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SPECTRAL APPROXIMATION OF CONVOLUTION OPERATORS∗

KUAN XU† AND ANA F. LOUREIRO†

Abstract. We develop a unified framework for constructing matrix approximations to the
convolution operator of Volterra type defined by functions that are approximated using classical
orthogonal polynomials on [−1, 1]. The numerically stable algorithms we propose exploit recurrence
relations and symmetric properties satisfied by the entries of these convolution matrices. Laguerre-
based convolution matrices that approximate Volterra convolution operators defined by functions on
[0,∞) are also discussed for the sake of completeness.
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1. Introduction. Convolution operators abound in science and engineering.
They can be found in, for example, statistics and probability theory [14], computer
vision [10], image and signal processing [5], and system control [22]. In applied math-
ematics, convolution operators figure in many topics, from Green’s function [8] to
Duhamel’s principle [23], from nonreflecting boundary condition [11] to large eddy
simulation [27], from approximation theory [26] to fractional calculus [13]. Further-
more, convolution operators are the key building blocks of the convolution integral
equations [1, 16, 4].

Given two continuous functions f(x) and g(x) on the interval [−1, 1], the (left-
sided) convolution operator V of Volterra type defined by f(x) is given by

(1.1) V [f ](g) = h(x) =

∫ x+1

−1
f(x− t)g(t)dt, x ∈ [−2, 0].

For more general cases where f(x) : [a, b]→ R and g(x) : [c, d]→ R with b−a = d−c,
the convolution operator can be shown equivalent to (1.1) via changes of variables
and rescaling. Thus we only consider (1.1) throughout without loss of generality.

If f(x) and g(x) have a little extra smoothness beyond continuity, they can be
approximated by polynomials fM (x) and gN (x) of sufficiently high degree so that
‖f(x)− fM (x)‖∞ and ‖g(x)− gN (x)‖∞ are on the order of machine precision [26, 7].
In this article, we focus on the approximation of V [f ] when f(x) and g(x) are approx-
imated using the orthogonal polynomials of the Jacobi family, e.g., the Chebyshev
polynomials:

(1.2) fM (x) =

M∑
m=0

amTm(x) and gN (x) =

N∑
n=0

bnTn(x),
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where Tm(x) = cos(m arccosx) for x ∈ [−1, 1] is the mth Chebyshev polynomial.
This way, the polynomial approximant hM+N+1(x) of the convolution h(x) can

be written as the product of a [−2, 0] × (N + 1) column quasi-matrix1 R̃ and the
coefficient vector b = (b0, . . . , bN )T

(1.3) hM+N+1(x) = R̃b =

(fM∗T0)(x) (fM∗T1)(x) · · · (fM∗TN )(x)

 b,

where the nth column of R̃ is the convolution of fM (x) and Tn(x). Besides the
notation we have introduced, asterisks are also used here and in the remainder of this
paper to denote the convolution of two functions. For example, (fM ∗ Tn)(x) is the

convolution of fM (x) and Tn(x). For convenience, we will also denote by R̃n the nth

column of R̃, i.e., (fM ∗ Tn)(x), with the index n starting from 0.
If hM+N+1(x) and {(fM ∗ Tn)(x)}Nn=0 are translated to [−1, 1] by the change of

variables y = x+ 1, they can be expressed as Chebyshev series of degree M +N + 1
and M + n+ 1, respectively:

(1.4)

hM+N+1(y) =

M+N+1∑
k=0

ckTk(y),

(fM ∗ Tn)(y) =

M+N+1∑
k=0

Rk,nTk(y), 0 6 n 6 N,

where y ∈ [−1, 1] and Rk,n = 0 for any k > M + n+ 1. Substituting (1.4) into (1.3),
we have

M+N+1∑
k=0

ckTk(y) =

N∑
n=0

bn

M+N+1∑
k=0

Rk,nTk(y)

or, equivalently,

c = Rb,

where c = (c0, . . . , cM+N+1)T and R is an (M +N + 2)× (N + 1) matrix that collects

the Chebyshev coefficients of R̃n for 0 6 n 6 N . Since Rk,n = 0 for k > M+n+1, the
lower triangular part of R below the (M + 1)th subdiagonal is zero (see Figure 3.1).
We shall call R the convolution matrix that approximates the convolution operator
V [f ]. What makes R important is the fact that with R available either of b and c can
be calculated when the other is given. Thus our goal is to calculate R accurately and
efficiently.

Thus far the only attempt to approximate the convolution operator in the same
vein was given by Hale and Townsend [12], who considered the same problem but
with f(x) and g(x) approximated by Legendre series. Their method exploits the fact

1An [a, b]×n column quasi-matrix is a matrix with n columns, where each column is a univariate
function defined on an interval [a, b], and can be deemed as a continuous analogue of a tall-skinny
matrix, where the rows are indexed by a continuous, rather than discrete, variable. For the notion
of quasi-matrices, see, for example, [24, 3].
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that the Fourier transform of the Legendre polynomial Pm(x) is the spherical Bessel
function jm(x) with a simple rescaling. They also show that (Pm ∗Pn)(x) can be rep-
resented as a rescaled inverse Fourier transform of the product jm(x)jn(x), due to the
convolution theorem. Based on these results, the entries of a Legendre-based convo-
lution matrix are represented as infinite integrals involving triple-product of spherical
Bessel functions and the three-term recurrence satisfied by spherical Bessel functions
finally leads to a four-term recurrence relation satisfied by the entries of this con-
volution matrix. Unfortunately, the Fourier transforms of other classical orthogonal
polynomials do not have a simple representation in terms of spherical Bessel functions
or other special functions that enjoy a similar recurrence relation [6]. Therefore, the
method in [12] cannot be easily extended to the cases where f(x) and g(x) are ap-
proximated using other classical orthogonal polynomials, e.g., Chebyshev, and this is
what this article addresses.

In another work with a similar setting [30], spectral approximations of convolu-
tion operators are constructed when f(x) and g(x) are approximated by Fourier ex-
tension approximants. It is shown that the convolution can be represented in terms of
products of Toeplitz matrices and coefficient vectors of the Fourier extension approxi-
mants, based on which an O(N ′(logN ′)2) fast algorithm is derived for approximating
the convolution of compactly supported functions, where N ′ is the number of degrees
of freedom in each of the Fourier extension approximants for f(x) and g(x).

