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Abstract. We present a new ansatz space for the general symmetric multi-marginal Kan-
torovich optimal transport problem on finite state spaces which reduces the number of un-
knowns from

(
N+`−1
`−1

)
to ` · (N + 1), where ` is the number of marginal states and N the

number of marginals.

The new ansatz space is a careful low-dimensional enlargement of the Monge class, which
corresponds to ` · (N − 1) unknowns, and cures the insufficiency of the Monge ansatz, i.e.
we show that the Kantorovich problem always admits a minimizer in the enlarged class, for
arbitrary cost functions.

Our results apply, in particular, to the discretization of multi-marginal optimal transport
with Coulomb cost in three dimensions, which has received much recent interest due to its
emergence as the strongly correlated limit of Hohenberg-Kohn density functional theory. In
this context N corresponds to the number of particles, motivating the interest in large N .

1 Introduction

In this paper we study the multi-marginal optimal transport problem

Minimize C[γ] =

∫
XN

cN(x1, ..., xN) dγ(x1, ..., xN) over γ ∈ Psym(XN) subject to γ 7→ λ∗

(1.1)
for finite state spaces

X = {a1, ..., a`} (1.2)

consisting of ` distinct points. Here Psym(XN) denotes the set of symmetric probability
measures on XN , where symmetric means

γ(A1×· · ·×AN) = γ(Aσ(1)×· · ·×Aσ(N)) for all subsets A1, ..., AN of X and all permutations σ,
(1.3)

cN : XN → R∪{+∞} is an arbitrary cost function, λ∗ denotes a given probability measure
on X, and the notation γ 7→ λ∗ means that γ has equal one-point-marginals λ∗, i.e.

γ(X i−1 × Ai ×XN−i) = λ∗(Ai) for all subsets Ai of X and all i = 1, ..., N. (1.4)

Multi-marginal problems (1.1) arise in economics [CE10, CMN10], electronic structure [CFK11,
BDG12], image processing [AC11, RPDB12], mathematical finance [BHP13, GHT14], and
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optimal assignment problems [Pi68, GH88, Po94, APS99, Pe11]; in some cases finite state
spaces (1.2) appear directly, and in others they play the role of natural discretizations of
continuous spaces (see e.g. [AC11, CFM14]).

A prototypical example of (1.1), (1.2) is discretized multi-marginal optimal transport with
Coulomb cost in R3, where X is a collection of ` discretization points ai in R3 and

cN(x1, ..., xN) =
∑

1≤i<j≤N

1

|xi − xj|
, (1.5)

with | · | being the euclidean distance. Physically, the ai correspond to possible sites and the
Kantorovich problem (1.1) corresponds to optimally assigning the positions of N particles to
the available sites subject to the constraint that all sites must be occupied according to the
prescribed marginal measure. (Even in the prototype case of uniform marginal, i.e. when
each site must be occupied equally often, such a task may require stochastic superposition
of configurations. Readers who have the contrary impression are advised to have a look at
Example 1.1.) In its continuous form with X = R3, the problem (1.1), (1.5) has received
much interest recently in both mathematics and physics due to its emergence as a strongly
correlated limit of Hohenberg-Kohn density functional theory. In this context the restriction
to symmetric plans in (1.1) is inherited from the symmetries of the quantum problem, and the
optimal cost as a functional of the marginal measure – or single-particle density – is known
as the SCE (strictly correlated electrons) functional. See [Se99, SGS07] for the original
formulation and derivation of the limit problem in the physics literature, [CFK11, BDG12]
for its reformulation as an OT problem within a rigorous functional-analytic setting, and
[CFK11, BD17, CFK17] for the rigorous justification as Γ-limit of the Hohenberg-Kohn
functional for, respectively, N = 2, N = 3, and general N . An analogous general-N result
for a “relaxation” of the HK functional can be found in [Le17].

The prototypical marginal on finite state spaces (1.2) is the uniform marginal, i.e. λ∗ = λ
where λ denotes the uniform probability measure on X,

λ =
∑̀
i=1

1
`
δai . (1.6)

Here and below, δai denotes the Dirac measure on the point ai. This marginal measure arises
directly in assignment problems, and via equi-mass discretization [CFM14] from continuous
problems: given any absolutely continuous probability measure on Rd, divide Rd into regions
carrying equal mass and chose the ai to be representative points for each region. The uniform
marginal is the natural discrete analogue of the absolutely continuous marginals on euclidean
space, because it admits Monge states

γ =
∑̀
ν=1

1
`
δT1(aν) ⊗ · · · ⊗ δTN (aν) for N permutations T1, ..., TN : X → X. (1.7)

Note that the requirement that a map T : X → X be a permutation, i.e. that T (aν) =
aτ(ν) for all ν and some permutation τ : {1, ..., `} → {1, ..., `} of indices, is the same
as requiring that the map pushes the uniform measure forward to itself. In the present
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setting of symmetric multi-marginal problems, the ansatz must be trivially adapted to the
symmetrization

γ′ = S γ, γ as in (1.7), (1.8)

where S is the symmetrization operator in N variables (see (2.12)). Restricting the mini-
mization in (1.1) to states of form (1.8) gives the corresponding Monge OT problem. (When
the cost cN is symmetric, i.e. invariant under permuting its arguments, as is the case in many
examples of interest such as (1.5), the requirement that γ be symmetric can be dropped in
the Kantorovich problem (1.1) – and likewise the symmetrization operator S can be omitted
in the Monge problem – without altering the minimum cost.)

In the present finite-dimensional context it is clear that the Monge ansatz entails a spec-
tacular reduction of computational complexity. It reduces the number of unknowns from
combinatorial in both N and ` (see Theorem 3.1 for the precise numbers) to only ` · (N − 1),
because each map Tk is specified by its ` values Tk(a1), ..., Tk(a`) and one may assume T1 = id,
by re-ordering the sum in (1.7). Thus unlike the Kantorovich problem, the Monge problem
remains computationally feasible for large ` and N .

Unfortunately the Monge ansatz is not always sufficient to obtain the optimal cost when
N ≥ 3. (For N = 2, i.e. two marginals, it suffices thanks to the celebrated Birkhoff-von
Neumann theorem [Bi46, vN53]; optimal transportation theory (see e.g. [Vi09]) provides
the analogous result for continuous two-marginal problems under very general conditions.)
For continuous problems with N ≥ 3, whether the ansatz (1.7) works appears to depend
on subtle properties of the cost function and even on the ambient space dimension; for the
Coulomb cost with X = R3 it is presently unknown. See [GS98, He02, Ca03, Pa11, CDD13]
for interesting examples where minimizers of (1.1) are of Monge form, with the first result
of this type appearing in a fundamental paper by Gangbo and Święch [GS98]. Examples
of non-Monge minimizers can be found in [Pa10, FMPCK13, Pa13], and see [MP17] for an
example with unique non-Monge minimizer. For discrete assignment problems with finite
state space X and N = 3, it is known that there exist “non-integer vertices” of the – suitably
renormalized – polytope of probability measures on X3 with uniform marginals [Kr07, LL14].
This can be shown after some work [Fi14] to imply the existence of cost functions with unique
non-Monge minimizer. The following simple example is taken from [Fr18].

