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Abstract. A new second-order method for approximating the compressible Euler equations is
introduced. The method preserves all the known invariant domains of the Euler system: positivity
of the density, positivity of the internal energy and the local minimum principle on the specific
entropy. The technique combines a first-order, invariant domain preserving, Guaranteed Maximum
Speed method using a Graph Viscosity (GMS-GV1) with an invariant domain violating, but entropy
consistent, high-order method. Invariant domain preserving auxiliary states, naturally produced by
the GMS-GV1 method, are used to define local bounds for the high-order method which is then made
invariant domain preserving via a convex limiting process. Numerical tests confirm the second-order
accuracy of the new GMS-GV2 method in the maximum norm, where 2 stands for second-order. The
proposed convex limiting is generic and can be applied to other approximation techniques and other
hyperbolic systems.
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1. Introduction. The objective of the present work is to present an approxima-
tion technique for the compressible Euler equations that is explicit in time, second-
order accurate in space and time, and invariant domain preserving. The method is
presented in the context of continuous finite elements, but it is quite general and
can be applied to other discretization settings like discontinuous Galerkin and fi-
nite volume techniques. Like in many other high-order approximation methods, the
proposed technique consists of combining a first-order, invariant domain preserving,
and entropy satisfying approximation with a high-order entropy consistent approxi-
mation. The high-order method is made invariant domain preserving and formally
entropy compliant by adapting the artificial viscosity through a limitation process.
One key novelty is that the density, the internal energy and the specific entropy are
limited by using bounds that are in the domain of dependence of the local data. An-
other novelty is that the limiting bounds are local for all the quantities, and these
bounds are naturally satisfied by the low-order solution.

The so-called Flux Transport Corrected method (FCT) introduced in Boris and
Book [4] for approximating the one-dimensional mass conservation equation and later
generalized to multi dimensions in Zalesak [45] are among the first successful tech-
niques to produce second-accuracy while imposing pointwise bounds such as positiv-
ity of the density. This methodology can be used to preserve the maximum principle
for any scalar conservation equation. We refer the reader to Kuzmin and Turek
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[28], Kuzmin et al. [29] for reviews on FCT. Unfortunately, the FCT algorithm, as
proposed in the above references, is not well suited to enforce constraints that are
not affine. For instance it cannot be (easily) applied to guarantee the positivity of
the specific internal energy and the minimum principle on the specific entropy since
these are quasiconcave constraints. (The said constraints can be made concave by
multiplication by the density as it is shown in §4.) In the context of finite volumes,
efficient second-order limitation techniques for the specific internal energy and the
specific entropy have been first proposed in Khobalatte and Perthame [25], Perthame
and Qiu [35], and Perthame and Shu [36]. These ideas have been extended to Dis-
continuous Galerkin framework in a series of papers by Zhang and Shu [47, 48], Jiang
and Liu [24]. The key argument that is common to [25, 36, 35] is to rely on convex
combinations and concavity. In the present paper we are going to build on these ideas
and propose a general FCT-like post-processing methodology to enforce general con-
cave constraints for the Euler equations. Instead of limiting slopes or reconstructed
approximations, we adopt an algebraic point of view similar to FCT. The method is
presented in the context of continuous finite elements, but since it is algebraic, it can
be applied to finite volumes and discontinuous Galerkin approximation techniques as
well.

The paper is organized as follows. The problem is formulated in §2. The finite
element setting and the notation are also introduced in this section. The time and
space approximation using continuous finite elements is described in §3. Both the
first-order, invariant domain preserving, entropy satisfying method and the high-order
invariant domain violating method are detailed in this section. The bulk of the novel
material is reported in §4. The main results of this section are the local bounds given
in (4.1)–(4.4) together with Lemma 4.3 and Lemma 4.4. The performance of the
proposed method is illustrated in §5.

2. Preliminaries. We introduce in this section the Euler equations and the
finite element setting. Some important properties of the Euler equations that are
used later in the paper are also recalled. The reader who is familiar with the Euler
equations, invariant domains, and the finite element theory is invited to jump to §3.

2.1. The Euler equations. Let d be the space dimension and D be an open
polyhedral domain in Rd. We consider the compressible Euler equations in conserva-
tive form in Rd:

∂tρ+∇·m = 0,(2.1a)

∂tm+∇·(v ⊗m) +∇p = 0,(2.1b)

∂tE +∇·(v(E + p)) = 0,(2.1c)

ρ(x, 0) = ρ0, m(x, 0) = m0, E(x, 0) = E0.(2.1d)

The independent variables are (x, t) ∈ D×R+. The dependent variables, henceforth
called conservative variables, are the density, ρ, the momentum, m and the total
energy, E. The quantity v := ρ−1m is the velocity of the fluid particles. The
pressure, p, is given by the equation of state which we assume to be derived from
a specific entropy, s : R+×R+ → R, defined through the thermodynamics identity:
T ds := de − pρ−2 dρ, where e := ρ−1E − 1

2v
2 is the specific internal energy. For

instance it is common to take s(ρ, e) − s0 = log(e
1

γ−1 ρ−1) for a polytropic ideal
gas. Using the notation se(ρ, e) := ∂s

∂e (ρ, e) and sρ(ρ, e) := ∂s
∂ρ (ρ, e), the equation of

state then takes the form p := −ρ2sρs
−1
e . To simplify the notation we introduce the
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conservative variable u := (ρ,m, E)T ∈ Rd+2 and the flux f(u) := (m,v ⊗m +
pI,v(E + p))T ∈ Rm×(d+2), where I is the d×d identity matrix. To avoid an abuse of
notation and ambiguities, we introduce

(2.2) Φ(u) := s(ρ, e(u)),

where e(u) := ρ−1E − m2

2ρ , m2 := ‖m‖2`2 and ‖ · ‖`2 is the Euclidean norm, i.e., Φ is
the specific entropy expressed as a function of the conservative variables. Finally, we
call internal energy the quantity ε := ρe = E − 1

2ρv
2.

The convention adopted in this paper is that for any vectors a, b, with en-
tries {ak}k=1,...,d, {bk}k=1,...,d, the following holds: (a ⊗ b)kl = akbl and ∇·a =∑
k=1,...,d ∂xkak, (∇a)kl = ∂xlak. a·∇ =

∑
k=1,...,d ak∂xk . Moreover, for any second-

order tensor g, with entries {gkl}k,l=1,...,d, we define (∇·g)k =
∑
l=1,...,d ∂xlgkl,

(ga)k =
∑
l=1,...,d gklal, (aT

g)l =
∑
l=1,...,d akgkl.

To avoid technicalities regarding boundary conditions, we assume that either
periodic boundary conditions are enforced, or the initial data is compactly supported
and in that case we are interested in the solution before the domain of influence
of (ρ0,m0, E0) reaches the boundary of D, i.e., homogeneous Dirichlet boundary
conditions are enforced. (Some details are given in §5.7 on how to deal with realistic
boundary conditions.)

2.2. Intrinsic properties. The well-posedness of (2.1) is an extremely difficult
question that is far beyond the scope of the present paper. But to make sense of the
approximation techniques to be presented in the rest of the paper we are going to
rely on the notion of solution of one-dimensional Riemann problems which is more
tractable. For any unit vector n ∈ Rd, we consider the following Riemann problem:

(2.3) ∂tu+ ∂x(f(u)·n) = 0, (x, t) ∈ R×R+, u(x, 0) =

{
uL, if x < 0

uR, if x > 0,

and assume that there exists a so-called admissible set A such that, for any pair
of states (uL,uR) ∈ A×A, this problem has a unique physical (entropy) solution
henceforth denoted by u(n,uL,uR)(x, t). This assumption holds true, at least for
the covolume equation of state, with A := {u | ρ > 0, e > 0}, and we refer the reader
to Godlewski and Raviart [8, Thm. II.3.1] for a similar statement with more general
equations of states. We now introduce notions of invariant sets and invariant domains.
(Our definition is slightly different from those in Chueh et al. [6], Hoff [21], Frid [7].)

Definition 2.1 (Invariant set). We say that a set B ⊂ A ⊂ Rm is invariant
for (2.1) if for any pair (uL,uR) ∈ B×B, any unit vector n ∈ Rd, and any t > 0,
the space average over the Riemann fan of the entropy solution u(n,uL,uR)(x, t)
remains in B for all t > 0.

We are also going to make use of the notion of invariant domain for an approximation
process. Let Xh ⊂ L1(Rd;Rm) be a finite-dimensional approximation space and let
Sh : Xh 3 uh 7−→ Sh(uh) ∈ Xh be a mapping over Xh. (Think of Sh as being a
one-time-step approximation of (2.1).) Henceforth we abuse the language by saying
that a member of Xh, say uh, is in the set B ⊂ Rm when actually we mean that
{uh(x) | x ∈ Rd} ⊂ B.

Definition 2.2 (Invariant domain). A convex invariant set B ⊂ A ⊂ Rm is
said to be an invariant domain for the mapping Sh if and only if for any state uh in
B, the state Sh(uh) is also in B.
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It is known that the set

(2.4) Asmin := {(ρ,m, E) | ρ > 0, e > 0, s ≥ smin}

is invariant for the Euler system for any smin ∈ R. It is also established in Serre
[38, Thm. 8.2.2] that the set Asmin is convex, and it is shown in Frid [7, Thm. 7 and
8] that it is an invariant domain for the Lax-Friedrichs scheme. The finite element
method introduced in Guermond and Popov [11] also satisfies this invariant domain
property; this finite element construction is recalled in §3.1. It is generally admitted
in the literature that physical solutions to (2.1) should satisfy entropy inequalities.
More specifically, let f : R→ R be twice differentiable and be such that

(2.5) f ′(s) > 0, f ′(s)c−1
p − f ′′(s) > 0, ∀(ρ, e) ∈ R2

+,

where cp(ρ, e) = T∂T s(p, T ) is the specific heat at constant pressure. It is shown
in Harten et al. [19, Thm. 2.1] that ρf(s) is strictly concave with respect to the
conservative variables if and only if (2.5) holds, i.e., A 3 u 7→ ρf(Φ(u)) is convex.
Note that the so-called physical entropy S(u) := ρs is obtained by setting f(s) = s.
We say that a weak solution to (2.1) is an entropy solution if it satisfies the following
inequality in the weak sense for every generalized entropy:

(2.6) ∂t(ρf(s)) +∇·(mf(s)) ≥ 0.

