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SUPPRESSION OF RECURRENCE IN THE HERMITE-SPECTRAL

METHOD FOR TRANSPORT EQUATIONS

ZHENNING CAI AND YANLI WANG

Abstract. We study the unphysical recurrence phenomenon arising in the numerical simu-
lation of the transport equations using Hermite-spectral method. From a mathematical point
of view, the suppression of this numerical artifact with filters is theoretically analyzed for
two types of transport equations. It is rigorously proven that all the non-constant modes are
damped exponentially by the filters in both models, and formally shown that the filter does
not affect the damping rate of the electric energy in the linear Landau damping problem.
Numerical tests are performed to show the effect of the filters.
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1. Introduction

We consider a system with a large number of microscopic particles, and the motion of these
particles is governed by a force field. Instead of the state of every individual particle, we are
interested in the collective behavior of these particles, such as the local density and the mean
velocity. To obtain such information, the system needs to be properly modeled before carrying
out the simulation. Compared with tracking the positions and velocities of all the particles as
in the method of molecular dynamics, a more efficient method is to use the kinetic theory to
describe the system in a statistical way. The basic idea of the kinetic theory is to introduce a
velocity distribution function f(x, ξ, t), which denotes the number density of particles in the
position-velocity space, and the governing equation for f is

(1.1)
∂f

∂t
+ ξ · ∇xf +E · ∇ξf = 0, t ∈ R

+, x ∈ R
N , ξ ∈ R

N ,

where t denotes the time, x denotes the position, and ξ stands for the velocity of the particles.
The force field is given by E. In this paper, we consider the one-dimensional case with periodic
boundary condition in space, and thus the equation for f(x, ξ, t) can be rewritten as

∂f

∂t
+ ξ

∂f

∂x
+ E

∂f

∂ξ
= 0, t ∈ R

+, x ∈ R, ξ ∈ R,(1.2a)

f(x, ξ, t) = f(x+D, ξ, t), ∀(x, ξ, t) ∈ R× R× R
+,(1.2b)

where D is the period, and we assume that E is also periodic and independent of the velocity ξ,
but may be a function of t and x. A typical example of this model is the Vlasov-Poisson (VP)
equation arising from the astrophysics and plasma physics, which models the system formed
by a large number of charged particles, and the force is generated by a self-consistent electric
field. Moreover, Landau damping is one of the fundamental problems in the applications of the
VP equation. However, in the numerical simulations of Landau damping, it is observed that
an unphysical phenomenon called “recurrence” occurs for most grid-based solvers [8].
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The recurrence is an unphysical periodic behavior in the numerical solutions of the VP
equation. It can be demonstrated by the simple advection equation (E = 0 in (1.2)) whose
exact solution is f(x, ξ, t) = f(x−ξt, ξ, 0). It shows that any spatial wave in the initial condition
will cause a wave in the velocity domain in the evolution of the solution, and the frequency
of the wave gets higher when t increases. If the velocity domain is discretized by a fixed grid,
the exact solution cannot be well resolved when t is large. Particularly, the numerical solution
may look smoother than the exact solution and therefore appears similar to the solution at
a previous time. Such phenomenon has been reported in a number of research works with
different grid-based numerical methods [10, 26, 9, 28, 22]. The appearance of the recurrence
may be postponed by using a larger number of velocity grids [30, 15], which also introduces
larger computational cost. To avoid the recurrence, the particle-in-cell method [2, 18, 6] can
be adopted and it is reported in [4] that the numerical result does not present recurrence.
However, since the particle-in-cell method is a stochastic method, only half-order convergence
can be achieved. An idea of combining the two types of methods is introduced in [1], where the
authors suppress the recurrence by introducing some randomness into the grid-based methods.

In this paper, we consider another type of methods called transform methods [5, 13], where
the distribution function is mapped to the frequency space and the Fourier modes are solved
instead of the values on the grid points. Especially, we adopt the Hermite-spectral method
introduced by [19] as the asymmetric Hermite method. The similar idea is adopted in [3] to
get a slightly nonlinear discretization. For transform methods, one can suppress recurrence by
introducing filters to the numerical methods [23, 7], or adding artificial collisions to the model
[4, 24]. The suppression of the recurrence is numerically analyzed in [16], where it is shown
that the collision has a damping effect for the high-frequency modes, so that the distribution
function is smoothed out and the filamentation is weakened. However, a theoretical study of
its underlying mathematical mechanism is still missing in the literature.

To fill the vacancy, we are going to conduct a theoretical analysis on the relation between
the filters and the recurrence. The analysis is performed on two types of transport equations
including the advection equation and Vlasov-Poisson equation. For both types of equations, it
is shown by eigenvalue analysis that all the non-constant modes in the discrete system converge
to zero exponentially as the time goes to infinity, and therefore the damping effect is rigorously
proven. Moreover, it is formally shown that the filter does not change the damping rate of the
electric energy in the case of linear Laudau damping. Our numerical results are consistent with
the analysis. In the tests for linear Landau damping, numerical results with high quality are
observed with the filter introduced in [20].

The rest of this paper is organized as follows. In Section 2, we briefly introduce the Hermite-
spectral method and the filters. In Section 3 and 4, two types of equations are analyzed
respectively. Some numerical experiments are performed in Section 5, and the concluding
remarks are given in Section 6.

2. Hermite-spectral method and filtering

In this section, we focus on the velocity discretization of the Vlasov equation. Following [3],
we consider the following approximation of the distribution function1:

(2.1) f(x, ξ, t) ≈ 1√
2π

M
∑

i=0

fi(x, t)Hei(ξ) exp

(

−ξ2

2

)

,

1In [3], the basis functions are translated and scaled in order to adapt the functions, while in this paper,
such adaption is removed for easier analysis, and the resulting equations can be regarded as a linearized version
of the model in [3].
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where Hei(ξ) is the normalized Hermite polynomials defined by

(2.2) Hen(ξ) =
(−1)n√

n!
exp

(

ξ2

2

)

dn

dxn
exp

(

−ξ2

2

)

,

and they have the following properties:

(1) Orthogonality:

(2.3)
1√
2π

∫

R

Hem(ξ)Hen(ξ) exp

(

−ξ2

2

)

dξ = δmn, ∀m,n ∈ N;

(2) Recursion relation:

(2.4)
√
n+ 1Hen+1(ξ) = ξHen(ξ)−

√
nHen−1(ξ), ∀n ∈ N;

(3) Differential relation:

(2.5)

He ′n+1(ξ) =
√
n+ 1Hen(ξ),

d

dξ

(

Hen(ξ) exp

(

−ξ2

2

))

= −
√
n+ 1Hen+1(ξ) exp

(

−ξ2

2

)

, ∀n ∈ N.

