

x
ds

)2
dt
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.
(
CA + k1(A)C2(T )

) ∫ A

0

∥∥∥V1/2

1ǫ
Z(s)

∥∥∥2

L2
x
ds

≤
C2(T )

2

(
‖Z0‖

2

L2
x
+

∥∥∥F
∥∥∥2

L
p̃′

t L
q̃′

x

)
,

where CA is independent of T and it follows from the proof of (5.18) that for sufficient large A,

k1(A) =
(

sup
2A<t<T

∫ A

0

h2(t, s)ds
)(

sup
0<s<A

∫ T

2A

h2(t, s)dt
)

(5.38)

is small. Similarly,

∫ T

0

∥∥∥V1/2

2
(t)χ2

∫ t−A

A

U2(t, s)Pc(s)V1ǫZ(s)ds
∥∥∥2

L2
x
dt

.

∥∥∥V1/2

2
(t)χ2

∥∥∥2

L∞t L3
x

∥∥∥V1/2

1ǫ

∥∥∥2

L3
x

∫ T

0

( ∫ t−A

A

h2(t, s)
∥∥∥V1/2

1ǫ
Z(s)

∥∥∥
L2

x
ds

)2
dt

. k2(A)C2(T )

∫ A

0

∥∥∥V1/2

1ǫ
Z(s)

∥∥∥2

L2
x
ds ≤

1

2
C2(T )

(
‖Z0‖

2

L2
x
+

∥∥∥F
∥∥∥2

L
p̃′

t L
q̃′

x

)
(5.39)

where

k2(A) =
(

sup
2A<t<T

∫ t−A

A

h2(t, s)ds
)(

sup
A<s<T−A

∫ T

s+A

h2(t, s)dt
)

(5.40)

is also a small constant for large A.

For the third term in (5.30),

V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫZ(s)ds = V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫU1(s)Z0ds

+V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫ

∫ s

0

U1(s, τ)V2(τ)Z(τ)dτds

+V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫ

∫ s

0

U1(s, τ)F(τ)dτds.(5.41)

By using Lemma 5.1 and Young’s inequality (Schur’s Lemma), we have

∥∥∥∥V1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫU1(s)Z0ds
∥∥∥∥

L2
t L2

x

≤
∥∥∥V1/2

2
(t)χ2

∥∥∥
L∞t L3

x

∥∥∥V1/2

1ǫ

∥∥∥
L3

x

∥∥∥∥
∫ t

t−A

h2(t, s)
∥∥∥V1/2

1ǫ
U1(s)Z0

∥∥∥
L2

x
ds

∥∥∥∥
L2

t

.

∥∥∥V1/2

1ǫ
U1(t)Z0

∥∥∥
L2

t L2
x
.

∥∥∥U1(t)Z0

∥∥∥
L2

t L6
x
.

∥∥∥Z0

∥∥∥
L2

x
(5.42)

and

∥∥∥∥V1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫ

∫ s

0

U1(s, τ)F(τ)dτds
∥∥∥∥

L2
t L2

x

≤
∥∥∥V1/2

2
(t)χ2

∥∥∥
L∞t L3

x

∥∥∥V1/2

1ǫ

∥∥∥
L3

x

∥∥∥∥
∫ t

t−A

h2(t, s)
∥∥∥
∫ s

0

V
1/2

1ǫ
U1(s, τ)F(τ)dτ

∥∥∥
L2

x
ds

∥∥∥∥
L2

t

.

∥∥∥∥
∫ s

0

V
1/2

1ǫ
U1(s, τ)F(τ)dτ

∥∥∥∥
L2

s L2
x

.

∥∥∥∥
∫ s

0

U1(s, τ)F(τ)dτ
∥∥∥∥

L2
s L6

x

.

∥∥∥F
∥∥∥2

L
p̃′

t L
q̃′

x
.(5.43)
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It remains to estimate

V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫ

∫ s

0

U1(s, τ)V2(τ)Z(τ)dτds

= V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫ

∫ s−B

0

U1(s, τ)V2(τ)Z(τ)dτds

+V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτds

:= J1 + J2.(5.44)

Here B which is a large constant independent of C(T ) so that T ≫ B ≫ A will be chosen later.