Example 1.1. The unique minimizer of the Kantorovich problem with X given by three equi-
spaced points (physically: sites) on the real line, i.e. X = {1, 2, 3} ⊂ R, N = 3 (physically:
three particles), and the cost

cN(x1, ..., xN) =
∑

1≤i<j≤N

c(|xi − xj|), c(r) = (r − 3
4
)2 (1.9)

(physically: the particles are mutually connected by springs of equilibrium length 3
4
) is uniquely

minimized by γ∗ = Sγ where γ = 1
2
(δ1 ⊗ δ1 ⊗ δ2 + δ2 ⊗ δ3 ⊗ δ3) and S is the symmetrization

operator (2.12). This γ∗ is not a symmetrized Monge state.

The main result of this paper (Theorem 5.1 a)) is that a careful low-dimensional enlargement
of the Monge class, where each state requires `·(N+1) instead of `·(N−1) parameters, cures
the insufficiency of the Monge ansatz, i.e. the Kantorovich problem (1.1) always admits a
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minimizer in the enlarged class. We propose to call the states in this class sparse averages of
extremal states, or SAE states for short, because they are constructed by averaging a small
number of extreme points of the convex set Psym(XN) (see Section 5). Moreover, as in the
Monge case, for pairwise costs (such as (1.5)) the optimal cost in (1.1) agrees with that of
an explicit reduced problem which involves only two-point probability measures; that is to
say all high-dimensional objects (like Psym(XN)) and operations (like integration over XN)
can be eliminated. See Theorem 5.1 b).

We now describe the new, sufficient ansatz in the prototypical case of uniform marginal λ,
where it can be compared to the Monge ansatz (1.8).

1. Take N maps T1, ..., TN : X → X.

2. Drop the rigid weights 1
`
in the Monge ansatz (1.7) and replace them by flexible site

weights α(ν) ≥ 0 (ν = 1, ..., `) which sum to 1, and form the otherwise analogous
N -point measure

γ =
∑̀
ν=1

α(ν)S δT1(aν) ⊗ · · · ⊗ δTN (aν). (1.10)

In particular, the weights of some sites may be zero, i.e. the N -point state might only
use the values of the Tk at fewer than ` sites.

3. Drop the rigid constraints in (1.7) that all the Tk individually preserve the uniform
measure, i.e. attain each possible value exactly once. Instead, consider the empirical
value distribution of the ensemble of maps {Tk}k=1,...,N at the site aν ,

λ(ν) :=
1

N

N∑
k=1

δTk(aν), (1.11)

and require that the average over the sites aν of this value distribution associated with
the weights α(ν) in (1.10) equals the uniform measure, i.e. impose the constraint

∑̀
ν=1

α(ν)λ(ν) = λ. (1.12)

It is easy to check that the constraint (1.12) precisely guarantees the marginal condition
γ 7→ λ. We also emphasize that (1.10) is the symmetrization of a measure concentrated on a
single graph over the marginal space X, not on several graphs as considered e.g. in [MP17].

To summarize:

Definition 1.1. A probability measure on XN is called an SAE state with uniform marginal
if and only if it is of form (1.10) for some maps T1, ..., TN : X → X such that the associated
empirical value distributions (1.11) satisfy (1.12). An SAE state with general marginal λ∗ is
defined in the same manner, except that the right hand side of eq. (1.12) needs to be replaced
by λ∗.
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Figure 1: Left: Monge state. Right: SAE state. The maps Tk are indicated by different
colors, and the site weights α(ν) by the gray level of the boxes. For the Monge state, the
total value distribution (left hand side of (1.12)) is uniform, because each map contributes
exactly one point to each site ai. For the SAE state, it is also uniform even though the maps
contribute unequally to the different sites. The reader may check that if the site weights
(normalized to sum to 7 to correspond to point counting) are chosen as 2, 0.5, 1.5, 1.5, 0,
0.5, 1, the contribution from all maps to each site ai is still 5 points.
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For a graphical representation of a typical SAE state see Figure 1.

It is instructive to directly understand why each Monge state (1.8) is an SAE state without
passing through N -point measures and the computation of marginals. I.e., we would like to
understand why the measure λav :=

∑`
ν=1 α

(ν)λ(ν) is equal to λ if the α(ν) are 1
`
and the Tk

individually preserve the uniform measure. To see this, first change the order of averaging
over maps and sites, then use constancy of the weights and the fact that the Tk are measure
preserving, i.e. – in informal notation –

λavi = average over sites
(
average over maps

(
probability of value ai

) )
= average over maps

(
average over sites

(
probability of value ai

)︸ ︷︷ ︸
=

1
`
since each value ai appears exactly once.

)

This calculation reveals the extra freedom in symmetric problems not used by the Monge
ansatz that the value distribution of the maps only needs to be right “on average”. A deeper
fact is that using this freedom requires flexible site weights; i.e., SAE states with equal
weights α(ν) = 1

`
which satisfy the average condition (1.12) are already Monge states. See

Section 6.

Why the new ansatz, unlike (1.8), is sufficient to solve the Kantorovich problem is of course
less elementary. A key step is to achieve a good understanding of the convex geometry of
the set of N -representable probability measures on X2 and that of symmetric probability
measures on XN , by using methods from convex analysis, differential geometry, and discrete
mathematics. In particular we classify the extreme points of both sets, and show that the
two-point-marginal map is a bijection between them. One analytically and probabilistically
interesting consequence of our analysis, described in Sections 2 and 3, is that the extreme
points are unique maximizers of the Wasserstein cost, respectively the Gangbo-Święch cost
(3.2), with respect to the discrete metric. The latter cost is the natural multi-marginal ana-
logue of the Wasserstein cost, and was first introduced – in the context of optimal transport
on euclidean spaces – in [GS98].

Finally we remark that the SAE ansatz space might turn out to be useful even for problems
which admit Monge minimizers. It might serve either as a stepping stone to proving existence
of the latter or – because of its less rigid nature and its robustness under changes of state
space and cost – as a suitable space within which to perform iterative updates in a numerical
algorithm.

2 Extremal N-representable two-point measures

Throughout this paper, X denotes the finite state space (1.2), and P(X) denotes the set of
probability measures on X. Because of the finiteness of X we can identify any probability
measure λ ∈ P(X) with a vector (λ1, ..., λ`) ∈ R` satisfying λj ≥ 0 and

∑
j λj = 1, whose

components are the probabilities
λj = λ({aj}). (2.1)
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We will frequently use the shorthand notation

δi := δai , δi1...iN := δa1 ⊗ · · · ⊗ δaN (2.2)

for the Dirac measures centered on the point ai ∈ X respectively (ai1 , ..., aiN ) ∈ XN . The
following concept, introduced recently in [FMPCK13], plays an important role throughout
this paper. The quantum analogue, where one is dealing with “N -body density matrices”
(operators on the N -fold antisymmetric tensor product of a Hilbert space X) instead of N -
point probability measures (measures on the N -fold cartesian product of a set X) has been
introduced a long time ago (see [CY02] for a textbook account).

Definition 2.1 (N -representability). Let N ≥ 2. For any k ∈ {2, ..., N}, a probability mea-
sure µ on Xk is called N -representable if there exists a symmetric probability measure γ on
XN such that its k-point marginal (see (2.15)) equals µ. Any such γ is called a representing
measure of µ.

For elementary examples of measures which are not N -representable we refer the reader to
[FMPCK13]. In the following, we denote the set of N -representable probability measures on
Xk by PN−rep(Xk). Our principal interest is in the case k = 2, i.e. in the set PN−rep(X2) of
N -representable two-point probability measures.

