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Abstract

This paper addresses the morphing of manifold-valued images based on the time
discrete geodesic paths model of Berkels, Effland and Rumpf [9]. Although for our
manifold-valued setting such an interpretation of the energy functional is not available
so far, the model is interesting on its own. We prove the existence of a minimiz-
ing sequence within the set of L2(Ω,H) images having values in a finite dimensional
Hadamard manifold H together with a minimizing sequence of admissible diffeomor-
phisms. To this end, we show that the continuous manifold-valued functions are dense
in L2(Ω,H). We propose a space discrete model based on a finite difference approach
on staggered grids, where we focus on the linearized elastic potential in the regularizing
term. The numerical minimization alternates between i) the computation of a defor-
mation sequence between given images via the parallel solution of certain registration
problems for manifold-valued images, and ii) the computation of an image sequence
with fixed first (template) and last (reference) frame based on a given sequence of de-
formations via the solution of a system of equations arising from the corresponding
Euler-Lagrange equation. Numerical examples give a proof of the concept of our ideas.

1. Introduction

Smooth image transition, also known as image morphing, is a frequently addressed task
in image processing and computer vision, and there are various approaches to tackle the
problem. For example, in feature based morphing only specific features are mapped to each
other and the whole deformation is then calculated by interpolation. This was successfully
applied, e.g., in the production of the movie Willow [35]. We refer to [40, 41] for an
overview of similar techniques. This paper is related to a special kind of image morphing,
the so-called metamorphosis introduced by Miller, Trouvé and Younes [25, 38, 39]. The
metamorphosis model can be considered as an extension of the flow of diffeomorphism
model and its large deformation diffeomorphic metric mapping framework [6, 12, 14, 36, 37]
in which each image pixel is transported along a trajectory determined by a diffeomorphism
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path. As an extension the metamorphosis model allows the variation of image intensities
along trajectories of the pixels. Solutions via shooting methods were developed e.g. in [20,
31], where the first reference considers a metamorphosis regression model. A comprehensive
overview over the topic is given in the book [42] as well as in the review article [24]. For a
historic account see also [23].

This paper builds up on a time discrete geodesic paths model by Berkels, Effland and
Rumpf [9]. We mention that such a variational time discretization in shape spaces was
already used in [33, 34], see also [17]. Let Ω ⊂ Rn, n ≥ 2, be an open, bounded, connected
domain with Lipschitz boundary. The authors of [9] define a (time) discrete geodesic con-
necting a template image I0 := T ∈ L2(Ω,R) and a reference image IK := R ∈ L2(Ω,R),

K ≥ 2, as minimizing sequence I = (I1, . . . , IK−1) ∈ (L2(Ω,R)
)K−1

of the discrete path
energy

J BER(I) :=
K∑
k=1

inf
ϕk∈A

∫
Ω
W (Dϕk(x)) + γ|Dmϕk(x)|2dx+

1

δ

∫
Ω

(Ik ◦ ϕk − Ik−1)2dx, (1)

subject to I0 = T, IK = R,

where δ, γ > 0, the function W has to satisfy certain properties, A is an admissible set
of deformations, and the higher order derivatives Dmϕk, m > 1 + n

2 , guarantee a certain
smoothness of the deformation. Berkels, Effland, and Rumpf showed that under certain
constrains on W minimizers of J BER converge for K →∞ to a minimizer of the continuous
geodesic path model of Trouvé and Younes [38, 39], where the deformation is regularized by
the dissipation density of a Newtonian fluid, which is the linearized elastic potential applied
to the time derivative of the diffeomorphism path.

In this paper, we generalize the model (1) to manifold-valued images in L2(Ω,H) and
prove that it is well-defined at least for finite dimensional Hadamard manifolds H. These
are simply connected, complete Riemannian manifolds with non-positive sectional curvature.
Typical examples of such Hadamard manifolds are hyperbolic spaces and symmetric positive
definite matrices with the affine invariant metric. As an important fact we will use that
the distance in Hadamard spaces is jointly convex which implies weak lower semicontinuity
of certain functionals involving the distance function. Since we use another admissible set
than in [9] all proofs are new also for real-valued images. So far we have not established
a relation of our model to some kind of time continuous path energy model in the image
space L2(Ω,H).

Dealing with digital images we have to introduce a space discrete model. In contrast to
the finite element approach in [9], we prefer a finite difference model on a staggered grid.
We have used this discretization for gray-value images in [30]. For finding a minimizer, we
propose an alternating algorithm fixing either the deformation or the image sequence:

i) For a fixed image sequence, we have to solve certain registration problems for manifold-
valued images in parallel to get a sequence (ϕ1, . . . , ϕK) of deformations. Necessary
interpolations were performed via Karcher mean computations. There exists a rich
literature on registration problems for images with values in the Euclidean space, see
e.g. [11, 16, 18, 19] and, for an overview, the books of Modersitzki [26, 27].

ii) For a fixed deformation sequence, we need to find a minimizing image sequence

2



(I1, . . . , IK−1) of

K∑
k=1

d2
2(Ik ◦ ϕk, Ik−1) subject to I0 = T, IK = R

where d2 denotes the distance in L2(Ω,H). In our manifold-valued setting, this re-
quires to evaluate geodesics between manifold-valued image pixels at several well-
defined time steps.

Outline of the Paper: We start with preliminaries on Hadamard spaces in Subsection
2.1, where the focus is on the proof that the uniformly continuous functions mapping into
locally compact Hadamard spaces H are dense in Lp(Ω,H), p ∈ [1,∞). We have not
found this result in the literature. We introduce the necessary notation in Sobolev and
Hölder spaces in Subsection 2.2. The important definition is those of an admissible set of
deformations which differs from that in [9]. In particular, our definition guarantees that the
concatenation of an image I ∈ L2(Ω,H) with a deformation from our admissible set I ◦ ϕ
is again an image in L2(Ω,H). In Section 3, we introduce our space continuous model for
manifold-valued images and prove the existence of minimizers. Although we could roughly
follow the lines in [9], all proofs are new also for the Euclidean setting H := Rd due to the
different admissible set. Moreover, the manifold-valued image setting requires a nontrivial
update of the nice regridding idea from [9, 33, 34] in Theorem 3.4. This influences also the
proof of the main result in Theorem 3.6. In Section 4, we detail the computation issues
for the space discrete model, where we propose a finite difference scheme on a staggered
grid together with a multiscale technique. Numerical examples are given in Section 5. Note
that the numerical algorithms are not restricted to Hadamard manifolds. We finish with
conclusions in Section 6.

2. Preliminaries

Throughout this paper, let Ω ⊂ Rn, n ≥ 2, be an open, bounded, connected domain with
Lipschitz boundary.

2.1. Hadamard Spaces

For an overview on Hadamard spaces we refer to the books [3, 10, 21]. First, recall that
a metric space (X, d) is geodesic if every two points x, y ∈ X are connected by a curve
γ_
x,y

: [0, 1]→ X, called geodesic, such that

d
Ä
γ_
x,y

(s), γ_
x,y

(t)
ä

= |s− t|d
Ä
γ_
x,y

(0), γ_
x,y

(1)
ä
, for every s, t ∈ [0, 1], (2)

and γ_
x,y

(0) = x and γ_
x,y

(1) = y. A complete metric space (H, d) is called a Hadamard

space if it is geodesic and if for every geodesic triangle 4p, q, r ∈ H and x ∈ γ_
p,r

, y ∈ γ_
q,r

we have d(x, y) ≤ |x̄ − ȳ|, where x̄, ȳ are corresponding points in the comparison triangle
4p̄, q̄, r̄ ∈ R2 having the same side lengths as the geodesic one. By [3, Theorem 1.1.3] this
is equivalent to (H, d) being a complete metric geodesic space with

d2(x, v) + d2(y, w) ≤ d2(x,w) + d2(y, v) + 2d(x, y)d(v, w), (3)
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for every x, y, v, w ∈ H. Inequality (3) implies that geodesics are uniquely determined
by their endpoints. Later we will restrict our attention to finite dimensional Hadamard
manifolds which are Hadamard spaces having additionally a Riemannian manifold structure.

A function f : H → R is called convex if for every x, y ∈ H the function f ◦γ_
x,y

is convex,

i.e., if
f
Ä
γ_
x,y

(t)
ä
≤ (1− t)f

Ä
γ_
x,y

(0)
ä

+ tf
Ä
γ_
x,y

(1)
ä
,

for each t ∈ [0, 1]. An important property of Hadamard spaces, which is also fulfilled in
more general Busemann spaces, is that the distance is jointly convex, see [3, Proposition
1.1.5], i.e., for two geodesics γ _

x1,x2
, γ _
y1,y2

and t ∈ [0, 1] it holds

d
Ä
γ _
x1,x2

(t), γ _
y1,y2

(t)
ä
≤ (1− t)d(x1, y1) + td(x2, y2). (4)

For a bounded sequence {xn}n∈N of points xn ∈ H, the function w : H → [0,+∞) defined
by

w(x; {xn}n∈N) := lim sup
n→∞

d2(x, xn)

has a unique minimizer, which is called the asymptotic center of {xn}n∈N, see [3, p. 58]. A
sequence {xn}n∈N weakly converges to a point x ∈ H if it is bounded and x is the asymptotic
center of each subsequence of {xn}n∈N, see [3, p. 103]. The definition of proper and (weakly)
lower semicontinuous (lsc) functions carries over from the Hilbert space setting.