For J1, it follows from Young’s inequality that
∥∥∥J1

∥∥∥
L2

t L2
x

≤
∥∥∥V1/2

2
(t)χ2

∥∥∥
L∞t L3

x

∥∥∥V1/2

1ǫ

∥∥∥
L3

x

∥∥∥∥
∫ t

t−A

h2(t, s)

∫ s−B

0

∥∥∥U1(s, τ)V2(τ)Z(τ)
∥∥∥

L2
x
dτds

∥∥∥∥
L2

t

.

∥∥∥∥
∫ s−B

0

∥∥∥V1/2

1ǫ
U1(s, τ)V2(τ)Z(τ)

∥∥∥
L2

x
dτ

∥∥∥∥
L2

t

≤
∥∥∥V1/2

2
(t)χ2

∥∥∥
L∞t L3

x

∥∥∥V1/2

1ǫ

∥∥∥
L3

x

∥∥∥∥
∫ s−B

0

h1(s, τ)
∥∥∥V1/2

2
(τ)Z(τ)

∥∥∥
L2

x
dτ

∥∥∥∥
L2

t

where

h1(t, s) =
∥∥∥U1(t, s)

∥∥∥
L

6/5,1
x →L

6,∞
x
.(5.45)

And then by using Lemma 5.2 and the same argument as in (5.38)-(5.40), we obtain

∥∥∥J1

∥∥∥
L2

t L2
x
≤

1

2
C(T )

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
.(5.46)

As far as J2, let M be large positive constant and M ≪ T ,

J2 = V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)K≤MV1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτds

+V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)K>MV1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτds

= JL
2 + JH

2 ,(5.47)

where K≤M := K(|i∇| ≤ M) and K>M := K(|i∇| ≤ M). The estimates for JL
2

will be accomplished

by using the following inequality,

sup
|t−s|≤A

∥∥∥V1/2

2
(t)χ2U2(t, s)Pc(s)K≤MV

1/2

1ǫ

∥∥∥
L2

x→L2
x
≤

AM

δt
.(5.48)

It is proved by [RSS] for ǫ = 1, we will prove that it holds uniformly for ǫ small later. Then it

follows from the bootstrap assumption (5.28) and Hölder’s inequality that
∥∥∥JL

2

∥∥∥
L2

t L2
x
≤

∥∥∥∥ sup
|t−s|≤A

∥∥∥V1/2

2
(t)χ2U2(t, s)Pc(s)K≤MV

1/2

1ǫ

∥∥∥
L2

x→L2
x

×

∫ t

t−A

∥∥∥V1/2

1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτ
∥∥∥

L2
x
ds

∥∥∥∥
L2

t

≤
∥∥∥AM〈t〉−1

∥∥∥
L2

t

∥∥∥∥A1/2

∫ s

s−B

V
1/2

1ǫ
U1(s, τ)V2(τ)Z(τ)dτ

∥∥∥∥
L2

s
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≤
1

2
C(T )

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
.(5.49)

Here as mentioned before that one only need to prove (5.28) for
∫ T

M̃
for some large positive

constant M̃ ≪ T , therefore we can choose t large enough such that A3/2Mt−ε are small for any

ε > 0, as well as t−(1−ε) ∈ L2
t . On the other hand,

JH
2 = V

1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)V
1/2

1ǫ
K>MV

1/2

1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτds

+V
1/2

2
(t)χ2

∫ t

t−A

U2(t, s)Pc(s)
[
K>M ,V

1/2

1ǫ

]
V

1/2

1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτds

:= J
H,1

2
+ J

H,2

2
.

It follows from the Fubini theorem and Hölder’s inequality that

∥∥∥JH,2

2

∥∥∥
L2

t L2
x
≤

∥∥∥∥
∫ t

t−A

∥∥∥χ2V
1/2

2
(t)

∥∥∥
L∞

∥∥∥U2(t, s)Pc(s)
∥∥∥

L2
x→L2

x

∥∥∥[K>M ,V
1/2

1ǫ

]∥∥∥
L2

x→L2
x

×
∥∥∥
∫ s

s−B

V
1/2

1ǫ
U1(s, τ)V2(τ)Z(τ)dτ

∥∥∥
L2

x
ds

∥∥∥∥
L2

t

≤ A1/2ǫM−1
∥∥∥∥
( ∫ t

t−A

∥∥∥
∫ s

s−B

V
1/2

1ǫ
U1(s, τ)V2(τ)Z(τ)dτ

∥∥∥2

L2
x
ds

)1/2
∥∥∥∥

L2
t

≤ AǫM−1
∥∥∥∥
∫ s

s−B

∥∥∥V1/2

1ǫ
U1(s, τ)V2(τ)Z(τ)

