
EFFICIENT COMPUTATION OF HIGHER ORDER CUMULANT
TENSORS∗

KRZYSZTOF DOMINO † , PIOTR GAWRON † , AND ŁUKASZ PAWELA †

Abstract. In this paper, we introduce a novel algorithm for calculating arbitrary
order cumulants of multidimensional data. Since the dth order cumulant can be
presented in the form of an d-dimensional tensor, the algorithm is presented using
tensor operations. The algorithm provided in the paper takes advantage of super-
symmetry of cumulant and moment tensors. We show that the proposed algorithm
considerably reduces the computational complexity and the computational memory
requirement of cumulant calculation as compared with existing algorithms. For the
sizes of interest, the reduction is of the order of d! compared to the naïve algorithm.

Key words. High order cumulants, non-normally distributed data, numerical algorithms

AMS subject classifications. 65Y05, 15A69, 65C60

1. Introduction.

1.1. Motivation. Cumulants of the order of d > 2 have recently started to
play an important role in the analysis of non-normally distributed multivariate data.
Some potential applications of higher-order cumulants include signal filtering problems
where the normality assumption is not required (see [25, 32] and references therein).
Another application is finding the direction of received signals [45, 41, 10, 33] and sig-
nal auto-correlation analysis [37]. Higher-order cumulants are used in hyper-spectral
image analysis [26], financial data analysis [2, 29] and neuroimage analysis [9, 5]. Out-
side the realm of signal analysis, higher order cumulants can be applied to quantum
noise investigation purposes [24], as well as to other types of non-normally distributed
data, such as weather data [15, 19, 43], various medical data [46], cosmological data
[50] or data generated for machine learning purposes [22].

In the examples mentioned above only cumulants of the order of d ≤ 4 were used
due to growing computational complexity and large estimation errors of high order
statistics. The computational complexity and the use of computational resources
increases considerably with the cumulants’ order by a factor of nd, where d is the
order of the cumulant and n is the number of marginal variables.

Despite the foregoing, cumulants of order d = 6 of multivariate data were suc-
cessfully used in high-resolution direction-finding methods of multi-source signals (the
q-MUSIC algorithm) [12, 11, 13, 34] despite higher variance of the statistic’s estima-
tion. In such an algorithm, the number of signal sources that can be detected is
proportional to the cumulant’s order [44]. Cumulants of the order of d > 4 also play
an important role in financial data analyses, as they enable measurement of the risk
related to portfolios composed of many assets [48, 38]. This is particularly important
during an economic crisis, since higher order cumulants make it possible to sample
larger fluctuation of prices [42]. In [48], cumulants of the order of 2–6 of multi-asset
portfolios were used as a measure of risk seeking vs. risk aversion. In [38], it was

∗Submitted to the editors 07.03.2018.
Funding: The research was partially financed by the National Science Centre, Poland—project

number 2014/15/B/ST6/05204.
†Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100

Gliwice, Poland ({kdomino, gawron, lpawela}@iitis.pl)

1

ar
X

iv
:1

70
1.

05
42

0v
4

 [
cs

.N
A

]
 1

0
A

pr
 2

01
8

mailto:\protect \protect \T1\textbraceleft kdomino, gawron, lpawela\protect \protect \T1\textbraceright @iitis.pl

2 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

shown that, during an economic crisis, cumulants of the order of d > 4 are impor-
tant to analyse variations of assets and prices of portfolios. Further arguments for
the utility of cumulants of the order of d > 4 can be found in [28, 1] and [18] where
cumulant tensors of the order of 2–6 were used to analyse financial portfolios during
an economic crisis. Finally, let us consider the QCD (Quantum Chromodynamics)
phase structure research area. In [23], the authors have evidenced the relevance of
cumulants of the order of 5 and 6 of net baryon number fluctuations for the analysis
of freeze-out and critical conditions in heavy ion collisions. Standard errors of those
cumulant estimations were discussed in [36].

In our study, we introduce an efficient method to calculate higher-order cumu-
lants. This method takes advantage of the recursive relation between cumulants and
moments as well as their super-symmetric structure. These features enable us to
reduce the computational complexity of the naïve algorithm and make the problem
tractable. In order to reduce complexity, we use the idea introduced in [49] to decrease
the storage and computational requirements by a factor of O(d!).

This allows us to handle large data sets and overcome a major problem in nu-
merical handling of high order moments and cumulants. Consider that the estimation
error of the one-dimensional dth central moment is limited from above by

√
M2d

t where
M2d is the (2d)th central moment and t is number of data samples. This is discussed
further in Appendix A. Consequently, the accurate estimation of statistics of the order
of d > 4 requires correspondingly large data sets. In practice, our approach allows us
to handle cumulants up to the tenth order.

1.2. Normally and non-normally distributed data. Let us consider the n-
dimensional normally distributed random variableX ∼ N (µ,Σ) where Σ is a positive-
definite covariance matrix and µ is a mean value vector. In this case, the characteristic
function φ̃(τ) and cumulant generating function K(τ) [30, 35] are

φ̃ : Rn → R φ̃(τ) = exp

(
τᵀµ+

1

2
τᵀΣτ

)
,

K : Rn → R K(τ) = log(φ̃(τ)) = τᵀµ+
1

2
τᵀΣτ.

(1)

It is easy to see that K(τ) is quadratic in τ , and therefore its third and higher
derivatives with respect to τ are zero. As we will in the next section, this implies that
cumulants of order greater than two are equal to zero.

If data is characterised by a frequency distribution other than the multivariate
normal distribution, the characteristic function may be expanded in more terms than
quadratic, and cumulants of the order higher than two may have non-zero elements.
This is why they are helpful in distinguishing between normally and non-normally
distributed data or between data from different non-normal distributions.

1.3. Basic definitions. Let us start with a random process generating discrete
n dimensional values. A sequence of t samples of an n dimensional random variable
is represented in the form of matrix X ∈ Rt×n such that

(2) X =

 x1,1 . . . x1,n

...
. . .

...
xt,1 . . . xt,n

 .

COMPUTATION OF HIGHER ORDER CUMULANTS 3

This matrix can be represented as a sequence of vectors of realisations of n marginal
variables Xi

(3) X = [X1, . . . , Xi, . . . , Xn] ,

where

(4) Xi = [x1,i, . . . , xj,i, . . . , xt,i]
ᵀ
.

In order to study moments and cumulants of X, we need the notion of super-
symmetric tensors. Let us first denote the set {1, 2, . . . , d} as 1 : d, a permutation of
tuple i = (i1, . . . , id) as π(i).

Definition 1.1. Let A ∈ R

d︷ ︸︸ ︷
n× · · · × n be a tensor with elements ai indexed by

multi-index i = (i1, . . . , id). Tensor A is super-symmetric iff it is invariant under any
permutation π of the multi-index, i.e.

(5) ∀π ai = aπ(i).

Henceforth we will write A ∈ R[n,d] for super-symmetric tensor A. A list of all
notations used in this paper is provided in Table 1.

Definition 1.2. Let X ∈ Rt×n be as in Eq. (2). We define the dth moment as
tensor Md(X) ∈ R[n,d]. Its elements are indexed by multi-index i = (i1, . . . , id) and
equal

(6) mi = E(Xi1 , . . . , Xid) =
1

t

t∑
l=1

d∏
k=1

xl,ik ,

where E(X) is the expectational value operator and Xik a vector of realisations of the
ik

th marginal variable.

Definition 1.3. Let X ∈ Rt×n be as in Eq. (2). We define centered variable
X̃ ∈ Rt×n as

(7) X̃ = [X̃1, . . . , X̃i, . . . , X̃n], with X̃i = Xi − E(Xi).