On H we consider the Borel σ-algebra B. A function f : Ω→ H is (Lebesgue) measurable
if {ω ∈ Ω : f(ω) ∈ B} is a (Lebesgue) measurable set for all B ∈ B. In the following, we
only consider the Lebesgue measure µ on Rn. A measurable map f : Ω → H belongs to
Lp(Ω,H), p ∈ [1,∞], if

dp(f(ω), a) <∞,
for any constant mapping ω 7→ a to a fixed a ∈ H, where dp is defined for two measurable
maps f and g by

dp(f(ω), g(ω)) :=


( ∫

Ω d
p(f(ω), g(ω)) dω

) 1
p

p ∈ [1,∞),

ess supω∈Ω d(f(ω), g(ω)) p =∞.

With the equivalence relation f ∼ g if dp(f, g) = 0, the quotient space Lp(Ω,H) :=
Lp(Ω,H)/ ∼ equipped with dp becomes a complete metric space. For p = 2 it is again
a Hadamard space, see [3, Proposition 1.2.18].

By C(Ω,H) we denote the space of continuous maps from Ω to H. Next we show that
C(Ω,H) is dense in Lp(Ω,H), more precisely, also the uniformly continuous functions are
dense. We start by defining simple functions (step functions). A function g ∈ Lp(Ω,H)
is called a simple function if there exists a finite partition of Ω =

⋃̇
i∈IAi into disjoint

measurable sets Ai such that g|Ai = ai for all i ∈ I. There exists a Hopf-Rinow-like
theorem for Hadamard spaces which says that in locally compact Hadamard spaces closed
and bounded sets are compact, see [10, p. 35].

Lemma 2.1. Let (H, d) be a locally compact Hadamard space. Then the simple functions
are dense in Lp(Ω,H), p ∈ [1,∞).
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(a) Illustration for the construction of the Bi

and Ki.

1
2

1
4

0

)

[

h4h2

g̃

dist(w,Bc
i )

(b) Illustration for the construction of the
uniformly continuous approximation hk.

Figure 1. Illustrations to the proof of Theorem 2.2.

Proof. Let f ∈ Lp(Ω,H). Then we have for a fixed reference point a ∈ H that

IN :=

∫
{ω∈Ω:d(f(ω),a)>N}

dp(f(ω), a) dω → 0

as N →∞. For an arbitrary ε > 0, we choose N = N(ε) such that IN < ε
2 and set

A0 := {x ∈ H : d(x, a) > N} and A0 := {ω ∈ Ω : f(ω) ∈ A0}.

Next we cover the compact set

A := {x ∈ H : d(x, a) ≤ N}.

with open balls of radius rpε := 1
2p

ε
2µ(Ω) . Since A is compact, this covering contains a finite

subcovering which can be restricted to A and made disjoint so that A = ∪̇Mi=1Ai for some
M ∈ N. Fixing any ai ∈ Ai, we have d(x, ai) ≤ 2rε for all x ∈ Ai. Since the Ai ∈ B and f

is measurable, the sets Ai := {ω ∈ Ω : f(ω) ∈ Ai} are measurable. Thus, Ω = ∪̇Mi=0Ai is a
finite disjoint partition of Ω into measurable sets. Defining the simple function g : Ω → H
by g|Ai := ai, i = 0, . . . ,M , where a0 := a, and conclude

∫
Ω
dp (f(ω), g(ω)) dω =

∫
A0

dp (f(ω), a0) dω +
M∑
i=1

∫
Ai

dp (f(ω), ai) dω

≤ ε

2
+

M∑
i=1

µ(Ai)
ε

2µ(Ω)
≤ ε.

Theorem 2.2. Let (H, d) be a locally compact Hadamard space. Then the set of uniformly
continuous functions mapping from Ω to H is dense in Lp(Ω,H), p ∈ [1,∞).

Proof. By Lemma 2.1, it suffices to show that simple functions can be well approximated
by uniformly continuous functions.

5



Let g : Ω → H be a simple function determined by Ai and corresponding ai ∈ H, i ∈ I
from a finite index set I ⊂ N. Set C := maxi,j∈I dp(ai, aj). Let ε > 0 be arbitrary small.
Since the Lebesgue measure is regular there exist compact sets Ki ⊆ Ai such that

µ(Ai\Ki) ≤
Å
ε

2

ãp 1

C |I| .

Since the Ki are disjoint and compact, there exists δ > 0 such that dist(Ki,Kj) > δ and
dist(Ki, ∂Ω) > δ for all i, j ∈ I, where dist is the distance function with respect to the
Euclidean norm in Rn. Then the open sets Bi = B δ

4
(Ki) := {ω ∈ Ω : dist(ω,Ki) < δ

4},
i ∈ I, are disjoint. Let B0 := Ω\ ∪i∈I Bi and a0 := a1. We define a simple function
g̃ : Ω → H by g̃|Bi := ai, i ∈ {0} ∪ I. For an illustration see Fig. 1 (a). It is related to the
original step function g by

dpp(g, g̃) =

∫
Ω\
⋃
i∈I Ki

dp (g(ω), g̃(ω)) dω ≤ C
∑
i∈I

µ(Ai\Ki) ≤
Å
ε

2

ãp
. (5)

Next we approximate g̃ by a sequence of uniformly continuous functions. Let γ_
a,b

denote

the unique geodesic joining a, b ∈ H, where γ_
a,b

(0) = a and γ_
a,b

(1) = b. For k ∈ N, define

hk : Ω→ H by hk|B0
:= a0 and for i ∈ I,

hk(ω) := γ _
a0,ai

(min{1, kdist(Bc
i , ω)}) , ω ∈ Bi,

see Fig. 1 (b). Since γ is a geodesic, hk is by construction continuous on every Bi, i ∈ I.
Further, hk|∂Bi = a0 and for any sequence {ωj}j∈N converging to some ω̂ ∈ ∂Bi, we have that
hk(ωj) converges to a0 = hk(ω̂). Hence hk is continuous on Ω and by construction constant
outside of the compact set ∪i∈IBi. This implies, that hk is even uniformly continuous on
Ω. Let

max
i,j∈I

sup
x∈γ _

a0,ai

dp(x, aj) ≤ D.

Then we get dp (g̃(ω), hk(ω)) ≤ D for all k ∈ N, ω ∈ Ω, so that D is an integrable bound of
dp(g̃, hk) and limk→∞ d (g̃(ω), hk(ω))p → 0 pointwise as k →∞. By Lebesgue’s convergence
theorem this implies that

lim
k→∞

dp(g̃, hk) = 0.

Finally, choosing k ∈ N such that dp(g̃, hk) <
ε
2 we obtain with (5) that

dp(g, hk) ≤ dp(g, g̃) + dp(g̃, hk) < ε.

This finishes the proof.

In Hadamard spaces we have no zero element so that a notion of “compact support” is
not available. However, the previous proof shows that we can approximate a function in
Lp(Ω,H) arbitrarily well by a function which is constant outside of a compact set which can
be seen as an equivalent. The previous theorem can be applied to prove the next corollary.

Corollary 2.3. Let (H, d) be a locally compact Hadamard space.
Let f ∈ Lp(Ω,H), p ∈ [1,∞) and {ϕ(j)}j∈N, be a sequence of diffeomorphisms on Ω such that
limj→∞ ‖ϕ(j)−ϕ̂‖(L∞(Ω)n = 0 and |det(Dϕ(j))|−1 ≤ C for all j ∈ N. Then lim supj→∞ dp(f◦
ϕ(j), f ◦ ϕ̂) = 0.
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Proof. For f ∈ Lp(Ω,H), we can construct by Theorem 2.2 a sequence {fk}k∈N of uniformly
continuous functions with dp(f, fk) <

1
k . Then we conclude

dp(f ◦ ϕ(j), f ◦ ϕ̂) ≤ dp(f ◦ ϕ(j), fk ◦ ϕ(j)) + dp(fk ◦ ϕ(j), fk ◦ ϕ̂) + dp(fk ◦ ϕ̂, f ◦ ϕ̂)

≤ Cdp(f, fk) + dp(fk ◦ ϕ(j), fk ◦ ϕ̂) + Cdp(fk, f).

By construction the first and the last term can be made arbitrary small as k → ∞. Now
let k ∈ N be fixed. Since ϕ(j) converges uniformly to ϕ̂, we can use the uniform continuity
of fk in order to conclude that fk ◦ϕ(j) converges uniformly to fk ◦ ϕ̂. Now boundedness of
Ω implies that the middle term converges to zero as j →∞.

In the rest of this paper, we restrict our attention to finite dimensional Hadamard mani-
folds (H, d), i.e., H has an additional Riemannian manifold structure. Clearly finite dimen-
sional Hadamard manifolds are locally compact. By TxH we denote the tangential space of
H at x ∈ H. Then the geodesics γx,v are determined by their starting point x ∈ H and their
tangential v ∈ TxH at this point. We will need the exponential map expx : TxH → H defined
by expx v := γx,v(1), and the inverse of the exponential map logx := exp−1

x : H → TxH.

2.2. Sobolev Spaces and Admissible Mappings

Let Ck,α(Ω), k ∈ N0, denote the Hölder space of functions f ∈ Ck(Ω) for which

‖f‖Ck,α(Ω)
:=

∑
|β|≤k

‖Dβf‖C(Ω) +
∑
|β|=k

sup
x,y∈Ω
x6=y

|Dβf(x)−Dβf(y)|
|x− y|α

is finite. With this norm Ck,α(Ω) is a Banach space.
By Wm,p(Ω), m ∈ N, 1 ≤ p <∞, we denote the Sobolev space of functions having weak

derivatives up to order m in Lp(Ω) with norm

‖f‖pWm,p(Ω)
:=

∫
Ω

∑
|α|≤m

|Dαf(x)|pdx.

We apply the usual abbreviation |Dmf |p :=
∑
|α|=m|Dαf |p. For F = (fν)nν=1, we set

|DmF |p =
∑n
ν=1|Dmfν |p. In particular, we are interested in Wm,2(Ω) with m > 1 + n

2 . In
this case, Wm,2(Ω) is compactly embedded in C1,α(Ω) for all α ∈ (0,m− 1− n

2 ) [2, p. 350,
Th. 8.13] and consequently Wm,2(Ω) ↪→W 1,p(Ω) for all p ≥ 1.