This reduced space of measures is “dual” to the space of pairwise cost functions

cN(x1, ..., xN) =
∑

1≤i<j≤N

c(xi, xj) for some c : X ×X → R ∪ {+∞} (2.3)

which are typical in applications. As pointed out in [FMPCK13], because of the elementary
identity ∫

XN

∑
1≤i<j≤N

c(xi, xj) dγ(x1, ..., xN) =

(
N

2

)∫
X2

c(x, y) d(M2γ)(x, y) (2.4)

which shows that the Kantorovich functional (1.1) with pairwise cost (2.3) only depends on
the two-point marginal, we have that

min
γ∈Psym(XN )

γ 7→λ∗

C[γ] = min
µ∈PN−rep(X2)

µ7→λ∗

(
N

2

)∫
X2

c(x, y) dµ(x, y). (2.5)

That is to say the minimal cost in the high-dimensional problem on the left is the same as
that of the dimension-reduced problem on the right. Eq. (2.5) is the classical analogon of
expressing the ground state energy of a quantum system with N electrons via a minimization
problem for N -representable two-body density matrices (see [CY02]).

The catch – familiar from the quantum case – is that the set of admissible trial states on the
right is unknown, and was only constructed by using states in the high-dimensional space on
the left. The only case in which this set can be understood in a straightforward manner is
the “non-multi-marginal” case N = 2: a probability measure µ on X2 is two-representable if
and only if it is symmetric. Our interest, however, motivated by the role of N as the number
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of particles in physical systems, is in arbitrary N .

Thanks to the finiteness of X, PN−rep(X2) is a finite-dimensional compact convex set, and
therefore - by Minkowski’s theorem (see e.g. [Ho94]) - the convex hull of its extreme points.
(Recall the following standard notions from convex analysis [Ro97, Ho94]: the convex hull
conv(K) of a set K is the set of finite convex combinations

x = α1x1 + · · ·+ αMxM for some M ∈ N, some xi ∈ K, and some αi ≥ 0 with
∑
i

αi = 1;

and a point x in a convex set K is called an extreme point if, whenever x = αx1 + (1−α)x2
for some x1, x2 ∈ K and some α ∈ (0, 1), we have that x1 = x2 = x.)

The extreme points of PN−rep(X2) can be determined explicitly. In the result below, an
important role is played by a certain subset of the one-point probability measures, the 1

N
-

quantized one-point probability measures:

P 1
N

(X) =

{
λ ∈ P(X) : λi ∈

1

N
Z for all i ∈ {1, ..., `}

}
. (2.6)

Theorem 2.1 (Extreme N -representable measures). A probability measure µ on X2 is an
extreme point of the set PN−rep(X2) of N-representable two-point probability measures if and
only if it is of the form

λ⊗ λ+
1

N − 1

(
λ⊗ λ−

∑̀
i=1

λiδi ⊗ δi
)

(2.7)

for some 1
N
-quantized one-point probability measure λ (i.e. some λ ∈ P 1

N
(X)).

Note that the measure (2.7) has marginal λ, and contains correlations (second term in
(2.7)); moreover these correlations have a universal structure which depends on N but not
on λ. The latter fact can be expressed more concisely by introducing the following universal
marginal-to-correlated-state map ϕN : P(X)→ P(X2)

ϕN(λ) := expression (2.7). (2.8)

Note that this map is well-defined on all of P(X). Moreover the image measure ϕN(λ) has
marginal λ; in particular ϕN is injective. Theorem 2.1 says that the set of extreme points of
PN−rep(X2) is equal to ϕN(P 1

N
(X)), i.e. it is the image of the set of 1

N
-quantized one-point

measures under the marginal-to-correlated state map.

Theorem 2.1 allows, in particular, to determine the number of extreme points.

Corollary 2.1. The set PN−rep(X2) has precisely
(
N+`−1
`−1

)
extreme points.

Proof of the corollary. Since the set of extreme points is the image of P 1
N

(X) under
the injective map (2.8), it suffices to determine the cardinality of P 1

N
(X). Introduce the

following symbolic representation of λ ∈ P 1
N

(X) by a bitstring:

x = 0 · · · 0︸ ︷︷ ︸
Nλ1

1 0 · · · 0︸ ︷︷ ︸
Nλ2

1 · · · 0 · · · 0︸ ︷︷ ︸
Nλ`

.
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Note that this bitstring consists, in total, of (` − 1) ones and N zeroes, and that λ can be
recovered from x via

λi = no. of zeroes between the (i− 1)th and ith one in x.

Hence the cardinality of P 1
N

(X) equals that of the set of corresponding bitstrings. Since the
latter consists of all sequences of zeroes and ones of length N + `−1 containing exactly `−1
ones, it has cardinality (

N+`−1
`−1

)
.

This establishes the corollary.

Proof of Theorem 2.1. First we show that the set of N -representable two-point probability
measures is equal to the convex hull of the points (2.7), i.e. that

PN−rep(X2) = conv
(
ϕN(P 1

N
(X))

)
, (2.9)

where ϕN is the map (2.8). This statement is proved for N = 2 in [FMPCK13] and for
general N in [Fi14]. For completeness we include a short proof of our own. We then show
that each element of ϕN(P 1

N
(X)) is extreme, i.e. that for any λ ∈ P 1

N
(X)

ϕN(λ) 6∈ conv
(
ϕN(P 1

N
(X))\{ϕN(λ)}

)
. (2.10)

Proof of (2.9). This implication is more or less straightforward. For completeness we
include the details. We start from the fact that, directly from the definition of P(XN),

P(XN) = conv
{
δi1...iN : i1, ..., iN ∈ {1, ..., `}

}
. (2.11)

Here and below we use the notation (2.2). The subset Psym(XN) of symmetric probability
measures on XN (see (1.3)) is the image of P(XN) under the linear symmetrization operator
S : P(XN)→ P(XN) defined by

(Sγ)(A1 × · · · × AN) =
1

N !

∑
σ∈SN

γ
(
Aσ(1) × · · · × Aσ(N)

)
for all A1, ..., AN ⊆ X. (2.12)

Here SN denotes the group of permutations σ : {1, ..., N} → {1, ..., N}. Consequently

Psym(XN) = conv{Sδi1...iN : 1 ≤ i1 ≤ ... ≤ iN ≤ `}. (2.13)

The set PN−rep(X2) is, by the definition of N -representability, the image of Psym(XN) under
the linear map M2 : P(XN) → P(X2) from an N -point measure to its two-point marginal
(see (2.15) below). It follows that

PN−rep(X2) = conv{M2Sδi1...iN : 1 ≤ i1 ≤ ... ≤ iN ≤ `}. (2.14)

Here and below, the map from N -point measures to their k-point marginals is denoted by
Mk, that is to say for any k ∈ {1, ..., N} and any γ ∈ P(XN) we define

(Mkγ)(A) = γ(A×XN−k) for all A ⊆ Xk, (2.15)

9



with the convention that MN is the identity. The N -representable measures appearing on
the right hand side of (2.14) can be evaluated explicitly, by partitioning the sum over all
permutations σ according to the value of σ(1) and σ(2):

N !M2Sδi1...iN = M2

∑
σ∈SN

δiσ(1)...iσ(N)

= M2

N∑
m,n=1
m 6=n

∑
σ∈SN

σ(1)=m,σ(2)=n

δiminiσ(3)...iσ(N)

= (N − 2)!
N∑

m,n=1
m 6=n

δimin , (2.16)

with the factor (N − 2)! in the last expression arising as the number of permutations with
σ(1) = m, σ(2) = n. The corresponding one-point marginal is

M1Sδi1...iN =
1

N(N − 1)
M1

N∑
m,n=1
m 6=n

δimin =
1

N

N∑
m=1

δim . (2.17)

Given the explicit expressions (2.16), (2.17), it is now a straightforward matter to infer the
following lemma.