The first two cumulants respectively correspond to the mean vector and the sym-
metric covariance matrix of X. Given the following K(τ) estimator:

(8) K(τ) = log

(∑t
j=1 exp ([xj,1, . . . , xj,n] · τ)

t

)
,

we first introduce the definition of cumulants of arbitrary order and later explicitly
state definitions for cumulants of order one to four [30, 35]

Definition 1.4. Let (i1, . . . , id) be a multi-index with elements ik ∈ 1 : n, and
K(τ) the cumulant generation function of a given distribution. The dth cumulant
element is defined by [30, 35]

(9) ci1,...,id =
∂d

∂τi1 , . . . , ∂τid
log (K(τ))

∣∣∣∣
τ=0

,

we drop an imaginary unit in definition for a presentation clarity.

4 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

Symbol Description/explanation
i = (i1, . . . , id) d element multi-index
|i| = d size of multi-index (number of ele-

ments)
π(i) permutation of multi-index
1 : d set of integers {1, 2, . . . , d}
X ∈ Rt×n matrix of t realisations of n dimen-

sional random variable
Xi = [x1,i, . . . , xt,i]

ᵀ vector of t realisations of the ith

marginal random variable
E(Xi1 , . . . , Xid) = 1

t

∑t
l=1

∏d
k=1 xl,ik expectational value operator

A ∈ R[n,d] super-symmetric dmode tensor of size
n× . . .× n, with elements ai

A ∈ Rn1×···×nd d mode tensor of sizes n1 × . . . × nd,
with elements ai

X̃ ∈ Rt×n matrix of t realisations of n dimen-
sional centered random variable

Cd(X) ∈ R[n,d] the dth cumulant tensor of X with el-
ements ci

(Cd)j ∈ R[b,d], (Md)j ∈ R[b,d] block of the dth cumulant or moment
tensor indexed by j in the block struc-
ture.

Md(X̃) ∈ R[n,d] the dth central moment tensor of X
with elements mi

Md(X) ∈ R the dth moment of one dimensional
X ∈ Rt

Table 1
Symbols used in the paper.

Definition 1.5. We define the first cumulant C1 ∈ R[n,1] as

(10) C1(X) = [E(X1), . . . , E(Xn)] .

Definition 1.6. We define the second cumulant C2 ∈ R[n,2] as

(11) C2(X) =


E

(
X̃1X̃1

)
. . . E

(
X̃1X̃n

)
...

. . .
...

E

(
X̃nX̃1

)
. . . E

(
X̃nX̃n

)
 .

Definition 1.7. We define the third cumulant as a three-mode tensor C3 ∈ R[n,3]

with elements

(12) ci(X) = E
(
X̃i1X̃i2X̃i3

)
.

COMPUTATION OF HIGHER ORDER CUMULANTS 5

Cumulants of order greater than three can be computed from moments [40, 39],
however the relation is complex and requires a special notation which is introduced in
Subsection 3.1. To show how complicated the formulas might become we state here
the partial formula for the fourth cumulant.

Definition 1.8. We define the fourth cumulant as a four-mode tensor C4 ∈ R[n,4]

with elements

ci(X) = E (Xi1Xi2Xi3Xi4)−E (Xi1)E (Xi2Xi3Xi4)− E (Xi2)E (Xi1Xi3Xi4)− . . .︸ ︷︷ ︸
×4

− E (Xi1Xi2)E (Xi3Xi4)− . . .︸ ︷︷ ︸
×3

+2

E (Xi1)E (Xi2)E (Xi3Xi4) + . . .︸ ︷︷ ︸
×6


− 6E (Xi1)E (Xi2)E (Xi3)E (Xi4) .

(13)

Switching to the centered variable X̃, using a fact that E(X̃i) = 0, and ci(X) = ci(X̃)
for |i| ≥ 2, cumulants of order greater than one are mean shift invariant [39], we can
write Eq. (13) in a following manner:

ci(X) = E
(
X̃i1X̃i2X̃i3X̃i4

)
− E

(
X̃i1X̃i2

)
E
(
X̃i3X̃i4

)
− E

(
X̃i1X̃i3

)
E
(
X̃i2X̃i4

)
− E

(
X̃i1X̃i4

)
E
(
X̃i2X̃i3

)
.

(14)

remark 1.9. Each cumulant tensor Cd as well as each moment tensor Md is
super-symmetric [4].

As the formula for a cumulant of an arbitrary order is very complex, our core result is
the numerical handling of a cumulant and is discussed in depth in Section 3. To com-
pute cumulant tensor of order d we use central moment tensors of order 2, 3, d−2 and
d and take advantage of cumulant and moment tensors super-symmetry. Importantly
we do not need to determine (d− 1)th moment tensor.

2. Moment tensor calculation. To provide a simpler example, we start with
algorithms for calculation of the moment tensor. Next, in Section 3, those algorithms
will be utilised to recursively calculate the cumulants.

2.1. Storage of super-symmetric tensors in block structures. In this sec-
tion, we are going to follow the idea introduced by Schatz et al. [49] concerning the
use of blocks to store symmetric matrices and super-symmetric tensors in an efficient
way. To make the demonstration more accessible, we will first focus on the matrix
case. Let us suppose we have symmetric matrix C2 ∈ R[n,2]. We can store the matrix
in blocks and store only upper triangular blocks,

(15) C2 =


(C2)11 (C2)12 · · · (C2)1n̄

NULL (C2)22 · · · (C2)2n̄

...
...

. . .
...

NULL NULL · · · (C2)n̄n̄

 ,
where NULL represents an empty block, and n̄ = dnb e. Entries below the diagonal
do not need to be stored and calculated as they are redundant. Each block (C2)j1,j2 :

6 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

j1 ≤ j2 ∧ j2 < n̄ is of size b × b. Blocks (C2)j1,n̄ : j1 < n̄ are of size b × bl, and block
(C2)n̄,n̄ is of size bl × bl, where:

(16) bl = (n− b(n̄− 1)).

This representation significantly reduces the overall storage footprint while still pro-
viding opportunities to achieve high computational performance.

This representation can easily be extended for purposes of super-symmetric ten-
sors. Let us assume that Cd ∈ R[n,d] is a super-symmetric tensor. All data can
be stored in blocks (Cd)j1,...,jd ∈ Rbj1×···×bjd . If indices j1, . . . , jd are not sorted in
an increasing order, such blocks are redundant and consequently replaced by NULL.
Similarly to the matrix case we have

(17) bjp =

{
b, if jp < n̄,
bl, if jp = n̄.

In the subsequent sections we present algorithms for moment and cumulant tensor
calculation and storage. For simplicity, we assume that b|n and n̄ = n

b . The general-
ization is straightforward and, at this point, would only obscure the main idea.

Henceforth each block is a hypercube of size bd and there are
(
n̄+d−1
n̄

)
such unique

blocks [49]. Such storage scheme, proposed in [49], requires the storage of bd
(
n̄+d−1
n̄

)
elements.

2.2. The algorithm. In this and following sections, we present the moment
and cumulant calculation algorithms that use the block structure. To compute the
dth moment tensor we use Def. 1.2. Algorithm 1 computes a single block of the tensor,
while Algorithm 2 computes the whole tensor in the block structure form.