In an investigation carried out simultaneously [17], closed-form formulae are de-
rived for the convolution of classical orthogonal polynomials. However, these explicit
formulae are too complicated and numerically intractable to be computationally useful
for direct construction of R.

In this article, we first generalize the recurrence relation found in [12] to
Chebyshev-based convolution matrices. Instead of resorting to the Fourier trans-
form of Chebyshev polynomials and the recurrence of spherical Bessel functions, we
exploit the three-term recurrence of the derivatives of Chebyshev polynomials to show
a recurrence relation satisfied by the columns of R̃. Further, a five-term recurrence
relation satisfied by the entries of R can be obtained by replacing columns of R̃ with
their Chebyshev coefficients. With this recurrence relation and a symmetric property,
the entries of R can be calculated efficiently and numerically stably, yielding spectral
approximations to the convolution operators of Volterra type. The accuracy of R
and its applications are shown by various numerical examples. Finally, we extend our
approach to broader Jacobi-family orthogonal polynomials, where the results of [12]
are covered as a special case.

Our exposition could either begin with the Jacobi-based convolution and treat
Gegenbauer, Legendre, and Chebyshev as special cases in a cascade, or start with
Chebyshev, extend to Gegenbauer, and further to Jacobi. We choose the latter,
since most derivations and proofs are much simpler with Chebyshev polynomials and
analogues can be easily drawn to others. Also, the Chebyshev-based convolution is the
most commonly used in practice and, therefore, deserves a more elaborated discussion.

Our discussion is organized as follows. In section 2, we derive the recurrence
relation satisfied by the columns of R̃. In section 3, the recurrence relation for entries
of R is derived based on that of R̃. We show a stability issue when this recurrence
relation is naively used for the construction of R and provide a numerically stable
algorithm by making use of the symmetric structure of R. In section 4, we extend
the results of sections 2 and 3 to Gegenbauer- and Jacobi-based convolution matrices.
The main results of this paper are complemented in section 5 by a brief discussion
about the approximation of the convolution operators defined by functions on [0,∞)
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using weighted Laguerre polynomials, before we give a few closing remarks in the final
section.

2. Recurrence satisfied by convolutions of Chebyshev polynomials. We
start with the following recurrence relation that can be derived from the fundamental
three-term recurrence relation of Chebyshev polynomials.

Lemma 2.1. For n > 0, the nth Chebyshev polynomial Tn(x) can be written as a
combination of the derivatives of Tn−1 and Tn+1,

(2.1a) Tn(x) =


1

2(n+ 1)

dTn+1(x)

dx
− 1

2(n− 1)

dT|n−1|(x)

dx
, n 6= 1,

1

4

dT2(x)

dx
, n = 1,

which by integrating we have the recurrence relation of Chebyshev polynomials and
their indefinite integrals:

(2.1b)

∫
Tn(t)dt =


Tn+1(x)

2(n+ 1)
−
T|n−1|(x)

2(n− 1)
, n 6= 1,

T2(x)/4, n = 1.

Proof. The proof can be found in many standard texts on Chebyshev polynomials.
See, for example, [18, p. 32].

Like the convolution of functions defined on the entire real line, the convolution
operator V [f ] also enjoys commutativity:

(2.2)

∫ x+1

−1
f(x− t)g(t)dt =

∫ x+1

−1
f(t)g(x− t)dt, x ∈ [−2, 0],

which can be shown by a change of variables with T = x− t.
Our first main result is the recurrence relation satisfied by the convolutions

of a Chebyshev series and Chebyshev polynomials, which follows as a consequence
of (2.1a).

Theorem 2.2 (recurrence of convolutions of Chebyshev polynomials). The con-
volutions of Chebyshev polynomials and the Chebyshev series fM (x) given in (1.2)
recurse as follows:

(2.3a)

∫ y

−1
fM (x− t)T0(t)dt =

∫ y

−1
fM (t)dt,

(2.3b)

∫ y

−1
fM (x− t)T1(t)dt =

∫ y

−1

∫ x+1

−1
fM (t)dtd(x+ 1)−

∫ y

−1
fM (t)dt,

(2.3c)

∫ y

−1
fM (x− t)T2(t)dt = 4

∫ y

−1

∫ x+1

−1
fM (x− t)T1(t)dtd(x+ 1) +

∫ y

−1
fM (t)dt,

and for n > 2,

(2.3d)

∫ y

−1
fM (x− t)Tn+1(t)dt = 2(n+ 1)

∫ y

−1

∫ x+1

−1
fM (x− t)Tn(t)dtd(x+ 1)

+
n+ 1

n− 1

∫ y

−1
fM (x− t)Tn−1(t)dt+

2(−1)n

n− 1

∫ y

−1
fM (t)dt,
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where x ∈ [−2, 0] and y = x+ 1 ∈ [−1, 1].

Proof. Let us first show (2.3d) by differentiating
∫ x+1

−1 Tn+1(x − t)Tm(t)dt with
respect to x. The Leibniz integral rule gives

(2.4)
d

dx

∫ x+1

−1
Tn+1(x− t)Tm(t)dt =

∫ x+1

−1

dTn+1(x− t)
dx

Tm(t)dt+ (−1)n+1Tm(x+ 1),

where Tn+1(−1) = (−1)n+1 is used. Similarly, we have

(2.5)
d

dx

∫ x+1

−1
Tn−1(x− t)Tm(t)dt =

∫ x+1

−1

dTn−1(x− t)
dx

Tm(t)dt+ (−1)n−1Tm(x+ 1).

By combining (2.1a), (2.4), and (2.5), we have

d

dx

∫ x+1

−1
Tn+1(x− t)Tm(t)dt = 2(n+ 1)

∫ x+1

−1
Tn(x− t)Tm(t)dt

+
n+ 1

n− 1

d

dx

∫ x+1

−1
Tn−1(x− t)Tm(t)dt+

2(−1)n

n− 1
Tm(x+ 1).

Noting that all the terms are polynomials of x+ 1, we integrate with respect to x+ 1
from −1 to an arbitrary y ∈ [−1, 1] to get rid of the derivatives:[∫ x+1

−1
Tn+1(x− t)Tm(t)dt

]x+1=y

x+1=−1
= 2(n+ 1)

∫ y

−1

∫ x+1

−1
Tn(x− t)Tm(t)dtd(x+ 1)

+
n+ 1

n− 1

[∫ x+1

−1
Tn−1(x− t)Tm(t)dt

]x+1=y

x+1=−1
+

2(−1)n

n− 1

∫ y

−1
Tm(t)dt.