Lemma 2.1 (One- and two-point marginals of symmetrized Dirac measures). We have
a) {M1Sδi1...iN : 1 ≤ i1 ≤ ... ≤ iN ≤ `} = P 1

N
(X)

b) For any i1, ..., iN as above, M2Sδi1...iN = ϕN(M1Sδi1...iN ).

Clearly, this lemma combined with (2.14) establishes (2.9), completing the proof of the “easy
part” of Theorem 2.1. It remains to verify the lemma.

Proof of Lemma 2.1. Given any i1, ..., iN ∈ {1, ..., `}, we introduce the numbers

λi :=
1

N
]
{
k ∈ {1, ..., N} : ik = i

}
∈
{

0, 1
N
, ..., N−1

N
, 1
}

(i = 1, ..., `). (2.18)

The renormalized numbers ρi := Nλi have a natural meaning of occupation numbers of the
sites ai ∈ X: they indicate for each site i ∈ {1, ..., `} by how many “particles” it is occupied
when the system is in the state δi1...iN = δai1 ⊗· · ·⊗ δaiN . In terms of the λi’s, the right hand
side of (2.17) can be re-written as

M1Sδi1...iN =
∑̀
i=1

λiδi. (2.19)

Clearly, equations (2.18), (2.19) imply the inclusion “ ⊆ ” in a). To infer the reverse
inclusion, note that any probability measure λ ∈ P 1

N
(X) can be decomposed into N Dirac

measures of size 1
N
, i.e. λ = 1

N

∑N
k=1 δik for some i1, ..., iN ∈ {1, ..., `}. Rearranging the ik

in nondecreasing order and using (2.17) shows that λ is the image under M1 of the N -point
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measure Sδi1...iN . To infer b) we denote µ := M2Sδi1...iN and µij := µ({(ai, aj)}), so that
µ =

∑`
i,j=1 µijδij, and distinguish two cases.

Case 1: i 6= j. In this case, by (2.16)

µij =
1

N(N − 1)
]
{

pairs (im, in) with im = i, in = j
}

=
1

N(N − 1)
ρiρj =

N

N − 1
λiλj.

(2.20)
Case 2: i = j. In this case, (2.16) gives

µii =
1

N(N − 1)
ρi(ρi − 1) =

N

N − 1
λ2i −

1

N − 1
λi.

Altogether we obtain that µ is given by the expression (2.7), establishing b).

Proof of (2.10). The finite set of pair states (2.7) lies on the continuous manifold ϕN(P(X)),
which – geometrically – is the image of a simplex under a continuous nonlinear map. Our
strategy is to unearth, and use, the differential geometry of this manifold.

More precisely, we restrict attention to a suitable lower-dimensional projection M of this
manifold. To construct this projection we introduce the following linear mapR : Psym(X2)→
R`+1 which maps Psym(X2) into a lower-dimensional vector space:

Rµ :=
(
M1µ,

N − 1

N

∑
1≤i<j≤`

µij

)
=
(∑

j

µ1j, ...,
∑
j

µ`j,
N − 1

N

∑
1≤i<j≤`

µij

)
. (2.21)

We now introduce the continuous manifold M := RϕN(P(X)) (see Figure 2), which by
construction contains all points in RϕN(P 1

N
(X)). By the explicit formula for ϕN (see (2.8)),

we have RϕN(λ) = (λ,
∑

1≤i<j≤` λiλj), for any λ ∈ P(X). It follows thatM has the structure
of a graph of a scalar function:

M = {(λ, g(λ)) : λ ∈ P(X)}, where g(λ) :=
∑

1≤i<j≤`

λiλj. (2.22)

The key to the extremality assertion we need to prove lies in the following differential-
geometric fact:

Lemma 2.2 (Concavity). The function g is strictly concave on P(X); that is to say,

g(λ′) < g(λ) +∇g(λ) · (λ′ − λ) whenever λ, λ′ ∈ P(X), λ 6= λ′. (2.23)

Proof. Since g is quadratic, by Taylor expansion we have

g(λ′) = g(λ) +
〈
∇g(λ), λ′ − λ

〉
+

1

2

〈
D2g(λ)(λ′ − λ), λ′ − λ

〉
. (2.24)

Here 〈a, b〉 is the standard inner product
∑`

i=1 aibi, and we employ the usual notation for
gradient and Hessian, (∇g)i := ∂g

∂λi
, (D2g)ij = ∂2g

∂λi∂λj
. For g as defined in (2.22), one

calculates

∇g(λ) = v −

λ1...
λ`

 , D2g(λ) = v vT − I, with v =

1
...
1

 . (2.25)
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Figure 2: The curved continuous manifold M and the injective linear image of the set of
extremal N -representable two-point measures. The picture shows the case N = 10, ` = 3,
in which there are 66 extreme points. The horizontal coordinates correspond to the one-
point marginal. The vertical coordinate indicates the Wasserstein cost of the measure with
respect to the discrete metric (see (2.29), (2.30)), which – due to its linear dependence on
the measure – provides a coordinate direction in the space of two-point measures, and is
useful for understanding the geometry of N -representable measures.

Here I denotes the identity matrix. It follows that D2g has eigenvalue `− 1 on Span v, and
eigenvalue −1 on the orthogonal complement (Span v)⊥ = {λ ∈ R` :

∑`
i=1 λi = 0}. This

together with (2.24) establishes (2.23), since the difference λ′ − λ belongs to (Span v)⊥ (the
tangent space of P(X) at λ).

Geometrically, the concavity of g means that its graph lies strictly below the tangent space
to the graph at (λ, g(λ)), as is evident from rewriting (2.23) as〈( λ′

g(λ′)

)
, nλ

〉
<
〈( λ

g(λ)

)
, nλ

〉
for all

(
λ′

g(λ′)

)
∈M\

{(
λ
g(λ)

)}
, (2.26)

where nλ is the “upward” normal toM at (λ, g(λ)), explicitly:

nλ =
1√

1 + |∇g(λ)|2

(
−∇g(λ)

1

)
.