Algorithm 1 A single block of central moment, used to perform Algorithm 2
1: Input: X ∈ Rt×n — data matrix; (j1, . . . , jd) — multi-index of a block; b —

block’s size.
2: Output: (Md) ∈ R[b,d] — a single block of the block structure.
3: function momentblock(X, (j1, . . . , jd), b)
4: for i1 ← 1 to b, . . . , id ← 1 to b do
5: (mi1,...,id) = 1

t

∑t
l=1

(∏d
k=1 Xl,(jk−1)b+ik

)
6: end for
7: return (Md)
8: end function

Based on [49] and the discussion in the previous subsection, we can conclude that
reduction of redundant blocks reduces the storage and computational requirements of
the dth moment tensor by a factor of d! for d� n compared to the naïve algorithm.
The detailed analysis of the computational requirements will be presented in Section 5.

2.3. Parallel computation of moment tensor. For large t, it is desirable to
speedup the moment tensor calculation further. This can be achieved via a simple
parallel scheme. Let us suppose for the sake of simplicity, that we have p processes
available, and p|t. Starting with data X ∈ Rt×n we can split them into p non over-
lapping subsets Xs ∈ R

t
p×n. In the first step, for each subset, we compute in parallel

moment tensor Md(Xs) using Algorithm 2. In the second step, we perform the fol-

COMPUTATION OF HIGHER ORDER CUMULANTS 7

Algorithm 2 The dth moment tensor stored as a block structure
1: Input: X̃ ∈ Rt×d — data matrix; d — moment’s order; b — block’s size.
2: Output: Md ∈ R[n,d] — dth moment tensor stored as the block structure.
3: function moment(X, d, b)
4: n̄ = n

b
5: for j1 ← 1 to n̄, j2 ← j1 to n̄, . . . , jd ← jd−1 to n̄ do
6: (Md)(j1,...,jd) = MOMENTBLOCK (X, (j1, . . . , jd), b)
7: end for
8: returnMd

9: end function

lowing reduction

(18) Md(X) =
1

p

p∑
s=1

Md(Xs).

The elements of the tensor under the sum on the RHS are

(19) mi(Xs) =
p

t

ts
p∑

l=(tp−1)s+1

|i|∏
k=1

xl,ik .

The element of the moment tensor of X is

(20) mi(X) =
1

t

p∑
s=1

ts
p∑

l=(tp−1)s+1

|i|∏
k=1

xl,ik =
1

p

p∑
s=1

mi(Xs).

These steps are summarised in Algorithm 3.

Algorithm 3 Parallel computation of the dth moment tensor
1: Input: X̃ ∈ Rt×n — data matrix; d — moment’s order; b — block’s size; p —

number of processes.
2: Output: Md ∈ R[n,d] — dth moment tensor stored as the block structure.
3: function momentnc(X̃, d, p, b)
4: X→ [X1, . . . ,Xs, . . .Xp] : (xs)l,i = x(tp−1)s+l,i
5: for s← 1 to p do . perform in parallel
6: Md(Xs) = MOMENT(Xs, d, b)
7: end for
8: Md(X) = 1

p

∑p
s=1Md(Xs) . reduce scheme

9: returnMd

10: end function

3. Calculation of cumulant tensors. At this point, we can define our main re-
sult, i.e. an algorithm for calculating cumulants of arbitrary order of multi-dimensional
data.

3.1. Index partitions and permutations. In this section, we present a recur-
sive formula that can be used to calculate the dth cumulant of X. We begin with some
definitions, mainly concerning combinatorics, before discussing the general formula.

8 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

Definition 3.1. Let k = (k1, . . . , kd) : ki = i, and σ ∈ 1 : d. Partition Pσ(k) of
tuple k is the division of k into σ non-crossing sub-tuples: Pσ(k) = (k1, . . . ,kσ),

(21)
σ⋃
r=1

kr = k ∧ ∀r 6=r′ kr ∩ k′r = ∅.

In what follows, we will denote the permutations of a tuple of tuples (i1, . . . , iσ), as
π′(i1, . . . , iσ).

Definition 3.2. [Pσ(k)] — the representative of the equivalence class of parti-
tions. Let Pσ(k) = (k1, . . . ,kσ) and P ′σ(k) = (k′1, . . . ,k

′
σ) be partitions of k. Let us

introduce the following equivalence relation:

(22) Pσ(k) ∼ P ′σ(k)⇔
(
∃π′ ∀r∈1:σ ∃πr : (k1, . . . ,kσ) = π′ (π1(k′1), . . . , πσ(k′σ))

)
.

This relation defines the equivalence class. Henceforth we will take only one repre-
sentative of each equivalence class and denote it as [Pσ(k)]. The representative will
be such that all kr are sorted in an increasing order. We will denote a set of all such
equivalence classes as {[Pσ(k)]}.

remark 3.3. The number of partitions of set k of size d into σ parts is given by
the Stirling Number of the second kind, [27]

(23) #{[Pσ(k)]} = S(d, σ) =
1

σ!

σ∑
j=0

(−1)(σ−j)
(
σ

j

)
jd.

Definition 3.4. Consider tensors Cd1 ∈ R[n,d1], Cd2 ∈ R[n,d2] indexed by i and i′

respectively. Their outer product Cd1 ⊗ Cd2 = Ad1+d2 ∈ R

d1+d2︷ ︸︸ ︷
n× . . .× n is defined as

(24) a(i,i′) = cici′ ,

where (i, i′) denotes multi-index (i1, . . . , id1 , i
′
1, . . . , i

′
d2

).

As an example consider the outer product of symmetric matrix C2 by itself: A4 = C2⊗
C2, that is only partially symmetric, ai1,i2,i3,i4 = ci2,i1,i3,i4 = ci1,i2i4,i3 = ci3,i4,i1,i2 , but
in general ci1,i2,i3,i4 6= ci1,i3,i2,i4 6= ci1,i4,i3,i2 . To obtain a super-symmetric outcome
of the outer product of super-symmetric tensors, we need to apply the following
symmetrisation procedure.

Definition 3.5. The sum of outer products of super-symmetric tensors. Let
Ad ∈ R[n,d] be a tensor indexed by i = (i1, . . . , id). Let kr be a sub-tuple of its
modes according to Def. 3.2, and let ikr =

(
i(kr)1 , . . . , i(kr)|kr|

)
. For the given σ, we

define the sum of outer products of Cdr ∈ R[n,dr] where r ∈ 1 : σ and
∑σ
r=1 dr = d,

using the elementwise notation, as

(25) ai =
∑

ζ∈{[Pσ(1:d)]}

∏
kr∈ζ

cikr .

We will use the following abbreviation using tensor notation

(26) Ad =
∑

ζ∈{[Pσ(1:d)]}

⊗
kr∈ζ
C(kr).

COMPUTATION OF HIGHER ORDER CUMULANTS 9

ConsiderAd as in Eq. (26) where Cdr ∈ R[n,dr] are super-symmetric and Cdr = Cdr′
iff dr = dr′ and i is a multi-index ofAd. The sum over all representatives of equivalence
classes {[Pσ(1 : d)]} fully symmetrises the outer product, and therefore Ad is super-
symmetric. In other words, due to the super-symmetry, any permutation of multi–
index i of Ad that leads only to a permutation of indices inside some Cdr refers to
the same value of Ad. Any permutation of i that leads only to the switch between
Cdr and Cdr′ inside an outer product in Eq. (26) also refers to the same value of Ad.
Any other permutation of i that cannot be represented as above switches between
equivalence classes as well, and so it switches between elements of sum Eq. (26) and
refers to the same value of Ad.

example 3.6. Consider C1 ∈ R[n,1], C2 ∈ R[n,2], C3 ∈ R[n,3], and A4 ∈ R[n,4] such
that

(27) A4 =
∑

ζ∈{[P2(1:4)]}

⊗
kr∈ζ
C(kr),

then
ai1,i2,i3,i4 = ci1,i2ci3,i4 + ci1,i3ci2,i4 + ci1,i4ci2,i3

+ ci1ci2,i3,i4 + ci2ci1,i3,i4 + ci3ci1,i2,i4 + ci4ci1,i2,i3 ,
(28)

such A4 is super-symmetric, since there is no permutation of (i1, i2, i3, i4) that changes
its elements, i.e. ai1,i2,i3,i4 = ai2,i1,i3,i4 = ai3,i2,i1,i4 = ai3,i4,i1,i2 =

3.2. Cumulant calculation formula. The following recursive relation can be
used to relate moments and cumulants of X:

(29) R[n,d] 3Md(X) =

d∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

⊗
kr∈ζ
C(kr)(X).

