
ar
X

iv
:1

71
0.

08
22

8v
4 

 [
m

at
h.

C
O

] 
 2

1 
A

ug
 2

01
8

EXTREMAL PROBLEMS ON THE HYPERCUBE AND

THE CODEGREE TURÁN DENSITY OF COMPLETE r-GRAPHS

ALEXANDER SIDORENKO∗

Abstract. Let G be a finite abelian group, and r be a multiple of its exponent. The generalized
Erdős–Ginzburg–Ziv constant sr(G) is the smallest integer s such that every sequence of length s

over G has a zero-sum subsequence of length r. We show that s2m(Zd
2
) ≤ Cm2d/m + O(1) when

d → ∞, and s2m(Zd
2
) ≥ 2d/m +2m− 1 when d = km. We use results on sr(G) to prove new bounds

for the codegree Turán density of complete r-graphs.

Key words. Turán density, codegree, Sidon set, zero-sum subsequence, Erdős–Ginzburg–Ziv
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1. Introduction. In this paper, we consider three problems: the Sidon problem
for Zd

2 (section 3), the generalized Erdős–Ginzburg–Ziv problem (section 4), and the
codegree Turán problem for complete r-graphs (sections 2 and 5). Sections 3 and 4
can be read independently from the rest of the article. In the proof of Theorem 4.4,
we use the notion of r-graphs. The necessary definitions and notation are given below.

An r-graph is a pair H = (V (H), E(H)) where V (H) is a finite set of vertices, and
the edge set E(H) is a collection of r-subsets of V (H). We denote v(H) = |V (H)| and
e(H) = |E(H)|. The independence number α(H) is the maximum size of a subset of
V (H) which contains no edges of H . The degree of a subset A ⊆ V (H) is the number
of edges of H which contain A. For 0 ≤ l ≤ r, let ∆l(H) denote the maximum degree
among of l-subsets of V (H). Notice that ∆0(H) = e(H) and

(1.1)
∆0(H)
(

n
r

) ≤ ∆1(H)
(

n−1
r−1

) ≤ · · · ≤ ∆r−1(H)
(

n−(r−1)
1

)
.

2. Codegree Turán density. The classical Turán number, T (n, k, r), is the
minimum number of edges in an n-vertex r-graph H with α(H) < k. Correspond-
ingly,

(

n
r

)

− T (n, k, r) is the largest number of edges in an n-vertex r-graph that
does not contain a complete subgraph on k vertices. There exists the limit t(k, r) =
limn→∞ T (n, k, r)/

(

n
r

)

. The exact values of Turán numbers for r = 2 were found
by Mantel [22] in the case k = 3, and by Turán [29] for all k. In particular,
t(k, 2) = 1/(k − 1). For k > r > 2, not a single value t(k, r) is known. For de-
tails, see surveys [16, 26].

One of the ways to generalize the Turán numbers is

Tl(n, k, r) = min{∆l(H) : v(H) = n, α(H) < k} .

Notice that T (n, k, r) = T0(n, k, r). Lo and Markström [20] proved the existence of

the limit tl(k, r) = limn→∞ Tl(n, k, r)
/

(

n−l
r−l

)

. Inequalities (1.1) imply

t0(k, r) ≤ t1(k, r) ≤ . . . ≤ tr−1(k, r) .

The case l = 1 is known as a Zarankiewicz type problem (see [28, Chapter 3]),
and t1(k, r) = t0(k, r) = t(k, r). The problem of determining tl(k, r) has been studied
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in [3, 8, 20, 23] in its complimentary form (see also Chapter 13.2 of survey [16]). In
notation of [20], tl(k, r) = 1 − πl (K

r
k). The case l = r − 1 was first introduced by

Mubayi and Zhao [23] under the name of codegree density. Lo and Markström [20]
proved that for all l = 1, 2, . . . , r − 1,

(2.1) tl(k, r) ≤ tl−1(k − 1, r − 1) .

To simplify notation for the codegree density, we define τ(k, r) = tr−1(k, r). The
known upper bounds for τ(k, r) follow from (2.1) and upper bounds for the classical
Turán density: τ(k, r) ≤ 1/(k − r + 1). Czygrinow and Nagle [3] conjectured that
τ(4, 3) = 1/2. Lo and Markström [20] extended this conjecture to τ(r + 1, r) = 1/2.

We will prove upper bounds on the codegree density which are significantly better
than τ(k, r) ≤ 1/(k − r + 1).