∥∥∥
L2

x
dτ

∥∥∥∥
L2

s

≤ ABǫ2M−1
∥∥∥V1/2

2
(τ)Z(τ)

∥∥∥
L2
τL2

x

≤ ABǫ2M−1C(T )
(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
,(5.50)

To deal with J
H,1

2
, we claim that for all T > 0 and α > 0,

∫ T

τ

∫

R3

∣∣∣V1/2

1ǫ
∇〈∇〉−1/2

U1(s, τ) f
∣∣∣2dxds ≤ ǫ3(T − τ)

(
1 + ‖V1‖L∞

)
‖ f ‖2

L2
x
.(5.51)

Similarly to (5.50),
∥∥∥JH,1

2

∥∥∥
L2

t L2
x

≤

∥∥∥∥
∫ t

t−A

h2(t, s)

∫ s

s−B

∥∥∥K>MV
1/2

1ǫ
U1(s, τ)V2(τ)Z(τ)

∥∥∥
L2

x
dτds

∥∥∥∥
L2

t

≤

∥∥∥∥
∫ s

s−B

∥∥∥K>MV
1/2

1ǫ
U1(s, τ)V2(τ)Z(τ)

∥∥∥
L2

x
dτ

∥∥∥∥
L2

s

≤ B1/2 sup
τ

( ∫ τ+B

τ

∥∥∥K>MV
1/2

1ǫ
U1(s, τ)V

1/2

2
(τ)

∥∥∥2

L2
x→L2

x
ds

)1/2∥∥∥V1/2

2
(τ)Z(τ)

∥∥∥
L2
τL2

x
,

Notice that by (5.51),

∫ τ+B

τ

∥∥∥K>MV
1/2

1ǫ
U1(s, τ)V

1/2

2
(τ)

∥∥∥2

L2
x→L2

x
ds

≤ M−1

∫ τ+B

τ

∥∥∥∇〈∇〉−1/2V
1/2

1ǫ
U1(s, τ)V

1/2

2
(τ)

∥∥∥2

L2
x→L2

x
ds
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≤ M−1

∫ τ+B

τ

∥∥∥[∇〈∇〉−1/2,V
1/2

1ǫ

]
U1(s, τ)V

1/2

2
(τ)

∥∥∥2

L2
x→L2

x
ds

+ M−1

∫ τ+B

τ

∥∥∥V1/2

1ǫ
∇〈∇〉−1/2

U1(s, τ)V
1/2

2
(τ)

∥∥∥2

L2
x→L2

x
ds

. ǫ3M−1B.

Thus,
∥∥∥JH,1

2

∥∥∥
L2

t L2
x
≤ ǫ3/2BM−1/2

∥∥∥V1/2

2
(τ)Z(τ)

∥∥∥
L2
τL2

x

≤ ǫ3/2BM−1/2C(T )
(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
,

which combining (5.50) lead to
∥∥∥JH

2

∥∥∥
L2

t L2
x
.

(
ABǫ2M−1 + ǫ3/2BM−1/2)C(T )

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)

≤
1

2
C(T )

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
,(5.52)

here we choose M ≫ A, B.

It remains to prove the claims (5.48) and (5.51). For (5.51), we only need to prove it for τ = 0.

Denote by Ψ(t) = U1(t) f and then Ψ(ǫ−1 x, ǫ−2t) satisfies the homogeneous Schrödinger equation

i∂tΨ(t) =
(
H0 +V1

)
Ψ(t),

Ψ(t) = f (ǫ−1·).(5.53)

Therefore, by using (3.29) in the proof of [33, Lemma 3.1], we have for any constant T > 0 and

α > 0,
∫ ǫ2T

0

∫

R3

(1 + |x|α)−(1/α+1)
∣∣∣∇〈∇〉−1/2Ψ(ǫ−1x, ǫ−2t)

∣∣∣2dxdt ≤ ǫ2T
(
1 + ‖V1‖L∞

)
‖ f (ǫ−1·)‖2

L2
x
.

which leads to
∫ T

0

∫

R3

(1 + |ǫx|α)−(1/α+1)
∣∣∣∇〈∇〉−1/2Ψ(x, t)

∣∣∣2dxdt ≤ ǫT
(
1 + ‖V1‖L∞

)
‖ f ‖2

L2
x
.(5.54)