This can be written in an elementwise manner as in [4]

(30) mi(X) =

d∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

∏
kr∈ζ

cikr (X).

For the sake of completeness, we present an alternative proof of Eq. (30) in Ap-
pendix B.

In order to compute Cd(X), let us consider the case where σ = 1 separately. By
definition, [Pσ=1(1 : d)] = (1, . . . , d), so:

(31) Md(X) = Cd(X) +

d∑
σ=2

∑
ζ∈{[Pσ(1:d)]}

⊗
kr∈ζ
C(kr)(X).

The dth cumulant tensor can be calculated given the dth moment tensor and cumulant
tensors of the order of r ∈ 1 : (d− 1)

(32) R[n,d] 3 Cd(X) =Md(X)−
d∑

σ=2

∑
ζ∈{[Pσ(1:d)]}

⊗
kr∈ζ
C(kr)(X).

To simplify Eq. (32), let us observe that cumulants of the order of two or higher
for a non-centered variable and a centered variable are equal. The first order cumulant
for a centered variable is zero. Hereafter, we introduce partitions into sub-tuples of
size larger than one.

10 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

Definition 3.7. Let k = (1, . . . , d), and σ ∈ 1 : d. The at least two element par-
tition P (2)

σ (k) of tuple k is the division of k into σ sub-tuples: P (2)
σ (k) = (k1, . . . ,kσ),

such that

(33)
σ⋃
r=1

kr = k ∧ ∀r 6=r′ kr ∩ k′r = ∅ ∧ ∀r |kr| ≥ 2.

The definition of the representative of equivalence class [P
(2)
σ (k)] and the set of such

representatives {[P (2)
σ (k)]} are analogous to Def. 3.2. Consequently, we can derive

the final formula

Cd(X) = Cd(X̃) =Md(X̃)−
d∑

σ=2

∑
ζ∈{[Pσ(1:d)]}

⊗
kr∈ζ
C(kr)(X̃)

=Md(X̃)−
σmax∑
σ=2

∑
ζ∈{[P (2)

σ (1:d)]}

⊗
kr∈ζ
C(kr)(X).

(34)

Let us determine the σmax limit. If d is even, it can be divided into at most σmax = d
2

parts of size two; if d is odd, it can be divided into at most σmax = d−1
2 parts: d−1

2 −1

parts of size two and one part of size three. Hence we can conclude that σmax = bd2c.
As a simple example, consider the cumulants of the order of three and four.

Since ∀σ{[P (2)
σ (1 : 3)]} = ∅ ∧ {[P (2)

σ (1 : 2)]} = ∅, then C2(X) = M2(X̃) and
C3(X) =M3(X̃), i.e. the second cumulant matrix and the third cumulant tensor are
simply the second and the third central moments. Formulas for cumulant tensors of
the order greater than three are more complicated. For example, consider the 4th

cumulant tensor

(35) R[n,4] 3 C4(X) =M4(X̃)−
∑

ζ∈{[P (2)
2 (1:4)]}

⊗
kr∈ζ
Ckr (X).

Using the elementwise notation, where i = (i1, i2, i3, i4), we have

(36) ci(X) = mi(X̃)− ci1,i2(X)ci3,i4(X)− ci1,i3(X)ci2,i4(X)− ci1,i4(X)ci2,i3(X).

3.3. Algorithms to compute cumulant tensors. Let us suppose that (Bi)j
is the ith element of the jth block of the super–symmetric tensor of the order of
|i| = |j| = d. Similarly, (Cik)jk is the ik

th element of the jk
th block of the |ik| = |jk|th

cumulant tensor according to Def. 3.5—we skip now r in kr for brevity. With reference
to Def. 3.5 and Def. 3.2, k is always sorted and from the properties of the block
structure j is also sorted, hence jk is sorted as well. To determine {[P (2)

σ (1 : d)]} we
use modified Knuth’s algorithm 7.2.1.5H [31]. Now we have all the components to
introduce Algorithm 4 which computes a super-symmetric sum of outer products of
lower order cumulants. Algorithm 4 computes the inner sum of Eq. (34) and takes
advantages of the super-symmetry of tensors by using the block structure.

Finally, Algorithm 5 computes the dth cumulant tensor. It uses Eq. (34) to
calculate the cumulants and importantly takes advantage of the super-symmetry of
tensors, because it refers to Algorithm 2 (moment tensor calculation) and Algorithm 4
that both use the block structure.

COMPUTATION OF HIGHER ORDER CUMULANTS 11

Algorithm 4 Sum of outer products of the σ cumulants
1: Input d — order of output; σ — number of subsets for partitions; C2, . . . , Cr ∈

R[n,r], . . . , Cd−2 — lower cumulants stored as a block structure.
2: Output B ∈ R[n,d] – sum of outer products stored as the block structure.
3: function outerpodcum(d, σ, C2, . . . , Cd−2) . n̄ = n

b , b — block size
4: for i1 ← 1 to b, . . . , id ← 1 to b do
5: for j1 ← 1 to n̄, j2 ← j1 to n̄, . . . , jd ← jd−1 to n̄ do
6:

i = (i1, . . . , id) j = (j1, . . . , jd)

(Bi)j =
∑

ζ∈{[P (2)
σ (1:d)]}

∏
k∈ζ

(Cik)jk

7: end for
8: end for
9: return B

10: end function

Algorithm 5 The dth cumulant, using Eq. (34).

1: Input: X̃ ∈ Rt×n — matrix of centered data; d ≥ 3 — order; C2, . . . , Cd−2 —
lower cumulants structured in blocks of size bi each.

2: Output: Cd ∈ R[n,d] — the dth cumulant stored as the block structure.
3: function cumulant(X̃, d, C2, . . . , Cd−2)
4: Cd = MOMENT(X̃, d, b)−

∑b d2 c
σ=2 OUTERPRODCUM(d, σ, C2, . . . , Cd−2)

5: return Cd
6: end function

4. Implementation. All algorithms presented in this paper are implemented
in the Julia programming language [8, 7]. Julia is a high level language in which
multi-dimensional tables are first class types [6]. For purposes of the algorithms, two
modules were created. In the first one, SymmetricTensors.jl, [21] the block structure
of super-symmetric tensors was implemented. In the second module, Cumulants.jl,
[20] we used the block structure to compute and store moment and cumulant tensors.
The implementation of cumulants calculation uses multiprocessing primitives built
into the Julia programming language: remote references and remote calls. A remote
reference is an object that allows any process to reference an object stored in a specific
process. A remote call allows a process to request a function call on certain arguments
on another process.

5. Performance analysis. This section is dedicated to the performance anal-
ysis of the core elements of our algorithms. These are Eq. (6) which calculates the
moment tensor and Eq. (34) which calculates the cumulant tensor. First, we discuss
theoretical analysis and then focus on the performance of our implementation. In the
final subsection, we show how our implementation compares to the current state of
the art.