Using these properties, the equations for the coefficients fi(x, t) can be derived by inserting
(2.1) into (1.2) and integrating the result against Hek(ξ) with k = 0, · · · ,M . By defining
f = (f0, f1, · · · , fM )T , we have the following evolution equations:

(2.6)
∂f

∂t
+A

∂f

∂x
− EBf = 0,

where A and B are (M + 1)× (M + 1) matrices defined by

(2.7) A =





















0 1 0 0 . . . 0

1 0
√
2 0 . . . 0

0
√
2 0

√
3 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . . 0

√
M − 1 0

√
M

0 . . . 0 0
√
M 0





















, B =















0 0 0 . . . 0
1 0 0 . . . 0

0
√
2 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0
√
M 0















.

The system (2.6) is the semi-discrete transport equation after spectral discretization of the
velocity variable. As will be seen below, such discretization suffers from a deficiency called
“recurrence phenomenon” [3, 23], which causes the non-physical echo of the electric energy
when simulating the plasma. In [23], the authors proposed the filtered spectral method, and in
the numerical results, the recurrence was clearly suppressed. Here we adopt the similar method
and apply the filter after every time step. In detail, let fn = (fn

0 , · · · , fn
M )T be the numerical

solution of (2.6) at the nth time step, and suppose a numerical scheme for (2.6) is

(2.8) fn+1 = Q(fn).

When a filter is applied, the above scheme is altered as

(2.9)
fn,∗ = Q(fn),

fn+1
i = σM (i)fn,∗

i , i = 0, · · · ,M,

where the filter σM (i) satisfies

(2.10) σM (0) = 1, lim
M→∞

σM (i) = 1, ∀i ∈ N.
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The filter is often interpreted as an operator with the effect of diffusion [12]. Especially, when
we take the exponential filter

(2.11) σM (i) = exp (−α(i/M)p) ,

the method (2.9) is actually computing the solution to the modified problem

(2.12)
∂f

∂t
+ ξ

∂f

∂x
+ E

∂f

∂ξ
= −α

(−1)p

∆tMp
Dpf,

where D is a linear operator defined by

(2.13) Df(x, ξ, t) =
∂

∂ξ

[

exp

(

−ξ2

2

)

∂

∂ξ

(

exp

(

ξ2

2

)

f(x, ξ, t)

)]

.

The time step ∆t needs to be chosen to ensure stability. Since ‖B‖2 =
√
M and the maximum

eigenvalue of A is the maximum zero of HeM+1(ξ), which grows asymptotically as O(
√
M), we

choose the time step as ∆t ∼ O(M−1/2) in this work. Thus one sees that when M gets larger,
the equation formally converges to the transport equation (1.2) if p > 1/2.

When the original transport equation (1.2) is replaced by (2.12), the semi-discrete system
(2.6) changes to

(2.14)
∂f

∂t
+A

∂f

∂x
− EBf = Hf ,

where H = −∆t−1α diag {0, (1/M)p, · · · , [(M − 1)/M ]p, 1}. In general, we assume that

(2.15) H = diag{h0, h1, · · · , hM}
is an (M + 1) by (M + 1) diagonal matrix with non-positive diagonal entries, and in order to
keep the conservation of total number of particles, we require that the first entry h0 = 0.

Below we are going to remove the spatial derivative by Fourier series expansion. The periodic
boundary condition (1.2b) shows that f is also periodic with respect to x. Thus we have the
following series expansions:

(2.16) f =
∑

m∈Z

f̂
(m)

exp(imkx), E =
∑

m∈Z

Ê(m) exp(imkx), k = 2π/D,

and Parseval’s equality shows that

(2.17) ‖f‖22 = D
∑

m∈Z

∥

∥

∥f̂
(m)

∥

∥

∥

2

2
, ‖E‖22 = D

∑

m∈Z

|Ê(m)|2.

Substituting (2.16) into (2.14), we get the equations for the Fourier coefficients f̂
(m)

:

(2.18)
∂f̂

(m)

∂t
+ imkAf̂

(m) −
∑

l∈Z

Ê(l)Bf̂
(m−l)

= Hf̂
(m)

, m ∈ Z.

Based on the form (2.18), we will show in the following sections that the filter H can suppress
the recurrence phenomenon, especially in the simulation of Landau damping.

3. Advection Equation

3.1. Recurrence without filter. We will begin our discussion with a simple case E = 0, and
thus the transport equation (1.2) becomes

(3.1)
∂f

∂t
+ ξ

∂f

∂x
= 0, t ∈ R

+, x ∈ D, ξ ∈ R,
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where D = [0, D] and the periodic boundary condition is imposed. It is known that the
recurrence can be observed in such a simple advection equation with initial value

(3.2) f(x, ξ, 0) =
1√
2π

(1 + ǫ cos(kx)) exp

(

−ξ2

2

)

, k =
2π

D
,

and the recurrence time can be exactly given if the velocity is discretized with a uniform grid
[25, 1]. For Hermite-spectral method, the system (2.18) is correspondingly reduced to

(3.3)
∂f̂

(m)

∂t
+ imkAf̂

(m)
= Hf̂

(m)
, m ∈ Z.

If no filter is applied, H = 0, and then the solution to the above system is

(3.4) f̂
(m)

(t) = exp (−imktA) f̂
(m)

(0) = RT exp (−imktΛ)Rf̂
(m)

(0),

where R is an (M + 1) × (M + 1) orthogonal matrix satisfying RΛRT = A, and Λ is an
(M+1)×(M+1) real diagonal matrix due to the symmetry of the real matrix A. The equality
(3.4) indicates that

(3.5)
∥

∥

∥f̂
(m)

(t)
∥

∥

∥

2

2
=

∥

∥

∥f̂
(m)

(0)
∥

∥

∥

2

2
, ∀m ∈ Z, t ∈ R

+.

To observe the recurrence, we suppose that the exact solution to (3.1) and (3.2) can be
written as

(3.6) f(x, ξ, t) =
1√
2π

M
∑

i=0

∑

m∈Z

f̂
(m)
ex,i (t) exp(imkx)Hei(ξ) exp

(

−ξ2

2

)

.

By straightforward calculation, we have

(3.7) f̂
(m)
ex,i (t) =















δi0, if m = 0,
ǫ

2

(imkt)i√
i!

exp

(

−k2t2

2

)

, if m = ±1,

0, otherwise.

Therefore

(3.8)

M
∑

i=0

|f̂ (±1)
ex,i (t)|2 =

ǫ2

4

M
∑

i=0

(kt)2i

i!
exp(−k2t2),

which decays to zero as t → ∞. The relation (3.5) shows that this property is not maintained

after discretization. In fact, if (2π)−1ktΛ is close to an integer matrix for some t, then f̂
(m)

(t)

is close to f̂
(m)

(0) for all m ∈ Z, which turns out to be a “recurrence”. Some illustration will
be given in Section 5.

3.2. Suppression of recurrence with filter. When a filter is applied, the solution to (3.3)
is

(3.9) f̂
(m)

(t) = exp
(

(−imkA+H) t
)

f̂
(m)

(0).