In particular it is known (at least for γ-law equation of state) that the entropy solution
to the Riemann problem (2.3) satisfy (2.6). Both the Lax-Friedrichs scheme and the
finite element method introduced in [11] satisfy a discrete version of (2.6) for every
generalized entropy.

The objective of the present work is to construct an explicit, second-order con-
tinuous finite element method that is consistent with (2.6) and for which Asmin is an
invariant domain.

2.3. Finite element setting. We are going to approximate the solution of (2.1)
with continuous Lagrange finite elements. We introduce for this purpose a shape-
regular sequence of matching meshes (Th)h>0 and assume that the elements in each

mesh are generated from a small collection of reference elements denoted K̂1, . . . , K̂$.
In two space dimensions for instance, the mesh Th could be composed of a combination
of parallelograms and triangles (i.e., $ = 2). In three space dimensions, Th could also
be composed of a combination of triangular prisms, parallelepipeds, and tetrahedra
($ = 3). Given K ∈ Th, the geometric transformation mapping K̂r to K ∈ Th
is denoted TK : K̂r −→ K. We are going to construct the approximation space by
using some reference Lagrange finite elements {(K̂r, P̂r, Σ̂r)}1≤r≤$, where the objects

(K̂r, P̂r, Σ̂r) are Ciarlet triples (we omit the index r ∈ {1:$} in the rest of the paper

to simplify the notation). Given a reference Lagrange element (K̂, P̂ , Σ̂), we denote by

{x̂l}l∈L the reference Lagrange nodes and by {θ̂l}l∈L the reference shape functions,

i.e., card(L) = dim(P̂ ) =: nsh (note that the index r has been omitted). P̂ is the

reference approximation space (usually a scalar-valued polynomial space) and Σ̂ is
the set of the Lagrange degrees of freedom. Let Pl,d be the vector space composed
of the d-variate polynomials of degree at most l. We henceforth assume that there
is k ≥ 1 such that Pk,d ⊂ P̂ . The reference degrees of freedom {σ̂l}l∈L are such that

σ̂l(p̂) = p̂(x̂l) for all l ∈ L and all p̂ ∈ P̂ . By definition θ̂l(x̂l′) = δll′ , for all l.l′ ∈ L,

which is turn implies the partition of unity property:
∑
l∈L θ̂l(x̂) = 1, for all x̂ ∈ K̂.
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Setting {ŵl :=
∫
K̂
θl dx}l∈L, the following quadrature is (k + 1)-th order accurate

since it is exact for all p̂ ∈ P̂ :
∫
K̂
p̂(x̂) dx̂ =

∑
l∈L p̂(x̂l)ŵl. We henceforth assume

that

(2.7)

∫
K̂

θ̂l dx̂ =: ŵl > 0, l ∈ L.

There are numerous reference finite elements satisfying (2.7). For instance all the
elements based on Qk,d polynomials using tensor product of Gauss-Lobatto points on
quadrangles or hexahedra satisfy (2.7). The question is slightly more delicate for Pk,d
polynomials on simplices, but one can use Fekete points (see Taylor et al. [40]) or
various variations thereof for k ≥ 3 (see Hesthaven [20], Warburton [43]). Note that
the standard P1,d Lagrange element satisfies (2.7) but P2,d does not for d ≥ 2.

We now introduce approximation spaces constructed as usual by using the pull-
back by the geometric transformation. More precisely we define the following scalar-
valued and vector-valued finite element spaces:

P (Th) = {v ∈ C0(D;R) | v|K◦TK ∈ P̂ , ∀K ∈ Th}, P (Th) = [P (Th)]d+2.(2.8)

The global shape functions in P (Th), which we recall form a basis of P (Th), are
denoted by {ϕi}i∈I , i.e., card(I) = dim(P (Th)). The global Lagrange nodes are
denoted {xi}i∈I . Upon introducing the connectivity array j : Th×L −→ I, we have

ϕj(l,K)(x) = θ̂l((TK)−1(x)), and xj(K,l) = TK(x̂l), for all l ∈ L and all K ∈ Th. This
implies that ϕi(xj) = δij . The local partition of unity property implies that∑

i∈I
ϕi(x) = 1, ∀x ∈ D.(2.9)

Upon defining mi :=
∫
D
ϕi(x) dx, the above definitions imply that the following

quadrature is (k+1)-th order accurate
∫
D
v(x) dx =

∑
i∈Imiv(xi) since it is exact for

all v ∈ P (Th). The matrix with entries
∫
D
ϕi(x)ϕj(x) dx is called the consistent mass

matrix and denoted by M ∈ RI×I . Using the above quadrature and the property
ϕi(xj) = δij , the integral

∫
D
ϕi(x)ϕj(x) dx can be approximated by mi. Note that

(2.9) implies that
∑
j∈Imij = mi. We henceforth denote byML the diagonal matrix

with entries (mi)i∈I and refer to ML as the lumped mass matrix. Note that (2.7)
implies that mi > 0 for all i ∈ I.

We denote by Di the support of ϕi. Let E be a union of cells in Th; we define
I(E) to be the set containing the indices of all the shape functions whose support on
E is of nonzero measure. The sets I(K) and I(Di) will be invoked regularly; note
in particular that the partition of unity can be rewritten

∑
i∈I(K) ϕi(x) = 1 for all

x ∈ K.
Upon denoting by ‖ · ‖`2 the Euclidean norm in Rd, we introduce the following

two quantities which will play an important in the rest of paper:

(2.10) cij :=

∫
D

ϕi∇ϕj dx, nij :=
cij
‖cij‖`2

i, j ∈ I.

Note that (2.9) implies
∑
j∈{1:I} cij = 0. Furthermore, if either ϕi or ϕj is zero on

∂D, then cij = −cji. In particular we have
∑
i∈{1:I} cij = 0 if ϕj is zero on ∂D.

This property will be used to establish conservation.
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3. Time and space approximation. We describe in this section the first-order
technique and the higher-order technique that will be used to construct the second-
order invariant domain preserving and entropy compliant method which is the object
of the present paper. The discussion is restricted to the forward Euler time stepping
since higher-order accuracy in time is trivially achieved by using Strong Stability
Preserving Runge-Kutta time stepping. All the numerical tests reported in §5 are
done with the SSP RK(3,3) method (three stages, third-order), see Shu and Osher
[39, Eq. (2.18)] and Kraaijevanger [26, Thm. 9.4].

3.1. Low-order approximation (GMS-GV1). The low-order method that
we are going to use is fully described in [11] and is henceforth referred to as GMS-
GV1 for Guaranteed Maximum Speed method with first-order Graph Viscosity. Let
u0
h =

∑I
i=1 U

0
iϕi ∈ P (Th) be a reasonable approximation of the initial data u0. Let τ

be the time step, tn be the current time, and let us set tn+1 = tn + τ for some n ∈ N.

Letting unh =
∑I
i∈I U

n
i ϕi be the space approximation of u at time tn, we estimate

the low-order approximation uL,n+1
h =

∑
i∈I U

L,n+1
i ϕi by setting

(3.1)
mi

τ
(UL,n+1

i −Uni ) +
∑

j∈I(Di)

f(Unj )·cij − dL,nij (Unj −Uni ) = 0.

The graph viscosity coefficients dL,nij are defined for all i 6= j ∈ I by

(3.2) dL,nij := max(λmax(nij ,U
n
i ,U

n
j )‖cij‖`2 , λmax(nji,U

n
j ,U

n
i )‖cji‖`2),

where λmax(n,UL,UR) is the maximum wave speed in the Riemann problem:

(3.3) ∂tw + ∂xf
1D(w) = 0,

with data wL := (ρL,mL, EL)T, wR := (ρR,mR, ER)T, where m := m·n, v := m/ρ,

m⊥ := m−(m·n)n, E := E− 1
2

‖m⊥‖2
`2

ρ , and flux f1D(w) := (m, vm+p, v(E+p))T. A

guaranteed upper bound on λmax(n,UL,UR) is given in [11, Rem. 2.8] and Guermond
and Popov [12, Appendix C] for the covolume equation of state p(1− bρ) = (γ−1)eρ,
with b ≥ 0; the case b = 0 corresponds to an ideal gas. Let vL := mL·n/ρL,
vR := mR·n/ρR be the left and right speed and let cL, cR the left and right speed of
sound. We recall in passing that the widely used estimate max(|vL| + cL, |vR| + cR)
is not a a guaranteed upper bound of λmax(n,UL,UR). For the reader’s convenience,
we now recall the upper bound proposed in Guermond and Popov [12]. The definition
of the maximum speed λmax(n,UL,UR) = λmax(wL,wR) is as follows:

(3.4) λmax(wL,wR) = max((λ−1 )−, (λ
+
3 )+),

where λ−1 and λ+
3 are the two extreme wave speeds enclosing the Riemann fan of the

one-dimensional problem (3.3); these two extreme wave speeds are given by

λ−1 (p∗) = vL − cL

(
1 +

γ + 1

2γ

(
p∗ − pL
pL

)
+

) 1
2

,(3.5)

λ+
3 (p∗) = vR + cR

(
1 +

γ + 1

2γ

(
p∗ − pR
pR

)
+

) 1
2

,(3.6)
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where the intermediate pressure p∗ is obtained by solving a nonlinear problem. Here
we use the notation z+ := max(0, z) and we recall that the local sound speed for the

covolume gas is c =
√

γp
ρ(1−bρ) . Note that the exact value of value of λmax(wL,wR)(p∗)

is a monotone increasing function of p∗. Therefore, instead of computing the exact
pressure p∗ which requires an iterative process, one can use an explicit upper bound
p̃∗ ≥ p∗. Then, a guaranteed upper bound on λmax(wL,wR)(p∗) is λmax(wL,wR)(p̃∗).
One such upper bound valid for 1 < γ ≤ 5

3 is established in Guermond and Popov
[12, Lem. 4.3] and the value of p̃∗ in question is given by the so-called two-rarefaction
approximation:

(3.7) p̃∗ =

cL(1− bρL) + cR(1− bρR)− γ−1
2 (vR − vL)

cL(1− bρL) p
− γ−1

2γ

L + cR(1− bρR) p
− γ−1

2γ

R


2γ
γ−1

.