5.1. Theoretical analysis. We start by discussing the performance of the mo-
ment tensor. With reference to Section 2, let us recall that storage of the moment
tensor requires storage of the bd

(
n̄+d−1
n̄

)
floating-point numbers. We can approximate

12 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

bd
(
n̄+d−1
n̄

)
≈ nd

d! for d � n [49]. Since we usually calculate cumulants of the order
of ≤ 10 and we deal with high dimensional data, we need approximately 1

d! of the
computer storage space, compared with the naïve storage scheme.

As for the cumulants, one should primarily note that the number of elements
of the inner sum in Eq. (34) in the second line equals the number of set partitions
of k = (1, . . . , d) into exactly σ parts, such that no part is of size one, and can be
represented as:

(37) #{[P (2)
σ (k)]} = S′(d, σ).

We call it a modification of the Stirling number of the second kind S(d, σ), and
compute it as follows

S′(d, 1) = 1

S′(d, σ) =
d!

σ!

d−2σ+2∑
d1=2

· · ·
d−2σ+2r−∑r−1

i=1 di∑
dr=2

· · ·︸ ︷︷ ︸
σ−1

1

d1! · · · dr! · · · (d−
∑(σ−1)
i=1 di)!

,(38)

where we count the number of ways to divide d elements into subsets of length d1 ≥
2, . . . , dr ≥ 2, . . . , dσ ≥ 2 such that

∑σ
r=1 dr = d, and so dσ = d −

∑σ−1
r=1 dk. Factor

σ! in the denominator counts the number of subset permutations. Some examples of
S′(d, σ) are S′(4, 2) = 3, S′(5, 2) = 10, S′(6, 2) = 25 and S′(6, 3) = 15.

The following sum

(39)
b d2 c∑
σ=1

S′(d, σ) = 1 +

b d2 c∑
σ=2

S′(d, σ) = F (d),

is the number of all partitions of a set of size d into subsets, such that there is no
subset of size one, and therefore

F (1) = 0,

F (d+ 1) = B(d)− F (d).
(40)

Here B(d) is a Bell number [14], the number of all partitions of a set of size d including
subsets of size one and B(d)− F (d) is the number of partitions of a set of size d into
subsets such that at least one subset is of size one. Relation Eq. (40) is derived from
the fact that there is a bijective relation between partitions of d element set into
subsets such that at least one subset is of size one and partitions of d+ 1 element set
into subsets such that there is no subset of size one.

To compute each element of the inner sum in Eq. (34), we need σ − 1 multipli-
cations, and consequently to compute each element of the outer sum in Eq. (34), we
need (σ − 1)S′(d, σ) multiplications. Finally, the number of multiplications required
to compute the second term of the RHS of Eq. (34) is

(41) N(d) =

b d2 c∑
σ=2

(σ − 1)S′(d, σ) ≤

≤
(
bd

2
c − 1

) b d2 c∑
σ=2

S′(d, σ) =

(
bd

2
c − 1

)
(F (d)− 1) = U(d),

COMPUTATION OF HIGHER ORDER CUMULANTS 13

5 10 15 20
d

101

103

105

107

109

1011

1013

n
u
m
b
e
r
o
f
m
u
lt
ip
li
c
a
ti
o
n
s

N(d)

U(d)

Fig. 1. Plots of exact number of multiplications N(d), and its upper bound based on Stirling
numbers. Note the logarithmic scale on the y axis.

for each tensor element. Let us note that N(4) = 3, N(5) = 10, N(6) = 55. The plot
of N(d) and the upper bound U(d) are shown in Fig. 1. From Fig. 1 the proposed
upper bound produces a very good approximation of the number of multiplications.

From Eq. (6), Eq. (34) and Eq. (41) we can conclude that to compute the dth

cumulant’s element we need (d−1)t multiplications for the central moment and N(d)
multiplications for the sums in Eq. (34). However, in order to calculate the cumulant
in an accurate manner, we need large data sets, i.e. for d = 4 we use t ∼ 105 and
for d > 4 the data size must be even larger. Bearing in mind that computation of
cumulants of the order of d > 10 is inapplicable, the foregoing gives (d− 1)t� N(d).
Henceforth dominant computational power is required to calculate the moment tensor,
so there appears the need for approximately (d− 1)t multiplications to compute each
dth cumulant’s element. To compute the whole dth cumulant tensor we need approx-
imately (d−1)tnd

d! multiplications, while the factor d! is a result of taking advantage of
super-symmetry. The added cost due to blocking is negligible, see [49].

It is now possible to compare the complexity of our algorithm with that of the
naïve algorithm for chosen cumulants. For the 4th cumulant, the naïve algorithm
would use Eq. (14) directly and would not take advantage of the super-symmetry
of tensors. Therefore, it requires 9t multiplications to compute a single cumulant
tensor element and 9tn4 multiplications to compute the whole cumulant tensor. Our
algorithm, in this case, decreases the computational complexity by the factor of 3·4! =
72.

Analogically, the naïve formula for the 5th cumulant

(42) ci1,...,i5(X) = E

(
X̃i1 . . . X̃i5

)
− E

(
X̃i1X̃i2

)
E

(
X̃i3X̃i4X̃i5

)
− · · ·︸ ︷︷ ︸

×10

requires approximately 34tn5 multiplications to compute the whole cumulant tensor.
Our algorithm, in this case, decreases the computational complexity by the factor of
34
4 5! = 900. For higher d, the difference is even greater due to the d! factor caused by
the application of the block structure and the fact that the number of terms in naïve
formulas grows with d much faster than F (d) from Eq. (40).

5.2. Implementation performance. In this section, we analyse the perfor-
mance analysis of our implementation. All computations were performed in the

14 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

Prometheus computing cluster. This cluster provides shared user access with multi-
ple user tasks running on each node. Each node is an HP XL730f Gen9 computing
system with dual Intel Xeon E5-2680v3 processors providing 12 physical cores and 24
computing cores with hyper-threading. The node has 128 GB of memory.

5.2.1. The optimal size of blocks. The number of coefficients required to
store a super-symmetric tensor of order d and n dimensions is equal to

(
d+n−1
n

)
. The

storage of tensor disregarding the super-symmetry requires nd coefficients. The block
structure introduced in [49] uses more than minimal amount of memory but allows
for easier further processing of super-symmetric tensors.

If we store the super-symmetric tensor in the block structure, the block size
parameter b appears. In our implementation in order to store a super-symmetric
tensor in the block structure we need, assuming n|b, an array of (nb)d pointers to
blocks and an array of the same size of flags that contain the information if a pointer
points to a valid block. Recall that diagonal blocks contain redundant information.
Therefore on the one hand, the smaller the value of b, the less redundant elements
on diagonals of the block structure. On the other hand, the larger the value of b,
the smaller the number of blocks, the smaller the blocks’ operation overhead, and
the fewer the number of pointers pointing to empty blocks. For detailed discussion
of memory usage see [49]. The analysis of the influence of the parameter b on the
computational time of cumulants for some parameters are presented in Fig. 2. We
obtain the shortest computation time for b = 2 in almost all test cases, and this value
will be set as default and used in all efficiency tests. Note that for b = 1 we loose all
the memory savings.

2 4 6 8
block size

0.2

0.4

0.6

0.8

c
o
m
p
u
ti
o
n
a
l
ti
m
e
[s
]

×103

t = 1 × 105

t = 2 × 105

t = 5 × 105

(a) 4th cumulant tensor

2 4 6 8
block size

0

1

2

3

c
o
m
p
u
ti
o
n
a
l
ti
m
e
[s
]

×104

t = 1 × 105

t = 2 × 105

t = 5 × 105

(b) 5th cumulant tensor

Fig. 2. Computation time for cumulant tensors computed using the block structure and the
proposed algorithm, for different block sizes b, at n = 60.