For m > 1 + n
2 , we consider the set

A := {ϕ ∈
Ä
Wm,2(Ω)

än
: det(Dϕ) > 0 a.e. in Ω, ϕ(x) = x for x ∈ ∂Ω},

which was used as admissible set of deformations in [9]. By the results of Ball [5], we know
that ϕ(Ω̄) = Ω̄ nad ϕ is a.e. injective. By the last property and since Ω is bounded, it
follows immediately for all ϕ ∈ A that

‖ϕ‖(L∞(Ω))n ≤ C, ‖ϕ‖(L2(Ω))n ≤ C, (6)

with constants depending only on Ω. We have ϕ ∈ C1,α(Ω) and by the inverse mapping
theorem ϕ−1 exits locally around a.e. x ∈ Ω and is continuously differentiable on the cor-
responding neighborhood. However, to guarantee that ϕ−1 is continuous (or, even more,

7



continuously differentiable) further assumptions are required, see [5, Theorem 2]. Take for

example the function ϕ(x) := x3 on Ω := (−1, 1) which is in A , but ϕ−1(x) = sgn(x)|x| 13
is not continuously differentiable. Furthermore, I ∈ L2(Ω,H) and ϕ ∈ A do not guarantee

that I ◦ ϕ ∈ L2(Ω,H), as the example I(x) :− x− 1
4 in L2((0, 1),R) and ϕ(x) := x2 shows.

Therefore, we introduce, for small fixed ε > 0, the admissible set

Aε := {ϕ ∈
Ä
Wm,2(Ω)

än
: det(Dϕ) ≥ ε, ϕ(x) = x for x ∈ ∂Ω} ⊂ A .

Later, in Theorem 3.4, we have to solve a system of equations which entries depend on
det(Dϕ). For stability reasons, we do not want that the determinant becomes arbitrary
small. This can be avoided by introducing ε. Moreover, by the inverse mapping theorem,
ϕ ∈ Aε is a diffeomorphism, although in general ϕ−1 /∈ Aε. Further, I ∈ L2(Ω,H) and
ϕ ∈ Aε imply I ◦ ϕ ∈ L2(Ω,H). We mention that the space of images L∞(Ω,R) was
discussed in the thesis [15]. However, working in the Hadamard space L2(Ω,H) simplifies
the proofs, in particular we can use the concept of weak convergence in these spaces.

3. Minimizers of the Space Continuous Model

Let H be a finite dimensional Hadamard manifold. Due to our application we call the
functions from L2(Ω,H) images. Mappings ϕ ∈ Aε can act on images I ∈ L2(Ω,H) by

ϕ ◦ I = I(ϕ), ϕ ∈ Aε.
Inspired by the time discrete geodesic paths model for images with values in Rn proposed

in [9], we introduce a general morphing model for manifold-valued images and prove the
existence of minimizers of this model in the next subsection. Although we can basically
follow the lines in [9], all proofs are new even for the Euclidean setting due to the different
admissible set. Moreover, the manifold-valued setting requires some care when considering
the minimization of the image sequence. Then, in Subsection 3.2, we specify the model by
choosing the linearized elastic potential as regularizer.

3.1. Space Continuous Model

Let W : Rn,n → R≤0 be a lsc mapping. Let γ > 0 and m > 1 + n
2 . Let K ≥ 2 be an integer.

Given a template image and a reference image

I0 = T ∈ L2(Ω,H), IK = R ∈ L2(Ω,H),

respectively, we are searching for an image sequence

I := (I1, . . . , IK−1) ∈
Ä
L2(Ω,H)

äK−1
,

see Fig. 2, which minimizes the energy

J (I) :=
K∑
k=1

inf
ϕk∈Aε

∫
Ω
W (Dϕk(x)) + γ|Dmϕk(x)|2dx+ d2

2(Ik−1 ◦ ϕk, Ik) (7)

= inf
ϕ∈AKε

K∑
k=1

∫
Ω
W (Dϕk(x)) + γ|Dmϕk(x)|2dx+ d2

2(Ik−1 ◦ ϕk, Ik)

= inf
ϕ∈AKε

J (I,ϕ),

8



I0
ϕ1

I1 . . .
Ik−1

ϕk
Ik . . .

IK−1

ϕK
IK

Figure 2. Illustration of the image and the diffeomorphism path

where ϕ := (ϕ1, . . . , ϕK) and

J (I,ϕ) :=
K∑
k=1

∫
Ω
W (Dϕk(x)) + γ|Dmϕk(x)|2dx+ d2

2(Ik−1 ◦ ϕk, Ik).

Note that for simplicity of the notation we moved the parameter 1
δ of the squared distance

term to W , see (18), and used a shift in the ϕk.
Typical strategies for minimizing such a functional is alternating minimization over I and

ϕ. In the following, we show that the corresponding subproblems have a minimizer. The
results can then be used to show that the whole functional has a minimizer.

First, we fix the image sequence I ∈ (L2(Ω,H)
)K−1

and show that J (I, ·) has a minimizer
ϕ ∈ A K . It suffices to prove that each of the registration problems

R(ϕk; Ik−1, Ik) :=

∫
Ω
W (Dϕk(x)) + γ|Dmϕk(x)|2dx+ d2

2(Ik−1 ◦ ϕk, Ik)

has a minimizer in Aε, k = 1, . . . ,K. Note that we can show the more general result for
ϕ ∈ A for this functional. If we restrict ourselves to ϕ ∈ Aε the proof can be simplified, see
Corollary 3.2.

Theorem 3.1. Let W : Rn,n → R≤0 be a lsc mapping with the property

W (A) =∞ if detA ≤ 0. (8)

Further, let T,R ∈ L2(Ω,H) be given. Then there exists ϕ̂ ∈ A minimizing

R(ϕ;T,R) =

∫
Ω
W (Dϕ) + γ|Dmϕ|2 + d2

Ä
T ◦ ϕ(x), R(x)

ä
dx

over all ϕ ∈ A .

Proof. 1. Let {ϕ(j)}j∈N, ϕ(j) ∈ A , be a minimizing sequence of R. Then we have
R(ϕ(j);T,R) ≤ C for all j ∈ N. This implies that {ϕ(j)}j∈N has uniformly bounded
(Wm,2(Ω))n semi-norm, and by (6) the sequence is also uniformly bounded in (L2(Ω))n.
Now we apply the Gagliardo-Nirenberg inequality, see Appendix A Theorem A.1 in the
form given in Remark A.2, which states that for all 0 ≤ i < m it holds

‖Diϕ(j)‖L2(Ω) ≤ C1‖Dmϕ(j)
ν ‖L2(Ω) + C2‖ϕ(j)

ν ‖L2(Ω), ν = 1, . . . , n.

All terms on the right hand side are uniformly bounded. Hence, the (Wm,2(Ω))n norm
of {ϕ(j)}j∈N is uniformly bounded. Since Wm,2(Ω) is reflexive, there exists a subsequence
{ϕ(jl)}l∈N, which converges weakly to some function ϕ̂ in

(
Wm,2(Ω)

)n
. By the compact

9



embedding Wm,2(Ω) ↪→ C1,α
Ä
Ω
ä
, α ∈ (0,m − 1 − n

2 ), this subsequence converges strongly

to ϕ̂ in
Ä
C1,α

Ä
Ω
ään

. We denote this subsequence by {ϕ(j)}j∈N again.

2. Next we show that ϕ̂ is in the set A. By part 1 of the proof Dϕ(j) converges uniformly
to Dϕ̂. Since W is lsc, this implies

lim inf
j→∞

W (Dϕ(j))(x) ≥W (Dϕ̂)(x)

for all x ∈ Ω and since W is nonnegative we obtain by Fatou’s lemma∫
Ω
W (Dϕ̂(x))dx ≤ lim inf

j→∞

∫
Ω
W (Dϕ(j)(x))dx ≤ C.

By (8) this implies det(Dϕ̂(x)) > 0 a.e.. Further the boundary condition is fulfilled so that
ϕ̂ ∈ A . It remains to show that limj→∞R(ϕ(j);T,R) = R(ϕ̂;T,R).

3. We prove that
d2

2(T (ϕ̂), R) ≤ lim inf
j→∞

d2
2(T (ϕ(j)), R).

Assume d2
2(T (ϕ̂), R) > lim infj→∞ d2

2(T (ϕ(j)), R). Further, assume for a moment that
d2

2(T (ϕ̂), R) is finite. Then we can find an δ > 0 such that

d2
2(T (ϕ̂), R)− δ = lim inf

j→∞
d2

2(T (ϕ(j)), R).

The sets {x ∈ Ω : detϕ(j) = 0, j ∈ N} and {x ∈ Ω : det ϕ̂ = 0} have measure zero. Let‹Ω be their complementary set, which is open since the ϕ(j) are convergent. By the inverse
mapping theorem we know that (ϕ(j))−1 and ϕ̂−1 are continuously differentiable on ‹Ω. Since‹Ω is open we can use monotone convergence to find a compact set K such that K ⊂ ‹Ω and

d2
2(T (ϕ̂), R) ≤

∫
K
d2
Ä
T (ϕ̂(x)), R(x)

ä
dx+

δ

2
.

Using that the integrands are nonnegative, we get

lim inf
j→∞

∫
K
d2
Ä
T (ϕ(j)(x)), R(x)

ä
dx <

∫
K
d2
Ä
T (ϕ̂(x)), R(x)

ä
dx. (9)

For the case d2
2(T (ϕ̂), R) =∞ we obtain the same inequality, since the left-hand side is less

than some finite constant C independent of K. However, K can be chosen such that the
right-hand side gets arbitrary large using monotone convergence. Note that it will be still
finite due to the change of variables formula, [32, Theorem 7.26].