Remark 3.1 (Graph Viscosity). Note that the expression −dL,nij (Unj −Uni ) in (3.1)

is called weighted Graph Laplacian in graph theory. We call the weights dL,nij Graph
Viscosity (or artificial viscosity). �

Remark 3.2 (Other discretizations). Note that the expression (3.1) that is used
to compute the update Un+1

i is quite generic; many other discretizations of the Euler
equations can be put in this abstract form. The notion of continuous finite element
only intervenes in the definition of the vectors cij , the index set I(Di), and the lumped
mass matrix coefficients mi. Other discretizations lead to other forms for cij , I(Di),
and mi. Almost everything that is said in the rest of the paper can be applied to
these discretizations as well. �

3.2. The intermediate limiting states. We now deduce from (3.1) interme-
diate local states that will be useful to limit the yet to be defined high-order solution.
Using that

∑
j∈I(Di)

cij = 0, we rewrite (3.1) as follows:

mi

τ
UL,n+1
i = Uni

(mi

τ
−
∑

i 6=j∈I(Di)

2dL,nij

)
+

∑
i 6=j∈I(Di)

(f(Uni )−f(Unj ))·cij + dL,nij (Unj + Uni ).

Then, upon introducing the quantities

U
n+1

ij :=
1

2
(Uni + Unj )− (f(Unj )− f(Uni )) · cij

2dL,nij
,(3.8)

with the the convention U
n+1

ii = Uni , and the notation U
n+1

ij = (ρn+1
ij ,mn+1

ij , E
n+1

ij )T

the low-order update UL,n+1
i , can be represented as a convex combination as follows:

UL,n+1
i =

(
1−

∑
i 6=j∈I(Di)

2τdL,nij
mi

)
U
n

ii +
∑

i 6=j∈I(Di)

(
2τdL,nij
mi

)
U
n+1

ij ,(3.9)

under the appropriate CFL condition. Lemma 2.1 from [12], inspired by Perthame and
Shu [36, §5] and Nessyahu and Tadmor [34, Eq. (2.7)], is that the intermediate state

U
n+1

ij is a space average of the Riemann solution u(nij ,U
n
i ,U

n
j ); that is to say, U

n+1

ij =∫ 1
2

− 1
2

u(nij ,U
n
i ,U

n
j )(x, t) dx with t := ‖cij‖`2/(2dL,nij ) provided tλmax(nij ,U

n
i ,U

n
j ) ≤

1
2 . (Let us emphasize tat the time t is related to the Riemann problem (3.3), this time
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has noting to do with that of the PDE (2.1).) Note that the definition of the low-
order graph viscosity (3.2) does imply that tλmax(nij ,U

n
i ,U

n
j ) ≤ 1

2 . An immediate

consequence of this structure is that U
n+1

ij has positive density, positive internal energy

and satisfies the following minimum principle on the specific entropy: Φ(U
n+1

ij ) ≥
min(Φ(Uni ),Φ(Unj )). Upon denoting dL,nii := −

∑
i6=j∈I(Di)

dL,nij for brevity, another
consequence of the above observation is the following result.

Theorem 3.3 (Local invariance/entropy inequality). Let i ∈ I. Assume (2.7)

and 1 + 2τ
dL,nii

mi
≥ 0. (i) Let smin

i = minj∈I(Di) Φ(Unj ), then UL,n+1
i ∈ Asmin

i
. (ii) Let

(η := ρf(Φ), q := mf(Φ)) be a generalized entropy pair for (2.1). Then the following
local entropy inequality holds:

mi

τ
(η(UL,n+1

i )− η(Uni )) +

∫
D

∇·
( ∑
j∈I(Di)

q(Unj )ϕj

)
ϕi dx

−
∑

j∈I(Di)

dL,nij
(
η(Unj )− η(Unj )

)
≥ 0.

A practical interpretation of item (i) is that the low-order solution UL,n+1
i has

positive density, positive internal energy and satisfies the local minimum principle on
the specific entropy. Item (ii) shows that this solution is also entropy satisfying in
some discrete sense. This result is proved in [11, Thm. 4.7] in a more general set-
ting for any hyperbolic system with a convex entropy. Note that in mathematical
papers the entropies are generally assumed to be convex whereas the physical gener-
alized entropies ρf(Φ) are concave (this is just a matter of sign convention). Hence,
Theorem 4.7 in [11] can be applied with −ρf(Φ).

3.3. Smoothness-based approximation. In this section and the following one
we introduce high-order approximation techniques that will provide us with a provi-
sional high-order solution UH,n+1

j . The method presented in this section is easy to
implement but is inherently only second-order accurate in space.

We introduce a technique to reduce the graph viscosity that is based on a measure
of the local smoothness of the solution in the spirit of the finite volume literature (see
e.g., Jameson et al. [23, Eq. (12)] and see the second formula in the right column of
page 1490 in Jameson [22]). Given a scalar-valued function g and its finite element

interpolant gh =
∑

Giϕi, and denoting εi = εmaxj∈I(Di) Gj where ε = 10−
16
2 in

double precision arithmetic, we define the smoothness indicator

(3.10) αi(gh) :=

∣∣∣∑j∈I(Si)
βij(Gj − Gi)

∣∣∣
max(

∑
j∈I(Si)

βij |Gj − Gi|, εi)
,

where the real numbers βij are assumed to be positive. One can use the parameters
βij to make αi = 0 if gh is linear on the support of the shape function ϕi, this property
is called linearity-preserving (see Berger et al. [3] for a review on linearity-preserving
limiters in the finite volume literature). Note that αi ∈ [0, 1] for all i ∈ {1:I} and αi =
1 if Gi is a local extrema of gh. Moreover, if the coefficients βij are defined so that αi =
0 if gh is linear on Si, then the numerator of (3.10) behaves like h2‖D2g(ξ)‖`2(Rd×d)

at some point ξ, whereas the denominator behaves like h‖∇g(ζ)‖`2(Rd) at some point
ζ. Therefore, we have αi ≈ h‖D2g(ξ)‖`2(Rd×d)/‖∇g(ζ)‖`2(Rd), that is to say αi is of
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order h in the regions where g is smooth and does not have a local extremum. In the
computations reported at the end of the paper we have taken βij = 1.

One choice for g that we consider in some numerical tests reported at the end of
the paper consists using g(u) = ρΦ(u) = S(u), which is the mathematical entropy
(up to a sign). Other options consists of using generalized entropies of the Euler
equations, g(u) = ρf(Φ(u)). In particular, taking f(s) = 1, gives g(u) = ρ, which is
an extreme case of generalized entropy; it is extreme in the sense that −g(u) is convex
but not strictly convex. Note in passing that it is shown in Guermond and Popov
[14] that using g(u) = ρ guarantees positivity of the density. Another option, which
is somewhat similar to Jameson et al. [23, Eq. (12)], Jameson [22, p. 1490], consists

of taking g(u) = p. Note however that it might be better to take p
1
γ to be entropy

consistent, since p
1
γ is an extreme generalized entropy for polytropic gas as shown in

Harten [17, Eq. (2.10a)]. Let us emphasize that strict convexity of the entropy is not
needed for the purpose of the present paper.

Let ψ ∈ C0,1([0, 1]; [0, 1]) be any positive function such that ψ(1) = 1. The
high-order smoothness-based graph viscosity is defined by setting

(3.11) dH,nij := dL,nij max(ψ(αni ), ψ(αnj )), dH,nii := −
∑

i 6=j∈I(Di)

dH,nij ,

where αni := αi(g
n
h). A typical choice for ψ consists of setting ψ(α) = α2. Then the

provisional high-order approximation is computed as follows:

(3.12)
∑

j∈I(Di)

mij

τ
(UH,n+1

j −Unj ) +
∑

j∈I(Di)

f(Unj )·cij − dH,nij (Unj −Uni ) = 0.

Note that we use the consistent mass matrix to reduce dispersion error since it is
known that the use of the consistent mass matrix corrects the dominating dispersion
error (at least for piecewise linear approximation), see Christon et al. [5], Gresho
et al. [9], Guermond and Pasquetti [10], Thompson [41]. The beneficial effects of
the consistent mass matrix are particularly visible when solving problems with non-
smooth solutions, see e.g., [10, Fig. 5.5].