In particular, it follows from (2.26) that〈
RϕN(λ′), nλ

〉
<
〈
RϕN(λ), nλ

〉
whenever λ, λ′ ∈ P 1

N
(X), λ 6= λ′. (2.27)

Thus each RϕN(λ), λ ∈ P 1
N

(X), is an extreme point of conv
(
RϕN(P 1

N
(X)

)
, and so – by the

linearity of R – each ϕN(λ), λ ∈ P 1
N

(X), is an extreme point of conv
(
ϕN(P 1

N
(X))

)
. This

establishes (2.10), and completes the proof of Theorem 2.1.
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Together with (2.9), inequality (2.27) shows that any extremal N -representable two-point
measure (2.7) uniquely solves the problem of maximizing the linear functional 〈Rµ, nλ〉
over µ ∈ PN−rep(X2). This problem was derived on purely differential-geometric grounds,
yet it has an interesting optimal transport meaning. To see this we drop the inessential
normalization factor from nλ and calculate using (2.25)

〈Rµ,
√

1 + |∇g(λ)|2nλ〉 = −〈M1µ, ∇g(λ)〉+
N − 1

N

∑
1≤i<j≤`

µij

= −
∑
i,j

µij +
∑
i

λi
∑
j

µij +
N − 1

N

∑
i<j

µij

=
∑̀
i,j=1

cijµij, cij := −1 +
λi + λj

2
+
N − 1

2N
(1− δij),(2.28)

where for the last equality sign we have used the symmetry of µ. The crucial term
∑

i,j(1−
δij)µij in the last expression is nothing but the Wasserstein cost

W [µ] :=
∑̀
i,j=1

d(ai, aj)
pµij =

∫
X×X

d(x, y)pdµ(x, y) (1 ≤ p <∞) (2.29)

with respect to the discrete metric on X,

d(x, y) :=

{
1 x 6= y

0 x = y.
(2.30)

Note that for the discrete metric, the Wasserstein cost is independent of p. We summarize
this finding as follows.

Corollary 2.2 (Extremal two-point measures as maximizers of the Wasserstein cost).
a) Each extreme point µ∗ of PN−rep(X2) is the unique solution of the problem

Maximize Jλ[µ] :=
2N

N − 1

∑
i

λi(M1µ)i +W [µ] over PN−rep(X2), (2.31)

where λ is the one-point marginal of µ∗.
b) In particular, each extreme point µ∗ of PN−rep(X2) is the unique solution of the optimal
transport problem

Maximize W [µ] over µ ∈ PN−rep(X2) subject to µ 7→ λ, (2.32)

where λ is the marginal of µ∗.

The variational problem (2.31) above – which arose from purely differential-geometric con-
siderations – can be viewed as a “soft-constraint” version of the optimal transport problem
(2.32), since the functional Jλ promotes but does not rigidly enforce that the marginal M1µ
is close to λ.
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3 Extremal symmetric N-point measures

The extreme points of the set of symmetric N -point measures are straightforward to deter-
mine (see Proposition 3.1). By comparing with the results of the previous section, we will
see that this high-dimensional set has just the same number of extreme points as the much
lower-dimensional set of N -representable two-point measures. We find this phenomenon
quite remarkable. For instance it has the following optimal transport implication: every
extreme point of the set of symmetric N -point measures, i.e. every unique optimizer of some
OT problem (1.1) with arbitrary N -body cost, must also be the unique optimizer of some OT
problem with pairwise cost (2.3). In fact, by using the results of Section 2 we will see that
a natural and universal such OT problem, maximizing the Gangbo-Święch cost associated
with the discrete metric on X under a soft marginal constraint, does the job. See Corollary
3.1 below.

Proposition 3.1 (Extremal symmetric N -point measures). .
a) (Form of extreme points) A probability measure on XN is an extreme point of Psym(XN)
if and only if it is a symmetrized Dirac measure, i.e. of form

Sδi1...iN for some i1, ..., iN ∈ {1, ..., `} with i1 ≤ ... ≤ iN , (3.1)

where S is the symmetrization operator defined in (2.12).
b) (Parametrization by index vectors) Different index vectors yield different extreme points;
that is to say the map (i1, ..., iN) 7→ Sδi1...iN maps the index set I = {(i1, ..., iN) ∈ {1, ..., `}N :
i1 ≤ ... ≤ iN} bijectively to the set of extreme points (3.1).

Proof. First we show a). Let E denote the set of probability measures of form (3.1). We
already found in Section 2 that Psym(XN) is the convex hull of E (see (2.13)). Hence the set
of extreme points of Psym(XN) is contained in E. So it suffices to show that any γ ∈ E is
not contained in the convex hull of E\{γ}. This follows, for instance, because γ = Sδi1...iN
is the only element of E whose support contains the point (ai1 , ..., aiN ) ∈ XN .

It remains to show b). Injectivity of the map (i1, ..., iN) 7→ Sδi1...iN from I to E follows
from the above property of the support of Sδi1,...,iN . That the map is onto is clear from the
definition of E. This proof of the proposition is complete.

The next result is less obvious.

Theorem 3.1 (Isomorphisms to sets of marginals). .
a) (Parametrization by one-point marginals) The marginal map M1 : Psym(XN) → P(X)
maps the set of extreme points (3.1) bijectively to the whole range of M1, that is to say to
the set P 1

N
(X) of 1

N
-quantized one-point measures. In particular, there are precisely(

N+`−1
`−1

)
extreme points, and there exists an inverse map ψN from P 1

N
(X) to the set of extreme points

such that for any i1, ..., iN as above,

Sδi1...iN = ψN(M1Sδi1...iN ).

14



b) (Relationship to extremal N -representable two-point measures) The two-point marginal
map M2 : Psym(XN)→ PN−rep(X2) is a bijection between the corresponding sets of extreme
points. Moreover, for any extreme point µ of PN−rep(X2), the extreme point of Psym(XN)
which is mapped to µ by M2 is the unique representing measure of µ (see Def. 2.1).

Before coming to the proof of the theorem we note a corollary which relates the convex
geometry of the set Psym(XN) to the Gangbo-Święch functional introduced in [GS98] in the
context of optimal transport on euclidean spaces,

CGS[γ] =

∫
XN

∑
1≤i<j≤N

d(xi, xj)
pdγ(x1, ..., xN). (3.2)

In our setting of a finite state space X, we take d to be the discrete metric (2.30). As for
the ordinary Wasserstein cost (2.29) corresponding to N = 2, the Gangbo-Święch cost is
trivially independent of p when the underlying metric is the discrete metric.

Corollary 3.1 (Extremal measures as maximizers of the Gangbo-Święch cost). Let γ∗ be
any extreme point of Psym(XN), and let λ denote its one-point marginal.
a) γ∗ is the unique solution of the problem

Maximize Cλ[γ] := N2
∑
i

λi(M1γ)i + CGS[γ] over Psym(XN). (3.3)

b) In particular, γ∗ is the unique solution of the multi-marginal optimal transport problem

Maximize the Gangbo-Święch cost (3.2) over γ ∈ Psym(XN) subject to γ 7→ λ. (3.4)

Here, as before in Corollary 2.2, the variational problem in a) can be viewed as a soft-
contraint version of the OT problem in b), in which closeness of the marginal M1γ to λ is
promoted but not enforced.

Proof of Corollary 3.1. As for any pairwise cost, CGS[γ] =
(
N
2

) ∫
X×X d(x, y)pd(M2γ)(x, y),

and so γ is a solution to the variational problems in a) respectively b) if and only if it is a
representing measure of a solution to the corresponding problems in Corollary 2.2 b). The
assertion now follows by combining the results of Corollary 2.2 with the uniqueness result of
Theorem 3.1 b).