In this subsection, we assume that H is a filter whose first diagonal entry is zero and last
diagonal entry is nonzero. Actually, almost all filters have such a form so that the high-
frequency modes can be damped while the low-frequency modes are not disturbed. Based on
this assumption, we have the following theorem:

Theorem 1. Let Am = −imkA+H. Then for all m ∈ Z\{0}, all the eigenvalues of Am have

negative real parts.
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The above theorem shows that for all m ∈ Z\{0}, f̂ (m)
(t) → 0 as t → +∞, which fixes the

undesired property (3.5), and agrees with the decaying behavior of the exact solution to the
advection equation. Thus the recurrence is suppressed. The proof of the theorem requires the
following lemma:

Lemma 1. Let M = (aij)N×N be a symmetric tridiagonal matrix with nonzero subdiagonal

entries. Define pn(λ), n = 1, · · · , N as the characteristic polynomial of the nth order leading

principle submatrix of M . Then the following statements hold:

• The roots of pn and pn+1 are interlacing;

• If λ is an eigenvalue of M , then the associated eigenvector is r = (r1, · · · , rN )T with

r1 = 1 and rn = (−1)n−1pn−1(λ)/(a12a23 · · ·an−1,n) for n > 1;
• If r = (r1, · · · , rN )T is an eigenvector of M , then rN 6= 0.

In the above lemma, the first statement is a well-known result for the interlacing system.
We refer the readers to [14] for the proof. The second result can be found in [29] and it can
also be checked directly using the definition of eigenvectors. The third statement is obviously
a result of the first two statements.

Now we give the proof of Theorem 1 as below:

Proof of Theorem 1. Let λ be an eigenvalue of Am for some m ∈ Z\{0}. We first show that
Reλ 6 0. Suppose r is the associated eigenvector. Using Amr = λr, we have that

(3.10) 0 > 2r∗Hr = r∗ (A∗
m +Am) r = (λ+ λ̄)r∗r = 2‖r‖2 Reλ.

Thus Reλ 6 0.
It remains only to show that Reλ 6= 0. If there exist λI ∈ R and r ∈ CM+1, such that

Amr = iλIr, then

(3.11) iλI‖r‖2 = r∗Amr = −imkr∗Ar + r∗Hr.

The symmetry of both A and H yields r∗Hr = 0, which is equivalent to Hr = 0 since H

is diagonal. Recalling that the last diagonal entry of H is assumed to be strictly negative, we
know that the last component of r is zero. Furthermore, we have

(3.12) Ar =
i

mk
(Am −H)r = − λI

mk
r,

which indicates that r is an eigenvector of A. According to Lemma 1, the last component of
r must be nonzero, which is a contradiction. Therefore Am does not have purely imaginary
eigenvalues, which concludes the proof. �

The following theorem shows that the convergence rate has a lower bound for all non-constant
Fourier modes:

Theorem 2. For all m ∈ Z\{0}, suppose

(3.13) Am := −imkA+H = RmJmR−1
m ,

where Jm is the Jordan normal form of Am, and every column of Rm is a unit vector. Then

there exists a constant C(0) > 0, such that

(3.14) ‖Rm‖2 6 C(0),
∥

∥R−1
m

∥

∥

2
6 C(0).

And there exists a constant λ(0) > 0, such that for any m ∈ Z\{0}, all the eigenvalues of Am

have real parts less than −λ(0).



SUPPRESSION OF RECURRENCE FOR TRANSPORT EQUATIONS 7

Proof. Consider the matrix

(3.15) Bm :=
i

mk
Am = A+

i

mk
H, m ∈ Z\{0}.

Apparently the characteristic polynomial of Bm converges to the characteristic polynomial of
A as m → ∞. Thus all the eigenvalues of Bm also converge to the eigenvalues of A as m → ∞.
Lemma 1 implies that all the eigenvalues of A are distinct. Therefore there exists an m0 > 0
such that all the eigenvalues of Bm are distinct if |m| > m0. The relation between Am and
Bm indicates that all the eigenvalues of Am are also distinct when |m| > m0. In this case, the
similarity transformation (3.13) becomes a diagonalization of Am, and every column of Rm is
a unit eigenvector of Am (or Bm).

To show the bound (3.14), it is sufficient to show that ‖Rm‖2 and ‖R−1
m ‖2 have a uniform

upper bound for all |m| > m0. Let r
(m)
i be the ith column of Rm, and suppose Bmr

(m)
i =

µ
(m)
i r

(m)
i . Since exchanging two columns ofRm does not change the norms ‖Rm‖2 and ‖R−1

m ‖2,
we can assume

(3.16) lim
m→∞

µ
(m)
i = λi,

where λi is the ith eigenvalue of A. Using the fact that r
(m)
i is a unit vector, we have that

0 = lim
m→∞

(

Bm − µ
(m)
i I

)

r
(m)
i = lim

m→∞
(A− λiI)r

(m)
i .

Hence,

(3.17) lim
m→∞

r
(m)
i = ri,

where ri is the unit eigenvector of A associated with the eigenvalue λi. Thus Rm has a limit R
as m → ∞, and the limit diagonalizes A as A = RΛR−1, which naturally leads to the bound
(3.14).

To show that the bound λ(0) exists, we use the unity of vectors r
(m)
i to get

(3.18) lim
m→∞

Reλ
(m)
i = lim

m→∞
Re

((

r
(m)
i

)∗

Amr
(m)
i

)

= lim
m→∞

(

r
(m)
i

)∗

Hr
(m)
i = r∗iHri < 0.

The last inequality comes from the proof of Theorem 1. The existence of the negative limit
shows the existence of the negative upper bound. �

The above theorem gives an upper bound for the real parts of the eigenvalues. A direct
corollary is

Corollary 1. ∀m ∈ Z and t > 0, ‖exp(tAm)‖2 is uniformly bounded, and if m 6= 0, it holds
that

(3.19) ‖ exp (tAm) ‖2 6 C(1)
(

tM + 1
)

exp
(

−λ(0)t
)

,

where C(1) = (M + 1)
(

C(0)
)2
, and the constants λ(0) and C(0) are introduced in Theorem 2.

The estimate (3.19) is a result of Theorem 2 and the following lemma:

Lemma 2. For any matrix M , suppose J is its Jordan normal form and M = XJX−1. The

following estimate holds for the norm of exp(tM ):

(3.20) ‖ exp(tM)‖2 6 β‖X‖2‖X−1‖2 max
06i6β−1

ti

i!
e−αt,

where β is the maximum dimension of the Jordan blocks, and α is the maximum real part of

the eigenvalues of M .
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The lemma can be found in [21]. The uniform boundedness in Corollary 1 is an immediate
result of (3.19) and ‖ exp(tA0)‖2 = ‖ exp(tH)‖2 = 1.

The estimate (3.19) shows the linearly exponential decay of the non-constant Fourier modes.
Compared with (3.8), the decay rate is still not fast enough, which indicates that the recurrence
is not fully removed. However, when M is sufficiently large, the filtered spectral method can
give accurate approximation of the decay rate up to some time T , and after time T , the values
of both the exact solution and the numerical solution are already small enough, and therefore
the numerical result can still be considered as accurate, although the decay rate may not be
exact. Examples will be given in Section 5 to show the aforementioned behavior.