Now, for the set K, we obtain∣∣∣∣∣
∫
K
d2
Ä
T (ϕ(j)(x)), R(x)

ä
− d2

Ä
T (ϕ̂(x)), R(x)

ä
dx

∣∣∣∣∣
≤
∫
K

(
d
Ä
T (ϕ(j)(x)), R(x)

ä
+ d
Ä
T (ϕ̂(x)), R(x)

ä)
∣∣∣∣dÄT (ϕ(j)(x)), R(x)

ä
− d
Ä
T (ϕ̂(x)), R(x)

ä∣∣∣∣dx
≤
∫
K

(
d
Ä
T (ϕ(j)(x)), R(x)

ä
+ d
Ä
T (ϕ̂(x)), R(x)

ä)
d
(
T
Ä
ϕ(j)(x)

ä
, T
Ä
ϕ̂(x)

ä)
dx

≤C1

 ∫
K
d2
(
T
Ä
ϕ(j)(x)

ä
, T
Ä
ϕ̂(x)

ä)
dx (10)

10



with

C1 :=

 ∫
K
d2
Ä
T (ϕ(j)(x)), R(x)

ä
dx+

 ∫
K
d2
Ä
T (ϕ̂(x)), R(x)

ä
dx <∞.

This constant is finite since the first term is uniformly bounded by construction and the
second term is bounded by construction of K. Now, Corollary 2.3 implies that the term∫

K
d2
(
T
Ä
ϕ(j)(x)

ä
, T
Ä
ϕ̂(x)

ä)
dx

in equation (10) converges to zero. This yields a contradiction to (9).
4. By the previous steps we have that the three summands in R are (weakly) lower semi-
continuous. Then we get

R(ϕ̂;T,R) ≤ lim inf
j→∞

∫
Ω
W (Dϕ(j)) + γ|Dmϕ(j)|2 + d2

Ä
T (ϕ(j)(x)), R(x)

ä
dx

= inf
ϕ∈A
R(ϕ)

which proves the claim.

Following the lines of the previous theorem, we can prove its analogue for Aε.

Corollary 3.2. Let W : Rn,n → R+ be a lsc mapping. Further, let T,R ∈ L2(Ω,H) be
given. Then there exists ϕ̂ ∈ Aε minimizing

R(ϕ;T,R) :=

∫
Ω
W (Dϕ) + γ|Dmϕ|2 + d2

Ä
T ◦ ϕ(x), R(x)

ä
dx

over all ϕ ∈ Aε.

Proof. The proof follows the lines of the previous one, but simplifies since all integrals are
defined over Ω and the approximation with compact sets is not necessary.

Next we fix the sequence of admissible mappings ϕ ∈ AKε and ask for a minimizer of

Jϕ(I) :=
K∑
k=1

d2
2(Ik−1 ◦ ϕk, Ik) subject to I0 = T, IK = R.

Note that we consider admissible functions in Aε now, since the composition I ◦ ϕ of a
deformation ϕ and an image I ∈ L2(Ω,H) should be again in L2(Ω,H).

Lemma 3.3. For fixed ϕ ∈ AKε , there exists a sequence Î ∈ (L2(Ω,H)
)K−1

minimizing Jϕ.

Proof. Let {I(j)}j∈N be a minimizing sequence of Jϕ, i.e., limj→∞ Jϕ
Ä
I(j)
ä

= Ĵ , where Ĵ is

the infimum of Jϕ. Clearly, there exists C ≥ 0 such that Jϕ(I(j)) ≤ C for all j ∈ N. By the
triangle inequality we obtain for some fixed a ∈ H that

d2(I
(j)
k+1, a) ≤ d2(I

(j)
k ◦ ϕk+1, I

(j)
k+1) + d2(I

(j)
k ◦ ϕk+1, a) ≤ C + d2(I

(j)
k ◦ ϕk+1, a).

11



Thus, since det(Dϕk) ≥ ε a.e. on Ω for k = 1, . . . ,K,

d2(I
(j)
1 , a) ≤ C + d2(T ◦ ϕ1, a)

d2(I
(j)
2 , a) ≤ C + d2(I

(j)
1 ◦ ϕ2, a)

= C +

Å∫
Ω
d2
(
I

(j)
1 (ϕ2(x)) , a

)
dx

ã 1
2

= C +

Å∫
Ω
d2
(
I

(j)
1 (x) , a

) ∣∣∣ det
Ä
Dϕ2(ϕ−1

2 (x))
ä∣∣∣−1

dx

ã 1
2

≤ C + ε−
1
2 d2(I

(j)
1 , a) ≤ C + ε−

1
2

Ä
C + d2(T ◦ ϕ1, a)

ä
.

Continuing this successively we see that {I(j)}j∈N is bounded in
(
L2(Ω,H)

)K−1
. From [3,

Proposition 3.1.2] we know that a bounded sequence in an Hadamard space has a weakly

convergent subsequence {I(jk)}k∈N. Let Î ∈ (L2(Ω,H)
)K−1

be its weak limit point. Now
d2(·, ·) is a continuous convex function and the same holds true for Jϕ. Then, by [3, Lemma
3.2.3], the function Jϕ is weakly lsc which means that

Ĵ = lim
j→∞

Jϕ
Ä
I(j)
ä

= lim
k→∞

Jϕ
Ä
I(jk)
ä
≥ Jϕ

Ä
Î
ä
,

so that Î is a minimizer of the functional.

Theorem 3.4. For fixed ϕ ∈ AKε , there exists a unique sequence of intermediate images

I ∈
Ä
L2(Ω,H)

äK−1
minimizing Jϕ.

Proof. By Lemma 3.3, there exists a minimizer of Jϕ. Setting

ψK(x) := x,

ψk(x) := ϕk+1 ◦ ψk+1(x) = ϕk+1 ◦ . . . ◦ ϕK(x), k = K − 1, . . . , 0, (11)

and substituting x := ψk(y) in the k-th summand of Jϕ, we obtain

Jϕ(I) =
K∑
k=1

∫
Ω
d2 (Ik (ψk(y)) , Ik−1 (ϕk ◦ ψk(y))) |det (Dψk(y)) | dy

=
K∑
k=1

∫
Ω
d2 (Ik (ψk(x)) , Ik−1 (ψk−1(x))) | det (Dψk(x)) |dx.

Using FK := IK = R, Fk := Ik ◦ ψk, and wk(x) := |det (Dψk(x)) | > 0, we are concerned
with the minimization of

K∑
k=1

∫
Ω
wk(x)d2 (Fk(x), Fk−1(x)) dx subject to F0 = T ◦ ψ0, FK = R.

Each image Ik, resp. Fk appears only in two summands∫
Ω
wk(x)d2 (Fk(x), Fk−1(x)) + wk+1(x)d2 (Fk+1, Fk(x)) dx.

12



F0 F3

F1

F2
s1

s2 s3

w2δ w1δ
w3δ̃ w2δ̃

Figure 3. Illustration of relation (14) for the geodesic (13) with K = 3, where δ, δ̃ are constants
canceling out in the fraction.

By the Euler-Lagrange equation and since the Riemannian gradient of the squared distance
function is ∇d2(·, a)(b) = −2 logb a, we obtain

wk logFk Fk−1 + wk+1 logFk Fk+1 = 0, k = 1, . . . ,K − 1. (12)

If K = 2, we have only one equation

w1 logF1
F0 + w2 logF1

F2 = 0,

which implies that F1 has to be on the geodesic γ _
F0,F2

(t), t ∈ [0, 1]. Since

| logF1
F0|

| logF1
F2|

=
w2

w1

we obtain

F1 = γ _
F0,F2

Ç
w2

w1 + w2

å
.

For general K ≥ 3, the system of equations (12) can only be fulfilled if three consecutive
points always lie on a geodesic. This is only possible if all points are on the same geodesic
γ _
F0,FK

(t), t ∈ [0, 1]. More precisely,

Fk = γ _
F0,FK

(tk), k = 1, . . . ,K − 1, (13)

where by (12), the tk are related by

sk
sk+1

=
wk+1

wk
, sk := tk − tk−1, k = 1, . . . ,K − 1, (14)

see Fig. 3 for an illustration. It is easy to check that these conditions are fulfilled by

sk :=
αk∑K−1
k=1 αk

, αk :=
K∏
i=1
i 6=k

wi, k = 1, . . . ,K − 1,

so that

tk =
k∑
i=1

si =

∑k
i=1w

−1
i∑K

i=1w
−1
i

.

The geodesics between F0 and FK are unique, so that the resulting points Fk, k = 1, . . . ,K−
1, are unique as well. As we know that ϕk are diffeomorphisms, the functions ψk, k =
1, . . . ,K − 1, are diffeomorphisms as well. By (13), convexity of d2, and F0, R ∈ L2(Ω,H),
we see that Fk ∈ L2(Ω,H) and thus Ik ∈ L2(Ω,H), k = 1, . . . ,K − 1.
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To prove the next theorem we need the following corollary.

Corollary 3.5. Let {ϕ(j)}j∈N with ϕ(j) ∈ AKε be a sequence which converges in (C1,α(Ω))nK.

For each j ∈ N, let I(j) ∈ (L2(Ω,H)
)K−1

be the minimizer of Jϕ(j). Then the sequence

{I(j)}j∈N converges in
(
L2(Ω,H)

)K−1
.