Thus
∫ T

0

∫

R3

∣∣∣V1/2

1ǫ
∇〈∇〉−1/2Ψ(x, t)

∣∣∣2dxdt

=

∫ T

0

∫

R3

∣∣∣V1/2

1ǫ
(1 + |ǫx|α)(1/α+1)

∣∣∣(1 + |ǫx|α)−(1/α+1)
∣∣∣∇〈∇〉−1/2Ψ(x, t)

∣∣∣2dxdt

≤ ǫ3T
(
1 + ‖V1‖L∞

)
‖ f ‖2

L2
x
.(5.55)

Let us turn to (5.48), the proof follows from a commutator argument. Assume that ǫt ≤ 1,

sup
|t−s|≤A

∥∥∥V1/2

2
(t)χ2U2(t, s)Pc(s)K≤MV

1/2

1ǫ

∥∥∥
L2

x→L2
x

.

∥∥∥K≤M

∥∥∥
L2

x→L2
x

∥∥∥V1/2

1ǫ

∥∥∥
L∞
. ǫ . t−1,(5.56)

where K≤M f =
(
η̂(ξ/M) f̂ (ξ)

)∨
with some smooth bump function η. If ǫt > 1, we use P2

c(s) =

Pc(s) and the intertwining identity (5.2), consider
∥∥∥[χ2(t), Pc(t)

]
f
∥∥∥

L2
x
=

∥∥∥[χ2(t), Pb(t)
]
f
∥∥∥

L2
x
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=

∥∥∥∥
8∑

j=1

ξ̃ j(x, t; σ̃(t))
〈

f , (χ2(t) − 1)̃ξ j(x, t; σ̃(t))
〉

− (χ2(t) − 1)̃ξ j(x, t; σ̃(t))
〈

f , ξ̃ j(x, t; σ̃(t))
〉∥∥∥∥

L2
x

. e−cǫt‖ f ‖L2
x

(5.57)

with some constant c > 0 and then∥∥∥V1/2

2
(t)

[
χ2(t), Pc(t)

]
U2(t, s)Pc(s)K≤MV

1/2

1ǫ
f
∥∥∥

L2
x
. e−cǫt

∥∥∥K≤M

∥∥∥
L2

x→L2
x

∥∥∥V1/2

1ǫ

∥∥∥
L∞
‖ f ‖L2

x

. ǫe−cǫt‖ f ‖L2
x
. t−1‖ f ‖L2

x
.(5.58)

Notice that
[
χ2(t),U2(t, s)

]
= U2(t, s)

(
U2(s, t)χ2(t)U2(t, s) − χ2(t)

)

= iU2(t, s)

∫ t

s

U2(s, τ)
[
H2(τ), χ2(t)

]
U2(τ, s)dτ

= iU2(t, s)

∫ t

s

U2(s, τ)
([

H0, χ2(t)
]
+

[
E(τ), χ2(t)

])
U2(τ, s)dτ,(5.59)

where H2(t) =H0 +V2(t, σ̃(t))+ E(t) with E(t) = iT0(t)
[
P
′

c(t), Pc(t)
]
T ∗

0
(t) is defined as in (5.1).

Then it follows ∥∥∥V1/2

2
(t)Pc(t)

[
χ2(t),U2(t, s)

]
Pc(s)K≤MV

1/2

1ǫ

∥∥∥
L2

x→L2
x

. ǫA sup
τ,s

∥∥∥[H0, χ2(t)
]
U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x

+ ǫA sup
τ,s

∥∥∥[E(τ), χ2(t)
]
U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x
.(5.60)

Observe now that
∣∣∣∇χ2(t)

∣∣∣ . 1

δǫt
,

∣∣∣∆χ2(t)
∣∣∣ . 1

(δǫt)2

and then

sup
τ,s

∥∥∥[H0, χ2(t)]U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x
. sup

τ,s

∥∥∥∇χ2(t)∇U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x

+ sup
τ,s

∥∥∥∆χ2(t)U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x

. M
( 1

δǫt
+

1

(δǫt)2

)
,(5.61)

where we use the fact that

sup
τ,s

∥∥∥∇U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x
. M,

and it is obtained by interpolation between

sup
τ,s

∥∥∥U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x
. 1

and

sup
τ,s

∥∥∥∆U2(τ, s)Pc(s)K≤M f
∥∥∥

L2
x

. sup
τ,s

∥∥∥H2(τ)U2(τ, s)Pc(s)K≤M f
∥∥∥

L2
x
+ sup

τ,s

∥∥∥V2(τ)U2(τ, s)Pc(s)K≤M f
∥∥∥

L2
x
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+ sup
τ,s

∥∥∥E(τ)U2(τ, s)Pc(s)K≤M f
∥∥∥

L2
x

.