3.3. Advection Equation with an Exponentially Decaying Force. The above result can
be extended to the case with a given decaying force field. Here we assume that

(3.21) E(x, t) = exp(−α(t))w(x, t), x ∈ D,

where α(t) > αEt > 0 and w(x, t) ∈ L∞(D × [0,+∞)). Such a force field mimics the electric
force field in the Vlasov-Poisson equations, where the self-consistent force decays exponentially.
Therefore, it can be expected that the behavior of this equation is similar to the linear Landau
damping. Again, we study the equations of Fourier coefficients (2.18) instead of the original
system (2.14). It will be shown that the system (2.14) has a steady state solution in which only
the constant modes are nonzero. Here we only consider the case with filter, which means that
the last diagonal entry of H is strictly negative.

For the purely advective equation, each f̂
(m)

can be considered independently, while in this

case, the Fourier coefficients f̂
(m)

are fully coupled for all m ∈ Z. Therefore, we define a Hilbert
space H whose elements have the form

(3.22) ĝ =
(

· · · , ĝ(−m), · · · , ĝ(−1), ĝ(0), ĝ(1), · · · , ĝ(m), · · ·
)

,

where each ĝ
(m) is a vector in CM+1. For any vector in H, below we always use the superscript

“(m)” to denote its mth component as in (3.22). The inner product of H is defined as

(3.23) 〈ĝ1, ĝ2〉 =
∑

m∈Z

(

ĝ
(m)
1

)∗
ĝ
(m)
2 , ∀ĝ1, ĝ2 ∈ H.

Therefore by Parseval’s inequality (2.17), H corresponds to the space [L2(D)]M+1 in the original
space. For the purpose of uniformity, the norm in the Hilbert space H is denoted as ‖·‖2 below.

To represent the system (2.14), we introduce two operators Â and B̂(t), which are transfor-
mations on H, defined by

(3.24)

g̃ = Âg ⇐⇒ g̃(m) = Amg(m), ∀m ∈ Z,

g̃ = B̂(t)g ⇐⇒ g̃(m) =
∑

l∈Z

ŵ(l)(t)Bg(m−l), ∀m ∈ Z.

where the matrix Am is defined in Theorem 1 as Am = −imkA+H, and ŵ(l)(t) are the Fourier
coefficients for w(x, t):

(3.25) w(x, t) =
∑

m∈Z

ŵ(m)(t) exp(ikx), m ∈ Z.

Thus (2.14) can be written as

(3.26)
∂f̂(t)

∂t
= Âf̂(t) + exp(−α(t))B̂(t)f̂ (t).
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Here f̂(·) is a map from R+ to H. Applying Duhamel’s principle, we can obtain its integral
form as

(3.27) f̂(t) = exp
(

tÂ
)

f̂ (0) +

∫ t

0

exp(−α(s)) exp
(

(t− s)Â
)

B̂(s)f̂ (s) ds.

For the operators exp(tÂ) and B̂(t), we claim that

Lemma 3. For all t > 0, the operators exp(tÂ) and B̂(t) are uniformly bounded, i.e. there

exist constants CA and CB such that

(3.28)
∥

∥

∥exp(tÂ)
∥

∥

∥

2
6 CA,

∥

∥

∥B̂(t)
∥

∥

∥

2
6 CB , ∀t > 0.

This lemma can be easily obtained by Corollary 1 and the boundedness of w(x, t). The
detailed proof is left for the readers. Below we state the main result of this subsection:

Theorem 3. Let f̂ (t) be the solution to (3.27). There exists f̂∞ ∈ H such that

(3.29) lim
t→+∞

‖f̂(t)− f̂∞‖2 = 0,

and f̂∞ satisfies

(3.30) f̂
(m)

∞ = 0, ∀m ∈ Z\{0}.

This theorem shows that the steady solution of (2.14) exists and is a constant. It is known
from Section 3.1 that when recurrence appears, some non-constant modes will never decay,
which causes the phenomenon that similar solutions appear again and again when all these
modes are close to the peaks of the waves. Consequently, no steady state solution exists in such
a case. In this sense, the theorem implies the suppression of recurrence by the filter. Before
proving this theorem, we first show the boundedness of the solution:

Lemma 4. Let f̂ be the solution to (3.27). Then there exists a constant Cf such that

(3.31)
∥

∥

∥f̂(t)
∥

∥

∥

2
6 Cf

∥

∥

∥f̂ (0)
∥

∥

∥

2
.

Proof. Taking the norm on both sides of (3.27) and plugging in the inequalities (3.28), we
obtain

∥

∥

∥f̂ (t)
∥

∥

∥

2
6 CA

∥

∥

∥f̂(0)
∥

∥

∥

2
+ CA

∫ t

0

exp(−α(s))
∥

∥

∥B̂f̂(s)
∥

∥

∥

2
ds

6 CA

∥

∥

∥f̂(0)
∥

∥

∥

2
+ CACB

∫ t

0

exp(−αEs)
∥

∥

∥f̂(s)
∥

∥

∥

2
ds

(3.32)

By Gronwall’s inequality, we immediately have the estimation (3.31) with the constant Cf =
CA exp(‖w‖∞CACB/αE). �

Now we present the proof of Theorem 3:

Proof of Theorem 3. Let b̂(t) = B̂(t)f̂ (t). The boundedness of B̂(t) and Lemma 4 yield that

(3.33) ‖b̂(t)‖2 6 CBCf‖f̂(0)‖2.
Writing the integral system (3.27) as

(3.34) f̂
(m)

(t) = exp(tAm)f̂
(m)

(0) +

∫ t

0

exp(−α(s)) exp((t− s)Am)b̂
(m)

(s) ds, ∀m ∈ Z,
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we can bound
∥

∥

∥f̂
(m)

(t)
∥

∥

∥

2
with m ∈ Z\{0} by





∑

m∈Z\{0}

∥

∥

∥f̂
(m)

(t)
∥

∥

∥

2

2





1/2

6 C
(1)(tM + 1) exp(−λ

(0)
t)





∑

m∈Z\{0}

∥

∥

∥f̂
(m)

(0)
∥

∥

∥

2

2





1/2

+

∫ t

0

C
(1)[(t− s)M + 1] exp

(

−λ
(0)(t− s)

)

exp(−αEs)





∑

m∈Z\{0}

∥

∥

∥b̂
(m)

(s)
∥

∥

∥

2

2





1/2

ds

6 C
(1)(tM + 1) exp(−λ

(0)
t)

(

‖f̂ (0)‖2 +

∫ t

0

exp
(

(λ(0) − αE)s
)

‖b̂(s)‖2 ds

)

6 C
(1)(tM + 1)

(

exp(−λ
(0)

t) +
CBCf

|λ(0) − αE |

[

exp(−λ
(0)

t) + exp(−αEt)
]

)

.

(3.35)

The right hand side goes to zero as t goes to infinity. Thus it remains only to prove f̂
(0)

(t)
has a limit.

When m = 0, the equation (3.34) becomes

(3.36) f̂
(0)

(t) = exp(tH)f̂
(0)

(0) +

∫ t

0

exp(−α(s)) exp((t− s)H)b̂
(0)

(s) ds.