Since
∫ x+1

−1 Tn±1(x− t)Tm(t)dt vanishes at x = −2, the last equation becomes∫ y

−1
Tn+1(x− t)Tm(t)dt = 2(n+ 1)

∫ y

−1

∫ x+1

−1
Tn(x− t)Tm(t)dtd(x+ 1)

+
n+ 1

n− 1

∫ y

−1
Tn−1(x− t)Tm(t)dt+

2(−1)n

n− 1

∫ y

−1
Tm(t)dt.

Here, we have intentionally left the variable x in the integrands of the first two single
integrals without replacing it by y − 1 in order to keep the integrands neat.

By the commutativity (2.2), we are free to swap the arguments x− t and t in all
convolutions to have∫ y

−1
Tm(x− t)Tn+1(t)dt = 2(n+ 1)

∫ y

−1

∫ x+1

−1
Tm(x− t)Tn(t)dtd(x+ 1)

+
n+ 1

n− 1

∫ y

−1
Tm(x− t)Tn−1(t)dt+

2(−1)n

n− 1

∫ y

−1
Tm(t)dt.

Finally, (2.3d) is obtained by linearity.
We can show (2.3b) and (2.3c) similarly and obtain (2.3a) by noting that

T0(x) = 1.

Theorem 3.3 reveals a recurrence relation satisfied by the columns of R̃. To see

this, we replace
∫ x+1

−1 fM (x− t)Tn(t)dt or
∫ y
−1 fM (x− t)Tn(t)dt in (2.3) by the much

compacter notation R̃n(y) to have
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R̃0(y) =

∫ y

−1
fM (t)dt,(2.6a)

R̃1(y) =

∫ y

−1
R̃0(ỹ)dỹ − R̃0(y),(2.6b)

R̃2(y) = 4

∫ y

−1
R̃1(ỹ)dỹ + R̃0(y),(2.6c)

R̃n+1(y) = 2(n+ 1)

∫ y

−1
R̃n(ỹ)dỹ+

n+ 1

n−1
R̃n−1(y) +

2(−1)n

n−1
R̃0(y) (n> 2).(2.6d)

Of course, the terms in (2.6) are continuous functions of y and would not be useful
for numerical computing until they are fully discretized.

3. Constructing the convolution matrices. In this section, we show the
discrete counterpart of the recurrence relation (2.3) or (2.6) based on which the con-
volution matrix R can be constructed. We begin with the integration of a Chebyshev
series.

Lemma 3.1 (indefinite integral of a Chebyshev series). For Chebyshev series

φ(x) =
∑J
j=0 αjTj(x) with x ∈ [−1, 1], its indefinite integral, when expressed in terms

of Chebyshev polynomials, is ∫ x

−1
φ(t)dt =

J+1∑
j=0

α̃jTj(x),

with the coefficients

α̃j =



αj−1 − αj+1

2j
, 2 6 j 6 J + 1,

α0 −
α2

2
, j = 1,

J+1∑
k=1

(−1)k+1α̃k, j = 0,

where αJ+1 = αJ+2 = 0.

Proof. This is a straightforward result of (2.1b). A slightly different version of
this lemma can be found in [18, section 2.4.4].

Now we have all the ingredients for computing the entries of R. By (2.6a), R:,0 are

the Chebyshev coefficients of the indefinite integral of fM (x) subject to R̃0(−1) = 0.
We state this as a theorem with the proof omitted.

Theorem 3.2 (construction of the zeroth column of R). The entries of the
zeroth column of R are

(3.1) Rk,0 =



0, k > M + 1,

ak−1 − ak+1

2k
, 2 6 k 6M + 1,

a0 −
a2
2
, k = 1,

M+1∑
j=1

(−1)j+1Rj,0, k = 0,

with aM+1 = aM+2 = 0.
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With the zeroth column of R, we can recurse for the subsequent columns as
suggested by (2.6b), (2.6c), and (2.6d).

Theorem 3.3 (recurrence of columns of R). For 1 6 k 6M +N , the entries of
R have the following recurrence relation:

Rk,1 = −Rk,0 +
1

2k
R′k−1,0 −

1

2k
Rk+1,0,(3.2a)

Rk,2 = Rk,0 +
2

k
R′k−1,1 −

2

k
Rk+1,1,(3.2b)

and when n > 2,

Rk,n+1 =
2(−1)n

n− 1
Rk,0 +

n+ 1

n− 1
Rk,n−1 +

n+ 1

k
R′k−1,n −

n+ 1

k
Rk+1,n,(3.2c)

where the prime denotes that the coefficient of the term is doubled when k = 1.
For any n > 1,

R0,n =

M+1∑
j=1

(−1)j+1Rj,n.(3.2d)

Proof. Substituting into (2.6b) the Chebyshev series of R̃0(y) and R̃1(y) gives

M+N+1∑
k=0

Rk,1Tk(y) =

∫ y

−1

(
M+N+1∑
k=0

Rk,0Tk(ỹ)

)
dỹ −

M+N+1∑
k=0

Rk,0Tk(y),

where Rk,0 = 0 for k > M + 1 and Rk,1 = 0 for k > M + 2. Replacing the integral
term by its Chebyshev series using Lemma 3.1 and matching the Tk(y) terms for each
k > 1 gives (3.2a).

The recurrence relations (3.2b) and (3.2c) can be derived similarly from (2.6c)
and (2.6d), respectively. The entries in the zeroth row are set using (3.2d) so that

R̃n(−1) = 0.

The calculation of R could have been as easy as suggested by Theorem 3.3: cal-
culate the zeroth column of R following (3.1) and recurse using (3.2a), (3.2b), and
(3.2c). Unfortunately, (3.2c) is not numerically stable even in an absolute sense.

Example 1. To see the instability, we take a randomly generated Chebyshev
series of degree 10, i.e., fM =

∑10
m=0 amTm(x), with |am| 6 1, and compare the

entries in columns 1 to 50 calculated recursively using Theorem 3.3 with the exact
values computed symbolically using Mathematica. Figure 3.1 shows the entrywise
absolute error. The error in the entries above the main diagonal grows very rapidly,
which is similar to what is observed in [12] for the Legendre case. In fact, the rounding
errors in Rk−1,n and Rk+1,n in (3.2c) are subject to an amplification by the factor
(n+1)/k, which is larger than 1 above the main diagonal. The recursion snowballs the
errors introduced in each use of (3.2c) very quickly, resulting in the computed values
soon to become totally garbage. In the worst scenario, an error could be magnified
n folds in the nth recursion and blows up at a rate of factorial. For instance, the
absolute error in the entry at the top right corner of R in Figure 3.1, i.e., R0,50, is
O(1020), while the true value is about 10−3 in this example.