∥∥∥∆K≤M f
∥∥∥

L2
x
+

∥∥∥K≤M f
∥∥∥

L2
x
. M2‖ f ‖L2

x
.(5.62)

Here for the first term in the first inequality of (5.62), we use the following identity which is

obtained by differentiation both side of (5.2) with respect to s at s = t,

iṖc(t) =H2(t)Pc(t) − Pc(t)H2(t).

On the other hand, notice that the formula (5.34) for E(τ) and
[
E(τ), χ2(t)

]
f =

(
β′(t) − y′(t)

)∑

j,k

(
Φ̃ j

〈
Ψ̃k, χ2(t) f

〉
− χ2(t)Φ̃ j

〈
Ψ̃k, f

〉)

=
(
β′(t) − y′(t)

)∑

j,k

(
Φ̃ j

〈
(χ2(t) − 1)Ψ̃k, f

〉
− (χ2(t) − 1)Φ̃ j

〈
Ψ̃k, f

〉)

with Φ̃ j and Ψ̃k centered at b(τ), similarly to (5.57),
∥∥∥[E(τ), χ2(t)

]
f
∥∥∥

L2
x
. e−cǫt‖ f ‖L2

x
,

where we use the fact that τ ∈ [s, t] and s ∈ [t − A, t]. Then we obtain

sup
τ,s

∥∥∥[E(τ), χ2(t)
]
U2(τ, s)Pc(s)K≤M

∥∥∥
L2

x→L2
x
. e−cǫt‖ f ‖L2

x
.(5.63)

Therefore, it follows from (5.60), (5.61) and (5.64) that
∥∥∥V1/2

2
(t)Pc(t)

[
χ2(t),U2(t, s)

]
Pc(s)K≤MV

1/2

1ǫ

∥∥∥
L2

x→L2
x

. ǫA
( M

δǫt
+

M

(δǫt)2
+ e−cǫt)

.
AM

δt
.(5.64)

Now we proceed to V
1/2

2
(t)Pc(s)U2(t, s)

[
χ2(t), Pc(s)

]
K≤MV

1/2

1ǫ
, since s ∈ [t − A, t], similarly to

(5.58),

∥∥∥V1/2

2
(t)Pc(t)U2(t, s)

[
χ2(t), Pc(s)

]
K≤MV

1/2

1ǫ
f
∥∥∥

L2
x
. ǫe−cǫt‖ f ‖L2

x
.
‖ f ‖L2

x

t
.(5.65)

Finally,

∥∥∥[χ2(t),K≤M]
∥∥∥

L2
x→L2

x
. M−1‖∇χ2‖L∞x . M−1 1

ǫδt
,

which leads to
∥∥∥V1/2

2
(t)Pc(t)U2(t, s)Pc(s)[χ2(t),K≤M]V

1/2

1ǫ
f
∥∥∥

L2
x

. ǫM−1 1

ǫδt
‖ f ‖L2

x
. (Mδt)−1‖ f ‖L2

x
.(5.66)

One concludes from (5.58), (5.64), (5.65) and (5.66) that for ǫt > 1,
∥∥∥V1/2

2
(t)χ2U2(t, s)Pc(s)K≤MV

1/2

1ǫ
− V

1/2

2
(t)U2(t, s)Pc(s)K≤Mχ2V

1/2

1ǫ

∥∥∥
L2

x→L2
x
. AM(δt)−1,

which combining the observation χ2V1ǫ = 0 finish the proof of claim (5.48).

II2. Local decay for V
1/2

1ǫ
χ1(t, ·)Z(t). This will be done by using similar argument as the one

in II1, we will not write in detail and only sketch the proof. For large A ≪ T to be fixed later, it

follows from Duhamel’s formula that

V
1/2

1ǫ
χ1Z(t) = V

1/2

1ǫ
χ1U1(t)Z0 − iV

1/2

1ǫ
χ1

∫ t−A

0

U1(t, s)V2(s)Z(s)ds



34 QINGQUAN DENG, AVY SOFFER AND XIAOHUA YAO

− iV
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)Z(s)ds + iV
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)F(s)ds.(5.67)