For any i = 0, · · · ,M , if hi < 0, we can still get f̂
(0)
i (+∞) = 0 using the same method as in

(3.35). If hi = 0,

(3.37) lim
t→+∞

f̂
(0)
i (t) = f̂

(0)
i (0) +

∫ +∞

0

exp(−α(s))b̂
(0)
i (s) ds.

The uniform boundedness of b̂
(0)
i and α(t) > αEt > 0 shows the convergence of the integral on

the right hand side, which concludes the proof. �

Remark 1. In Theorem 3, one can also observe an exponential convergence rate to the steady
state solution. However, the convergence rate depends on both the eigenvalue bound λ(0) and
the decay rate of the force field αE , whereas in Section 3.2, the convergence rates depend only
on the eigenvalue bounds. In fact, if the force field does not decay, the steady state solution
may not exist. A simple example is to let E be a constant. Then the distribution function will
keep moving in the velocity space, and there is no mechanism which balances such a force to
achieve the steady state. It can also be expected that current velocity discretization cannot
well describe the system when t is large.

4. Linear Landau Damping in the Vlasov-Poisson Equation

In this section, we will generalize the result to the linear Landau damping problem, for which
the recurrence in the electric energy has been widely observed [24, 10]. To study the linear
Landau damping, we consider the dimensionless Vlasov-Poisson (VP) equation which models
the motion of a collection of charged particles in the self-consistent electric field. For a given
distribution function f(x, ξ, t), the self-consistent electric field Esc(x, t) is given by

(4.1)
∂Esc(x, t)

∂x
=

(
∫

R

f(x, ξ, t) dξ − 1

D

∫

D×R

f(x, ξ, t) dξ dx

)

.

with constraint

(4.2)

∫

D

Esc(x, t) dx = 0.
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Thus the Vlasov-Poisson equation can be written as (1.2) with E(x, t) = Esc(x, t). The initial
condition is a uniform Gaussian distribution with perturbed electric charge density in the x-
space:

(4.3) f(x, ξ, 0) =
1√
2π

[1 + ǫ exp(ikx)] exp

(

−ξ2

2

)

.

When ǫ is small, it is known that the total electric energy

(4.4) E(t) =
√

∫

D

|Esc(x, t)|2 dx

decays exponentially. For this example, we say that a recurrence exists in some numerical
methods if the electric energy does not decay with time.

4.1. Asymptotic expansion and recurrence. Following the classical analysis [11], we ex-
pand the coefficients f = (f0, f1, · · · , fM )T in terms of ǫ:

(4.5) f (x, t) = f̂
(0)

(t) + ǫf̂
(1)

(t) exp(ikx) + ǫ2f̂
(2)

(t) exp(2ikx) + · · · ,

where f̂
(m)

= (f̂
(m)
0 , f̂

(m)
1 , · · · , f̂ (m)

M )T . Correspondingly, the electric field E(x, t) is expanded
as

(4.6) E(x, t) = ǫÊ(1)(t) exp(ikx) + ǫ2Ê(2)(t) exp(2ikx) + ǫ3Ê(3)(t) exp(3ikx) + · · · .

Note that the definitions of f̂
(m)

and Ê(m) are slightly different from those defined in (2.16).
In this section, these symbols denote the Fourier coefficients scaled by ǫm. Inserting (4.5)(4.6)
and (2.1) into (4.1), we get that

(4.7) Ê(m) = − i

mk
f̂
(m)
0 , ∀m = 1, 2, · · · .

The equations for the coefficients of all orders can be obtained by substituting (4.5) and
(4.6) into (2.14) and matching the terms with the same orders of ǫ:

O(1) :
∂f̂

(0)

∂t
= Hf̂

(0)
, f̂

(0)
(0) = (1, 0, · · · , 0)T .

O(ǫ) :
∂f̂

(1)

∂t
+ ikAf̂

(1)
+

i

k
f̂
(1)
0 Bf̂

(0)
= Hf̂

(1)
, f̂

(1)
(0) = (1, 0, · · · , 0)T .

O(ǫm) :
∂f̂

(m)

∂t
+ imkAf̂

(m)
+

i

mk
f̂
(m)
0 Bf̂

(0)
+

i

k

m−1
∑

l=1

1

l
f̂
(l)
0 Bf̂

(m−l)
= Hf̂

(m)
, f̂

(m)
(0) = 0.

The last equation holds for all m > 2. Recalling that H is a diagonal matrix with its first entry

being zero, we can easily obtain from the O(1) equation that f̂
(0)

(t) ≡ f̂
(0)

(0) = (1, 0, · · · , 0)T .
Therefore the other two equations can be rewritten as

∂f̂
(1)

∂t
+ ik

(

A+
1

k2
G

)

f̂
(1)

= Hf̂
(1)

, f̂
(1)

(0) = (1, 0, · · · , 0)T ;(4.8)

∂f̂
(m)

∂t
+ imk

(

A+
1

(mk)2
G

)

f̂
(m)

+
i

k

m−1
∑

l=1

f̂
(l)
0 Bf̂

(m−l)
= Hf̂

(m)
, f̂

(m)
(0) = 0.(4.9)
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Here we have used the symbol G to denote the (M +1)× (M+1) matrix with only one nonzero
entry locating at the second row and first column:

(4.10) G =















0 0 · · · 0
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0















.

When H = 0, the recurrence phenomenon already exists in the first-order equation (4.8).
To observe this, we introduce the following lemma:

Lemma 5. For any m > 0, there exists a diagonal matrix Dm such that such that the matrix

Dm

(

A+
1

(mk)2
G

)

D−1
m

is symmetric and tridiagonal, and therefore the matrix A+ (mk)−2G is real diagonalizable.

Proof. The matrix Dm can be explicitly written as

(4.11) Dm = diag

{

1,
mk

√

(mk)2 + 1
,

mk
√

(mk)2 + 1
, · · · , mk

√

(mk)2 + 1

}

.

It can then be easily verified that

Dm

(

A+
1

(km)2
G

)

D−1
m =





















0
√

1 + (mk)−2 0 0 . . . 0
√

1 + (mk)−2 0
√
2 0 . . . 0

0
√
2 0

√
3 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . . 0

√
M − 1 0

√
M

0 . . . 0 0
√
M 0





















.

�

The above lemma shows that when H = 0, all the eigenvalues of ik(A + k−2G) are purely

imaginary, which indicates that f̂
(1)

does not decay as time increases. Consequently, the
relation (4.7) shows that the electric energy will not decay, resulting in the recurrence in the
simple discretization of velocity without using filters.

4.2. Suppression of recurrence. This section focuses on the effect of the filter. As in Section
3.2, we assume again that the filter matrix H is a negative semidefinite diagonal matrix with
its first diagonal entry being zero and last diagonal entry being nonzero. In this section, we are
going to show an exponential decay of the solution, which suppresses the recurrence. In detail,
we have the following theorem:

Theorem 4. Let f (x, t) be the series (4.5) where f̂
(0)

(t) ≡ (1, 0, · · · , 0)T and f̂
(m)

with m > 1
are solved from the equations (4.8)(4.9). There exist constants C(3) and λ(1) such that

(4.12)
∥

∥

∥f (·, t)− f̂
(0)

∥

∥

∥

2
6 C(3)

(

tM + 1
)

exp
(

−λ(1)t
)

,

if ǫ is sufficiently small.