Proof. The proof follows the path of the previous theorem. Similarly as in (11), we define

ψK(x) := x, ψ
(j)
k := ϕ

(j)
k+1 ◦ ψ

(j)
k+1, F

(j)
k := I

(j)
k ◦ ψ

(j)
k , k = 0, . . . ,K − 1,

where I
(j)
0 = T and F

(j)
K = R. Clearly, the convergence of {ϕ(j)}j∈N in

Ä
C1,α(Ω)

än
implies

the convergence of {ψ(j)
k }j∈N to ψ̂k in

Ä
C1,α(Ω)

än
for all k = 0, . . . ,K − 1. Hence, for all

k = 0, . . . ,K − 1,

w
(j)
k (x) :=

∣∣∣det(Dψ
(j)
k (x)

ä∣∣∣
is uniformly convergent on Ω. By construction, the w

(j)
k ≥ ε̃ > 0 such that

t
(j)
k (x) :=

∑k
i=1

(
w

(j)
i

)−1

∑K
i=1

(
w

(j)
i

)−1

converges pointwise on Ω as j →∞. We denote the limit by t̂k and set

F̂0(x) := (T ◦ ψ̂0)(x),

F̂k(x) := γ _

F̂0(x),R(x)

Ä
t̂k(x)

ä
, k = 1, . . . ,K − 1.

Recall that as in the proof of the previous theorem F
(j)
k (x) = γ _

F̂
(j)
0 (x),R(x)

(
t
(j)
k (x)

)
. Using

Corollary 2.3, we see that F
(j)
0 = T ◦ ψ(j)

0 converges in L2(Ω,H) to F̂0 = T ◦ ψ̂0. For
k = 1, . . . ,K − 1, we obtain

d2(F
(j)
k , F̂k) ≤ d2

(
F

(j)
k , γ _

F̂0(x),R(x)

(
t
(j)
k (x)

) )
+ d2

(
γ _

F̂0(x),R(x)

(
t
(j)
k (x)

)
, F̂k

)

=

(∫
Ω
d2
(
γ _

F
(j)
0 (x),R(x)

(
t
(j)
k (x)

)
, γ _

F̂0(x),R(x)

(
t
(j)
k (x)

) )
dx

) 1
2

+

Ç∫
Ω
d2
(
γ _

F̂0(x),R(x)

(
t
(j)
k (x)

)
, γ _

F̂0(x),R(x)

Ä
t̂k(x)

ä )
dx

å 1
2

.

Since the distance d is jointly convex, we estimate by (4),

d2
(
γ _

F̂
(j)
0 (x),R(x)

(
t
(j)
k (x)

)
, γ _

F̂0(x),R(x)

(
t
(j)
k (x)

) )
≤
(
1− t(j)k (x)

)2
d2
(
F

(j)
0 (x), F̂0(x)

)
.
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Using this inequality, property (2) of the geodesic and that by definition 0 < w
(j)
k < 1 we

conclude

d2(F
(j)
k , F̂k) ≤

Å∫
Ω
d2
(
F

(j)
0 (x), F̂0(x)

) (
1− t(j)k (x)

)2
dx

ã 1
2

+

Å∫
Ω
d2
Ä
F̂0(x), R(x)

ä
|t(j)k (x)− t̂k(x)|2dx

ã 1
2

≤
Å∫

Ω
d2
Ä
F

(j)
0 (x), F̂0(x)

ä
dx

ã 1
2

+

Å∫
Ω
d2
Ä
F̂0(x), R(x)

ä
|t(j)k (x)− t̂k(x)|2dx

ã 1
2

.

Since the second factor in the last integral converges pointwise to zero, as w
(j)
k → ŵk in

Cα(Ω), and d2
Ä
F̂0(x), R(x)

ä
|t(j)k (x)−t̂k(x)|2 has the integrable upper bound 4d2

Ä
F̂0(x), R(x)

ä
,

we conclude by the convergence theorem of Lebesgue that F
(j)
k converges in L2(Ω,H) to F̂k,

k = 1, . . . ,K − 1.
Finally, setting Îk := F̂k ◦ (ψ̂k)

−1, k = 1, . . . ,K − 1, we obtain

d2

Ä
I

(j)
k , Îk

ä
≤d2

Ä
I

(j)
k , F̂k ◦ (ψ

(j)
k )−1

ä
+ d2

Ä
F̂k ◦ (ψ

(j)
k )−1, F̂k ◦ (ψ̂k)

−1
ä

and since {ψ(j)
k }jj ∈ N converges in

Ä
C1,α(Ω)

än
further

d2

Ä
I

(j)
k , Îk

ä
≤C(ε)

(
d2

Ä
F

(j)
k , F̂k) + d2

Ä
F̂k, F̂k ◦ (ψ̂k)

−1 ◦ (ψ
(j)
k )
ä)
.

Since F
(j)
k converges in L2(Ω,H) to F̂k and ψ

(j)
k converges uniformly to ψ̂k as j → ∞ we

obtain together with Corollary 2.3 that the right-hand side becomes arbitrary small for j
large enough. This finishes the proof.

Up to now we have shown that for a given image sequence I0 = T, I1, . . . , IK−1, IK =
R ∈ L2(Ω,H) the problem

min
ϕ∈AKε

J (I,ϕ).

has a minimizer and that for given ϕ ∈ AKε , the problem

min
I∈(L2(Ω,H))K−1

J (I,ϕ) subject to I0 = T, IK = R

has a unique solution. Using these two results we can prove that a minimizer of J in (7)
exists.

Theorem 3.6. Let T,R ∈ L2(Ω,H) and K ≥ 2. Then there exists a sequence Î ∈
L2(Ω,H)K−1 minimizing J .

Proof. Let
¶
I(j)
©
j∈N, I(j) ∈ L2(Ω,H)K−1 be a minimizing sequence of J . Then J (I(j)) ≤ C

for all j ∈ N. By Corollary 3.2, we find for each I(j) a sequence of diffeomorphisms ϕ(j)

such that
J
Ä
I(j),ϕ(j)

ä
≤ J

Ä
I(j),ϕ

ä
15



for all ϕ ∈ AKε . We know that ‖Dmϕ
(j)
k ‖2L2(Ω) <

1
γC for all j ∈ N and k = 1, . . . ,K.

As in the first part of the proof of Theorem 3.1 we conclude that { ϕ(j)
k }j∈N is bounded in(

Wm,2(Ω)
)n

, so that there exists a subsequence {ϕ(jl)
k }l∈N converging weakly in

(
Wm,2(Ω)

)n
and strongly in

Ä
C1,α(Ω)

än
, 0 < α < m−1− n

2 , to ϕ̂k. Let us denote the whole subsequence

again by {ϕ(j)}j∈N.

Using Lemma 3.3 we can replace {I(j)}j∈N by the image sequence {Î(j)}j∈N, Î(j) ∈
L2(Ω,H)K−1 minimizing Jϕ(j) so that the energy J does not increase. By Corollary 3.5,

we know that the sequence {Î(j)}j∈N converges in (L2(Ω,H))K−1 to Î. Thus,

lim
j→∞

K∑
k=1

d2
2

(
Î

(j)
k−1 ◦ ϕ

(j)
k , Î

(j)
k

)
=

K∑
k=1

d2
2(Îk−1 ◦ ϕ̂k, Îk). (15)

By definition of J we have

J (Î) ≤ J (Î, ϕ̂).

Further by (15), as W is lsc (see Part 4 of the proof of Theorem 3.1) and by construction
of Î(j), we obtain

J (Î) ≤ lim inf
j→∞

J (Î(j),ϕ(j)) ≤ lim inf
j→∞

J (I(j),ϕ(j)) = lim inf
j→∞

J (I(j)).

Thus, Î is a minimizer of J .

3.2. Model Specification

To find an image sequence I = (I1, . . . , IK−1) minimizing J , we use an alternating mini-
mization scheme. Starting with I(0) the deformation sequence ϕ(j) is computed by

ϕ(j) := arg min
ϕ∈AK

ε

J (I(j−1),ϕ)

=
K∑
k=1

arg min
ϕk∈A ε

R(ϕk; I
(j−1)
k−1 , I

(j−1)
k ). (16)

To obtain the image sequence I(j) we compute

I(j) := arg min
I∈L2(Ω,H)K−1

J (I,ϕ(j))

= arg min
I∈L2(Ω,H)K−1

K∑
k=1

d2
2(Ik−1 ◦ ϕk, Ik) subject to I0 = T, IK = R. (17)

While in (16) each of the K minimization problems can be tackled separately, (17) is a
coupled system which can be solved using the approach in the proof of Theorem 3.4.

For computations, we have to specify W in R(ϕ) = R(ϕ;T,R). Here we propose to use
the linearized elastic potential, see, e.g., [26, p. 99],

W (Dϕ) := µ trace
Ä
(Dϕsym − 1)2

ä
+
λ

2
trace ((Dϕsym − 1))2 , (18)
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where 1 denotes the identity matrix. For this choice, we can reformulate the problem as
finding a displacement vector field v = (v1, v2)T : Ω 7→ R2 minimizing

R(v) := S(v) +

∫
Ω
γ|Dmv|2 + d2

Ä
T (x− v(x)) , R(x)

ä
dx, (19)

where

S(v) :=

∫
Ω
µ trace

Ä
DvT

symDvsym

ä
+
λ

2
trace (Dvsym)2 + η‖v‖22 dx. (20)

For Ω ⊂ R2, we have for example

Dvsym =

Ç
∂xv1

1
2(∂yv1 + ∂xv2)

1
2(∂yv1 + ∂xv2) ∂yv2

å
,

which is also known as the (Cauchy) strain tensor of the displacement v. Since the meaning
is clear from the context, we use the same notation R when addressing ϕ and v. To get the
deformation we set ϕ(x) := x− v(x).

The term (19) is a usual regularizer in the context of registration, see [18, 26, 30]. However,
after solving K registration problems separately, the resulting deformations are coupled in
the subsequent step to find an optimal image sequence for these deformations. Using η > 0
in (20) together with some conditions on the distance of subsequent images Ik we can handle
the condition det(Dϕ) ≥ ε as the following remark shows.