3.4. Entropy viscosity commutator. We now introduce a method that is
formally high-order for any polynomial degree, contrary the one introduced in §3.3.
Our objective is to construct a high-order method that is entropy consistent and
close to be invariant domain preserving. We do not want to rely on the yet to be
explained limiting process to enforce entropy consistency. We refer the reader to
Lemma 3.2, Lemma 4.4 and §6.1 in Guermond and Popov [13] and Guermond and
Popov [11, §5.1] for counter-examples of methods that are invariant domain preserv-
ing but entropy violating. The heuristics we have in mind is that limitation should
be understood as a light polishing applied to a method that is already entropy con-
sistent and almost invariant domain preserving. Following an idea introduced in
Guermond et al. [15, 16], we construct a high-order graph viscosity that is entropy
consistent by estimating a non-dimensional entropy residual. However, contrary to
the techniques introduced in [15, 16], we do not want the time discretization to in-
terfere with the estimation of the residual, and we now propose a slightly different
approach. Given the current approximation unh, we estimate the next inviscid ap-

proximation by setting UG,n+1
i := Uni − τ

mi

∑
j∈I(Di)

f(Unj )cij . Essentially UG,n+1
i

is the Galerkin approximation of u(tn+1). Let (η(v),F (v)) be an entropy pair for
(2.1). We estimate the entropy residual for the degree of freedom i by computing
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mi
τ (UG,n+1

i − Uni )·η′(Uni ) +
∑
j∈I(Di)

F (Unj )cij . But using the definition of UG,n+1
i ,

this is equivalent to computing
∑
j∈I(Di)

(F (Unj )−η′(Uni )Tf(Unj ))cij . Then, upon set-

ting ηmin
i := minj∈I(Di) η(Unj ), ηmax

i := maxj∈I(Di) η(Unj ), εi := εmax(|ηmax
i |, |ηmin

i |),
we adopt the following definition

(3.13) Rni =
1

max(ηmax
i − ηmin

i , εi)

∑
j∈I(Di)

(F (Unj )− η′(Uni )Tf(Unj ))·cij ,

where ε a tiny number that avoids division by zero when the entropy is constant over
Di. In practice we take ε = 10−

16
2 in double precision arithmetic. Note that Rni can

be interpreted as a commutator. More specifically Rni can be rewritten as follows
1

max(ηmax
i −ηmin

i ,εi)

∫
D

(∇·(ΠhF (unh)) − η′(Uni )T∇·(Πh(f(unh))))ϕi dx where, up to two

slight abuses of notation, Πh : C0(D)→ P (Th) is the Lagrange interpolation operator.
Note in passing that Rni = 0 in the hypothetical case that η : Rd+2 → R is linear.

The high-order graph viscosity (or entropy viscosity, EV) is defined by

(3.14) dH,nij = min(dL,nij ,max(|Rni |, |Rnj |)), dH,nii := −
∑

i 6=j∈I(Di)

dH,nij ,

and the provisional high-order approximation is computed as follows:

(3.15)
∑

j∈I(Di)

mij

τ
(UH,n+1

j −Unj ) +
∑

j∈I(Di)

f(Unj )·cij − dH,nij (Unj −Uni ) = 0.

Note again that we use the consistent mass matrix to reduce dispersion errors as
explained in §3.3 .

Remark 3.4 (Scaling of Rni ). Let us now convince ourselves that Rni is at least

one order smaller (in term of mesh size) than dL,nij . Let use denote F ′′max and f ′′max

the maximum over the convex hull conv(Unj )j∈I(Di) of the matrix norm (say the

norm induced by the Euclidean norm in Rd+2) of the Hessians D2F and D2f . Then,
denoting by Nn

i the numerator in (3.13), and recalling that DF (U) = η′(U)TDf(U),
we have

‖Nn
i ‖`2 = ‖

∑
j∈I(Di)

(F (Unj )− F (Uni )− η′(Uni )T(f(Unj )− f(Uni )·cij‖`2

≤ 1

2
(F ′′max + η′(Uni )f ′′max) max

j∈I(Di)
‖cij‖`2

∑
j∈I(Di)

‖Unj −Uni ‖2`2 .

Assuming that η′ is not zero over Di and denoting by η′min the minimum of ‖η′‖`2
over conv(Unj )j∈I(Di), the quantity η′min

∑
j∈I(Di)

‖Unj − Uni ‖`2 is a lower bound for

the denominator in (3.13). The conclusion follows readily. �

Remark 3.5 (Choice of high-order graph viscosity). One advantage we see in the
entropy viscosity (3.14) over the smoothness-based viscosity (3.11) is that, in addition
to being consistent for any polynomial degree, it is also consistent with at least one
entropy inequality. That is to say the viscosity is large when the entropy production
is large and it is small otherwise. In any case, we have observed that (3.14) always
gives a scheme that is more robust than (3.11) albeit being slightly more oscillatory.
We refer the reader to Guermond and Popov [13, §6.5] where this issue is discussed
in detail. �
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Remark 3.6 (Entropy). We have found in our numerical experiments that using

p
1
γ for polytropic gases is a very good choice to construct the entropy residual since

it minimizes dissipation across contact discontinuities. Recall that p
1
γ is indeed an

entropy in the case of polytropic gases. All the numerical tests reported at the end of
the paper are done with this entropy. �

Remark 3.7 (Entropy ansatz). In realistic applications the equation of state is
often tabulated and the entropy Φ(U) may be either unavailable or costly to estimate.
We have found that the pressure may be used as an ansatz for the entropy; one can
then replace (3.13) by Rni = 1

max(Pmax
i −Pmin

i ,εi)

∑
j∈I(Di)

Vni ·cij(Pnj − DPni ·U
n
j ) with

εi = εmax(|Pmax
i |, |Pmin

i |). �

4. Quasiconcavity-based limitation. In this section we discuss the bounds we
want the numerical solution Un+1

i to satisfy, and we develop a novel limiting technique
that is convexity-based and does not invoke arguments like linearization, worst-case
scenario estimates, a posteriori fixes, or auxiliary discontinuous spaces as often done
in the literature. This technique takes its roots in Khobalatte and Perthame [25],
Perthame and Qiu [35], and Perthame and Shu [36]. We also refer to Zhang and Shu
[47, 48], Jiang and Liu [24] for extensions in the context of the Discontinuous Galerkin
approximation.

4.1. Bounds and quasiconcavity. Since the high-order update UH,n+1
i (us-

ing either (3.12) or (3.15)) is not guaranteed to be oscillation free and to preserve
physical bounds, some form of limitation must applied. The question is now the fol-
lowing: what should be limited and how? Whichever representation is chosen for
the dependent variable (conservative, primitive, or characteristic variables), the Euler
equations are not known to satisfy any maximum or minimum principle, with the
exception of the minimal principle on the specific entropy. Despite this fundamental
negative result and with varying levels of success, a number of techniques have been
proposed over the years in the finite element literature to enforce some kinds of dis-
crete maximum principles (see for instance Boris and Book [4], Zalesak [45], Löhner
et al. [32], Kuzmin and Möller [27], Zalesak [46], Lohmann and Kuzmin [31]). Some
of these limiting techniques enforce properties that are not necessarily satisfied by the
Euler equations, or in the best case scenario, satisfied by the first-order method of
choice (usually a Lax-Friedrichs-like first-order scheme).

In the present paper, we take a different point of view. In addition to the local
minimum principle on the specific entropy, the strategy that we propose consists of
enforcing bounds that are naturally satisfied by the low-order solution. More precisely,
let us set

ρmin
i := min

j∈I(Di)
(ρn+1
ij , ρnj ), ρmax

i := max
j∈I(Di)

(ρn+1
ij , ρnj ),(4.1)

Emin
i := min

j∈I(Di)
(E

n+1

ij , Enj ), Emax
i := max

j∈I(Di)
(E

n+1

ij , Enj ),(4.2)

smin
i := min

j∈I(Di)
Φ(Unj ).(4.3)

We have already established in §3.2 that ρmin
i ≤ ρL,n+1

i ≤ ρmax
i , Emin

i ≤ EL,n+1
j ≤

Emax
i and smin

i ≤ Φ(UL,n+1
i ). In the next section we are going to modify the graph

viscosity so that the resulting high-order update Un+1
i satisfies ρmin

i ≤ ρn+1
i ≤ ρmax

i

and smin
i ≤ Φ(Un+1

i ) (and possibly Emin
i ≤ En+1

j ≤ Emax
i if one wishes).
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In general, the equation for the specific entropy may not be explicitly available
and therefore limiting the specific entropy may not be possible. An alternative strat-
egy consists of limiting the internal energy ρe. Using the Frechet derivative notation, a
straightforward computation shows that D2(ρe(u))((%,p, a), (%,p, a)) = − 1

ρ (%ρm−p)2

for all directions (%,p, a)T ∈ Rd+2 and all points u = (ρ,m, E)T ∈ Rd+2, thereby
showing that the internal energy is concave with respect to the conservative vari-
ables irrespective of the equation of state. Hence, the concavity of (ρe) along with

the convex combination (3.9) implies that the low-order solution UL,n+1
i satisfies the

following discrete minimum principle

(4.4) (ρe)(UL,n+1
i ) ≥ εmin

i := min
(

min
j∈I(Di)

(ρe)(Unj ), min
j∈I(Di)

(ρe)(U
n+1

ij )
)
.

In order to unify into one single framework all the bounds that we want to enforce,
we are going to rely on the notion of quasiconcavity, which definition we now recall.

Definition 4.1 (Quasiconcavity). Given a convex set A ⊂ Rm, we say that a
function Ψ : A → R is quasiconcave if every upper level set of Ψ is convex; that is,
the set Lλ(Ψ) := {U ∈ A | Ψ(U) ≥ λ} is convex for any λ ∈ R in the range of Ψ.

Note in passing that concavity implies quasiconcavity. We are going to use the above
definition in the following three settings: (i) A = Rd+2 and Ψ(U) = ρ − ρmin

i or
Ψ(U) = ρmax

i −ρ. Note that in both cases the upper level sets are half spaces (i.e., these
sets are obviously convex); (ii) A = {U := (ρ,m, E) | ρ > 0} and Ψ(U) = (ρe)− εmin

i .
We have shown above that that (ρe)(U) is concave provided ρ > 0 (the Hessian of
ρe is nonpositive), then it follows that {U := (ρ,m, E) | ρ > 0, e > 0} is convex; (iii)
A = {U := (ρ,m, E) | ρ > 0, e > 0}, Ψ(U) = Φ(U) − smin

i . The quasiconvexity of
Ψ : A → R is proved in Serre [38, Thm. 8.2.2].