Proof of Theorem 3.1. We begin with a). As in the proof of Proposition 3.1 we denote
the set (3.1) of symmetrized Dirac measures by E. That M1 is onto from E to P 1

N
(X)

was already shown in Lemma 2.1 a). To show that M1 is injective, we show that even the
composed map from index vectors to one-point marginals,

(i1, ..., iN) 7→ Sδi1...iN 7→M1Sδi1...iN , (3.5)

is injective on I. Indeed, if two index vectors (i1, ..., iN), (i′1, ..., i
′
N) ∈ I are different,

then there must exist some i ∈ {1, ..., `} such that ]{k ∈ {1, ..., N} : ik = i} 6= ]{k ∈
{1, ..., N} : i′k = i}. By formulae (2.1), (2.19) for the one-point marginal of a symmetrized
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Dirac measure, this implies that M1Sδi1...iN 6= M1Sδi′1...i′N . This establishes bijectivity and
the existence of the map ψN . The assertion concerning the cardinality of E now follows from
the corresponding result for the cardinality of P 1

N
(X) (see the proof of Corollary 2.1).

Now we deal with b). First we claim that M2E is equal to the set of extreme points of
PN−rep(X2). This follows by combining Lemma 2.1, which shows that M2E is equal to the
set of measures of form (2.7), and Theorem 2.1, which identifies the latter set as the set of
extreme points of PN−rep(X2). That M2 is a bijection between E and the set of extreme
points of PN−rep(X2) now follows because by Corollary 2.1 and a), both sets have the same
cardinality. This esbalishes b), up to the uniqueness claim for representing measures. To
establish the latter, assume that µ is any extreme point of PN−rep(X2), and let γ be any
representing measure, i.e. any element of Psym(XN) with M2γ = µ. By Proposition 3.1 a)
and Minkowski’s theorem, γ belongs to the convex hull of E, that is to say

γ =
M∑
i=1

αiγi for some M ∈ N, γi ∈ E, αi ≥ 0,
∑
i

αi = 1. (3.6)

Applying the linear map M2 to (3.6) yields µ =
∑M

i=1 αiM2γi. But by the injectivity of M2

on E, the M2γi are all distinct. Since µ is by assumption an extreme point of PN−rep(X2),
it follows that αi0 = 1 and αi = 0 (i 6= i0) for some i0. Substitution of this finding into (3.6)
shows γ = γi0 ; consequently γ belongs to E. But uniqueness of representing measures γ of
µ within E was already shown in the proof of the first part of b). The proof of Theorem 3.1
is complete.

4 Measures with prescribed marginal

Unconstrained linear optimization problems over the compact convex sets PN−rep(X2) or
Psym(XN) will always attain their optimum at some extreme point, but multi-marginal
optimal transport problems of the form (1.1) or (2.5) typically will not. This is because most
of the extreme points (2.7) respectively (3.1) will fail to comply with a prescribed marginal
condition. Probability measures in PN−rep(X2) or Psym(XN) with prescribed marginal, like
any point inside a convex set, do however admit a (usually non-unique) representation as a
convex combination of extreme points. To set the stage for the following section, here we
write out this representation explicitly, and interpret it in the form of an integral over a
suitable subset of P(X), so as to bring out a formal analogy to the de Finetti representation
for infinitely representable measures (see e.g. [CFP15]).

By Minkowski’s theorem, for any γ ∈ Psym(XN) respectively any µ ∈ PN−rep(X2) we have

µ =
∑

λ∈P 1
N

(X)

αλ

(
N
N−1λ⊗λ−

1
N−1

∑̀
i=1

λiδi ⊗ δi
)
resp. γ =

∑
λ∈P 1

N
(X)

αλψN(λ)

for some αλ ≥ 0 with
∑

λ∈P 1
N

(X)

αλ = 1.
(4.1)

Here ψN is the bijective map from 1
N
-quantized probability measures on X to symmetrized

Dirac measures provided by Theorem 3.1. The coefficients αλ are highly non-unique in the
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case of µ, but whenever γ represents µ they can be taken to be the same in both expansions.
This will be useful later. To reveal an interesting analogy to de Finetti’s theorem, we exploit
the fact that the set of extreme points has been found to be isomorphic to a subset of P(X),
view the coefficients (αλ)λ as a probability measure α on this subset, i.e. a probability
measure on P 1

N
(X), and re-write (4.1) as follows. Here and below the space of probability

measures on P 1
N

(X) will be denoted by P(P 1
N

(X)).

Lemma 4.1. Given any symmetric N-point probability measures γ on XN , respectively any
N-representable two-point probability measure µ on X2, there exists a probability measure
α ∈ P(P 1

N
(X)) such that

γ =

∫
P 1
N

(X)

ψN(λ) dα(λ) (4.2)

respectively

µ =

∫
P 1
N

(X)

(
λ⊗λ+

1

N − 1

(
λ⊗λ−

∑̀
i=1

λiδi ⊗ δi
))
dα(λ), (4.3)

where ψN is the map provided by Theorem 3.1.

Note that in the limit N →∞ the integrand in (4.3) tends to the independent measure λ⊗λ
and the set P 1

N
(X) of 1

N
-quantized probability measures tends – formally – to the set P(X)

of all probability measures, so (4.3) turns into the celebrated de Finetti representation of
infinitely representable measures on X2,

µ =

∫
P(X)

λ⊗λ dα(λ) for some α ∈ P(P(X)). (4.4)

(For more information about (4.4), as well as an application to infinite-marginal optimal
transport problems, we refer the reader to [CFP15].) In the representation (4.2)–(4.3), any
marginal constraint µ 7→ λ∗ or γ 7→ λ∗ for some given λ∗ ∈ P(X) turns into the following
constraint on the measure α: ∫

P 1
N

(X)

λ dα(λ) = λ∗ (4.5)

or, in pedestrian notation, ∑
λ∈P 1

N
(X)

αλ λ = λ∗. (4.6)

The above representation formulae for µ and γ as “averages” of extremal states have not,
at this point, achieved any dimension reduction. The coefficient vector (αλ)λ∈P 1

N
(X) is still

of length
(
N+`−1
`−1

)
– exactly the same as the linear dimension of the original vector space of

symmetric measures on XN . In particular, in the typical situation in physical applications
when the number of sites, `, is of the order of a constant times N for some constant bigger
than 1 (i.e., the number of possible sites grows proportionally to the number of particles),
the length of the coefficient vector increases exponentially as N gets large.

17



5 Sparse averages of extremal states

We now show that the extreme points of the set of symmetric probability measures on XN

with prescribed marginal λ∗ ∈ P(X),

Psym,λ∗(XN) := {γ ∈ Psym(XN) : M1γ = λ∗}. (5.1)

can be obtained by using only very sparse coefficient vectors in the expansion (4.1). The
same will be established for the set of N -representable probability measures on X2 with
prescribed marginal,

PN−rep,λ∗(X2) := {µ ∈ PN−rep(X2) : M1µ = λ∗}. (5.2)

We remark that the sets (5.1) and (5.2) are always nonempty, a simple reason being that
these spaces contain the N -fold respectively two-fold tensor product of the marginal with
itself.

In the following, for any convex set K the set of its extreme points is denoted by extK.

Lemma 5.1 (Sparsity of extremal Kantorovich plans). Let λ∗ ∈ P(X).
a) Let PSAE,λ∗(XN) denote the set of probability measures on XN of form (4.2) for some
α ∈ P(P 1

N
(X)) which satisfies (4.5) and is supported on at most ` elements of P 1

N
(X). Then

ext
(
Psym,λ∗(XN)

)
⊆ PSAE,λ∗(XN) ⊆ Psym,λ∗(XN). (5.3)

b) Let PN,SAE,λ∗(X2) denote the set of probability measures on X2 of form (4.3) for some
α ∈ P(P 1

N
(X)) which satisfies (4.5) and is supported on at most ` elements of P 1

N
(X). Then

ext
(
PN−rep,λ∗(X2)

)
⊆ PN,SAE,λ∗(X2) ⊆ PN−rep,λ∗(X2). (5.4)

The inclusions (5.4) and (5.3) say that the sparse ansatz underlying the sets in the middle
produces only probability measures in the sets on the right (i.e., admissible trial states in
the Kantorovich problems (1.1), (2.5)), and contains all their extreme points.