Indeed, (3.2c) is useful only for calculating the entries on and below the main
diagonal, that is, the entries in the region labeled by A in Figure 3.2. To circumvent
the instability, we make the following critical observation, which is similar to the one
made in [12] for the Legendre-based convolution matrices (see section 4.1.1).
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Fig. 3.1. Error growth when recursing using (3.2c). The entries of R below the dark line are
exactly zero.

Fig. 3.2. The convolution matrix R defined by an M-Chebyshev series is an almost-banded
matrix with bandwidth M + 1 plus M + 1 rows at the top. The construction of R starts in region A
(the main diagonal and the first M + 1 subdiagonals) by columnwise recursion from the left to the
right using (3.2a), (3.2b), and (3.2c). The entries in region B (the first M + 1 superdiagonals) are
obtained by symmetry (3.3). With the padding region Cp, the recast recurrence relation (3.4) allows
a stable rowwise recursion for the entries in region C (the top M + 1 rows) from the bottom to top.
All remaining entries are exact zeros.

Theorem 3.4 (symmetry of R). For M + 1 6 k, n 6 N ,

(3.3) Rn,k =
(−1)n+kk

n
Rk,n.

We find it easy to prove Theorem 3.4 by deducing it from the analogous result of
the Jacobi-based convolution matrices and, therefore, defer the proof to section 4.2.

Theorem 3.4 shows the symmetry of R up to a scaling factor, apart from the
top and the bottom M + 1 rows and the first M + 1 columns. In Figure 3.2, the
symmetric part of R is marked by the dashed lines. The important implications of
this symmetry are (1) this (N −M)× (N −M) symmetric submatrix of R is banded
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(a) M = 10 , N = 50. (b) M = 1000, N = 5000.

Fig. 3.3. Entrywise error of the nonzero entries of R obtained using Algorithm 1. The dark
lines circumscribe the region outside which entries are exact zeros.

with bandwidth M+1; (2) the entries in region B can be obtained stably and cheaply
by rescaling their mirror images about the main diagonal; (3) the entries of the top
M+1 rows of R, i.e., region C, can then be calculated by the same recurrence relation
given by (3.2c).

When (3.2c) is used to calculate the entries in the top M + 1 rows, we rewrite it
so that calculation is done by rows, going upward from the bottom of region C to the
top:

(3.4) R′′k−1,n = −2k(−1)n

n2 − 1
Rk,0 −

k

n− 1
Rk,n−1 +

k

n+ 1
Rk,n+1 +Rk+1,n,

where the double prime indicates that the term is halved when k = 1. This new re-
currence relation is numerically stable in region C. In contrast to (3.2c), the rounding
errors are now premultiplied by k/(n−1) or k/(n+1), which are less than or, at most,
equal to 1 above the main diagonal. Therefore, the rounding errors are diminished in
the course of recursion, rather than amplified.

It is worth noting that when recursing for the top M + 1 rows using (3.4), we
have to start with entries beyond the first N + 1 columns of R, so that all entries
in the “domain of dependence” of the zeroth row are counted on. This suggests a
triangle-shaped zero-padding region, labeled by Cp in Figure 3.2.

We summarize the stable algorithm described above in Algorithm 1.
Example 2. Now we recompute the same R in Example 1 using Algorithm 1 and

plot the entrywise absolute error in Figure 3.3(a). With the stabilized algorithm, the
maximum error across all the entries is now 2.12× 10−16 in this example.

Example 3. In Figure 3.3(b), we show a similar example with M = 1000 and
N = 5000. Again, a is generated randomly with |am| 6 1. The largest entrywise
error across all the entries of R is 1.28× 10−15.

A curious observation we made in the last two examples and other experiments
that we carried out is that the magnitudes of the entries in a convolution matrix
have an enormous range of orders. In Example 2, even though the entries of a are
all O(10−1), the exact values obtained symbolically using Mathematica show that
some entries of R can be as small as O(10−14). Therefore, it makes little sense to talk
about the relative error of the computed entries, since we cannot expect to be able
to compute O(10−14) values accurately in a relative sense by using O(10−1) data in
floating point arithmetic.
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Algorithm 1. Construction of the convolution matrix R.

1: Construct the nonzero entries in the zeroth column R:,0 using (3.1).
2: Calculate the nonzero entries on and below the main diagonal (Region A) using

(3.2a), (3.2b), and (3.2c).
3: Calculate the nonzero entries above the main diagonal (Region B) in rows M + 1

to N using (3.3).
4: Recurse for the entries above the main diagonal in the top M + 1 rows (Region

C) using (3.4).

In Example 3, the magnitudes of the entries vary from O(10−1) to O(10p) with
p < −324. The most minuscule entries are not even representable by the IEEE floating
point arithmetic2 [15]. This also suggests that we should confine our discussion to
absolute accuracy only.

Although the gargantuan discrepancy in the magnitudes of the entries denies any
attempt to compute them accurately in a relative sense, the convolution matrices
constructed using our stable algorithm give accurate approximations to the convolu-
tion operators in the absolute sense and work perfectly fine when used for calculating
hM+N+1(x) or solving convolution integral equations, since it is also only sensible to
discuss absolute accuracy in these cases.

We close this section with a classic example from the renewal theory [4, Example
1.4.3], [9].

Example 4. It can be shown that the Volterra convolution integral equation

(3.5) u(x) = f(x) +

∫ x

0

f(x− t)u(t) dt, x ∈ [0, 2],

where the convolution kernel

f(x) =
1

2
x2e−x

has a unique solution

u(x) =
1

3
− 1

3

(
cos

√
3

2
x+
√

3 sin

√
3

2
x

)
e−3x/2.