Remark 4.2 (Concavity vs. quasiconcavity). Note that the two sets

{(ρ,m, E) | ρ > 0, e > 0, s ≥ r}, {(ρ,m, E) | ρ > 0, ρe > 0, ρ(s− r) ≥ 0}

are identical. In the first case, quasiconcavity is invoked to prove that the upper level
sets are convex, whereas in the second case one just has to rely on concavity since
the three functions ρ, ρe(u), and ρ(Φ(u) − r) are concave. It is easier to impose
concave (or convex) constraints than quasiconcave ones. More precisely: in practice
it is simpler to apply Newton’s method on a concave function than on a quasiconcave
function; in the first case Newton’s method is guaranteed to converge independently
of the initial guess, whereas it may not in the second case. �

4.2. An abstract limiting scheme. Simple linear constraints such as ρmin
i ≤

ρn+1
i ≤ ρmax

i and E
min

i ≤ En+1
j ≤ E

max

i , can be easily enforced by using the Flux
Transport Corrected paradigm of Zalesak [45] (see also Boris and Book [4]). However,
to the best of our knowledge, the Zalezak’s grouping methodology cannot be (easily)
extended to handle general convex constraints like the minimum principle on the
specific entropy without losing second-order accuracy. We introduce in this section a
methodology that does exactly that.

We start as in the FCT methodology by estimating the difference UH,n+1
j −

UL,n+1
j . Subtracting (3.12) (or (3.15)) from (3.1) we obtain that the low-order and

the provisional high-order solutions satisfy the following identity∑
i∈I(Di)

mij(U
H,n+1
j −Unj )− τdH,nij (Unj −Uni ) = mi(U

L,n+1
i −Uni )− τdL,nij (Unj −Uni ).
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This equality is rewritten in the following form better suited for post-processing:

mi(U
H,n+1
j −UL,n+1

j ) =
∑

i∈I(Di)

∆ij(U
H,n+1
j −Unj ) + τ(dH,nij − dL,nij )(Unj −Uni ),

where we have set ∆ij := miδij−mij . The above identity can be rewritten as follows:

(4.5)


mi(U

H,n+1 −UL,n+1) =
∑

j∈I(Di)

An
ij

An
ij := ∆ij

(
UH,n+1
j −Unj − (UH,n+1

i −Uni )
)
− τ(dH,nij − dL,nij )(Unj −Uni ),

where we used
∑
j∈I(Di)

∆ij = 0. Observe that the matrix An is skew-symmetric; the

immediate consequence is that
∑
i∈ImiU

H,n+1
j =

∑
i∈ImiU

L,n+1
j , i.e., the total mass

of the provisional high-order solution is the same at that of the low-order solution.
The next step consists of introducing symmetric limiting parameters `ij = `ji ∈

[0, 1] and estimating `ij so that the new quantity Un+1 = UL,n+1+ 1
mi

∑
j∈I(Di)

`ijA
n
ij

satisfies the expected bounds. Note again that the skew-symmetry of An together
with the symmetry of the limiter implies that

∑
i∈ImiU

n+1
j =

∑
i∈ImiU

L,n+1
j for

any choice of limiter `ij , i.e., the limiting process is conservative. Using the notation
introduced at the end of §4.1, we seek `ij so that Ψ(Un+1) ≥ 0.

We now depart form the FCT algorithm as described in [45] by introducing λj :=
1

card(I(Di))−1 , j ∈ I(Di) \ {i}, and rewriting (4.5) as follows

Un+1
i =

∑
j∈I(Di)\{i}

λj(U
L,n+1
i + `ijPij), with Pij :=

1

miλj
Anij .(4.6)

Note that Un+1
i = UL,n+1

i if `ij = 0 and Un+1
i = UH,n+1

i if `ij = 1. The following
lemma is the driving force of the limiting technique that we propose.

Lemma 4.3. Let Ψ(u) : A → R be a quasiconcave function. Assume that the

limiting parameters `ij ∈ [0, 1] are such that be such that Ψ(UL,n+1
i + `ijPij) ≥ 0,

i 6= j ∈ I(Di), then the following inequality holds true:

Ψ

( ∑
j∈I(Di)\{i}

λj(U
L,n+1
i + `ijPij)

)
≥ 0.

Proof. Let L0 = {U ∈ A | ψ(U) ≥ 0}. By definition all the limited states UL,n+1
i +

`ijPij are in L0 for all i 6= j ∈ I(Di). Since Ψ is quasiconcave, the upper level set L0

is convex. As a result, the convex combination
∑
j∈I(Di)\{i} λj(U

L,n+1
i + `ijPij) is in

L0, i.e., Ψ
(∑

j∈I(Di)\{i} λj(U
L,n+1
i + `ijPij)

)
≥ 0, which concludes the proof.

Lemma 4.4. Let `ij be defined by

(4.7) `ij =

{
1 if Ψ(UL,n+1

i + Pij) ≥ 0

max{` ∈ [0, 1] | Ψ(UL,n+1
i + `Pij) ≥ 0} otherwise,

for every i ∈ I and j ∈ I(Di). The following two statements hold true: (i) Ψ(UL,n+1
i +

`Pij) ≥ 0 for every ` ∈ [0, `ij ]; (ii) In particular, setting `ij = min(`ij , `
j
i ), we have

Ψ(UL,n+1
i + `ijPij) ≥ 0 and `ij = `ji for every i ∈ I and j ∈ I(Di).
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Proof. (i) First, if Ψ(UL,n+1
i +Pij) ≥ 0 we observe that Ψ(UL,n+1

i + `Pij) ≥ 0 for

any ` ∈ [0, 1] because UL,n+1
i ∈ L0(Ψ), UL,n+1

i + Pij ∈ L0(Ψ) and L0(Ψ) is convex.

Second, if Ψ(UL,n+1
i + Pij) < 0, we observe that `ij is uniquely defined and for any

` ∈ [0, `ij ] we have Ψ(UL,n+1
i + `Pij) ≥ 0 because UL,n+1

i ∈ L0(Ψ), UL,n+1
i + `ijPij ∈

L0(Ψ) and L0(Ψ) is convex. (ii) Since `ij = min(`ij , `
j
i ) ≤ `ij , the above construction

implies that Ψ(UL,n+1
i + `ijPij) ≥ 0. Note finally that `ij = min(`ij , `

j
i ) = `ji.

Remark 4.5 (Extension to general hyperbolic systems). Notice that Lemma 4.3
and Lemma 4.4 are not specific to the Euler equations. These results can be used to
limit solutions of arbitrary hyperbolic systems where the invariant domain is described
by quasiconcave constraints. �

4.3. Application to the Euler equations. We explain in this section how to
use Lemma 4.3 and Lemma 4.4 to enforce the quasiconcave constraints described in
§4.1. The algorithm goes as follows:

(i) Given the state Un, which we assume to be admissible, we compute UL,n+1

and UH,n+1 as explained in §3.1 and either §3.3 or 3.4;
(ii) The density is limited by invoking Lemma 4.3 and Lemma 4.4 and the bounds

described in §4.1 to enforce the quasiconcave constraints Ψ(U) = ρ − ρmin
i ≥ 0 and

Ψ(U) = ρmax
i − ρ ≥ 0. The resulting limiter is denoted by `ρij and details of the

computation of `ρij are given in §4.4;

(iii) The internal energy ρe := E − m2

2ρ is limited by invoking Lemma 4.3 and

Lemma 4.4 to enforce the quasiconcave constraint Ψ(U) = E − m2

2ρ − ε
min
i ≥ 0. The

corresponding limiter is denoted `eij ≤ `ρij and details of the computation of `eij are
given in §4.5;

(iv) The minimum principle on the specific entropy is enforced by using Ψ(U) =
Φ(U) − smin

i . The details on the computation of the corresponding limiter `sij ≤ `eij
are given in §4.6.

(v) Finally, upon setting `ij := `sij , the update Un+1 is computed by setting

Un+1 = UL,n+1 + 1
mi

∑
j∈I(Di)

`ijA
n
ij . This type of limitation can be iterated a few

times by observing that

UH,n+1 = UL,n+1 +
1

mi

∑
j∈I(Di)

`ijA
n
ij +

1

mi

∑
j∈I(Di)

(1− `ij)An
ij .

Then setting U(0) := UL,n+1 and A
(0)
ij := An

ij the iterative algorithm proceeds as
shown in Algorithm 1. In the numerical simulations reported at the end of the paper
we have taken kmax = 1.

Algorithm 1 Iterative limiting

Input: UL,n+1, An, and kmax

Output: Un+1

1: Set U(0) := UL,n+1 and A(0) := An

2: for k = 0 to kmax − 1 do
3: Compute limiter matrix `(k)

4: Update U(k+1) = U(k) + 1
mi

∑
j∈I(Di)

`
(k)
ij A

(k)
ij

5: Update A
(k+1)
ij = (1− `(k)

ij )A
(k)
ij

6: end for
7: Un+1 = U(kmax)
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Remark 4.6 (Other quantities). As observed in Section 4.1 it is also possible to
impose additional limiting based on quasiconcave constraints. For example, one could
limit the total energy from below and from above. Numerical experiments reveal that
this extra limitation does not improve the performance of the scheme. All the tests
reported in §5 are done by limiting the density, the internal energy and the specific
entropy as described above. We have found that limiting the internal energy delivers
second-order accuracy in the maximum norm, but has a tendency to over-dissipate
contact discontinuities. Note that limiting the specific entropy amounts in effect to
limit the internal energy. �

Remark 4.7 (Equation of state). So far, everything we have described is indepen-
dent of the equation of state. �

4.4. Limitation on the density. The limitation on the density as specified by
(4.7) proceeds as follows. To avoid divisions by zero, we introduce the small parameter
ε := 10−14 set εi = ερmax

i for all i ∈ I. Let us denote by P ρij the ρ-component of P ij ,
and let us set

(4.8) `i,ρj =


min(

|ρmin
i −ρL,n+1

i |
|Pρij |+εi

, 1) if ρL,n+1
i + P ρij < ρmin

i

1 if ρmin
i ≤ ρL,n+1

i + P ρij ≤ ρmax
i

min(
|ρmax
i −ρL,n+1

i |
|Pρij |+εi

, 1) if ρmax
i < ρL,n+1

i + P ρij .

Upon setting Ψ+(U) = ρ− ρmin
i , and Ψ−(U) = ρmax

i − ρ, we have the following result
whose proof is left to the reader.

Lemma 4.8. The definition (4.8) implies that Ψ±(UL,n+1
i + `Pij) ≥ 0 for all

` ∈ [0, `i,ρj ].