In sections 3 and 4 of this article, we study Sidon sets and zero-sum-free sequences
in group Zd

2. The results of sections 3 and 4 are used in section 5 to obtain new upper
bounds for τ(k, r) when k − r is small. In particular, for r = 3, we prove

(2.2) τ(2ad + 1, 3) ≤ 3−d ,

where ad is the maximum size of a cap in the affine geometry AG(d, 3) (a2 = 4, a3 =
9, a4 = 20, a5 = 45, a6 = 112). For r ≥ 4, we prove

(2.3) τ(r + 2, r) ≤ 1/4, τ(r + 3, r) ≤ 1/8, τ(r + 5, r) ≤ 1/16,

and in general,

(2.4) τ(r + bd, r) ≤ 2−d ,

where bd = ⌊
(

2d+1 − 7/4
)1/2− 1/2⌋. Notice that d = 1 in (2.4) gives τ(r+1, r) ≤ 1/2

which is in line with the conjecture of Lo and Markström.

3. Sidon problem for Zd
2. A Sidon set A in an abelian group G is a set with

the property that all pairwise sums of its elements are different (see [1]). If G is finite,

let β(G) denote the largest size of its Sidon set. Obviously,
(

β(G)
2

)

≤ |G|.
We denote by Z

d
k the group of d-dimensional vectors over Zk.

Theorem 3.1.

β
(

Z
d
2

)

≤
√

2d+1 − 7

4
+

1

2
.

Proof. Let A be a Sidon set in Zd
2. Since two unequal elements can not have zero

sum,
(

|A|
2

)

≤ 2d − 1 which results in |A| ≤ (2d+1 − 7/4)1/2 + 1/2.

Theorem 3.2 ([19]). For even values of d,

β
(

Z
d
2

)

≥ 2d/2 .

Theorem 3.3. β
(

Z1
2

)

= 2, β
(

Z2
2

)

= 3, β
(

Z3
2

)

= 4, and β
(

Z4
2

)

= 6.

Proof. Let Ad be the set of vectors from Zd
2 with at most one non-zero component.

This is a Sidon set, and |Ad| = d+ 1 provides a lower estimate for d ≤ 3. For d = 4,
A4 with the addition of vector (1, 1, 1, 1) demonstrates that β

(

Z4
2

)

≥ 6. The matching
upper bounds follow from Theorem 3.1.
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4. Zero-sum-free sequences in Zd
2. Let G be a finite abelian group with ex-

ponent exp(G) (that is the least common multiple of the orders of its elements). The
Erdős–Ginzburg–Ziv constant s(G) is the smallest integer s such that every sequence
of length s over G has a zero-sum subsequence of length exp(G) (see [4, 5, 9, 12, 14,
17, 25]). In 1961, Erdős, Ginzburg, and Ziv [6] proved s(Zk) = 2k − 1. Kemnitz’
conjecture, s(Z2

k) = 4k− 3 (see [17]), was open for more than twenty years and finally
was proved by Reiher [25] in 2007.

Harborth [14] introduced constant g(G) which is the smallest integer g such that
every subset of size g in G contains exp(G) elements with zero sum. When exp(G) =
3, the sum of three elements of G is zero if and only if they form an arithmetic
progression. It is known that

(4.1) s(Zd
3) = 2g(Zd

3)− 1 ,

and ad = g(Zd
3)− 1 is the maximum size of a cap in the affine geometry AG(d, 3) (see

[4]). The known exact values (see [4, 24]) are a2 = 4, a3 = 9, a4 = 20, a5 =
45, a6 = 112. Ellenberg and Gijswijt [5] proved g(Zd

3) − 1 ≤ ηd, where η =

(3/8)
3

√

207 + 33
√
33 < 2.756. Consequently,

(4.2) s(Zd
3) ≤ 2ηd + 1 .

The following generalization of the Erdős–Ginzburg–Ziv constant was introduced
by Gao [12]. If r is a multiple of exp(G) then sr(G) denotes the smallest integer s
such that every sequence of length s over G has a zero-sum subsequence of length
r. (Notice that if r is not a multiple of exp(G) then there is an element x ∈ G
whose order is not a divisor of r, and the infinite sequence x, x, x, . . . contains no
zero-sum subsequence of length r.) Obviously, sexp(G)(G) = s(G). Constants sr(G)
were studied in [2, 10, 11, 12, 13, 15, 18]. In the case when k is a power of a prime,
Gao proved skm(Zd

k) = km + (k − 1)d for m ≥ kd−1 (see [11, 18]) and conjectured
that

(4.3) skm(Zd
k) = km+ (k − 1)d for km > (k − 1)d .