We first test the use of convolution matrices as a means of approximating the con-
volution function h(x). To do so, we approximate f(x) and u(x) by Chebyshev series
fM (x) and uN (x) of degree 16 and 17, respectively, to machine precision uniformly
on [0, 2]3 and then form the convolution matrix R using the Chebyshev coefficients
cf of fM (x). The product of R and uN (x)’s Chebyshev coefficients cu returns us
the Chebyshev coefficients of hM+N+1(x) = (fM ∗ uN )(x), which should be a good
approximation of (f ∗ u)(x) = u(x) − f(x). Indeed, the pointwise absolute error in
hM+N+1(x) is displayed in Figure 3.4(a), where the largest error is approximately
1.10× 10−16.

Next, we take u(x) as unknown and solve for cu with the knowledge of fM (x). This
examines the use of convolution matrices in solving convolution integral equations.

2The smallest subnormal number in the current IEEE floating point standard is 2 × 10−1074 ≈
4.94× 10−324.

3These optimal degrees are determined using the adaptive chopping algorithm [2] of Chebfun [7].
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(a) (b)

Fig. 3.4. An example from renewal theory: (a) The pointwise error of the computed Chebyshev
approximant to the convolution integral on the right-hand side of (3.5). (b) Spectral convergence of
the computed approximant to u(x) in (3.5) using convolution matrices of increasing sizes.

We construct the (N + 18) × (N + 1) convolution matrix for N = 1, 3, 5, . . . , 25 and
denote by RN the square matrix formed by the first N + 1 rows. Solving

(I −RN )cu = cfN

gives us cu, where cfN is the vector formed by the first N + 1 entries of cf , obtained
by truncation or zero-padding. Figure 3.4(b) shows the maximum pointwise error of

uN (x) =
∑N
n=0 c

u
nTn(x) for increasing N . What we see is a spectral convergence as

the size of discretization increases. When N = 17, the largest pointwise error in [0, 2]
decays to 1.39× 10−16, effectively of machine precision.

4. Other classical orthogonal polynomials. To derive the recurrence rela-
tions in sections 2 and 3, we have only used the properties of Chebyshev polynomials
that are also shared by other classical orthogonal polynomials. It is, therefore, natu-
ral to see how the results in the last two sections extend to Gegenbauer and Jacobi
spaces. For convergence theory of Gegenbauer and Jacobi approximants, see, for
example, [28, 29, 31].

4.1. Convolution matrices in Gegenbauer space. Gegenbauer polynomials

C
(λ)
n (x), also known as ultraspherical polynomials, can be defined using the three-term

recurrence relation [25, section 4.7]

(4.1) 2(n+ λ)xC(λ)
n (x) = (n+ 1)C

(λ)
n+1(x) + (n+ 2λ− 1)C

(λ)
n−1(x)

with C
(λ)
−1 (x) = 0 and C

(λ)
0 (x) = 1, under the constraints λ > −1/2 and λ 6= 0. The

following lemma, parallel to Lemma 2.1, can be derived using (4.1).

Lemma 4.1. For any integer n, Gegenbauer polynomials satisfy the following re-
currence relation that can be written in derivative or integral forms:

(4.2)
2(n+ λ)C(λ)

n (x) =
d

dx

(
C

(λ)
n+1(x)− C(λ)

n−1(x)
)
,∫

C(λ)
n (t)dt =

1

2(n+ λ)

(
C

(λ)
n+1(x)− C(λ)

n−1(x)
)
,

where Cλn(x) = 0 for n < 0.

Proof. See [25, section 4.7].

We omit the proofs for the next two theorems as they are analogous to those of
Theorems 2.2, 3.2, and 3.3.
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Theorem 4.2 (recurrence of convolutions of Gegenbauer polynomials). For

Gegenbauer series fM (x) =
∑M
m=0 amC

(λ)
m (x),∫ y

−1
fM (x− t)C(λ)

0 (t)dt =

∫ y

−1
fM (t)dt

and the convolutions of fM (x) and C
(λ)
n (x) recurse:

(4.3)

∫ y

−1
fM (x− t)C(λ)

n+1(t)dt = 2(n+ λ)

∫ y

−1

∫ x+1

−1
fM (x− t)C(λ)

n (t)dtd(x+ 1)

+

∫ y

−1
fM (x− t)C(λ)

n−1(t)dt+ S(λ)
n

∫ y

−1
fM (t)dt,

where x ∈ [−2, 0], y = x+ 1 ∈ [−1, 1] and

S(λ)
n =

2(−1)n+1(λ+ n)(2λ− 1)n
(n+ 1)!

.

Here, (·)n is the Pochhammer symbol for ascending factorial with (a)n := a(a+1)(a+
2) · · · (a+ n− 1) and (a)0 := 1.

Theorem 4.3 (construction of R(λ)). The entries of the zeroth column of R(λ)

are

(4.4a) R
(λ)
k,0 =



0, k > M + 1,

ak−1
2(k + λ− 1)

− ak+1

2(k + λ+ 1)
, 1 6 k 6M + 1,

M+1∑
j=1

(−1)j+1 (2λ)j
j!

R
(λ)
j,0 , k = 0,

with aM+1 = aM+2 = 0. For n > 0,

(4.4b) R
(λ)
k,n+1 = S(λ)

n R
(λ)
k,0 +R

(λ)
k,n−1 +

n+ λ

k + λ− 1
R

(λ)
k−1,n −

n+ λ

k + λ+ 1
R

(λ)
k+1,n,

where R
(λ)
:,−1 are understood to be zeros.

Similar to the Chebyshev case, the Gegenbauer-based convolution matrices are
also almost-banded with a symmetric submatrix.

Theorem 4.4 (symmetry of R(λ)). For M + 1 6 k, n 6 N ,

(4.5) R
(λ)
k,n = (−1)k+n

k + λ

n+ λ
R

(λ)
n,k.

Again, we defer the proof to section 4.2.
The same stability issue occurs if Gegenbauer-based convolution matrices are

constructed naively using (4.4b). The stable algorithm is given in Algorithm 2. Anal-
ogously, we need to recast (4.4b) before it can be used for calculating the entries above
the main diagonal:

(4.6) R
(λ)
k−1,n =

k + λ− 1

n+ λ

(
−S(λ)

n R
(λ)
k,0 +R

(λ)
k,n+1 −R

(λ)
k,n−1

)
+
k + λ− 1

k + λ+ 1
R

(λ)
k+1,n.
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4.1.1. Convolution matrices in Legendre space. Gegenbauer polynomials

reduce to Legendre polynomials Pn(x) when λ = 1/2, i.e., Pn(x) = C
(1/2)
n (x). In

this case, S
(1/2)
n = 0, annihilating the last term in (4.3) and the first term on the

right-hand side of (4.4b). Now (4.4b) reduces to a four-term recurrence relation

R
(1/2)
k,n+1 = R

(1/2)
k,n−1 +

2n+ 1

2k − 1
R

(1/2)
k−1,n −

2n+ 1

2k + 3
R

(1/2)
k+1,n,

which is exactly the one found in [12] via spherical Bessel functions.