By using the endpoint Strichartz estimates for U1(t) (see Lemma 5.2), we have
∥∥∥V1/2

1ǫ
χ1U1(t)Z0

∥∥∥
L2

t L2
x
≤

∥∥∥V1/2

1ǫ
χ1

∥∥∥
L∞t L3

x

∥∥∥U1(t)Z0

∥∥∥
L2

t L6
x

. ‖Z0‖L2 .(5.68)

and
∥∥∥∥V1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)F(s)ds
∥∥∥∥

L2
t L2

x

≤
∥∥∥V1/2

1ǫ
χ1

∥∥∥
L∞t L3

x

∥∥∥∥
∫ t

t−A

U1(t, s)F(s)ds
∥∥∥∥

L2
t L6

x

.

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x
.(5.69)

The proof for the second term in (5.67) is essentially similar to the one in (5.30). More precisely,

one only need to estimate it with

h2(t, s) =
∥∥∥U2(t, s)Pc(s)

∥∥∥
L

6/5,1
x →L

6,∞
x

replaced by

h1(t, s) =
∥∥∥U1(t, s)

∥∥∥
L

6/5,1
x →L

6,∞
x

in (5.38)-(5.40). We omit these repeated procedures. As for the third term in (5.67),

V
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)Z(s)ds = V
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)Pb(s)Z(s)ds

+V
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)Pc(s)Z(s)ds

:= Jb + Jc.(5.70)

It follows from Shur’s Lemma and (1.12) that

‖Jb‖L2
t L2

x
≤

∥∥∥V1/2

1ǫ
χ1

∥∥∥
L∞t L

3,2
x

∥∥∥V1/2

2

∥∥∥
L∞t L

3,2
x

∥∥∥V1/2

2

∥∥∥
L∞t L3

x

∥∥∥∥
∫ t

t−A

h1(t, s)‖Pb(s)Z(s)‖L6
x
ds

∥∥∥∥
L2

t

. ‖Pb(s)Z(s)‖L2
s L6

x
. B.(5.71)

On the other hand,

Jc = V
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)Pc(s)U2(s)Z0ds

− iV
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)

∫ s−B

0

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

− iV
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)

∫ s

s−B

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

+ iV
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)

∫ s

0

U2(s, τ)Pc(τ)E(τ)Z(τ)dτds

−iV
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)V2(s)

∫ s

0

U2(s, τ)Pc(τ)F(τ)dτds

:= J1
c + J2

c + J3
c + J4

c + J5
c .

Then by using Shur’s Lemma and Lemma 5.1, we obtain

‖J1
c ‖L2

t L2
x
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≤
∥∥∥V1/2

1ǫ
χ1

∥∥∥
L∞t L

3,2
x

∥∥∥V1/2

2

∥∥∥
L∞t L

3,2
x

∥∥∥V1/2

2

∥∥∥
L∞t L3

x

∥∥∥∥
∫ t

t−A

h1(t, s)‖U2(s)Pc(s)Z0‖L6
x
ds

∥∥∥∥
L2

t

. ‖U2(s)Pc(s)Z0‖L2
s L6

x
. ‖Z0‖L2

x
.(5.72)

Similarly,

‖J2
c ‖L2

t L2
x
+ ‖J4

c ‖L2
t L2

x
+ ‖J5

c ‖L2
t L2

x
.

∥∥∥∥V1/2

2
(s)

∫ s−B

0

U2(s, τ)Pc(τ)V1ǫZ(τ)dτ
∥∥∥∥

L2
s L2

x

+

∥∥∥∥V1/2

2
(s)

∫ s

0

U2(s, τ)Pc(τ)E(τ)Z(τ)dτ
∥∥∥∥

L2
s L2

x

+

∥∥∥∥V1/2

2
(s)

∫ s

0

U2(s, τ)Pc(τ)F(τ)dτ
∥∥∥∥

L2
s L2

x

≤
1

2
C(T )

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
,(5.73)

where we use (5.37)-(5.40), (5.35) and (5.32) in the last inequality.

iJ3
c = V

1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)K≤MV2(s)

∫ s

s−B

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

+V
1/2

1ǫ
χ1

∫ t

t−A

U1(t, s)K≥MV2(s)

∫ s

s−B

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

:= J3,L
c + J3,H

c .(5.74)

Now we follow the same arguments as the ones treating JL
2

and JH
2

in (5.47) and reduce the proof

to the following two claims:

sup
|t−s|≤A

∥∥∥V1/2

1ǫ
χ1U1(t, s)K≤MV

1/2

2
(s)