Remark 3.7. 1. Assume γ, η > 0. Clearly, it holds

min
ϕ∈A ε

R(ϕ;T,R) ≤ R(id;T,R) = d2
2(T,R). (21)

In a similar way as in the proof of Theorem 3.1, we can use the Gagliardo-Nirenberg in-
equality together with the compact embedding of Wm,2(Ω) into C1,α(Ω) to conclude

‖ϕ− id ‖C1,α(Ω) ≤ C‖ϕ− id ‖Wm,2(Ω) ≤ C
Ä
‖ϕ− id ‖L2(Ω) + ‖Dm(ϕ− id)‖L2(Ω)

ä
.

Thus, with the regularization (20), the optimal solution ϕ̂ of (21) must fulfill

‖ϕ̂− id ‖C1,α(Ω) ≤ Cd2(T,R),

where the constant C is independent of T and R. Then we obtain that ‖Dϕ̂−1‖(L∞(Ω))n,n ≤
Cd2(T,R). If d2(T,R) ≤ Cdet is sufficiently small, this implies together with the continuity
of the determinant that | det(Dϕ̂)| ≥ ε .
2. Now the argument needs to be extended to the whole problem

min
ϕ∈AK

ε ,I∈L2(Ω,H)K−1

K∑
k=1

R(ϕk; Ik−1, Ik)

with given template image
I0 = T

and reference image
IK = R.
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(1, 5)

(1, 1)

(7, 5)

(7, 1)

Grid points of G
Grid points of G1

Grid points of G2

Figure 4. Illustration of the staggered grid, where empty boxes mean zero movement

For this problem we use the initialization Ĩk = γ _
T,R

( kK ) with the geodesic γ _
T,R

. We conclude

min
ϕ∈AK

ε ,I∈L2(Ω,H)K−1

K∑
k=1

R(ϕk; Ik−1, Ik) ≤
K∑
k=1

R(id; Ĩk−1, Ĩk) =
1

K
d2

2(T,R).

For every summand it holds R(ϕk; Ik−1, Ik) ≤ 1
K d

2
2(T,R) which is smaller than Cdet if

d2(T,R) ≤ Cdet
√
K. This shows that for the optimal deformation it holds |det(Dϕ̂k)| ≥ ε if

we use enough images in between.

4. Minimization of the Space Discrete Model

In practice, we have to work in a spatially discrete setting. Dealing with digital images,
we propose a finite difference model. We have already used such a model as basis of a
face colorization method in [30]. In the rest of this paper, we restrict our attention to
two-dimensional images T,R : G → H defined on the (primal) image grid G := {1, . . . , n1}×
{1, . . . , n2}. We discretize the integrals appearing in our space continuous functionals on
the integration domain Ω := [1

2 , n1 + 1
2 ]× [1

2 , n2 + 1
2 ] by the midpoint quadrature rule, i.e.,

with pixel values defined on G.
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4.1. Computation of the Deformation Sequence

For discretizing the operators in (20) we work as usual on staggered grids. For an application
of mimetic grid techniques in optical flow computation see also [43]. Let

Gd := {3
2 , . . . , n1 − 1

2} × {3
2 , . . . , n2 − 1

2}

be the (inner) dual grid, i.e., G shifted by 1
2 in each direction, and

G1 := {3
2 , . . . , n1 − 1

2} × {1, . . . , n2}, G2 := {1, . . . , n1} × {1
2 , . . . , n2 − 3

2}.

Further, we consider v = (v1, v2)T with v1 : G1 → R and v2 : G2 → R. In contrast to ϕ(x) =
x, x ∈ ∂Ω, we allow flow along the boundary, i.e., 〈v(x), n(x)〉2 = 0 for the outer normal n(x)
at x ∈ ∂G. In many applications features intersect with the boundary, see e.g., the green
stripe in Fig. 5 or the top part of Fig. 8. Here movement along the boundary is reasonable
even though the theorems from Section 3 do not necessarily hold true. To circumvent the
gap to the theory we could embed the image into a larger domain by extending it with a
constant value. After the computation the extension could be removed. But this leads to a
higher computational effort as a larger image has to be processed and the artificial boundary
part might influence the original image.
Henceforth we use 〈v(x), n(x)〉2 = 0, regarding the staggered grid the boundary conditions
read

v1(3
2 , x2) = v1(n1 − 1

2 , x2) = 0, x2 ∈ {1, . . . , n2},
v2(x1,

3
2) = v2(x1, n2 − 1

2) = 0, x1 ∈ {1, . . . , n1}.

See Fig. 4 for an illustration. We approximate ∂xv1 for x = (x1, x2)T ∈ Gp by

(D1,xv1)(x1, x2) :=


0 x1 = 1,
v1(x1 + 1

2 , x2)− v1(x1 − 1
2 , x2) x1 = 2, . . . , n1 − 1,

0 x1 = n1,

and ∂yv1 for x1 ∈ {1, . . . n1 − 1} and x2 ∈ {1, . . . , n2 − 1} by

(D1,x2v1)(x1 + 1
2 , x2 + 1

2) = v1(x1 + 1
2 , x2 + 1)− v1(x1 + 1

2 , x2),

and similarly for the derivatives of v2. Finally, we obtain

S(v) =
∑
x∈G

µ
Ä
(D1,x1v1)2(x) + (D2,x1v2)2(x)

ä
+
λ

2

Ä
(D1,x1v1)(x) + (D2,x2v2)(x)

ä2
+
∑
x∈Gd

µ

2

Ä
(D1,x2v1)(x) + (D2,x1v2)(x)

ä2
.

The deformations v are living on grids, hence it is more convenient to use matrix-vector

notation. Let us first rewrite S(v). Using v1 :=
Ä
v1(x1 + 1

2 , x2)
än1−1,n2

x1,x2=1
∈ Rn1−1,n2 , v2 :=
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Ä
v1(x1, x2 + 1

2)
än1,n2−1

x1,x2=1
∈ Rn1,n2−1 and

D1,x1 :=


0 0
−1 1

. . .

0 0 −1 1
0 0 0

 ∈ Rn1×n1−1,

D1,x2 :=


−1 1 0
0 −1 1

. . .

−1 1 0
0 0 −1 1

 ∈ Rn2−2×n2 ,

and similarly D2,x1 ∈ Rn1−2×n1 and D2,x2 ∈ Rn2×n2−1, we obtain

S(v) = µ

Å
‖D1,x1v1‖2F + ‖v2D

T
2,x2‖2F +

1

2
‖v1D

T
1,x2 +D2,x1v2‖2F

ã
+
λ

2
‖D1,x1v1 + v2D

T
2,x2‖2F + η‖v1‖2F + η‖v2‖2F ,

where ‖ ·‖F denotes the Frobenius norm of matrices. Reshaping the vi, i = 1, 2, columnwise
into vectors v1 ∈ R(n1−1)n2 and v2 ∈ Rn1(n2−1) (where we keep the notation) and using
tensor products ⊗ of matrices in

D1,x1 := 1n2 ⊗D1,x1 , D2,x1 := 1n2−1 ⊗D2,x1 ,

D1,x2 := D1,x1 ⊗ 1n1−1, D1,x2 := D2,x2 ⊗ 1n1 ,
(22)

the regularizing term can be rewritten as

S(v) = ‖Sv‖22 , S :=



√
µD1,x1 0

0
√
µD2,x2»

µ
2 D1,x2

»
µ
2 D2,x1»

λ
2 D1,x1

»
λ
2 D2,x2√

η 1(n1−1)n2
0

0
√
η 1n2(n2−1)


, v =

Ç
v1

v2

å
. (23)

For the discretization of the higher order term

|Dmv|2=
∑
|α|=m

‖Dα
1v1‖22 + ‖Dα

2v2‖22,

we use finite difference matrices Dα
1 , Dα

2 similar to (22). Setting Dm
1 := (Dα

1 )|α|=m and
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Dm
2 := (Dα

2 )|α|=m we can extend S from (23) to

S :=



√
µD1,x1 0

0
√
µD2,x2»

µ
2 D1,x2

»
µ
2 D2,x1»

λ
2 D1,x1

»
λ
2 D2,x2√

η 1(n1−1)n2
0

0
√
η 1n2(n2−1)√

γDm
1 0

0
√
γDm

2


,

such that S(v) includes all regularization terms.
To discretize the data term in (19) we need to approximate T (x− v(x)). Since v is not

defined on G we use instead of v its bilinear interpolation at the grid points, i.e., the averaged
version Pv = (P1v1, P2v2) := G → R2 given by

(P1v1)(x1, x2) :=


0, x1 = 1,
1
2

Ä
v1(x1 − 1

2 , x2) + v1(x1 + 1
2 , x2)

ä
, x1 = 2, . . . , n1 − 1,

0, x1 = n1,

and similarly for P2v2 in x2-direction. In matrix-vector notation the averaging operator P
can be written as Pv = (Pn1v1, v2P

T
n2

) using

Pn =
1

2

Ö
1 1 0

. . .

0 0 1 1

è
∈ Rn,n+1, n ∈ N.

For the vectorized displacement v this becomes

Pv := (P1v1,P2v2) := ((1n2 ⊗ Pn1)v1, (Pn2 ⊗ 1n1)v2) .

In general x − Pv(x) 6∈ G, so that the discrete image T has to be interpolated. To
this end, we use a counterpart of bilinear interpolation on manifolds, see e.g. [29]. It is
based on a reinterpretation of the bilinear interpolation of real valued data points. Let
f00, f01, f10, f11 ∈ R be the values at vertices of the unit cell. Then the bilinear interpola-
tion f(x) at x = (x1, x2)T ∈ [0, 1]2 is given by

f(x) = (1− x1)(1− x2)f00 + (1− x1)x2f01 + x1(1− x2)f10 + x1x2f11

= arg min
f∈R

{
(1− x1)(1− x2)(f − f00)2 + (1− x1)x2(f − f01)2

+ x1(1− x2)(f − f10)2 + x1x2(f − f11)2
}
.