Similar to the case of the advection equation, the decay rate λ(1) is associated with the eigen-
values of matrices appearing in the equations. The following lemma gives a precise definition
of λ(1):
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Lemma 6. For all m ∈ Z\{0}, define

(4.13) Gm := −imk

(

A+
1

(mk)2
G

)

+H .

Then there exists a uniform constant λ(1) > 0, such that all the eigenvalues of Gm have real

parts less than −λ(1). Furthermore, there exists a constant C(4) such that

(4.14) ‖ exp(tGm)‖2 6 C(4)(tM + 1) exp
(

−λ(1)t
)

, ∀m ∈ Z\{0}.

Proof. Consider the matrix

(4.15) DmGmD−1
m = −imk

(

Dm

(

A+
1

(mk)2
G

)

D−1
m

)

+H,

which has the same eigenvalues as Gm. Due to Lemma 5, we see that the above matrix is
symmetric and tridiagonal, and all its subdiagonal entries are nonzero. Thus, we can use the
same strategy as in the proof of Theorem 1 to show that all the eigenvalues of (4.15) have
negative real parts. Similarly, since

lim
m→∞

Dm

(

A+
1

(mk)2
G

)

D−1
m = A,

showing the existence of a uniform bound λ(1) is an analog of the proof of Theorem 2. The
details are left to the readers.

To show the inequality (4.14), we first follow the proof of Corollary 1 to get

(4.16)
∥

∥exp(tDmGmD−1
m )

∥

∥

2
6 C(2)

(

tM + 1
)

exp
(

−λ(1)t
)

, ∀m ∈ Z\{0}.

where C(2) is determined in the same way as C(1) in Corollary 1 and Theorem 2. Hence,

‖ exp(tGm)‖2 6 ‖D−1
m ‖2‖ exp(tDmGmD−1

m )‖2‖Dm‖2

=

√

1 +
1

(mk)2
‖ exp(tDmGmD−1

m )‖2 6

√

1 +
1

k2
C(2)(tM + 1) exp

(

−λ(1)t
)

.

Thus (4.14) holds for C(4) =
√
1 + k−2C(2). �

In the above lemma, the estimate (4.14) gives the basic form of the decay rate. To turn
(4.14) into an estimate of the solution (4.12), we follow the steps below:

(1) Show that each non-constant term in the series (4.5) decays exponentially.
(2) Show the convergence of the series for small ǫ.

The first step is established by proving the following theorem:

Theorem 5. Let f̂
(m)

, m > 1 be the solutions to the equations (4.8)(4.9). For each positive

integer m, there exists a constant K(m) such that

(4.17)
∥

∥

∥f̂
(m)

(t)
∥

∥

∥

2
6 K(m)(tM + 1) exp(−λ(1)t).

Proof. Note that the equation (4.8) is linear. Therefore we can take m = 1 in (4.14) to get

(4.18)
∥

∥

∥f̂
(1)

(t)
∥

∥

∥

2
=

∥

∥

∥exp(G1t)f̂
(1)

(0)
∥

∥

∥

2
6 C(4)(tM + 1) exp

(

−λ(1)t
)

.

Thus (4.17) is proven for m = 1 by taking K(1) = C(4).
For m > 2, we use induction and suppose that the inequality

(4.19)
∥

∥

∥f̂
(j)

(t)
∥

∥

∥

2
6 K(j)

(

tM + 1
)

exp
(

−λ(1)t
)

,
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holds for all j < m. To estimate f̂
(m)

(t), we write the explicit solution of (4.9) as

(4.20) f̂
(m)

(t) =

∫ t

0

exp((t− s)Gm)pm(s) ds,

where we have used the definition

(4.21) pm(t) := − i

k

m−1
∑

l=1

f̂
(l)
0 (t)Bf̂

(m−l)
(t)

for conciseness. Since ‖B‖2 =
√
M , the vector pm can be bounded by

‖pm(t)‖2 =

∥

∥

∥

∥

∥

− i

k

m−1
∑

l=1

1

l
f̂
(l)
0 (t)Bf̂

(m−l)
(t)

∥

∥

∥

∥

∥

2

6

√
M

k

m−1
∑

l=1

1

l

∥

∥

∥f̂
(l)
(t)

∥

∥

∥

2

∥

∥

∥f̂
(m−l)

(t)
∥

∥

∥

2

6

√
M

k

m−1
∑

l=1

1

l
K(l)K(m−l)

(

tM + 1
)2

exp
(

−2λ(1)t
)

,

(4.22)

where the last inequality is an application of the inductive hypothesis. Now we can take the
norm on both sides of (4.20) and plug in the inequalities (4.14) and (4.22) to get

∥

∥

∥f̂
(m)

(t)
∥

∥

∥

2
6

∫ t

0

‖exp((t− s)Gm)‖2 ‖pm(s)‖2 ds

6 C(5)
m−1
∑

l=1

1

l
K(l)K(m−l)

(

tM + 1
)

exp
(

−λ(1)t
)

,

(4.23)

where

(4.24) C(5) =

√
M

k
C(4)

∫ ∞

0

(

sM + 1
)2

exp
(

−λ(1)s
)

ds.

The inequality (4.23) shows that (4.17) holds for

(4.25) K(m) = C(5)
m−1
∑

l=1

1

l
K(l)K(m−l) = C(5)

m−2
∑

l=0

1

l + 1
K(l+1)K(m−l−1).

Therefore for all positive integer m, the estimate (4.17) holds according to the principle of the
mathematical induction. �

From the above theorem, we see that if the distribution function (4.5) is approximated by
a truncation of the series, then such a finite series converges to a constant as t → ∞. To
prove such a property for the infinite series (4.5), we still need to study the magnitude of each
coefficient K(m). The recursion relation (4.25) reminds us of Jonah’s theorem introduced in
[17]:

Lemma 7 (Jonah). If m1 > 2m2, then

(4.26)

(

m1 + 1
m2

)

=

m2
∑

l=0

1

l + 1

(

2l
l

)(

m1 − 2l
m2 − l

)

.

By this lemma, a general formula of K(m) can be explicitly written, and then it can be
properly bounded. The details are listed in the following proof:
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Proof of Theorem 4. We first claim that

(4.27) K(m+1) =
1

2m

(

2m
m

)

K(1)
(

C(5)K(1)
)m

.

Apparently the above equality holds for m = 0. If m > 0, we just need to verify that (4.27)
fulfills (4.25). By inserting (4.27) into (4.25) and cancelling out some constants on both sides,
we obtain

(4.28)
1

2

(

2m
m

)

=

m−1
∑

l=0

1

l+ 1

(

2l
l

)(

2(m− l− 1)
m− l − 1

)

.