∥∥∥
L2

x→L2
x
≤

AM

δt
(5.75)

and for all T > 0 and α > 0,
∫ T

τ

∫

R3

∣∣∣V1/2

2
(s)∇〈∇〉−1/2

U2(s, τ)Pc(τ) f
∣∣∣2dxds

≤ (T − τ)
(
1 + ‖V2‖L∞

)
‖ f ‖2

L2
x
.(5.76)

The proof for (5.75) shares exactly the same method as the one used in the proof of (5.48). As

for (5.76), we here will sketch the proof by using the idea in [33, Lemma 3.4]. By using the trick

in (5.55), it is enough to prove that for all T > 0 and α > 0,
∫ T

τ

∫

R3

(1 + |x − b(s)|α)−(1/α+1)
∣∣∣∇〈∇〉−1/2

U2(s, τ)Pc(τ) f
∣∣∣2dxds

≤ (T − τ)
(
1 + ‖V2‖L∞

)
‖ f ‖2

L2
x
.(5.77)

To this end, denote m := w(x − b(s))(x − b(s)) ∇
〈∇〉

and ψ(s, τ) = U2(s, τ)Pc(τ) f , where

w(x) = (1 + |x|α)−1/α, α > 0.

One has

d

ds
〈mψ(s, τ), ψ(s, τ)〉

= ḃ(s)〈(∇w · x + w)(· − b(s))
∇

〈∇〉
ψ(s, τ), ψ(s, τ)〉 − i〈[m,H(s)]ψ(s, τ), ψ(s, τ)〉
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= ḃ(s)〈(∇w · x + w)(· − b(s))
∇

〈∇〉
ψ(s, τ), ψ(s, τ)〉

+ i

∫

R3

w(· − b(s))|∇〈∇〉−1/2ψ(s, τ)|2dx

+ i

∫

R3

∇w · x(· − b(s)))|∇〈∇〉−1/2ψ(s, τ)|2dx

− i
〈
[〈∇〉1/2,w(· − b(s))]

∇

〈∇〉
ψ(s, τ),∇〈∇〉−1/2ψ(s, τ)

〉

− i
〈
[〈∇〉1/2,∇w · x(· − b(s)))]

∇

〈∇〉
ψ(s, τ),∇〈∇〉−1/2ψ(s, τ)

〉

+
i

2

〈
∆(w · x(· − b(s)))

∇

〈∇〉
ψ(s, τ), ψ(s, τ)

〉
− i〈[m,V2(s)]ψ(s, τ), ψ(s, τ)〉

:= I1 + I2 + I3 + I4 + I5 + I6 + I7.(5.78)

By using the estimates in the proof of [33, Lemma 3.4], we have

I2 + I3 ≥

∫

R3

(1 + |x − b(s)|α)−(1/α+1)
∣∣∣∇〈∇〉−1/2ψ(s, τ)

∣∣∣2dx(5.79)

and

I4 + I5

≤ C‖ψ(s, τ)‖L2
x
+

1

4

∫

R3

(1 + |x − b(s)|α)−(1/α+1)
∣∣∣∇〈∇〉−1/2ψ(s, τ)

∣∣∣2dx.(5.80)

Moreover, since the multipliers m, ḃ(s)(∇w·x+w)(·−b(s)) ∇
〈∇〉

and ∆(w·x(·−b(s))) ∇
〈∇〉

are bounded

in L2 uniformly in s, it follows

I1 + I6 + I7 ≤ C(1 + ‖V2(s)‖L∞x )‖ψ(s, τ)‖L2
x
.(5.81)

Now integrating both sides of (5.78) in time and using estimates (5.79)-(5.81) and the fact

|〈mψ(τ, τ), ψ(τ, τ) + 〈mψ(T, τ), ψ(T, τ)〉〉|+ ‖ψ(s, τ)‖L2
x
≤ C‖ f ‖L2 ,

we obtain (5.77).