We propose to call measures in the middle set of (5.3) sparse averages of extremal states, or
SAE states for short, and claim that they are precisely the same states introduced in a more
elementary manner in the Introduction.

To see this we begin by eliminating the abstract map ψN . By definition, any element of
PSAE,λ∗(XN) is of the form

∑`
ν=1 α

(ν)ψN(λ(ν)) for some 1
N
-quantized one-point probability

measures λ(ν) and some nonnegative α(ν) which sum to 1. Each λ(ν) can be decomposed
further as

λ(ν) =
1

N

N∑
k=1

δTk(aν) (5.5)

for some points T1(aν), ..., TN(aν) ∈ X. The underlying physical picture is that any 1
N
-

quantized probability measure arises by dropping N points anywhere on the state space X
and encoding it by the location of the points, i.e. by the associated empirical measure.
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By definition of the map ψN (see Section 3) and the construction of a symmetrized Dirac
measure whose one-point marginal is a given element of P 1

N
(X) (see the proof of Lemma

2.1) we have
ψN(λ(ν)) = SδT1(aν) ⊗ · · · ⊗ δTN (aν) (5.6)

(note that because of the presence of the symmetrization operator, it is immaterial that the
indices of the points Tk(aν) do not appear in nondecreasing order).

Now observe something interesting. The possible values of the image points Tk(aν) in (5.5)
are the sites in X, and hence there are ` possible values. But thanks to our sparsity lemma,
ν runs only over just as many values. Hence the collection of image points {Tk(aν) : ν ∈
{1, ..., `}, k ∈ {1, ..., N}} can be interpreted as N maps T1, ..., TN : X → X; the measure
λ(ν) is then the value distribution of the ensemble {Tk}k=1,...,N of maps at the point aν (see
Figure 1 in the Introduction). Moreover the vector of weight coefficients α(ν) – originally a
probability measure on P 1

N
(X) – can be identified with a vector of “site weights”, i.e. with

a probability measure on the much smaller space X.

To summarize:

Proposition 5.1 (Characterization of SAE states). For any given marginal λ∗ ∈ P(X), and
any probability measure on XN , the following are equivalent:
(i) The probability measure is of the form

γ =
∑̀
ν=1

α(ν)SδT1(aν) ⊗ · · · ⊗ δTN (aν) (5.7)

for some maps T1, ..., TN : X → X and some site weights α(1), ..., α(`) ≥ 0 satisfying the
system of equations ∑̀

ν=1

λ
(ν)
i α(ν) = (λ∗)i (i = 1, ..., `), (5.8)

where λ(ν) is the empirical value distribution of the ensemble of maps {Tk}k=1,...,N at the site
aν, i.e. λ(ν) is given by (5.5) or equivalently λ(ν)i = 1

N
]{k ∈ {1, ..., N} : Tk(aν) = ai}.

(ii) The probability measure is of the form

γ =
∑̀
ν=1

α(ν)ψN(λ(ν)) (5.9)

for some probability measures λ(1), ..., λ(`) on X which are 1
N
-quantized (i.e. belong to P 1

N
(X))

and some site weights α(1), ..., α(`) ≥ 0 satisfying the system of equations (5.8), where ψN is
the isomorphism from P 1

N
(X) to the set of symmetrized Dirac measures provided by Theorem

3.1.
Moreover if γ is of form (i) then it is of form (ii) with the same λ(ν)s and α(ν)s; in particular,
it depends on the family of maps {Tk}k=1,...,N only through the associated value distributions
(5.5). Likewise, if γ is of form (ii), then it is of the form (i) with the same λ(ν)s and α(ν)s
and with T1, ..., TN being any maps from X to X such that (5.5) holds.
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Note that the system of equations (5.8) automatically entails that the α(ν) sum to 1, as is
seen by summation over i.

As already pointed out in the Introduction, the number of parameters required to specify an
SAE state is only ` ·N + `, because each map Tk is specified by the indices of its ` values at
the sites a1, ..., a`, and only ` coefficients α(ν) are required.

The meaning of the system (5.10) is that the average of the value distributions λ(ν) over the
sites aν with respect to the site weights α(ν),

λav :=
∑̀
ν=1

α(ν)λ(ν), (5.10)

must be equal to the prescribed marginal measure. By contrast, the standard multi-marginal
Monge ansatz prescribes the distribution of values averaged over sites for the individual maps
instead of the ensemble of maps.

For a graphical representation of a typical SAE state see the right panel in Figure 1 in the
Introduction.

Proof of Lemma 5.1. The second inclusion in (5.4) and (5.3) is obvious from the represen-
tation formulae in Lemma 4.1 for general N -representable two-point probability measures
and general symmetric N -point probability measures. The key point is the first inclusion.
We only prove it for (5.3), the case of (5.4) being analogous. Suppose γ is an extreme point
of Psym,λ∗(XN). Like any other element of Psym(XN), by Lemma 4.1 it can be written in
the form (4.2) for some probability measure α ∈ P(P 1

N
(X)). Suppose that the support of α

contains more than ` elements, that is to say

{λ ∈ P 1
N

(X) : αλ > 0} = {λ(1), ..., λ(`′)} for some `′ ≥ `+ 1.

Clearly, using the shorthand notation α(ν) := αλ(ν) we have

γ =
`′∑
ν=1

α(ν)ψN
(
λ(ν)
)
. (5.11)

Moreover since γ belongs to Psym,λ∗ , it satisfies the marginal condition (4.6), which now
takes the following formλ

(1)
1 · · · λ

(`′)
1

... · · · ...
λ
(1)
` · · · λ

(`′)
`



α(1)

...

α(`′)

 =

(λ∗)1
...

(λ∗)`

 . (5.12)

This is a system of ` linear equations for `′ ≥ ` + 1 variables. Hence the corresponding
homogeneous equation ((5.12) with the right hand side replaced by the zero vector) possesses
a nonzero solution β = (β(1), ..., β(`′))T . Moreover, by taking the sum of the ` homogeneous
equations we see that

0 =
∑̀
i=1

`′∑
ν=1

λ
(ν)
i β(ν) =

`′∑
ν=1

β(ν).
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It follows that the vector β contains at least one positive component and at least one negative
component. Hence there exist ε+, ε− > 0 such that

min
ν∈{1,...,`′}

(
α(ν) + ε+β

(ν)
)

= 0, (5.13)

min
ν∈{1,...,`′}

(
α(ν) − ε−β(ν)

)
= 0. (5.14)

Define two new measures α± ∈ P(P 1
N

(X)) by

(α±)λ :=

{
α(ν) ± ε±β(ν) if λ = λ(ν) for some ν ∈ {1, ..., `′}
0 otherwise.