5.2.2. Comparison with naïve algorithms. The computational speedup of
cumulant calculation for the illustrative data is presented in Fig. 3. The computa-
tional speedup is even higher than the theoretical value of 72, which is probably due
to large operational memory requirements and some computational overhead while
splitting data into terms of Eq. (36) used by the naïve approach.

As for the moment calculation, let us recall from Section 2.1 that we expect a
speedup on the level of d!. As can be shown in Fig 4, this is the case for a high
number of marginal variables n, as we approach speedup equal to 24 for the fourth

COMPUTATION OF HIGHER ORDER CUMULANTS 15

30 40 50 60 70
n

70

80

90

100

110

sp
e
e
d
u
p

t = 1 × 105

t = 2 × 105

t = 5 × 105

Fig. 3. Computation time speed-up of 4th cumulant tensor computed using the block structure
and the proposed algorithm vs the naïve algorithm.

moment. This is a case, since there is some redundancy in computation of diagonal
blocks which decreases as n rises, given b.

30 40 50 60 70
n

16

18

20

22

24

sp
e
e
d
u
p

t = 1 × 105

t = 2 × 105

t = 5 × 105

Fig. 4. Computation time speedup for the 4th moment tensor computed using the block structure
vs. the naïve algorithm, note a speedup up to 24 times.

5.2.3. Multiprocessing performance. In this section we analyse the multi-
processing performance of moment tensor calculations, since according to Subsec-
tion 5.1, the moment tensor calculation takes the majority of cumulants calculation
time. Fig. 5 shows the speedup of multiprocess moment calculation compared to
single process calculation. As can be shown in the figure, at first, we obtain linear
scaling of the speedup with the number of processes. Next, we reach the saturation
point. This is expected, as there are some parts of this calculation that cannot be
done in parallel. Adding more processes leads to a drop in the speedup. This is due
to the fact that adding more processes results in more overall overhead, yet we do not
benefit from splitting the data further.

5.3. Comparison with the state of the art. The state of the art in terms of
the cumulant calculation simplification is referred to as umbral calculus [47], which
is a formal system consisting of certain operations on objects called umbrae, mimick-
ing addition and multiplication of independent real-valued random variables. Using

16 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

0 5 10 15 20 25
#procs

1

2

3

4

5

6

sp
e
e
d
u
p

(a) 4th moment tensor, t = 2× 105

0 5 10 15 20 25
#procs

1

2

3

4

5

6

sp
e
e
d
u
p

(b) 5th moment tensor, t = 2× 105

Fig. 5. Computation time speedup for the 4th (left) and the 5th (right) moment tensor due to
multiprocessing for n = 60.

umbrae notation one can determine symbolic formulas to calculate elements of cu-
mulant tensors. See [17] where cumulants, also called k-statistics, were derived using
purely combinatorial operations. However, symbolic computations are less universal
and sometimes problematic, while translating them into algorithms and code is not
entirely straightforward.

We present a more general approach by implementing an algorithm that takes
multivariate data in the form of a matrix and computes its cumulant tensors. The
current state of the art is a package written in the R programming language [16]. This
algorithm uses the recursion relation to compute the dth cumulant from moments of
the order of 1, . . . , d [40, 39, 3], see Eq. (43).

(43) Ci(X) =

d∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

(|ζ| − 1)!(−1)|ζ|−1
⊗
kr∈ζ
M(kr)(X),

where |ζ| is the number of parts in the given partition ζ. The algorithm computes each
element of cumulant tensors, without taking advantage of their super-symmetry. For
comparison, our formula, i.e. Eq. (34) is simpler, as it lacks factor (|ζ| − 1)!(−1)|ζ|−1

and the inner sum has less elements, since we have introduced P
(2)
σ instead of Pσ.

Further application of Eq. (34) enables us to compute the dth cumulant tensor with-
out determining the (d − 1)th moment tensor. This fact can be advantageous in
high-resolution direction-finding methods for multi-source signals (the q-MUSIC al-
gorithm) [12] where one needs a cumulant of the order of 6 but not a cumulant and
a moment of the order of 5. Furthermore, the major benefit of our algorithm is the
utilisation of the super-symmetry of cumulant tensors. By introducing blocks, the
computational complexity can be reduced by a factor of d! in the same manner as the
storage requirement is reduced.

In [16] two algorithms were implemented: one—four_cumulants_direct—that
uses a direct formula for cumulants of orders 1—4 which we call the specialized algo-
rithm, and other one—cumulants_upto_p—that can compute cumulants of arbitrary
order using Eq. (43), which we call the general algorithm. Both of these algorithms
were implemented in the R programming language. The specialized algorithm outper-
forms the general one in terms of speed. For comparison’s sake, we re-implemented

COMPUTATION OF HIGHER ORDER CUMULANTS 17

30 40 50 60 70
n

100

150

200

250

300

sp
e
e
d
u
p

t = 1 × 105

t = 2 × 105

(a) Julia implementation of general algorithm
from [16].

30 40 50 60 70
n

90

100

110

120

130

140

sp
e
e
d
u
p

t = 1 × 105

t = 2 × 105

(b) R implementation of general algorithm
from [16].

30 40 50 60 70
n

50

60

70

80

sp
e
e
d
u
p

t = 1 × 105

t = 2 × 105

(c) Specialized algorithm from [16] implemented
in R.

Fig. 6. Computation time speedup of 4th cumulant tensor calculation using algorithm employ-
ing the block structure vs. algorithms from [16].

the general algorithm from [16] in Julia maintaining high similarity between both
implementations.

To perform the efficiency comparison, we compare the computational time of our
algorithm with the aforementioned algorithms. The obtained results are summarised
in Fig. 6 which contains:

• The comparison of our algorithm and the general algorithm [16] re-implemen-
ted in Julia—Fig. 6(a).

• The comparison between our algorithm and the general algorithm imple-
mented in [16]—Fig. 6(b). Our algorithm is faster by two orders of mag-
nitude owing to the fact that there exists d! acceleration factor. It results
from the utilisation of super-symmetry through application the block struc-
ture. It turns out that our implementation achieves in practice even higher
acceleration.

• The comparison of our algorithm vs. the specialised algorithm implemented
in [16]—Fig. 6(c).

18 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

6. Conclusions. This paper provides a discussion on both the method and the
algorithm for calculation of arbitrary order moment and cumulant tensors given mul-
tidimensional data. To this end, we introduce the recurrence relation between the dth

cumulant tensor and the dth central moment tensor as well as cumulant tensors of
the order of 2, . . . , d− 2. For purposes of efficient computation and storage of super-
symmetric tensors, we use blocks to store and calculate only the pyramidal part of
cumulant and moment tensors. Our algorithm is significantly faster than the existing
algorithms. The theoretical speedup is given by the factor of d!, which makes the
algorithm applicable in the analysis of large data sets. Another important aspect is
that large data sets are required to approximate accurately high order statistics on
account of their large approximation error. If the estimation error challenge is success-
fully tackled, high order multidimensional statistics such as high order moments or
cumulants will be an important tool to analyse non-normally distributed data, where
the mean vector and the covariance matrix contain little information about the data.
There are many applications of such statistics, particularly involving signal analysis,
financial data analysis, hyper-spectral data analysis or particle physics.