To verify this equality, we apply Jonah’s theorem (4.26) and let m1 = 2(m− 1), m2 = m− 1.
Thus the right hand side of (4.28) matches the right hand side of (4.26). The left hand sides
are also equal since

(4.29)
1

2

(

2m
m

)

=
1

2

(2m)!

m!m!
=

1

2

2m

m

(2m− 1)!

m!(m− 1)!
=

(

2m− 1
m− 1

)

=

(

m1 + 1
m2

)

.

Based on (4.27), it is easy to bound K(m) by

(4.30) K(m+1) = 2m
(2m− 1)!!

(2m)!!
K(1)

(

C(5)K(1)
)m

6 K(1)
(

2C(5)K(1)
)m

.

Now we can use (4.5) to get

∥

∥

∥f(·, t)− f̂
(0)

∥

∥

∥

2
6

√
D

+∞
∑

m=0

ǫm+1
∥

∥

∥f̂
(m+1)

∥

∥

∥

2
6

√
D

+∞
∑

m=0

ǫm+1K(m+1)(tM + 1) exp(−λ(1)t)

6 ǫDK(1)
+∞
∑

m=0

(

2ǫC(5)K(1)
)m

(tM + 1) exp(−λ(1)t).

(4.31)

Now it is clear that when ǫ <
[

2C(5)K(1)
]−1

, the inequality (4.12) holds for

�(4.32) C(3) =
ǫDK(1)

1− 2ǫC(5)K(1)
.

4.3. Analysis on the damping rate of the electric energy. In this section, we will analyze
how the filter affects the damping rate and the oscillation frequency of the electric energy in
the problem of Landau damping. Below we will first review the analysis on the original VP
equation, and then the filtered equation will be discussed.

4.3.1. Analysis on the VP equation. In the linear Landau damping problem, the plasma wave
has very small amplitude. Thus we can assume that

(4.33) f(x, ξ, t) = f (0)(ξ) + ǫf (1)(x, ξ, t),

where f (0)(ξ) is the background distribution, which is uniform in x, and f (1)(x, ξ) has the
order of magnitude O(1). Inserting this equation into the VP equation and ignoring the terms
quadratic in ǫ, we get the following linearized VP equation:

(4.34)
∂f (1)

∂t
+ ξ

∂f (1)

∂x
+ E(1) ∂f

(0)

∂ξ
= 0,

∂E(1)

∂x
=

∫

R

f (1) dξ.

If we further assume that the plasma wave being considered takes the form of a plane wave
traveling in the x-direction:

(4.35) f (1)(x, t, ξ) = f̂ (1)(ξ) exp(−iωt+ ikx), E(1)(x, t) = Ê(1) exp(−iωt+ ikx),
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we obtain the dispersion relation

(4.36)
1

k2

∫

R

1

ξ − ω/k

∂f (0)

∂ξ
dξ = 1.

Let ω = ωp + iγ be the solution to (4.36). Then γ and ωp are respectively the damping rate
and the oscillation frequency of the electric energy. We refer the readers to [11] for the more
details on the dispersion relation.

4.3.2. Analysis on the filtered VP equation. In order to take into account the filters, we assume
that the filter (2.11) is used and consider the “modified equation” (2.12), so that a similar
analysis can be carried out. Here we also assume that the distribution function is a small
perturbation of the background distribution (4.33), and the linearized VP equation with filter
can be written as

(4.37)
∂f (1)

∂t
+ ξ

∂f (1)

∂x
+ E(1) ∂f

(0)

∂ξ
= Hf (1),

∂E(1)

∂x
=

∫

R

f (1) dξ,

where the operatorH is defined by H = (−1)p+1α(∆tMp)−1Dp, and we have assumed Hf (0) =
0, which holds for the initial condition (4.3). Let

(4.38) g(x, ξ, t) = exp(−tH)f (1)(x, ξ, t).

Then the function g formally satisfies

(4.39) exp(tH)
∂g

∂t
= −

(

ξ exp(tH)
∂g

∂x
+ E(1) ∂f

(0)

∂ξ

)

,
∂E(1)

∂x
=

∫

R

exp(tH)g dξ.

Now we assume that the equation (4.39) has a plane-wave solution:

(4.40) g(x, ξ, t) = ĝ(ξ) exp(−iωt+ ikx), E(1)(x, t) = Ê(1) exp(−iωt+ ikx),

which changes (4.39) into

(4.41) i(ξk − ω) exp(tH)ĝ = −Ê(1) ∂f
(0)

∂ξ
, ikÊ(1) =

∫

R

exp(tH)ĝ dξ.

By dividing the first equation by ξk−ω and integrating with respect to ξ, the amplitude of the
electric field Ê(1) can be cancelled out and we get the result

(4.42) k =

∫

R

1

ξk − ω

∂f (0)

∂ξ
dξ,

which turns out to be exactly the same as the result of the original VP equation (4.36). Such
analysis shows that the modified equation and the original VP equation have the same damping
rate and oscillation frequency for the electric field. Therefore adding filters does not ruin the
major behavior of the linear Laudau damping.

Remark 2. The above analysis is only formally correct, since in (4.38), the operator exp(−tH) is
generally an unbounded operator. Therefore it still remains to prove that f (1) lies in the domain
of this operator for all x and t, which is not yet done. Currently we are not too concerned
about this point since the main idea of this section is to provide a clue for the reliability of
filters.
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5. Numerical Results

In order to verify the theoretical results and show how the recurrence is suppressed by the
filter, the numerical experiments for both the advection equation and the Vlasov equation
are carried out. In the literature, the recurrence for the Landau damping problem is usually
observed from the evolution of the self-consistent electric energy E(t) defined in (4.4). Therefore
in all the numerical tests, we are going to use the same quantity (4.4) to show the effect of
the filter. Note that for the advection equations considered in Section 3, we do not have
E(x, t) = Esc(x, t) as in the Vlasov equation, and thus the quantity E(t) is merely a functional
of the distribution function f(x, ξ, t) defined by (4.1) (4.4), and does not appear explicitly in
the transport equation.

The filter we adopt in our numerical tests is the one proposed in [20], which is identical to
the filter defined in (2.11) with α = 36 and p = 36. The corresponding filter matrix H can be
written as (2.15) with

(5.1) hi = −36∆t−1(i/M)36, i = 0, · · · ,M.

As mentioned in Section 2, the time step ∆t is set as ∆t = C/
√
M , and the constant C is

chosen as 0.5 in all the tests. Since it is much easier to obtain E(t) from the Fourier coefficients

f̂
(m)

, we solve (2.18) instead of the original transport equation (1.2) in all our experiments.

5.1. Advection equation. In this section, we focus on the advection equation (3.1) with
initial condition (3.2). This initial condition gives the following Fourier coefficients:

f̂
(0)

(0) = (1, 0, · · · , 0)T , f̂
(−1)

(0) = f̂
(1)

(0) = (ǫ/2, 0, · · · , 0)T , f̂
(m)

(t) = 0, |m| > 2.