(5.15)

It follows from the above definition that α is a convex combination of α±, more precisely

α = c−α− + c+α+ with c− = ε+
ε++ε−

, c+ = ε−
ε++ε−

. (5.16)

Moreover by (5.13) and (5.14), the support of α± contains at most `′ − 1 points. Now
introduce the following measures on XN

γ± :=

∫
P 1
N

(X)

ψN(λ) dα±(λ) =
`′∑
ν=1

α
(ν)
± ψN

(
λ(ν)
)
,

with the shorthand notation α(ν)
± = (α±)λ(ν) . By construction the γ± still satisfy the marginal

condition, i.e. belong to Psym,λ∗(XN), and satisfy γ = c−γ−+c+γ+. Now there are two cases:
either the γ± coincide with γ or they do not. The second case cannot occur, because by
assumption γ is an extreme point of Psym,λ∗ . Thus γ = γ− = γ+, and so we have found
a sparser representation of γ, by a measure in P(P 1

N
(X)) whose support contains at most

`′−1 elements. Repeating the above construction leads to a representation of γ by a measure
whose support contains at most ` elements.

Lemma 5.1 immediately leads to the main result of this paper.

Theorem 5.1 (Breaking the curse of dimension in multi-marginal optimal transport). .
a) For any number N ≥ 2 of marginals, any finite state space X, any cost function cN :
XN → R ∪ {+∞}, and any prescribed marginal λ∗ ∈ P(X), the Kantorovich problem (1.1)
admits a solution which is an SAE state (see Definition 1.1). Moreover when cN is sym-
metric, this SAE state is also a minimizer of the Kantorovich cost C[γ] over all of P(XN)
subject to γ 7→ λ∗.
b) If, in addition, the cost function is of pairwise form, i.e. cN(x1, ..., xN) =

∑
1≤i<j≤N c(xi, xj)

for some c : X2 → R∪{+∞}, the minimum cost in (1.1) is the same as that of the following
explicit reduced problem: Minimize the functional

I[α, λ(1), ..., λ(`)] =
∑̀
ν=1

α(ν)
(
N2

2

∫
X×X

c(x, y)dλ(ν)(x)dλ(ν)(y)− N
2

∫
X

c(x, x) dλ(ν)(x)
)

(5.17)
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over α = (α(1), ..., α(`)) ∈ R` and λ(1), ..., λ(`) ∈ P 1
N

(X) subject to the constraints

α(ν) ≥ 0 (ν = 1, ..., `),
∑̀
ν=1

α(ν)λ(ν) = λ∗. (5.18)

Moreover if (α, λ(1), ..., λ(`)) is any minimizer of the reduced problem, then the associated
SAE state (5.9) is a minimizer of (1.1).

Proof of Theorem 5.1. By compactness and convexity of the set Psym,λ∗(XN), the problem
(1.1) admits a solution which is an extreme point of this set. Assertion a) now follows from
Lemma 5.1 a). The proof of b) follows in an analogous manner, by using (2.4) and Lemma
5.1 b) together with the explicit representation (2.7) for extremal N -representable measures.

6 A new characterization of Monge states

We now compare the sparse-average-of-extremals (SAE) ansatz with the classical but not
always sufficient Monge ansatz

γ =
∑̀
ν=1

1
`
δT1(aν) ⊗ · · · ⊗ δTN (aν) for N permutations T1, ..., TN : X → X. (6.1)

(Recall that by re-ordering the sum one could without loss of generality assume T1 = id,
but in the discussion below it will be convenient not to single out any particular map Tk.)
The requirement that the Tk be permutations implies that γ has equal one-point marginals
λ (where λ is the uniform measure (1.6)). So the set of symmetrized Monge states,

PMonge(X
N) = {Sγ : γ is of form (6.1)}, (6.2)

is contained in the set of symmetric N -point probability measures with uniform marginal.
Hence it should be compared to the set of SAE states with uniform marginal,

PSAE(XN) := PSAE,λ(XN). (6.3)

Theorem 6.1 (Characterization of Monge states). A probability measure on XN is a sym-
metrized Monge state if and only if it is an SAE state with uniform marginal with all the
site weights being equal to 1/`, i.e. α(1) = ... = α(`) = 1/`.

Proof. The “only if” part is trivial, but the “if” part is not, because of the more stringent
requirement in (6.1) that the Tk must be permutations. To prove the “if” part, we start by
taking any SAE state γ with site weights 1/`, that is to say

γ =
∑̀
ν=1

1

`
ψN
(
λ(ν)
)

(6.4)
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for some λ(1), ..., λ(`) ∈ P 1
N

(X) which satisfy the system of equations

∑̀
ν=1

λ
(ν)
i

1
`

= 1
`

(i = 1, ..., `). (6.5)

It is convenient here to use the abstract form (5.9) of these states, as the fact that γ depends
only on the λ(ν) and α(ν) will be important. Consider the matrix whose columns are given
by the λ(ν)s, i.e.

A1 =

λ
(1)
1 · · · λ

(`)
1

...
...

λ
(1)
` · · · λ

(`)
`

 . (6.6)

By equations (6.5) and the fact that the λ(ν)s are normalized, this matrix is doubly stochasic
(i.e., it is a nonnegative matrix whose rows and columns sum to 1). Next we introduce a
bipartite graph G1 = (V1 ∪ V ′1 , E1), as follows: the vertices are given by two disjoint sets of
` elements, say V1 = {1, ..., `}, V ′1 = {1′, ..., `′}, and the edge set is

E1 =
{
{i, j′} : i, j ∈ V1, λ(i)j > 0}. (6.7)

Thus replacing all nonzero entries of A1 by 1 would yield the adjacency matrix of the
graph. By the Birkhoff-von Neumann theorem, A1 can be written as a convex combi-
nation of permutation matrices. Therefore for any subset W of V1, the neighborhood
N(W ) = {v′ ∈ V ′1 : {w, v′} ∈ E1 for some w ∈ W} satisfies

]N(W ) ≥ ]W.

We now appeal to Hall’s theorem for bipartite graphs (see e.g. [GY05]) which implies that
G1 has a perfect matching, that is to say there exists a subsetM1 of E1 such that each v ∈ V1
belongs to some edge {v, w′} ∈ M1 and different edges in M1 are disjoint. Let τ1 : V → V
be the map t hat maps the element v ∈ V to the element (τ1(v))′ in the same edge. Since
M1 is a perfect matching, τ1 is a permutation. Now subtract a suitable multiple of the
corresponding permutation matrix from A1, i.e. perform the following update:

A2 := A1 −
1

N

N∑
i=1

eτ1(i)e
T
i . (6.8)

Since the components (A1)ij of A1 take values in {0, 1
N
, ..., N−1

N
, 1}, it follows that A2 ≥ 0.

Now N
N−1A2 is again doubly stochastic and by the same argumentation as before we can

construct a permutation τ2 : {1, ..., `} → {1, ..., `} such that A2 − 1
N
eT2(i)e

T
i ≥ 0. Iterating

this procedure yields N permutations τ1, ..., τN such that

A1 =
1

N

N∑
k=1

N∑
i=1

eτk(i)e
T
i . (6.9)

Comparing (6.6) and (6.9) and passing from the permutations τk to the associated maps
Tk : X → X defined by Tk(aν) = aτk(ν) yields that the columns λ(i) of A1 have the form
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λ(i) = 1
N

∑N
k=1 δTk(ai). The last part of Proposition 5.1 now implies that γ is equal to∑`

ν=1
1
`
S δT1(aν) ⊗ · · · ⊗ δTN (aν) for the constructed maps T1, ..., TN , i.e. it is a symmetrized

Monge state.
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