Appendix A. The estimation error of high order statistics. Let Md be
an estimator of the dth moment of one-dimensional centered random variable V , and
let us have available t realisations of V . As we consider large t, the bias of such an
estimator can be neglected as being much smaller than a standard error. Hence, we
can use the following estimator

(44) Md =
1

t

t∑
l=1

(Vl)
d,

where we just sum t independent random variables Vl raised to the power of d. The
variance of Md can be represented as:

(45) var(Md) =
1

t2
var

(
t∑
l=1

(Vl)
d

)
.

Since V1, . . . , Vt are independent and equal in distribution to V ,

(46) var

(
t∑
l=1

(Vl)
d

)
=

t∑
l=1

var
(
V d
)

= t var
(
V d
)
,

hence

(47) var(Md) =
1

t

(
M2d − (Md)

2
)
<
M2d

t
, std(Md) <

√
M2d

t
,

and obviously this limit is relevant if M2d exists. In the multivariate case V1, . . . , Vt
are only independent in groups. The number of groups can be estimated using the
number of marginal variables n, but still n � t. Consequently, a similar limitation
can be expected, but replacing M2d with a product of moments of lower orders.

Appendix B. The recurrence formula for cumulant calculations. We
recall the cumulant generating function

(48) K(τ) = log

(∑t
l=1 exp ([xl,1, . . . , xl,n] · τ)

t

)
,

COMPUTATION OF HIGHER ORDER CUMULANTS 19

which is related to the moment generation (characteristic) function φ̃(τ), K(τ) =
log(φ̃(τ)). For simplicity, we use the following notation: ∂i = ∂

∂τi
, ∂i = ∂i1,...,id =

∂d

∂τi1 ,...,∂τid
, and drop X in notation c(X) → c. The elements of the moment and

cumulant tensor at multi-index i are

(49) mi(X) = ∂iφ̃(τ)
∣∣
τ=0

and ci(X) = ∂iK(τ)
∣∣
τ=0

.

We have the following theorem

Proposition B.1. For each i the following holds:

(50)
∂iφ̃(τ)

φ̃(τ)
=

|i|∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

∏
kr∈ζ

cikr (τ).

Proof. For |i| = 1 the results follow from direct inspection. Next, for |i| = 2 we
get:

(51) ci1,i2(τ) = ∂i1

(
∂i2 φ̃(τ)

φ̃(τ)

)
=
∂i2i1 φ̃(τ)

φ̃(τ)
− ci2(τ)ci1(τ).

Now assume that Eq. (50) holds for |i| = d. Differentiating its LHS, we have

(52) ∂id+1

∂iφ̃(τ)

φ̃(τ)
=
φ̃(τ)∂i∂id+1

φ̃(τ)− ∂id+1
φ̃(τ)∂iφ̃(τ)

φ̃2(τ)
,

further using Eq. (50) we obtain ∂id+1
φ̃(τ) = φ̃(τ)cid+1

(τ), therefore

(53) ∂id+1

∂iφ̃(τ)

φ̃(τ)
=
∂i′ φ̃(τ)

φ̃(τ)
− cid+1

(τ)

|i|∑
σ=1

∑
ζ∈[Pσ(1:d)]

∏
kr∈ζ

cikr (τ),

where i′ = (i, id+1). After differentiating Eq. (49), we have

(54) ∂id+1
ci(τ) = c(i,id+1)(τ),

and analogously

(55) ∂id+1

∏
kr∈ζ

cikr (τ) =

σ∑
a=1

c(ika ,id+1)(τ)
∏

kr∈ζ,r 6=a
cikr (τ).

Differentiating the RHS of Eq. (50),

∂id+1

|i|∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

∏
kr∈ζ

cikr (τ) =

|i|∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

σ∑
a=1

c(ika ,id+1)(τ)
∏
kr∈ζ
r 6=a

cikr (τ),

(56)

comparing Eq. (56) with Eq. (53), we have

∂(i,id+1)φ̃(τ)

φ̃(τ)
= cid+1

(τ)

|i|∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

∏
kr∈ζ

cikr (τ)

+

|i|∑
σ=1

∑
ζ∈{[Pσ(1:d)]}

σ∑
a=1

c(ika ,id+1)(τ)
∏

kr∈ζ,r 6=a
cikr (τ).

(57)

20 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

Finally, we obtain

(58)
∂i′ φ̃(τ)

φ̃(τ)
=

|i′|∑
σ=1

∑
ζ∈{[Pσ(1:(d+1))]}

∏
kr∈ζ

cikr (τ).

If we observe that φ̃(τ)
∣∣
τ=0

= 1 andmi = ∂iφ̃(τ)
∣∣
τ=0

and ci(τ)
∣∣
τ=0

= ci, then Eq. (50)
at τ = 0 will give Eq. (30).

Acknowledgements. The authors would like to thank Adam Glos for revising
the manuscript and Zbigniew Puchała for the discussion about error estimation and
set partitions. This research was supported in part by PL-Grid Infrastructure

REFERENCES

[1] G. S. Amin and H. M. Kat, Hedge Fund Performance 1990-2000: Do the “Money Machines"
Really Add Value?, Journal of financial and quantitative analysis, 38 (2003), pp. 251–274.

[2] J. C. Arismendi and H. Kimura, Monte Carlo Approximate Tensor Moment Simulations,
Available at SSRN 2491639, (2014).

[3] N. Balakrishnan, N. L. Johnson, and S. Kotz, A note on relationships between moments,
central moments and cumulants from multivariate distributions, Statistics & probability
letters, 39 (1998), pp. 49–54.

[4] O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic techniques for use in statistics,
Chapman & Hall, 1989.

[5] H. Becker, L. Albera, P. Comon, M. Haardt, G. Birot, F. Wendling, M. Gavaret,
C.-G. Bénar, and I. Merlet, EEG extended source localization: tensor-based vs. con-
ventional methods, NeuroImage, 96 (2014), pp. 143–157.

[6] J. Bezanson, J. Chen, S. Karpinski, V. Shah, and A. Edelman, Array operators using
multiple dispatch: A design methodology for array implementations in dynamic languages,
in Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ACM, 2014, p. 56.

[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to
numerical computing, SIAM Review, 59 (2017), pp. 65–98.

[8] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, Julia: A fast dynamic language
for technical computing, arXiv:1209.5145, (2012).

[9] G. Birot, L. Albera, F. Wendling, and I. Merlet, Localization of extended brain sources
from EEG/MEG: the ExSo-MUSIC approach, NeuroImage, 56 (2011), pp. 102–113.

[10] J.-F. Cardoso and E. Moulines, Asymptotic performance analysis of direction-finding al-
gorithms based on fourth-order cumulants, IEEE transactions on Signal Processing, 43
(1995), pp. 214–224.

[11] P. Chevalier, L. Albera, A. Ferréol, and P. Comon, On the virtual array concept
for higher order array processing, IEEE Transactions on Signal Processing, 53 (2005),
pp. 1254–1271.

[12] P. Chevalier, A. Ferréol, and L. Albera, High-Resolution Direction Finding From Higher
Order Statistics: The 2rmq-MUSIC Algorithm, IEEE Transactions on signal processing,
54 (2006), pp. 2986–2997.

[13] P. Chevalier, A. Ferréol, L. Albera, and G. Birot, Higher order direction finding with
polarization diversity: THE PD-2q-music algorithms, in Signal Processing Conference,
2007 15th European, IEEE, 2007, pp. 257–261.