In the absence of the R
(λ)
k,0 term, symmetry (4.5) extends beyond the submatrix

R
(λ)
M+1:N,M+1:N as the entire matrix is symmetric up to a scaling factor. Hence,

Legendre-based convolution matrices are exactly banded with bandwidth M + 1 and
this is the only case where polynomial-based convolution matrices are exactly banded.

4.2. Convolution matrices in Jacobi space. For Jacobi polynomials, we
adopt the most commonly used normalization, which can be found, for example,
in [25, section 4.2.1]. In terms of hypergeometric function, they are

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
, n > 0,

for α, β > −1.
We first introduce a similar recurrence for the derivatives and the integrals of Ja-

cobi polynomials, analogous to (2.1) for Chebyshev polynomials and (4.2) for Gegen-
bauer polynomials, but with one extra term.

Lemma 4.5. For any integer n, Jacobi polynomials P
(α,β)
n (x) satisfy the following

recurrence relation, which can be written in derivative or integral forms:

P (α,β)
n (x) = A

(α,β)
n+1

d

dx
P

(α,β)
n+1 (x) +B(α,β)

n

d

dx
P (α,β)
n (x) + C

(α,β)
n−1

d

dx
P

(α,β)
n−1 (x),(4.7a) ∫

P (α,β)
n (x)dx = A

(α,β)
n+1 P

(α,β)
n+1 (x) +B(α,β)

n P (α,β)
n (x) + C

(α,β)
n−1 P

(α,β)
n−1 (x),(4.7b)

where

A
(α,β)
n+1 =

2(α+ β + n+ 1)

(α+ β + 2n+ 1)(α+ β + 2n+ 2)
,

B(α,β)
n =

2(α− β)

(α+ β + 2n)(α+ β + 2n+ 2)
,(4.7c)

C
(α,β)
n−1 = − 2(α+ n)(β + n)

(α+ β + n)(α+ β + 2n)(α+ β + 2n+ 1)
.

Here, we assume P
(α,β)
n (x) = 0 for n < 0.

Proof. See, for example, [21, Theorem 3.23].

Different from (2.1) or (4.2), (4.7a) and (4.7b) both have a middle term on the

right-hand side, indexed with n. In the symmetric case when α = β, B
(α,β)
n becomes

zero and this middle term vanishes.
Analogous to Theorems 2.2 and 4.2, a recurrence relation for the convolutions of

a Jacobi series with Jacobi polynomials can be derived using (4.7a).
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Theorem 4.6 (recurrence of convolutions of Jacobi polynomials). For Jacobi se-

ries fM (x) =
∑M
m=0 amP

(α,β)
m (x),∫ y

−1
fM (x− t)P (α,β)

n+1 (t)dt = − 1

A
(α,β)
n+1

∫ y

−1

∫ x+1

−1
fM (x− t)P (α,β)

n (t)dtd(x+ 1)

− B
(α,β)
n

A
(α,β)
n+1

∫ y

−1
fM (x− t)P (α,β)

n (t)dt−
C

(α,β)
n−1

A
(α,β)
n+1

∫ y

−1
fM (x− t)P (α,β)

n−1 (t)dt(4.8)

+
S
(α,β)
n

A
(α,β)
n+1

∫ y

−1
fM (t)dt,

where x ∈ [−2, 0], y = x+ 1 ∈ [−1, 1], and

S(α,β)
n =

2(−1)n+1(β)n+1

(α+ β + n)(n+ 1)!
.

Note that the second term on the right-hand side accounts for the middle term in
(4.7a). Recognizing the convolutions in (4.8) as Jacobi series and then applying
(4.7b) to the first term on the right-hand side, we obtain the recurrence relation for
the entries of a Jacobi convolution matrix R(α,β).

Theorem 4.7 (construction of R(α,β)). The entries of the zeroth column of R(α,β)

are

(4.9a) R
(α,β)
k,0 =



0, k > M + 1,

A
(α,β)
k ak−1 +B

(α,β)
k ak + C

(α,β)
k ak+1, 1 6 k 6M + 1,

M+1∑
j=1

(−1)j+1 (β + 1)j
j!

R
(α,β)
j,0 , k = 0,

with aM+1 = aM+2 = 0. For n > 0,

(4.9b)

R
(α,β)
k,n+1 =

B
(α,β)
k −B(α,β)

n

A
(α,β)
n+1

R
(α,β)
k,n −

C
(α,β)
n−1

A
(α,β)
n+1

R
(α,β)
k,n−1 +

A
(α,β)
k

A
(α,β)
n+1

R
(α,β)
k−1,n

+
C

(α,β)
k

A
(α,β)
n+1

R
(α,β)
k+1,n +

S
(α,β)
n

A
(α,β)
n+1

R
(α,β)
k,0 ,

where R
(α,β)
:,−1 are understood to be zeros.

Again, the same stability issue keeps us from constructing the Jacobi-based con-
volution matrices by using (4.9b) directly. Fortunately, the symmetry persists though

the recurrence relation (4.9b) is augmented by the extra R
(α,β)
k,n term. Thus, the

Jacobi-based convolution matrices are almost-banded too. Now, we are in a position
to show the symmetry of the Jacobi-based convolution matrices, from which the sym-
metric properties of the Chebyshev- and Gegenbauer-based convolution matrices can
be easily deduced.

Theorem 4.8 (symmetry of R(α,β)). For M + 1 6 k, n 6 N ,

(4.10) R
(α,β)
n,k = (−1)k+n

(α+ β + 2n+ 1)(α+ 1)k(β + 1)k

(
(α+ β + 1)n

)2
(α+ β + 2k + 1)(α+ 1)n(β + 1)n

(
(α+ β + 1)k

)2R(α,β)
k,n .
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Proof. For k >M + 2, (4.9b) reduces to

(4.11)

A
(α,β)
n+1

B
(α,β)
k −B(α,β)

n

R
(α,β)
k,n+1 +

C
(α,β)
n−1

B
(α,β)
k −B(α,β)

n

R
(α,β)
k,n−1 −R

(α,β)
k,n

−
A

(α,β)
k

B
(α,β)
k −B(α,β)

n

R
(α,β)
k−1,n −

C
(α,β)
k

B
(α,β)
k −B(α,β)

n

R
(α,β)
k+1,n = 0,

since R
(α,β)
k,0 = 0 when k >M + 2.