Remark 4.9 (Covolume EOS). In the case of the covolume equation of state,
p(1−bρ) = (γ−1)ρe, it is known that A = {(ρ,m, E) | ρ > 0, e > 0, s ≥ smin, bρ < 1}
is an invariant domain, see Guermond and Popov [12, Prop. A.1]. The above method
can be used to enforce the additional affine constraint 1− bρ > 0. �

Remark 4.10 (Total energy). The limitation on the total energy can be done
exactly as for the density. Let us emphasize though that we have not found this
operation to be useful and it is not done in the numerical tests reported at the end
of the paper. �

4.5. Limitation on the internal energy ρe. In this section we explain how
to compute the limiter to enforce the local minimum principle on the internal energy
ρe as stated in (4.4).

Upon setting Ψ(U) := (ρe)(U) − εmin
i with U := (ρ,m, E), and by virtue of

Lemma 4.3 and Lemma 4.4, we have to estimate `i,ej ∈ [0, `i,ρj ] so that Ψ(UL,n+1
i +

`Pij) ≥ 0 for all ` ∈ [0, `i,ej ]. We define the auxiliary function ψ : {U | ρ > 0} → R

ψ(U) := (ρ2e)(U)− εmin
i ρ = ρE − 1

2
m2 − εmin

i ρ.

Then the above problem is equivalent seeking `i,ej ∈ [0, `i,ρj ] so that ψ(UL,n+1
i +`Pij) ≥

0 for all ` ∈ [0, `i,ej ]. The key observation is that now ψ is a quadratic functional with

Dψ(U) =

E − εmin
i

−m
ρ

 , D2ψ(U) =

0 0T 1
0 −I 0
1 0T 0

 .
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Then upon setting a := 1
2P

T
ijD

2ψPij , b := Dψ(UL,n+1
i )·Pij and c := ψ(UL,n+1

i ), we
have

ψ(UL,n+1
i + tPij) = at2 + bt+ c.

Let t0 be the smallest positive root of the equation at2+bt+c = 0, with the convention
that t0 = 1 if the equation has no positive root. Then we choose `i,ej to be such that

(4.9) `i,ej = min(t0, `
i,ρ
j ).

Lemma 4.11. The definition (4.9) implies that Ψ(UL,n+1
i + `Pij) ≥ 0 for all ` ∈

[0, `i,ej ].

Proof. If there is no positive root to the equation at2+bt+c = 0 and since we have
established that c = ψ(UL,n+1

i ) ≥ 0 (see (4.4)), we have at2 + bt+ c ≥ 0 for all t ≥ 0;

that is, Ψ(UL,n+1
i + `Pij) ≥ 0 for all ` ≥ 0, and in particular this is true for all ` ∈

[0, `i,ej ]. Otherwise, if there is at least one positive root to the equation at2 +bt+c = 0,

then denoting by t0 the smallest positive root, we have at2 +bt+c ≥ 0 for all t ∈ [0, t0]
(if not, there would exist t1 ∈ (0, t0) s.t. at21 + bt1 + c < 0 and the intermediate value
theorem would imply the existence a root t∗ ∈ (0, t1) which contradict that t0 is the

smallest positive root). This implies that Ψ(UL,n+1
i + `Pij) ≥ 0 for all ` ∈ [0, t0], and

in particular this is true for all ` ∈ [0, `i,ej ] owing to (4.9).

Remark 4.12 (Equation of state). Observe that the proposed limitation on ρe is
independent of the equation of state. �

4.6. Minimum principle on the specific entropy. We now describe how to
compute the limiter to enforce the local minimum principle on the specific entropy.
Khobalatte and Perthame [25] is the first paper we are aware of where this type of
limiting is done.

By virtue of Lemma 4.3 and Lemma 4.4, we have to estimate `i,sj ∈ [0, `i,ej ] so

that Ψ(UL,n+1
i + `Pij) ≥ 0 for all ` ∈ [0, `i,sj ], with Ψ(U) := Φ(U) − smin

i , where we
recall that Φ(U) := s(ρ, e(U)) is the specific entropy as a function of the conservative
variables.

Lemma 4.13. Let t0 be defined as follows: (i) If Ψ(UL,n+1
i + Pij) ≥ 0, then we

set t0 = 1; (ii) If Ψ(UL,n+1
i + Pij) < 0 and Ψ(UL,n+1

i ) > 0, we set t0 to be the

unique positive root to the equation Ψ(UL,n+1
i + tPij) = 0; (iii) If Ψ(UL,n+1

i +Pij) <

0 and Ψ(UL,n+1
i ) = 0, the equation Ψ(UL,n+1

i + tPij) = 0 has exactly two roots
(possibly equal) and we take t0 to be the largest nonnegative root. More precisely, if

Dψ(UL,n+1
i ) · Pij ≤ 0 then t0 = 0, and if Dψ(UL,n+1

i ) · Pij > 0 then t0 > 0 is the

unique positive root of Ψ(UL,n+1
i + tPij) = 0 and has to be computed. Then setting

`i,sj = min(t0, `
i,e
j ), we have Ψ(UL,n+1

i + `Pij) ≥ 0 for all ` ∈ [0, `i,sj ].

Proof. Let us first observe that the equation Ψ(UL,n+1
i + tPij) = 0 has exactly

two roots (possibly equal) because the upper level set L0 = {U | Ψ(U) ≥ 0 is convex
and any line that intersects the upper level set crosses the boundary at two points,
say t− ≤ t+, (t− = t+ when the line is tangential to the boundary of the upper

level set). Note that t− ≤ 0 since Ψ(UL,n+1
i ) ≥ 0. (i) If Ψ(UL,n+1

i + Pij) ≥ 0, then

t+ ≥ 1 and the entire segment {UL,n+1
i + tPij | t ∈ [0, t0 = 1]} in L0 by convexity.

(ii) If Ψ(UL,n+1
i + Pij) < 0 and Ψ(UL,n+1

i ) > 0, then t+ ∈ (0, 1), and upon setting

t0 = t+, the entire segment {UL,n+1
i + tPij | t ∈ [0, t0]} in L0 by convexity. (iii) If
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Ψ(UL,n+1
i +Pij) < 0 and Ψ(UL,n+1

i ) = 0, there are two possibilities: (i) Dψ(UL,n+1
i ) ·

Pij ≤ 0; and (ii) Dψ(UL,n+1
i ) · Pij > 0. If Dψ(UL,n+1

i ) · Pij ≤ 0 then by convexity

Ψ(UL,n+1
i + tPij) < 0 for all t > 0. Hence, t+ = 0 is the largest nonnegative toot of

the equation Ψ(UL,n+1
i + tPij) = 0 and therefore t0 = t+ = 0. In the remaining case,

Dψ(UL,n+1
i ) · Pij > 0, we have that 0 < t+ < 1 and t0 = t+.

Let us now explain how the above line search can be done efficiently. Thermody-
namic principles imply that there exists a smooth function g : R+×R→ R+ such that
ρe = g(s, ρ). Note that the identity ∂se(ρ, s) = 1

∂es(ρ,e)
together with the fundamental

thermodynamic inequality ∂es(ρ, e) > 0, which is equivalent to the temperature being
positive, implies ∂sg(ρ, s) > 0. Since ∂sg > 0, the minimum principle on the specific
entropy Ψ(U) := Φ(U)− smin

i ≥ 0 is equivalent to enforcing g(s, ρ) = ρe ≥ g(smin
i , ρ).

When the function g(s, ρ) satisfies ∂ρρg ≥ 0 and up to a change of notation, the
above constraint can be reformulated as follows: Ψ(U) := ρe(U) − g(smin

i , ρ) ≥ 0.
Note that ∂ρρg ≥ 0 implies that the new function Ψ(U) is concave with respect to the

conservative variables; as a result, the line search h(t) := ψ(UL,n+1
i + tPij) = 0 can

be done efficiently because h is concave and h(0) ≥ 0. If h(1) ≥ 0 we set t0 = 1 and
if h(1) < 0 we use a combination of secant and Newton method to find the unique
0 ≤ t0 < 1 such that h(t0) = 0. For example, the covolume equation of state falls into

this category since in this case we have ρe = ργ

(1−bρ)γ−1 exp((γ − 1)(s− s0)) =: g(s, ρ).

This is also the case for the stiffened gas equation of state, ρe = e0ρ + p∞(1 −
bρ) + ργ

(1−bρ)γ−1 exp((γ − 1)(s − s0)) =: g(s, ρ) where e0, s0 and p∞ are are constant

coefficients characteristic of the thermodynamic properties of the fluid, see Metayer
and Saurel [33] for details.

In the general case, i.e., when g(s, ρ) does not satisfy ∂ρρg ≥ 0, we can use
a different strategy for imposing Ψ(U) = Φ(U) − smin

i ≥ 0. Namely, using that
ρ > 0 and using again a change of notation, we transform the constraint to Ψ(U) :=
ρΦ(U) − smin

i ρ ≥ 0. Note that the function −ρΦ(U) is a mathematical entropy for
the Euler system and under the standard assumptions (hyperbolicity and positive
temperature) it is convex, see Harten et al. [19, Thm. 2.1]. Therefore, the line search

h(t) := ψ(UL,n+1
i +tPij) = 0 can be done efficiently because h is concave and h(0) ≥ 0.

If h(1) ≥ 0 we set t0 = 1 and if h(1) < 0 we use a combination of secant and Newton
method to find the unique 0 ≤ t0 < 1 such that h(t0) = 0.

4.7. Relaxation. It is observed in Khobalatte and Perthame [25, §3.3] that
strictly enforcing the minimum principle on the specific entropy degrades the converge
rate to first-order; it is said therein that “It seems impossible to perform second-
order reconstruction satisfying the conservativity requirements . . . and the maximum
principle on S”. We have also observed this phenomenon. Moreover, it is well known
that, when applied to scalar conservation equations, limitation (in some broad sense)
reduces the accuracy to first-order near maxima and minima of the solution. One
typical way to address this issue in the finite volume literature consists of relaxing
the slope reconstructions; see Harten and Osher [18], Schmidtmann et al. [37, §2.1].
In the present context, since we do not have any slope to reconstruct, we are going to
relax the constraints so that the violation of the constraint is second-order accurate.