In this case, the equations (3.3) shows that each f̂
(m)

can be solved independently, and when

|m| > 2, the initial condition shows that f̂
(m)

(t) ≡ 0. Consequently, the function E(t) has a
simple form

(5.2) E(t) =
√

D

k2

(

∣

∣

∣f̂
(−1)
0 (t)

∣

∣

∣

2

+
∣

∣

∣f̂
(1)
0 (t)

∣

∣

∣

2
)

.

The exact solution of E(t) can be directly obtained from (3.7) as

(5.3) E(t) = ǫ

k

√

D

2
exp(−k2t2/2).

To obtain E(t) with the spectral method, we just need to apply (3.9) form = ±1, which requires
diagonalization of matrices A±1.

In this example, we set D = 4π and k = 2π/D = 1/2. We first verify that all the eigenvalues
of A±1 have negative real parts. Since A1 = A∗

−1, the eigenvalues of A1 are the complex
conjugates of those of A−1. Therefore it is sufficient to just look at A1. The distribution of
the eigenvalues of A1 on the complex plane is plotted in Figure 1, and the eigenvalues of ikA
(the case without filter) are also given as a reference. As predicted, all the eigenvalues of ikA
locate exactly on the imaginary axis, while all the eigenvalues of A1 have strictly negative real
parts.

The time evolutions of E and its logarithm are plotted respectively in Figure 2 and 3. Initially,
both numerical solutions with and without the filter decay in the same way as the exact solution.
When the evolution reaches the first “critical” point, almost simultaneously, both solutions
leave the exact solution and exhibit a fast growth. For the case without filter, the value of
E(t) bounces almost back to its initial value before the next decay, and such a process repeats
periodically, which implies a constantly appearing recurrence. In general, larger number of
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Figure 1. The eigenvalues of ikA and A1 with M = 30 and 60. The circles
are the eigenvalues of ikA and the plus signs are the eigenvalues of A1.

moments leads to a longer recurrence time, which can also be observed by comparing the
results with M = 30 and M = 60. When the filter is applied, the solutions behave similarly
except that the peak values get smaller as t gets larger, due to the damping effect of the filter.
It can also be observed that the damping rate for M = 60 is higher than that for M = 30, which
indicates that for the same filter, systems with more moments may have better suppression of
recurrence. We comment here that the recurrence is not completely eliminated since E(t) is
still not monotonically decreasing. Nevertheless, from Figure 2, one sees that the difference
between the numerical solution and the analytical solution is negligible when t is large.
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(b) M = 60

Figure 2. The time evolution of E(t)/ǫ with M = 30 and 60.

5.2. Advection equation with given force field. In this section, some numerical experi-
ments for the transport equation with a given force field (3.21) are performed. Here we choose
α(t) and w(t) respectively as

(5.4) α(t) = γt, w(t) = ǫ cos(ωt) exp(ikx),
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Figure 3. The time evolution of log(E(t)/ǫ) with M = 30 and 60.

0 10 20 30 40 50 60
-16

-14

-12

-10

-8

-6

-4

-2

0

2

PSfrag replacements
w/o filter mc = 3

w/o filter mc = 5

w/ filter mc = 3

w/ filter mc = 5

(a) M = 30

0 10 20 30 40 50 60
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

PSfrag replacements
w/o filter mc = 3

w/o filter mc = 5

w/ filter mc = 3

w/ filter mc = 5

(b) M = 60

Figure 4. The evolution of log E(t) for the example in Section 5.2.

so that it mimics the Landau damping process. The period and the wave number are again
chosen as D = 4π, k = 0.5. For Laudau damping, these parameters give the decay rate
γ = 0.15336 and the plasma oscillation frequency ω = 1.416 (see Section 5.3 for details), which
are also adopted in definition of w(t). The initial condition is given by (4.3). To see the
contribution from waves with higher frequencies, we set ǫ to be 0.9. In order to carry out the
numerical simulation, only Fourier modes with |m| 6 mc are taken into account.

Two numbers of moments M = 30 and M = 60 are simulated with mc = 3 and mc = 5.
The time evolution of the logarithm of E is plotted in Figure 4, which also shows clearly how
the filter improves the solution. Figure 5 also shows such an effect from another point of view,
where all the non-constant modes are taken into account. For the case with filters, the decay
of each mode is given in Figure 6. A reference decay rate given by the largest real part of the
eigenvalues of Am is also provided as a reference. It is seen that the decay rates of all the
Fourier modes are controlled by this reference line.

5.3. Linear Landau damping. The numerical effect of the filter in the simulation of linear
Landau damping has been studied in a number of previous works [23, 24]. Here some simple
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Figure 5. The evolution of log(‖f̂ − f̂
(0)‖2) for the example in Section 5.2.
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Figure 6. The evolution of log(‖f̂ (m)‖2) for the example in Section 5.2.

results are presented for our particular discretization (2.1). The parameters are chosen as
ǫ = 0.001, D = 4π and k = 1/2. Since ǫ is quite small, it is sufficient to consider the leading

order term ǫÊ(1)(t) exp(ikx) in the expansion (4.6).
The evolution of log E(t) withM = 90 andM = 120 is plotted in Figure 7, where the solutions

with and without filters are both given. We can find that the two solutions are almost the same
before the recurrence occurs. Similar to in the last subsection, after the recurrence time, the
results without filters become unreliable, while the results with filters still decay exponentially.
To be precise, the numerical decay rate is obtained by least-square fitting of peak value points
before time tF . Two different values of tF (respectively before and after recurrence) are used to
fit the slope, and the results are compared with the theoretical decay rate γ = 0.15336 (see e.g.
[27]). Particularly, the second tF is chosen around twice the recurrence time. Table 1 shows
that before recurrence, the decay rates of both methods match very well with the theoretical
result, and after the recurrence time, an accurate decay rate can still be kept for a long time
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by filtering. In this example, the filter improves the numerical result dramatically, and such a
method looks very promising in the numerical simulation of plasmas.
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Figure 7. The evolution of log E(t) for the Laudau damping problem.

Table 1. The numerical decay rates of the electric energy

M w/o filter w/ filter w/ filter M w/o filter w/ filter w/ filter

30 tF = 12 tF = 12 tF = 24 60 tF = 22 tF = 22 tF = 44
0.155038 0.1550545 0.200223 0.1540681 0.1540679 0.166939

90 tF = 26 tF = 26 tF = 52 120 tF = 30 tF = 30 tF = 60
0.154173 0.154173 0.152892 0.153780 0.153780 0.153629

6. Conclusion

In this paper, we have systematically analyzed the effect of the filter on the numerical
solutions to the transport equations using Hermite-spectral method. The theoretical analysis
on two types of transport equations is proposed respectively. It is both rigorously proven and
numerically validated that the filter makes all the non-constant modes damp exponentially, and
therefore suppresses the recurrence. The example of Landau damping shows that the filter has
only negligible effect on the damping rates of the electric energy, which illustrates that adding
filter is a promising method to relieve the recurrence phenomenon. Analysis on the case with
magnetic field will be studied in the future.
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