Noting that R
(α,β)
k,n is a rational function of n, k, and a, we denote the ratio of

R
(α,β)
k,n and R

(α,β)
n,k by r(n, k, a), that is,

(4.12) R
(α,β)
k,n = r(n, k, a)R

(α,β)
n,k ,

with r(n, n, a) = 1.
Substituting (4.12) into (4.11) and dividing all terms by r(n, k, a), we have

A
(α,β)
n+1

B
(α,β)
k −B(α,β)

n

r(n+ 1, k, a)

r(n, k, a)
R

(α,β)
n+1,k +

C
(α,β)
n−1

B
(α,β)
k −B(α,β)

n

r(n− 1, k, a)

r(n, k, a)
R

(α,β)
n−1,k −R

(α,β)
n,k

−
A

(α,β)
k

B
(α,β)
k −B(α,β)

n

r(n, k − 1, a)

r(n, k, a)
R

(α,β)
n,k−1 −

C
(α,β)
k

B
(α,β)
k −B(α,β)

n

r(n, k+1, a)

r(n, k, a)
R

(α,β)
n,k+1 = 0.

Now, swapping k and n in (4.11) gives

A
(α,β)
k+1

B
(α,β)
n −B(α,β)

k

R
(α,β)
n,k+1 +

C
(α,β)
k−1

B
(α,β)
n −B(α,β)

k

R
(α,β)
n,k−1 −R

(α,β)
n,k

− A
(α,β)
n

B
(α,β)
n −B(α,β)

k

R
(α,β)
n−1,k −

C
(α,β)
n

B
(α,β)
n −B(α,β)

k

R
(α,β)
n+1,k = 0.

Matching the terms in the last two equations, we obtain two recurrence relations for
r(n, k, a),

r(n, k + 1, a)

r(n, k, a)
=
A

(α,β)
k+1

C
(α,β)
k

and
r(n+ 1, k, a)

r(n, k, a)
=
C

(α,β)
n

A
(α,β)
n+1

for any n, k >M + 1. Therefore,

r(n, k, a) = r(n,M + 1, a)

k−1∏
j=M+1

A
(α,β)
j+1

C
(α,β)
j

and r(n,M + 1, a) = r(M + 1,M + 1, a)

n−1∏
j=M+1

C
(α,β)
j

A
(α,β)
j+1

,

which, combined, give

r(n, k, a) =

n−1∏
j=0

C
(α,β)
j

A
(α,β)
j+1

k−1∏
j=0

A
(α,β)
j+1

C
(α,β)
j

 ,

where r(M + 1,M + 1, a) = 1 is used. Substituting (4.7c) in gives (4.10).
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Now we are ready to show Theorems 3.4 and 4.4.

Proof of Theorem 3.4. Taking the limit of (4.10) as α, β → −1/2, we have

R
(− 1

2 ,−
1
2 )

n,k = (−1)n+k
k

n

((
1
2

)
k

)2
(n!)

2((
1
2

)
n

)2
(k!)

2
R

(− 1
2 ,−

1
2 )

k,n .(4.13)

Relating Chebyshev polynomial Tn(x) to Jacobi polynomial P
(−1/2,−1/2)
n (x) by

P
(− 1

2 ,−
1
2 )

n (x) =

(
1
2

)
n

n!
Tn(x),

we obtain

R
(− 1

2 ,−
1
2 )

k,n =

(
1
2

)
n
k!(

1
2

)
k
n!
Rk,n(4.14)

for any k, n > 0. Finally, substituting (4.14) into (4.13) gives (3.3).

Proof of Theorem 4.4. The limit of (4.10) as α, β → λ− 1/2 is

R
(λ− 1

2 ,λ−
1
2 )

n,k = (−1)k+n
λ+ n

λ+ k

((2λ)n)
2 ((

λ+ 1
2

)
k

)2
((2λ)k)

2 ((
λ+ 1

2

)
n

)2R(λ− 1
2 ,λ−

1
2 )

k,n .(4.15)

With the scaling between C
(λ)
n and P

(λ−1/2,λ−1/2)
n

P
(λ− 1

2 ,λ−
1
2 )

n =

(
λ+ 1

2

)
n

(2λ)n
C(λ)
n (x),

we have

R
(λ− 1

2 ,λ−
1
2 )

k,n =

(
λ+ 1

2

)
k

(2λ)n

(2λ)k
(
λ+ 1

2

)
n

R
(λ)
k,n(4.16)

for all k, n > 0. Combining (4.16) and (4.15) yields (4.5).

The symmetric relation (4.10) cannot be used directly due to the arithmetic over-
flow for large k and n. Instead, we cancel the common factors in the numerator and
the denominator and match up the factors of similar magnitude to obtain an equiv-
alent but numerically more manageable formula by noting that (4.10) is only needed
for k > n:

R
(α,β)
n,k = (−1)k+n

α+ β + 2n+ 1

α+ β + 2k + 1

k−1∏
j=n

j + α+ 1

j + α+ β + 1

k−1∏
j=n

j + β + 1

j + α+ β + 1
R

(α,β)
k,n .(4.17)

When we recurse for the top rows, we need to rewrite (4.9b) as we do for the
Chebyshev and Gegenbauer cases:

(4.18)

R
(α,β)
k−1,n =

B
(α,β)
n −B(α,β)

k

A
(α,β)
k

R
(α,β)
k,n +

C
(α,β)
n−1

A
(α,β)
k

R
(α,β)
k,n−1 +

A
(α,β)
n+1

A
(α,β)
k

R
(α,β)
k,n+1

−
C

(α,β)
k

A
(α,β)
k

R
(α,β)
k+1,n −

S
(α,β)
n

A
(α,β)
k

R
(α,β)
k,0 .
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(a) Gegenbauer (λ = 2) (b) Jacobi (α = 2, β = 3/2)

Fig. 4.1. Entrywise error of (a) the Gegenbauer-based convolution matrix and (b) the Jacobi-
based convolution matrix obtained using Algorithm 2. For both examples, M = 1000 and N = 5000.