The latter formulation, which expresses the bilinear interpolation as mean, was applied e.g.
in [29] to generalize bi- and trilinear interpolation to manifolds using the Karcher mean with
the appropriate weights:

f(x) = arg min
f∈H

{
(1− x1)(1− x2)d2(f, f00) + (1− x1)x2d

2(f, f01)

+ x1(1− x2)d2(f, f10) + x1x2d
2(f, f11)

}
,

(24)
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for f00, f01, f10, f11 ∈ H. In [1], it was shown that this bilinear interpolation leads to
C0(Ω,H) images, which are C1(Ω,H) at points x = (x1, x2)T with neither x1 ∈ Z nor
x2 ∈ Z. In the following, we write T (x) ∈ H for the interpolated values of T : G → H.

In summary, the spatial discrete registration functional is given by

R(v) := ‖Sv‖22 +
∑
x∈G

d2
Ä
T (x− (Pv)(x)), R(x)

ä
.

To find a minimizer of this functional we want to apply a quasi-Newton method. To this
end, we need the chain rule of the differential of two concatenated functions F : H1 → H2

and G : H0 → H1,
D(F ◦G)(x)[η] := DF

Ä
G(x)

äî
DG(x)[η]

ó
,

see, e.g. [22, Chapter 4], and the definition of the Riemannian gradient of a function F : H →
R,

〈∇F (x), η〉x := DF (x)[η] for all η ∈ TxH,
where 〈·, ·〉x denotes the Riemannian metric on the tangent space TxH. We start with the
gradient of T . Let dze be the smallest integer larger than z, and bzc the largest integer
smaller or equal than z. The derivative ∇x1T (x) : R2 → TH is approximated by

∇x1T (x) =
1

dx1e − x1
logT (x) T

Ä
(dx1e, x2)

ä
. (25)

Note that for T
Ä
(dx1e, x2)

ä
the minimization (24) reduces to solving

0 = (x2 − bx2c) logf
Ä
T
Ä
(dx1e, dx2e)

ää
+ (x2 − dx2e) logf

Ä
T
Ä
(dx1e, bx2c)

ää
for f . The solution is given analogously to (13) by

T
Ä
(dx1e, x2)

ä
= expT (dx1e,bx2c)

(
(x2 − bx2c) logT (dx1e,bx2c)

Ä
T (dx1e, dx2e)

ä)
.

The derivative in x2-direction can be computed analogously.
Assuming T ∈ C1(Ω,H), we can calculate the gradient of R as

∇vR(v) = ∇vS(v) +∇v

∑
x∈G

d2
Ä
T (x− (Pv)(x)), R(x)

ä
(26)

= 2STSv + G(v).

The gradient of the data term

G(v) :=

(
∇v1

∑
x∈G d

2
Ä
T (x− (Pv)(x)), R

ä
∇v2

∑
x∈G d

2
Ä
T (x− (Pv)(x)), R

ä)
is calculated by the chain rule

∇v1

(∑
x∈G

d2
Ä
T (x− P ·), R(x)

ä)
(v)

= −PT
1∇
(∑
x∈G

d2
Ä
T (x+ (·,−(P2v2)(x))T), R(x)

ä)
(−P1v1)

= −PT
1

(∑
x∈G
∇d2
Ä
T (x+ (·,−(P2v2)(x))T), R(x)

ä
(−P1v1(x))

)
. (27)
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Using the chain rule the “inner” derivative is given for x ∈ G, v ∈ R2, and η ∈ R by

D
(
d2
Ä
T (x+ (·, v2)T), R(x)

ä)
(v1)[η]

=
〈
∇d2
Ä
·, R(x)

äÄ
T (x+ v)

ä
, DT

Ä
x+ (·, v2)T

ä
(v1)[η]

〉
T (x+v)

=
〈
∇d2
Ä
·, R(x)

äÄ
T (x+ v)

ä
, η∇x1T (x+ v)

〉
T (x+v)

= η 〈−2 logT (x+v)

Ä
R(x)

ä
,∇x1T (x+ v)〉T (x+v)

= η∇d2
(
T
Ä
x+ (·, v2)T

ä
, R(x)

)
(v1).

Plugging this into (27), we obtain

∇v1

(∑
x∈G

d2
Ä
T (x− P ·), R(x)

ä)
(v)

= PT
1

(
2
¨
logT (x−(Pv)(x))R(x),∇x1T

Ä
x− (Pv)(x)

ä∂
T (x−(Pv)(x))

)
x∈G

,

and

∇v2

(∑
x∈G

d2
Ä
T (x− P ·), R(x)

ä)
(v) =

PT
2

(
2
¨
logT (x−(Pv)(x))R(x),∇x2T

Ä
x− (Pv)(x)

ä∂
T (x−(Pv)(x))

)
x∈G

.

With the above derived gradient (26) we can solve the registration problems by a gradient
descent algorithm

v(l+1) = v(l) − τ∇vR(v(l)),

with τ chosen, e.g. by line search. As R is not convex we only get convergence of a
subsequence to a critical point. The result depends on the starting value, whose choice is
described in Subsection 4.3. Gradient descent algorithms are known to have bad convergence
rates, hence we employ a quasi-Newton method. The decent direction is given by

D(v) = −H−1(v(l))∇vR(v(l)),

where H(v) is an approximation of the Hessian of R. For the minimization of R we iterate

v(l+1) = v(l) + τD(v(l)),

with τ chosen by line search. The Hessian is approximated by

H(v) = 2STS + J(v)TJ(v),

where J(v) ∈ Rn1n2,((n1+1)n2+n1(n2+1)) is the Jacobian of

d2
Ä
T (x− (P ·)(x), R(x))

ä
: G1 × G2 → R .

For vectorized images the Jacobian has the form

J(v) = 2

Ç
diag

((¨
logT (x−Pv(x)) R(x),∇x1T

Ä
x−Pv(x)

ä∂
T (x−Pv(x))

)
x∈G

)
PT

1 ,

diag
((¨

logT (x−Pv(x)) R(x),∇x2T
Ä
x−Pv(x)

ä∂
T (x−Pv(x))

)
x∈G

)
PT

2

å
.
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4.2. Computation of the Image Sequence

For a given displacement sequence V = (v1, . . . ,vK)T, we can minimize Jϕ = J1−V by the
construction given in the proof of Theorem 3.4, in particular formula (13). This means we
need to evaluate geodesics between the initial T and final image R to obtain the minimizing
image sequence. In particular, for each x ∈ G the geodesic γ _

T◦ψ0(x),R(x)
⊂ H has to be

evaluated at the points tk(x), k = 1, . . . ,K − 1. Here the grids ψk : G → Ω, k = 0, . . . ,K,
are derived by

ψK(x) = x, ψk(x) = ψk+1(x)− Pvk+1 (ψk+1(x)) ,

where vk+1 (ψk+1(x)) is obtained by bilinear interpolation on R2. The Jacobian of ϕk =
1−vk needed in the computation is calculated using forward differences and evaluated at the
grid points ψk(x) by bilinear interpolation. For each x ∈ G and k = 1, . . . ,K−1, we compute
Ik (ψk(x)) by evaluating the geodesics. Note that the intermediate images are calculated
at scattered points in Ω which are in general not on the grid. Finally, the desired values
Ik(x) ∈ H, x ∈ G, are obtained by linear scattered data interpolation of manifold-valued
data.

In the following remark we detail the convergence properties of the alternating minimiza-
tion scheme (16) and (17) in the discrete setting.

Remark 4.1 (Convergence of the alternating minimization).

Deformation sequence The computation of the deformation sequence is performed by an
quasi-Newton method with appropriate step size. Hence, the deformations converge to
a critical points of the functional and guarantee that the value of the functional does
not increase.

Image sequence The computation of the image sequence is based on the proof of Theo-
rem 3.4, which relies on continuous integrals. For the discrete setting, we have no
proof that the functional value decreases which would imply a decrease of the whole
functional J and the existence of a weakly convergent subsequence of images I(jl) in
(Hn1,n2)K+1. However, in our numerical examples, we observed a decrease for non-
degenerated deformation fields.

4.3. Multiscale Minimization Scheme

Neither the energy J (I,ϕ) nor the registration functional R(v) is convex. Hence an ini-
tialization close to the optimal solution is desirable. As usual in optical flow and image
registration we apply a coarse-to-fine strategy. First, we iteratively smooth our given im-
ages by convolution with a truncated Gaussian and downsample using bilinear interpolation.
On the coarsest level we perform a single registration to obtain a deformation. We apply
a bilinear interpolation to construct a deformation on the finer level. Then we construct
K̃ − 1, K̃ < K intermediate finer level images by

Ik(x) = expT
Ä k
K̃

logT (R ◦ ϕ−1
äÄ
x− k

K̃
Pv(x)

ä
, ϕ(x) = x− Pv(x), (28)
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where T,R are the start and end images at the current level. The inversion of the mapping
ϕ : G → Ω is realized by linear scattered interpolation of the identification

ϕ−1
Ä
ϕ1(x1, x2), ϕ1(x1, x2)

ä
= (x1, x2).

Using this we obtain an initial image sequence on this level and start the alternating mini-
mization to obtain better deformations and intermediate images.

Going to the next finer level by bilinear interpolation of the deformation and image
sequence, we construct more intermediate images by interpolating between neighboring ones
similar to (28). We repeat this procedure until we reach the maximal number K of images
and the finest level. Going to finer level may increase the distance between subsequent
images. To keep the determinants of the optimal solution ϕ̂ bounded away from zero, we
can adjust the number of intermediate images according to Remark 3.7. The multilevel
strategy is sketched in Algorithm 1.