4.7.1. Relaxation on the density and the internal energy. Let us denote
by % one of the quantities that we may want to limit from below, excluding the
specific entropy, say ρ, −ρ, or (ρe) and let %min be the corresponding bound given by
the technique described in §4.1. For each i ∈ I, we set ∆2%ni :=

∑
i 6=j∈I(Di)

%ni − %nj
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and we define

∆2%ni :=
1

2card(I(Di))

∑
i 6=j∈I(Di)

(
1

2
∆2%ni +

1

2
∆2%nj ),(4.10)

∆̃2%ni := minmod
{1

2
∆2%nj | j ∈ I(Di)

}
,(4.11)

where the minmod function of a finite set is defined to be zero if there are two numbers
of different sign in this set, and it is equal to the number whose absolute value is the
smallest otherwise. Then we propose two types of relaxation defined as follows:

%min
i = max(0.99%min

i , %min
i − |∆2%ni |)(4.12)

%̃min
i = max(0.99%min

i , %min
i − |∆̃2%ni |).(4.13)

When doing limitation we use either %min
i or %̃min

i instead of %min
i . It is shown in the

numerical section that both relaxations are robust.

Remark 4.14 (relaxation vs. no relaxation). We have observed numerically that
the proposed method is second-order accurate in the L1-norm without relaxation if
limitation is done on the density and the internal energy. Relaxation is necessary
only to get second-order accuracy in the L∞-norm. We have observed though that
the minmod relaxation is slightly more restrictive than the other one since it does not
deliver second-order accuracy in the maximum norm; only the averaging relaxation
(4.12) has been found to give second-order in the L∞-norm. �

Remark 4.15 (positivity). Note that the somewhat ad hoc threshold 0.99%min
i in

the above definitions imply that one never relaxes more than 1% of the legitimate
lower bound. In particular, when applied to the density or the internal energy the
above relaxation guarantees positivity of the density and the internal energy. �

4.7.2. Relaxation on the specific entropy. We proceed as in Khobalatte
and Perthame [25, §3.3] and relax the lower bound on the specific entropy more
aggressively since in smooth regions this function is constant. Let % be the quantity
associated with the constraint on the specific entropy; it could be s, exp(s), or ρe/ργ

in the case of polytropic gases, depending on the way one chooses to enforce the
minimum principle on the specific entropy (see §4.6). Let xij = 1

2 (xi + xj). We
measure the local variations of % by setting ∆%ni = maxi 6=j∈I(Di)(%

n(xij)− %min
i ) and

we relax %min
i by setting

(4.14) %min
i = max(0.99%min

i , %min
i −∆%ni ).

Note that contrary to the appearances, and as already observed in [25], the size of
the relaxation is O(h2): In the vicinity of shocks, there is no need for relaxation since
the first-order viscosity takes over and thereby makes the solution minimum principle
preserving on the specific entropy. In smooth regions, i.e., isentropic regions, the
specific entropy is constant and ∆%ni measures the local curvature of s induced by the
nonlinearity of s, that is to say ∆%ni is O(h2).

Remark 4.16 (positivity). The threshold 0.99%min
i guarantees positivity of the in-

ternal energy. We have observed numerically that this threshold is never reached
when the mesh is reasonably fine enough. �
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5. Numerical illustrations. We report in this section numerical tests we have
done to illustrate the performance of the proposed method. All the tests are done
with the equation of state p = (γ − 1)ρe, i.e., (γ − 1)s(ρ, e) = exp(ρe/ργ).

5.1. Technical details. Three different codes implementing the method de-
scribed in the paper have been written to ensure reproducibility. Limiting is done
only once in the three codes, i.e., kmax = 1.

The first one, henceforth called Code 1, does not use any particular software.
It is based on Lagrange elements on simplices. This code has been written to be
dimension-independent, i.e., the same data structure and subroutines are used in
one dimension and in two dimensions. The two-dimensional meshes used for Code 1
are nonuniform triangular Delaunay meshes. All the computations reported in the
paper are done with continuous P1 elements. The high-order method uses the entropy

viscosity commutator described in (3.13)-(3.14) with the entropy p
1
γ . Limitation on

the density is enforced by using the technique described in §4.4 . The bounds on the
density are relaxed by using the averaging technique described in §4.7. The minimum
principle on the specific entropy exp((γ−1)s) ≥ exp((γ−1)smin) is enforced by using
the method described in §4.6 with the constraint Ψ(U) := ρe− %minργ ≥ 0, where we
recall that ρe/ργ = exp((γ − 1)s). The lower bound on the specific entropy is defined
by using %min

i = minj∈I(Di) ρ
n
i e
n
i /(ρ

n
i )γ (instead of (4.3)) and %min

i is relaxed by using
(4.14) with % = ρe/ργ . No limitation on the internal energy is applied in Code 1;
the positivity of the internal energy is guaranteed by the minimum principle on the
specific entropy.

The second code, henceforth called Code 2, is based on the open-source finite
element library deal.II, see Arndt et al. [1], Bangerth et al. [2]. The tests reported
in the paper are done with continuous Q1 (quadrilateral) elements. The code is
written in a dimension-independent fashion and all the computational tasks (e.g.,
assembly, linear solvers and output) are implemented in parallel via MPI. This code
implements the smoothness-based high-order graph viscosity described in §3.3. All
the computations reported in the paper are done with g(u) = S(u) and ψ(α) =
α4. (We have verified that the other choices for g(u) mentioned in §3.3 produce
comparable results.) As stated at the beginning of §3.3, this method introduces
additional diffusion close to local extrema (whether smooth or not). While this does
not affect the second-order decay rates in the L1-norm, it degrades the accuracy in
the L∞-norm. Limitation is done on the density and the specific entropy exactly as
explained above for Code 1. The minimum principle on the specific entropy is relaxed
as explained in §4.7.2, but no relaxation is applied on the density bounds.

The last code, henceforth called Code 3, uses the open-source finite element li-
brary FEniCS, see e.g., Logg et al. [30], and the computations are done on simplices.
The implementation in FEniCS is independent of the space dimension and the poly-
nomial degree of the approximation. The library is fully parallel. All the numerical
integrations are done exactly by automatically determining the quadrature degree
with respect to the complexity of the underlying integrand and the polynomial space.
The results reported in the paper use the entropy viscosity method with the entropy

p
1
γ . The limitation and bound relaxation is done on the density and the specific en-

tropy exactly like in Code 1. We refer the reader to the description of Code 1 for the
details.

The time stepping is done in the three codes by using the SSP(3,3) method
(three stages, third-order), see Shu and Osher [39, Eq. (2.18)] and Kraaijevanger [26,
Thm. 9.4]. The time step is recomputed at each time step by using the formula
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τ = CFL×mini∈I
mi
|dL,nii |

with dL,nii = −
∑
ij d

L,n
ij given in (3.2).

When working with manufactured solutions, for p ∈ [1,∞], we compute a con-
solidated error indicator at time t by adding the relative error in the Lp-norm of the
density, the momentum, and the total energy as follows:

δp(t) :=
‖ρh(t)− ρ(t)‖Lp(D)

‖ρ(t)‖Lp(D)
+
‖mh(t)−m(t)‖Lp(D)

‖m(t)‖Lp(D)
+
‖Eh(t)− E(t)‖Lp(D)

‖E(t)‖Lp(D)
.(5.1)

As some tests may exhibit superconvergence effects we also consider the fully discrete
consolidated error indicator δΠ

p (t) defined as above with ρ(t), m(t), and E(t) replaced
by Πhρ(t), Πhm(t), and ΠhE(t), where Πh is the Lagrange interpolation operator.

5.2. 1D smooth wave. We start with a one-dimensional test whose purpose
is to estimate the convergence rate of the method with a very smooth solution. We
consider the following exact solution to the Euler equations: v(x, t) = 1, p(x, t) = 1
and

ρ(x, t) =

{
1 + 26(x1 − x0)−6(x− t− x0)3(x1 − x+ t)3 if x0 ≤ x− t < x1

1 otherwise
(5.2)

with x0 = 0.1, x1 = 0.3 and γ = 7
5 . The computational domain is D = (0, 1) and

the computation is done from t = 0 to t = 0.6. The consolidated error indicator in
the maximum norm δ∞(t) is reported in Table 5. Note that we report the discrete
error indicator δΠ

∞(t) for Code 1 (based on the Entropy Viscosity Method) in order
to show that we obtain O(h3) super-convergence in compliance with the theoretical
result stated in Guermond and Pasquetti [10, Prop 2.2]. Code 2, which we recall is
based in the smoothness of the mathematical entropy, delivers O(h1.5) as expected
due to clipping effects induced by the smoothness indicator.

Table 1
1D smooth wave, P1 meshes, Convergence tests with Code 1 and Code 2, CFL = 0.25.

# dofs
Code 1 Code 2

δΠ
∞(t) rate δ∞(t) rate

100 6.34E-02 2.32E-01

200 1.62E-02 1.96 8.30E-02 1.48

400 2.69E-03 2.59 2.87E-02 1.53

800 3.74E-04 2.85 9.66E-03 1.57

1600 4.62E-05 3.02 3.22E-03 1.58

3200 5.89E-06 2.97 1.07E-03 1.58

6400 7.37E-07 3.00 3.74E-04 1.52

5.3. Rarefaction wave. We now consider a Riemann problem with a solu-
tion whose components are all continuous and whose derivatives have bounded varia-
tions. The best-approximation error in the L1-norm on quasi-uniform meshes is then
O(h2). The Riemann problem in question has the following data: (ρL, vL, pL) =
(3, cL, 1), (ρR, vR, pR) = ( 1

2 , vL + 2
γ−1 (cL − cR), pL(ρRρL )γ), where cL =

√
γpL/ρL,

cR =
√
γpR/ρR. The equation of state is a gamma-law with γ = 7

5 . The exact solu-
tion to this problem is a rarefaction wave which can be constructed analytically, see
e.g., Toro [42, §4.4]. The solution is given in Table 2. In this table, the ratio ξ := x−x0

t
is the self-similar variable, where x0 is the location of the discontinuity at t = 0. This
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problem is quite challenging for any method enforcing the minimum principle on the
specific entropy. We have observed that the convergence rate on this problem reduces
to O(h) if the minimum on the specific entropy is not relaxed (see also Khobalatte
and Perthame [25, §3.3]).