Now we recap the algorithms for constructing the Gegenbauer- and Jacobi-based
convolution matrices simultaneously in Algorithm 2.

The complexity of Algorithm 2 is O(MN), the same as that of Algorithm 1. To
keep the computational cost minimal in practice, particularly for the Jacobi-based

convolution matrices, we precompute and store {A(α,β)
j }M+N+1

j=1 , {B(α,β)
j }M+N+1

j=0 ,

{C(α,β)
j }M+N+1

j=0 , and {S(α,β)
j }M+N

j=1 for use in steps 2 and 4. For step 3, we can
first compute the ratio factor on the right-hand side of (4.17) for the (M + 1)th col-
umn and the ratio factor for a subsequent column can be updated from that of the
last column accordingly.

Algorithm 2. Construction of the convolution matrix R(λ)/R(α,β).

1: Construct the nonzero entries in the zeroth column R
(λ)
:,0 /R

(α,β)
:,0 using (4.4a)

/(4.9a).
2: Calculate the nonzero entries on and below the main diagonal using (4.4b) /(4.9b).

3: Calculate the nonzero entries above the main diagonal in rows M + 1 to N − 1
using (4.5)/(4.17).

4: Calculate the entries above the main diagonal in the top M + 1 rows using
(4.6)/(4.18).

Example 5. We repeat Example 3 for Gegenbauer- and Jacobi-based convolution
matrices. Again, the coefficient vector a is randomly generated with |am| 6 1. Figure
4.1 shows the entrywise absolute error in (a) the Gegenbauer convolution matrix for
λ = 2 and (b) the Jacobi convolution matrix for α = 2 and β = 3/2, where M = 1000
and N = 5000 for both experiments. The largest entrywise error in Figure 4.1(a)
is 1.14 × 10−11, whereas 2.40 × 10−11 in Figure 4.1(b). In these experiments, the
magnitudes of the entries range (a) from O(10p) to O(103) and (b) from O(10p) to
O(1), respectively, with some p < −324.

5. Laguerre-based convolution matrices. If a smooth function defined on a
semi-infinite domain decays to zero fast enough, it can be approximated by a series
of weighted Laguerre polynomials
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LWn (x) = e−x/2Ln(x),(5.1)

where Ln(x) is the Laguerre polynomial of degree n. Thus we consider the approxi-
mation of the convolution operator defined by such a function using Laguerre-based
convolution matrices. We start with the following lemma, which can be found in many
standard texts, for example, [19, (18.17.2)].

Lemma 5.1 (convolution of Laguerre polynomials).∫ x

0

Lm(x− t)Ln(t)dt = Lm+n(x)− Lm+n+1(x)

for x ∈ [0,∞).

Consider the convolution of continuous decaying functions f(x) and g(x) defined
on [0,∞):

V [f ](g) = h(x) =

∫ x

0

f(x− t)g(t)dt, x ∈ [0,∞).

Suppose that f(x) and g(x) are represented by infinite weighted Laguerre series

f(x) = e−x/2
∞∑
m=0

amLm(x) and g(x) = e−x/2
∞∑
n=0

bnLn(x), x ∈ [0,∞),

and assume that the convolution

h(x) = e−x/2
∞∑
k=0

ckLk(x), x ∈ [0,∞),

so that c = RLb, where RL is the Laguerre convolution matrix generated by a. By
Lemma 5.1, the entries of RL are explicitly known.

Theorem 5.2 (construction of RL). The matrix approximation of convolution
operator V [f ] in Laguerre space is the difference of two lower triangular Toeplitz
matrices, where the second one is obtained by adding one row of zeros on top of the
first:

RL =


a0 0 0 0 · · ·
a1 a0 0 0

. . .

a2 a1 a0 0
. . .

a3 a2 a1 a0
. . .

...
. . .

. . .
. . .

. . .

−


0 0 0 0 · · ·
a0 0 0 0

. . .

a1 a0 0 0
. . .

a2 a1 a0 0
. . .

...
. . .

. . .
. . .

. . .

 .

When f(x) and g(x) are approximated by finite weighted Laguerre series, the
convolution matrix RL becomes a banded lower-triangular Toeplitz matrix, as shown
in Figure 5.1(a), and the Toeplitz structure allows the fast application of RL to b with
the aid of FFT.

Example 6. We consider the convolution of

f(x) =
1

2
x2e−x and g(x) = −1

3

(
cos

√
3

2
x+
√

3 sin

√
3

2
x

)
e−3x/2, x ∈ [0,∞),

which are the functions from Example 4, except that the constant 1/3 is removed from
the original g(x) so that both functions decay to zero at infinity. These two functions
can be approximated by weighted Laguerre series of degree 2 and 54, respectively.
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(a) (b)

Fig. 5.1. (a) A schematic of Laguerre convolution matrices, where we use stripes to indicate
the Toeplitz structure. Outside the striped region, all entries are exactly zero. (b) Absolute error in
the computed approximation to the convolution, where the inset is a close-up for [0, 50].

In Figure 5.1(b), the pointwise error in the computed approximant against the exact
convolution

h(x) = (f ∗ g)(x) = −1

3
e−3x/2

[
ex/2

(
x2 − x− 1

)
+
√

3 sin

(√
3x

2

)
+ cos

(√
3x

2

)]
is shown up to x = 104 and the maximum error throughout [0,∞) is approximately
4.4× 10−15, occurring at about x = 2.9.

6. Closing remarks. While we have focused exclusively on the left-sided con-
volution operator, with a few minor changes the framework we have presented can be
extended to the right-sided convolution operator

V [f ](g) =

∫ 1

x−1
f(x− t)g(t)dt, x ∈ [0, 2],

with f(x) and g(x) compactly supported on [−1, 1], and the right-sided convolution
matrices also enjoy similar recurrences and symmetric properties.

In Example 4, we have shown how convolution matrices can be employed to solve
convolution integral equations. With the almost-banded structure of the convolution
matrices, a fast spectral method can be developed based on the framework of infinite-
dimensional linear algebra [20] for solving convolution integro-differential equations
of Volterra type:

J∑
j=0

bj(x)
dju(x)

dxj
+ bJ+1(x)

∫ x

a

K(x− t)u(t)dt = s(x),

where bj(x) for 0 6 j 6 J + 1 are smooth functions on [−1, 1] and the convolution
kernel K(x − t) is smooth or weakly singular. We will report this line of research in
a future work.
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