Algorithm 1 Morphing Algorithm (informal)

1: T0 := T,R0 := R,G0 := G
2: create image stack (Tl)

lev
l=0, (Rl)

lev
l=0 on (Gl)lev

l=0 by smoothing and downsampling
3: solve (4.1) for Tlev, Rlev to get ṽ
4: l→ lev−1
5: use bilinear interpolation to get v on Gl from ṽ

6: obtain K̃l images I
(0)
l from Tl, Rl, v by (28)

7: while l ≥ 0 do
8: find images Ĩl and deformations ṽl minimizing (3.6) with initialization I

(0)
l

9: l→ l − 1
10: if l > 0 then
11: use bilinear interpolation to get Il and vl on Gl
12: for k = 1, . . . , K̃l do
13: calculate K̃l intermediate images between Il,k−1, Il,k with vl,k using (28)

14: I := I0

5. Numerical Examples

In this section, we present various proof-of-concept examples. While the minimization of
(16) and (17), as well as the muligrid scheme are implemented in Matlab 2017a, the
manifold-valued image processing functions, like filtering, bilinear interpolation, and inter-
polation of scattered data are implemented as part of the

”
Manifold-valued Image Restora-

tion Toolbox“(MVIRT)1 by Ronny Bergmann and Johannes Persch. The toolbox uses C++
implementations of the basic manifold functions, like logarithmic and exponential maps, as
well as the Karcher means, which are imported into Matlab using mex-interfaces with the
GCC 4.8.4 compiler.
In all examples, we set m := 3 and µ = λ = γ =: α. The determinants of Dϕk in our
numerical experiments stayed positive even using η = 0.

1open source, available at www.mathematik.uni-kl.de/imagepro/members/bergmann/mvirt/
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RGB color model

HSV color model with hue in the second row

CB color model with chromaticity in second row

Figure 5. Image path between two images of a sponge, using different color models.

5.1. Images in Different Color Spaces

First, we are interested in the morphing path of color images in different color spaces having
a nonlinear structure which is not a Hadamard one. We compare

- the linear RGB color space,

the image path is calculated using lev = 7, where the image size is decreased to
75% per level, α = 0.00025, and K̃6 = 3, K̃5 = 2, K̃4 = 1, K̃l = 0, l = 1, 2, 3, i.e.,
we decrease the number of new intermediate images while going to finer levels,

- the hue-saturation-value (HSV) color space, where the hue is phase valued, i.e., in S1,

the image path is calculated using lev = 5, where the image size is decreased to
60% per level, α = 0.1, and K̃5 = 3, K̃4 = 2, K̃3 = 1, K̃l = 0, l = 1, 2, and

- the chromaticity-brightness (CB) color space, where the chromaticity is S2-valued,

the image path is calculated using lev = 8, where the image size is decreased to
75% per level, α = 0.00025, and K̃7 = 3, K̃6 = 2, K̃5 = 1, K̃l = 0, l = 1, . . . , 4.

In Fig. 5 we see the image paths between to images of sponges. We calculated the image
paths with 25 images, but only show the images Ik, k = 0, 4, 9, 14, 19, 24. The intermediate
images are blurred due to the bilinear interpolation, which could be improved for the real-
valued images, but the computational cost would be very high for the manifold-valued
images.

The morphing for the HSV model looks strange when looking at the color image, but is
reasonable when considering the hue. In the hue channel the large yellow area is moving,
while the green stripe is merging into and emerging out of the boundary. Here we work on
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(a) Morphing path between two P(3) images with rectangular structures.

(b) Morphing path between two P(3) images with smooth rectangular structures.

Figure 6. Comparison of the morphing of strong and smooth edges using the same set of
parameters.

the manifold S1× [0, 1]2 ⊂ S1×R2 with the usual product metric. Since the distances in S1

are larger than in the interval [0, 1], the hue dominates the morphing. Changing the metric,
i.e., the weights for the product metric, could lead to different results with more pleasing
color images. Here we stick to the usual choice to emphasize the importance of the metric.

The image path of the CB model is very similar to the RGB path for this image. Looking
at the chromaticity we see that on the right part of the image a small portion of the green
color vanishes and appears again close by. This effect could be reduced by lowering λ and µ,
but then the deformations become close to irregular. However, on the left side the movement
of the green stripe looks smooth while the background changes as we expected.

5.2. Symmetric Positive Definite Matrices P(n)
Next, we consider images with values in the manifold of symmetric positive definite n × n
matrices P(n) with the affine invariant metric [29].

Moving P(3) Rectangle

We start by computing a minimizing discrete path between simple synthetic images to see
how edges are preserved. The template and reference images in Fig. 6 (a) consist of 3I3

matrices in the background and a rectangular part consisting of either the matrix

AT =

Ö
3 2 1
2 4 −1
1 −1 2

è
, or AR = exp3I3(2 log3I3 AT),
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Figure 7. Morphing path between two artificial P(2) images with whirl structures.

which is moved downwards. The matrices are depicted as ellipsoids defined by their eigen-
values and eigenvectors. For this image of size 21 × 33 we used lev = 2, where the image
size is decreased to 50% per level and α = 1. We calculated 5 intermediate images be-
tween existing images on the new level to obtain 7 images in total. The image path looks
reasonable except for the smoothing of the rectangle in vertical morphing direction and at
its right boundary. The smoothing in the movement direction originates from the bilinear
image interpolation model used to obtain the intermediate images and the “smoothness” of
the deformations. It is possible to incorporate more sophisticated interpolation methods on
manifolds, but this involves higher computational cost. The smoothing on the right side of
the rectangle is an effect of the forward differences used in the calculation of the discrete
deformations (25). This effect could also be reduced by a different discretization of the
derivatives. However, for the similar images in Fig. 6 (b) with slightly smoothed edges our
model performs well and does not produce visible artifacts.

Whirl P(2) Image

In Fig. 7 we compute the discrete path between two P(2) images, where we obtained the
final one by deforming the start image and pushing its values further away from the identity.
The artificial deformation is more complicated as in the previous example. For this image of
size 64× 64 we used lev = 4, where the image size is decreased to 75% per level, α = 0.005,
K̃3 = 3, K̃2 = 2, K̃1 = 1. Even though the deformation is more complicated than before,
the path shows a reasonable transition from the starting to the final image.
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DT-MRI

The morphing path between two slices of the Camino2 [13] is shown in Fig. 8. As a prepro-
cessing we inpainted the holes and slightly smoothed the slices using a `2−TV regularization
with the Douglas-Rachford algorithm [8]. The image path is calculated using lev = 5, where
the image size is decreased to 80% per level, α = 0.025, and K̃4 = 2, K̃3 = K̃2 = 1, K̃1 = 0,
i.e., we decrease the number of new intermediate images while going to finer levels. Sev-
eral interesting effects can be seen on the path, e.g., the spot of large tensors on the right
blends into the background, as there is no similar structure in the final image. Further the
stripe in the center moves a bit to the bottom left. While big structures on the top merge
together, a small structure at the left boundary separates. As our implementation of the
spatial discrete setting involves many means, the images on the morphing path rather very
smooth. Hence a comparison with the original Camino slice between the template and the
target image is not reasonable.

6. Conclusions

In this paper we have shown how the time discrete geodesic path model of [9] can be
generalized to the manifold-valued images. Indeed, we have used a modified setting and
have shown that at least for finite dimensional Hadamard manifolds there exist minimizers
for the space continuous model.

We have outlined the computational details for the smooth transition of discrete images
with values on a manifold, where the computations work for more general manifolds than
Hadamard ones. We have to clarify if the solution of the system of equations from the space
continuous setting, which is also used in the space discrete model still leads to a decrease of
the corresponding functional. In all our numerical examples this was the case. Furthermore,
it is questionable if some theory can be generalized to other manifolds. For examples of
manifold-valued images, see e.g. [7]. A generalization of Theorem 3.4 to manifolds with
arbitrary curvature seems to be possible if the images live in compact and convex subsets of
the manifold. Compactness ensures the existence of a minimizer in the L2(Ω,H). Convexity
is used for the uniqueness of shortest geodesics.

The most interesting question is if the model converges for K → ∞ to some meaningful
functional such that it can be interpreted as time discretization of some geodesic path in
the space of manifold-valued images. Note that we have dealt with the Mosco convergence
in Hadamard spaces in [4].

A. Gagliardo-Nirenberg inequality

Theorem A.1 (Gagliardo-Nirenberg [28]). Let Ω ⊂ Rn be a bounded domain satisfying the
cone property. For 1 ≤ q, r ≤ ∞, suppose that f belongs to Lq(Ω) and its derivatives of
order m to Lr(Ω). Then for the derivatives Djf , 0 ≤ j < m the following inequalities hold
true with constants C1, C2 independent of f :

‖Djf‖Lp(Ω) ≤ C1‖Dmf‖aLr(Ω)‖f‖1−aLq(Ω) + C2‖f‖Lq(Ω),

2http://camino.cs.ucl.ac.uk
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Figure 8. Morphing path between a part of the YZ-slices 49 and 51 of the Camino dataset.
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where 1
p = j

n + a
(

1
r − m

n

)
+ (1 − a)1

q for all a ∈ [ jm , 1], except for the case 1 < r < ∞ and

m− j − n
r is a nonnegative integer, in which the inequality only holds true for a ∈ [ jm , 1).

Remark A.2. For p = q = r = 2 the inequality simplifies to

‖Djf‖L2(Ω) ≤ C1‖Dmf‖
j
m

L2(Ω)‖f‖
1− j

m

L2(Ω) + C2‖f‖L2(Ω)

≤ C1‖Dmf‖L2(Ω) +
Ä
C1 + C2

ä
‖f‖L2(Ω),

where the second inequality follows by estimating the product with the maximum of both
factors.
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