[14] L. Comtet, Advanced combinatorics, reidel pub, Co., Boston, (1974).
[15] R.-G. Cong and M. Brady, The interdependence between rainfall and temperature: copula

analyses, The Scientific World Journal, 2012 (2012), p. Article ID 405675.
[16] J. De Leeuw, Multivariate Cumulants in R, (2012).
[17] E. Di Nardo, G. Guarino, D. Senato, et al., A unifying framework for k-statistics,

polykays and their multivariate generalizations, Bernoulli, 14 (2008), pp. 440–468.
[18] K. Domino, The use of the multi-cumulant tensor analysis for the algorithmic optimisation of

investment portfolios, Physica A: Statistical Mechanics and its Applications, 467 (2017),
pp. 267–276.

[19] K. Domino, T. Błachowicz, and M. Ciupak, The use of copula functions for predictive
analysis of correlations between extreme storm tides, Physica A: Statistical Mechanics and
its Applications, 413 (2014), p. 489–497.

COMPUTATION OF HIGHER ORDER CUMULANTS 21

[20] K. Domino, P. Gawron, and Ł. Pawela, Cummulants.jl, 2017, https://doi.org/10.5281/
zenodo.1185137.

[21] K. Domino, P. Gawron, and Ł. Pawela, SymmetricTensors.jl, 2017, https://doi.org/10.
5281/zenodo.996222.

[22] E. Eban, G. Rothschild, A. Mizrahi, I. Nelken, and G. Elidan, Dynamic copula net-
works for modeling real-valued time series, in Proceedings of the sixteenth international
conference on artificial intelligence and statistics, 2013, pp. 247–255.

[23] B. Friman, F. Karsch, K. Redlich, and V. Skokov, Fluctuations as probe of the QCD
phase transition and freeze-out in heavy ion collisions at LHC and RHIC, The European
Physical Journal C-Particles and Fields, 71 (2011), pp. 1–11.

[24] J. Gabelli and B. Reulet, High frequency dynamics and the third cumulant of quantum
noise, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009), p. P01049.

[25] M. Geng, H. Liang, and J. Wang, Research on methods of higher-order statistics for phase
difference detection and frequency estimation, in Image and Signal Processing (CISP), 2011
4th International Congress on, vol. 4, IEEE, 2011, pp. 2189–2193.

[26] X. Geng, K. Sun, L. Ji, H. Tang, and Y. Zhao, Joint Skewness and Its Application in
Unsupervised Band Selection for Small Target Detection, Scientific reports, 5 (2015).

[27] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation
for Computer Science, Addison & Wesley, (1989).

[28] A. Guizot, The hedge fund compliance and risk management guide, vol. 371, John Wiley &
Sons, 2006.

[29] E. Jondeau, E. Jurczenko, and M. Rockinger, Moment component analysis: An illustra-
tion with international stock markets, Swiss Finance Institute Research Paper, (2015).

[30] M. G. Kendall et al., The advanced theory of statistics., The advanced theory of statistics.,
(1946).

[31] D. E. Knuth, The art of computer programming: sorting and searching, vol. 3B, Pearson
Education, 1998.

[32] J. R. Latimer and N. Namazi, Cumulant filters-a recursive estimation method for systems
with non-Gaussian process and measurement noise, in System Theory, 2003. Proceedings
of the 35th Southeastern Symposium on, IEEE, 2003, pp. 445–449.

[33] J. Liang, Joint azimuth and elevation direction finding using cumulant, IEEE Sensors Journal,
9 (2009), pp. 390–398.

[34] J. Liu, Z. Huang, and Y. Zhou, Extended 2q-MUSIC algorithm for noncircular signals,
Signal Processing, 88 (2008), pp. 1327–1339.

[35] E. Lukacs, Characteristics functions, Griffin, London, (1970).
[36] X. Luo, Error estimation for moment analysis in heavy-ion collision experiment, Journal of

Physics G: Nuclear and Particle Physics, 39 (2012), p. 025008.
[37] E. S. Manolakos and H. M. Stellakis, Systematic synthesis of parallel architectures for

the computation of higher order cumulants, Parallel Computing, 26 (2000), pp. 655–676.
[38] I. W. Martin, Consumption-based asset pricing with higher cumulants, The Review of Eco-

nomic Studies, 80 (2013), pp. 745–773.
[39] P. McCullagh, Tensor methods in statistics, vol. 161, Chapman and Hall London, 1987.
[40] P. McCullagh and J. Kolassa, Cumulants, Scholarpedia, 4 (2009), p. 4699.
[41] E. Moulines and J.-F. Cardoso, Second-order versus fourth-order MUSIC algorithms: an

asymptotical statistical analysis, in Proc. IEEE Signal Processing Workshop on Higher-
Order Statistics, Chamrousse, France, June, 1991.

[42] J.-F. Muzy, D. Sornette, J. Delour, and A. Arneodo, Multifractal returns and hierar-
chical portfolio theory, Quantitative Finance, 1 (2001), pp. 131–148.

[43] B. Ozga-Zielinski, M. Ciupak, J. Adamowski, B. Khalil, and J. Malard, Snow-melt
flood frequency analysis by means of copula based 2D probability distributions for the Narew
River in Poland, Journal of Hydrology: Regional Studies, 6 (2016), pp. 26–51.

[44] P. Pal and P. Vaidyanathan, Multiple level nested array: An efficient geometry for 2q-th
order cumulant based array processing, IEEE Transactions on Signal Processing, 60 (2012),
pp. 1253–1269.

[45] B. Porat and B. Friedlander, Direction finding algorithms based on high-order statistics,
IEEE Transactions on Signal Processing, 39 (1991), pp. 2016–2024.

[46] D.-B. Pougaza, A. Mohammad-Djafari, and J.-F. Bercher, Using the notion of copula
in tomography, arXiv:0812.1316, (2008).

[47] G.-C. Rota and B. D. Taylor, The classical umbral calculus, SIAM Journal on Mathematical
Analysis, 25 (1994), pp. 694–711.

[48] M. Rubinstein, E. Jurczenko, and B. Maillet, Multi-moment asset allocation and pricing
models, vol. 399, John Wiley & Sons, 2006.

https://doi.org/10.5281/zenodo.1185137
https://doi.org/10.5281/zenodo.1185137
https://doi.org/10.5281/zenodo.996222
https://doi.org/10.5281/zenodo.996222

22 KRZYSZTOF DOMINO, PIOTR GAWRON, ŁUKASZ PAWELA

[49] M. D. Schatz, T. M. Low, R. A. van de Geijn, and T. G. Kolda, Exploiting symmetry
in tensors for high performance: Multiplication with symmetric tensors, SIAM Journal on
Scientific Computing, 36 (2014), pp. C453–C479.

[50] R. J. Scherrer, A. A. Berlind, Q. Mao, and C. K. McBride, From finance to cosmology:
The copula of large-scale structure, The Astrophysical Journal Letters, 708 (2009), p. L9.

	1 Introduction
	1.1 Motivation
	1.2 Normally and non-normally distributed data
	1.3 Basic definitions

	2 Moment tensor calculation
	2.1 Storage of super-symmetric tensors in block structures
	2.2 The algorithm
	2.3 Parallel computation of moment tensor

	3 Calculation of cumulant tensors
	3.1 Index partitions and permutations
	3.2 Cumulant calculation formula
	3.3 Algorithms to compute cumulant tensors

	4 Implementation
	5 Performance analysis
	5.1 Theoretical analysis
	5.2 Implementation performance
	5.2.1 The optimal size of blocks
	5.2.2 Comparison with naïve algorithms
	5.2.3 Multiprocessing performance

	5.3 Comparison with the state of the art

	6 Conclusions
	Appendix A. The estimation error of high order statistics
	Appendix B. The recurrence formula for cumulant calculations
	Acknowledgements
	References