Table 2
Solution to the rarefaction wave.

ξ ≤ vL − cL vL − cL < ξ ≤ vR − cR vR − cR < ξ

ρ ρL ρL
(

2
γ+1 + γ−1

γ+1
vL−ξ
cL

) 2
γ−1 ρR

v vL
2

γ+1 (cL + γ−1
2 vL + ξ) vR

p pL pL
(

2
γ+1 + γ−1

γ+1
vL−ξ
cL

) 2γ
γ−1 pR

We run Code 1, Code 2, and Code 3 on the computational domain D = (0, 1)
with x0 = 0.2 and the initial time is t0 = 0.2

vR−cR . The initial data is the exact solution

at t = 0.2
vR−cR given in Table 2. The simulation are run until t = 0.5. The consolidated

error indicator δ1(t) defined in (5.1) is reported in Table 3 for Code 1 and Code 2 only
for brevity. This series of tests shows that the proposed method, with limitation of
the density and the specific entropy as described in §4.4-§4.6, converges with rate at
least O(h1.5) on the rarefaction wave problem. We observe that the low-order method
is indeed asymptotically first-order (the rate is 0.96 for 12800 grid points).

Table 3
Rarefaction wave, P1 meshes, Convergence tests with Code 1 and Code 2, CFL = 0.25.

# dofs
Code 1 Code 2 Galerkin Low-order

δ1(t) rate δ1(t) rate δ1(t) rate δ1(t) rate

100 1.01E-03 3.33E-03 1.44E-03 5.10E-02
200 3.28E-04 1.62 1.08E-03 1.61 4.38E-04 1.71 2.96E-02 0.78
400 1.13E-04 1.54 3.57E-04 1.61 1.42E-04 1.62 1.68E-02 0.82
800 4.02E-05 1.49 1.18E-04 1.60 4.73E-05 1.59 9.23E-03 0.86
1600 1.44E-05 1.48 3.96E-05 1.58 1.60E-05 1.57 4.96E-03 0.89
3200 5.11E-06 1.49 1.31E-05 1.59 5.47E-06 1.55 2.62E-03 0.92
6400 1.75E-06 1.54 4.32E-06 1.61 1.82E-06 1.59 1.37E-03 0.94
12800 5.71E-07 1.62 1.38E-06 1.64 5.83E-07 1.64 7.05E-04 0.96

When comparing the results from Code 1 with the Galerkin solution, we observe
that the extra dissipation induced in Code 1 by the entropy viscosity and limitation
is of the order of the truncation error, which is optimal. That is, the method does
not introduce any extraneous dissipation on smooth solutions. Note in passing that
the maximum norm error indicator δ∞(t) has also been computed for this test (not
reported here for brevity), yielding the rate O(h) for Code 1 and O(h0.75) for Code 2.
The rate O(h) is optimal since the solution is in W 1,∞(D)

5.4. Leblanc shocktube. We continue with a challenging Riemann problem
that is known in the literature as the Leblanc shocktube. The data are as fol-
lows: (ρL, vL, pL) = (1, 0, (γ − 1)10−1) and (ρR, vR, pR) = (10−3, 0, (γ − 1)10−10)
and the equation of state is a gamma-law with γ = 5

3 . The exact solution is de-
scribed in the Table 4. Denoting by x0 the location of the discontinuity at t = 0,
the quantity ξ = x−x0

t is the self-similar variable and the other numerical values in
the table are given with 15 digit accuracy by ρ∗L = 5.40793353493162×10−2, ρ∗R =
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3.99999806043000×10−3, v∗ = 0.621838671391735, p∗ = 0.515577927650970×10−3,
λ1 = 0.495784895188979, λ3 = 0.829118362533470.

Table 4
Solution of the Leblanc shocktube.

ξ ≤ − 1
3 − 1

3 < ξ ≤ λ1 λ1 < ξ ≤ v∗ v∗ < ξ ≤ λ3 λ3 < ξ
ρ ρL (0.75− 0.75ξ)3 ρ∗L ρ∗R ρR
v vL 0.75( 1

3 + ξ) v∗ v∗ vR
p pL

1
15 (0.75− 0.75ξ)5 p∗ p∗ pR

We do simulations with x0 = 0.33 until t = 2/3 with Code 2 and Code 3. The
consolidated error indicator δ1(t) is reported in Table 5. The convergence rate on
δ1(t) is clearly first-order which is optimal for this problem.

Table 5
Leblanc shocktube, P1 meshes, Convergence tests with Code 1 and Code 2, CFL = 0.25.

# dofs
Code 1 Code 2 Low-order

δ1(t) rate δ1(t) rate δ1(t) rate

100 1.26E-01 1.49E-01 2.61E-01
200 7.67E-02 0.71 9.01E-02 0.72 1.94E-01 0.43
400 4.31E-02 0.83 4.92E-02 0.87 1.41E-01 0.46
800 2.25E-02 0.94 2.61E-02 0.91 9.95E-02 0.50
1600 1.13E-02 0.99 1.34E-02 0.96 6.74E-02 0.56
3200 5.73E-03 0.99 6.83E-03 0.97 4.40E-02 0.62
6400 2.85E-03 1.01 3.42E-03 0.99 2.78E-02 0.66
12800 1.43E-03 1.00 1.70E-03 1.00 1.73E-02 0.68

5.5. Sod, Lax, Blast wave. We now illustrate the method on a series of tra-
ditional problems without giving the full tables for the convergence rates for brevity.
We consider the Sod shocktube, the Lax shocktube, and the Woodward-Collela blast
wave. We refer the reader to the literature for the initial data for these test cases. The
computations are done on the domain D = (0, 1) with CFL = 0.5 on four different
girds with Code 1. The final times are t = 0.225 for the Sod shocktube, t = 0.15 for
the Lax shocktube, and t = 0.038 for the Woodward-Collela blast wave. We show
the graph of the density for these three cases and for the four meshes in Figure 1.
We have observed the convergence rate to be between O(h0.9) and O(h) on δ1(t) for
both the Sod and the Lax shocktubes, which is near optimal (results not reported for
brevity).

5.6. 2D isentropic vortex. We now consider a two-dimensional problem in-
troduced in Yee et al. [44]. This test case is often used to assess the accuracy of
numerical schemes. The flow field is isentropic; i.e., the solution is smooth and does
not involve any steep gradients or discontinuities.

Let ρ∞ = P∞ = 1, u∞ = (2, 0)T be free stream values. Let us define the following
perturbation values for the velocity and the temperature:

(5.3) δu(x, t) =
β

2π
e1−r2(−x̄2, x̄1), δT (x, t) = − (γ − 1)β2

8γπ2
e1−r2 ,

where β = 5 is a constant defining the vortex strength, γ = 7
5 , x̄ = (x1−xc

1, x2−xc
2),

where xc = (xc
1 + 2t, xc

2) is the position of the vortex, and r2 = ‖x̄‖2`2 . The exact
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Fig. 1. Code 1, CFL = 0.5. Left: Sod shocktube, t = 0.225; Center: Lax shocktube, t = 0.15;
Right: Woodward-Collela blast wave, t = 0.038.

solution is a passive convection of the vortex with the mean velocity u∞:

(5.4) ρ(x, t) = (T∞ + δT )1/γ−1, u(x, t) = u∞ + δu, p(x, t) = ργ .

We perform the numerical computation in the rectangle D = (−5, 10)×(−5, 5)
from t = 0 until t = 2. The initial mesh consists of 20×13 squares divided by four
equilateral triangles, then the mesh is refined uniformly to compute finer solutions.
The computations are done with Code 3. The consolidated error indicator δ∞(t) is
reported in Table 6. Here again we observe second-order accuracy in the maximum
norm.

Table 6
Isentropic vortex, P1 meshes, convergence tests, t = 2. Code 3, CFL = 0.5.

# dofs δ∞(t) rate

2216 2.23e-01 –
8588 4.50e-02 2.37
34456 1.05e-02 2.09
136748 2.82e-03 1.91
547416 9.09e-04 1.63

5.7. Mach 3 step. We finish by illustrating the method on the classical Mach
3 flow in a wind tunnel with a forward facing step. The computational domain is
D = (0, 1)×(0, 3) \ (0.6, 3)×(0, 0.2); the geometry of the domain is shown in Figure 2.
The initial data is ρ = 1.4, p = 1, v = (3, 0)T. The inflow boundary conditions
are ρ|{x=0} = 1.4, p|{x=0} = 1, v|{x=0} = (3, 0)T. The outflow boundary conditions
are free, i.e., we do nothing at {x = 3}. On the top and bottom boundaries of the
channel we enforce v·n = 0. This is done by setting mn+1

i ·n = 0 at the end of each
substep of the SSP RK(3,3) algorithm at each node xi belonging to the boundary
in question; moreover the vectors cij introduced in (2.10) are redefined as follows
cij = −

∫
D
ϕj∇ϕi dx at each node xi belonging to the boundary in question. This

integration by parts is justified by the observation that it implies global conservation
under the assumption that f(u)·n = 0 over the entire boundary of D.

The computation is done from t = 0 to t = 4. We show in Figure 2 a Schlieren-
type snapshot of the density at t = 4 obtained with Code 2. The Kelvin-Helmholtz
instability of the contact discontinuity is clearly visible. No regularization or smooth-
ing is applied at the top left corner of the step.
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Fig. 2. Mach 3 step, density, t = 4, density, P1 approximation using Code 2.
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