II3. Local decay for V
1/2

2
(t, σ̃(t))χ1(t, ·)Z(t) and V

1/2

1ǫ
χ2(t, ·)Pc(t)Z(t). The local decay for

V
1/2

1ǫ
χ2(t, ·)Pc(t)Z(t) is easy sinceV

1/2

1ǫ
(·)χ2(t, ·) = 0 and

∥∥∥V1/2

2
(t, σ̃(t))χ1(t, ·)Z(t)

∥∥∥
L2

t L2
x
≤

∥∥∥V1/4

2
(t, σ̃(t))χ1(t, ·)

∥∥∥
L∞t L∞x

∥∥∥V1/4

2
(t, σ̃(t))Z(t)

∥∥∥
L2

t L2
x

≤
1

2
C(T )

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
,(5.82)

where we use (5.29) and the fact that
∥∥∥V1/4

2
(t, σ̃(t))χ1(t, ·)

∥∥∥
L∞t L∞x

is arbitrary small.

II4. Local decay forV
1/2

2
(t, σ̃(t))χ3(t, ·)Z(t) andV

1/2

1ǫ
χ3(t, ·)Z(t). It is enough to consider

V
1/2

2
(t)χ3Z(t) = V

1/2

2
(t)χ3U0(t)Z0 − iV

1/2

2
(t)χ3

∫ t−A

0

U0(t, s)(V2(s) +V1ǫ)Z(s)ds

− iV
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)(V2(s) +V1ǫ)Z(s)ds

+ iV
1/2

2
(t)χ3

∫ t

0

U0(t, s)F(s)ds.
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We mainly focus on the third term of the above identity since the rest can be dealt just as the

corresponding ones in II1 and II2. Notice that

V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)Z(s)ds = V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)Pb(s)Z(s)ds

+V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)Pc(s)U2(s)Z0ds

− iV
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)

∫ s−B

0

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

− iV
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)

∫ s

s−B

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

+ iV
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)

∫ s

0

U2(s, τ)Pc(τ)E(τ)Z(τ)dτds

+iV
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)

∫ s

0

U2(s, τ)Pc(τ)F(τ)dτds(5.83)

and

V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V1ǫZ(s)ds = V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)Pc(s)V1ǫU1(s)Z0ds

+V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V1ǫ

∫ s−B

0

U1(s, τ)V2(τ)Z(τ)dτds

+V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτds

+V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V1ǫ

∫ s

0

U1(s, τ)F(τ)dτds.(5.84)

for some large B≪ T . As before, for (5.83) we only need to consider

V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V2(s)

∫ s

s−B

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

= V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)K≤MV2(s)

∫ s

s−B

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

+V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)K≥MV2(s)

∫ s

s−B

U2(s, τ)Pc(τ)V1ǫZ(τ)dτds

:= JL + JH .(5.85)

The local decay estimate for JH can be conclude by using (5.76) and the same argument as the

one for JH
2

in II1 (or J
3,H
c in II2). Moreover, it follows from bootstrap assumption (5.28) and

Hölder’s inequality that

‖JL‖L2
t L2

x
≤

∥∥∥∥ sup
|t−s|≤A

ǫA1/2B1/2
∥∥∥V1/2

2
(t)χ3U0(t, s)K≤MV

1/2

2
(s)

∥∥∥
L2

x→L2
x

∥∥∥∥
L2

t

∥∥∥V1/2

2
(τ)Z(τ)

∥∥∥
L2
τL2

x

.

∥∥∥A1/2B1/2〈t〉−1
∥∥∥

L2
t

∥∥∥V1/2

2
(τ)Z(τ)

∥∥∥
L2
τL2

x

≤
1

2
C(T )

(
‖Z0‖L2

x
+

∥∥∥F
∥∥∥

L
p̃′

t L
q̃′

x

)
,(5.86)
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where we use the estimate

sup
|t−s|≤A

ǫ
∥∥∥V1/2

2
(t)χ3U0(t, s)K≤MV

1/2

2
(s)

∥∥∥
L2

x→L2
x
. 〈t〉−1

and the argument mentioned in (5.49) that one only need to prove (5.28) for
∫ T

M̃
for some large

positive constant M̃ ≪ T , therefore we can choose t large enough such that A1/2B1/2t−ε are small

for any ε > 0, as well as t−(1−ε) ∈ L2
t . The corresponding term

V
1/2

2
(t)χ3

∫ t

t−A

U0(t, s)V1ǫ

∫ s

s−B

U1(s, τ)V2(τ)Z(τ)dτds

in (5.84) can be dealt similarly. Hence we finish the proof.
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[15] J. Fröhlich, S. Gustafson, B. Jonsson and I. Sigal, Solitary wave dynamics in an external potential, Comm. Math.

Phys. 250 (2004), 613-642. 3, 4, 5, 7, 10, 12, 13, 14, 15
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