The Harborth constant g(G) allows a similar generalization. We say that A ⊆ G
is a zero-free set of rank r if the sum of any r distinct elements of A is non-zero. When
r is a multiple of exp(G), we denote the largest size of such set by βr(G). Obviously,
βexp(G)(G) = g(G)− 1.

In section 3, we studied β(Zd
2), the largest size of a Sidon set in Zd

2. It is easy to see
that a zero-free set of rank 4 in Zd

2 is the same as a Sidon set. Hence, β4(Z
d
2) = β(Zd

2).
Note that a zero-free set of rank 2m in Zd

2, where m ≥ 3, may contain different m-
subsets with the same sum, for example, x1 + x2 + x3 = x1 + x4 + x5. Nevertheless,
we will prove that both β2m(Zd

2) and s2m(Zd
2) are of order 2d/m as d → ∞.

Theorem 4.1.

s2m(Zd
2) ≤ β2m(Zd

2) + 2m− 1 .

Proof. Consider a sequence S of length β + 2m− 1 over Zd
2 where β = β2m(Zd

2).
We are going to show that S contains a zero-sum subsequence of size 2m. For each
x ∈ Zd

2, denote by k(x) the number of appearances of x in S. Let B be the set of
elements x ∈ Zd

2 such that k(x) ≥ 1. If |B| > β, a zero-sum subsequence exists by the
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definition of β2m(Zd
2). We may assume |B| ≤ β. Let k′(x) be the largest even number

that does not exceed k(x). Then

∑

x∈B

k′(x) ≥
∑

x∈B

(k(x) − 1) =
∑

x∈B

k(x) − |B| = (β + 2m− 1)− |B| ≥ 2m− 1.

Since the values of k′(x) are even,
∑

x∈B k′(x) ≥ 2m. Select a set of even numbers
k′′(x) such that k′′(x) ≤ k′(x) and

∑

x∈B k′′(x) = 2m. Then k′′(x) appearances of
every x ∈ B in S constitute a zero-sum subsequence of length 2m.

From Theorems 3.1 and 4.1 we get

Corollary 4.2.

s4(Z
d
2) ≤

√

2d+1 − 7

4
+

7

2
.

Theorem 4.3.

s4(Z
d
2) = β(Zd

2) + 3 .

Proof. Let A = {x1, x2, . . . , xβ} be a Sidon set in Zd
2 where β = β(Zd

2). Notice
that in the sequence x1, x2, . . . , xβ all subsequences of size 2 and 4 have non-zero
sums. Consider the sequence x1, x2, . . . , xβ , xβ+1, xβ+2 where xβ+2 = xβ+1 = xβ . All
4-element subsequences of this sequence will have non-zero sums. Hence, s4(Z

d
2) ≥

β(Zd
2) + 3. The opposite inequality follows from Theorem 4.1.

Theorem 4.4. For each m, there is a constant Cm such that

β2m(Zd
2) ≤ Cm2d/m +O(1) as d → ∞ .

A subset of edges in an r-graph is called independent if they are pairwise disjoint.
In order to prove Theorem 4.4, we need the following two lemmas.

Lemma 4.5. If an r-graph H has no more than λ independent edges, then e(H) ≤
λ · (1 + r · (∆1(H)− 1)).

Proof. We will use induction on λ. The basis for λ = 0 is trivial. Suppose, the
statement of the lemma holds for λ < k. We will show that it holds for λ = k as well.
Select an arbitrary edge A in H and remove r vertices that form A together with all
edges that intersect A. The resulting r-graph H1 has no more than k−1 independent
edges, hence e(H1) ≤ (k − 1)(1 + r · (∆1(H1) − 1)). The number of edges we have
removed is at most 1 + r · (∆1(H)− 1), hence e(H) ≤ e(H1) + 1 + r · (∆1(H)− 1) ≤
k · (1 + r · (∆1(H)− 1)).

Lemma 4.6 (The Erdős–Ko–Rado theorem [7]). Let H be an r-graph with n ≥ 2r
vertices. If every pair of edges in H has non-empty intersection, then e(H) ≤

(

n−1
r−1

)

.

Proof of Theorem 4.4. For a subset X ⊂ Zd
2, let Σ(X) denote the sum of its

elements. Let n = β2m(Zd
2), and A ⊂ Zd

2 be a zero-free set of rank 2m and size n. For
each r = 2, 3, . . . ,m, let q(r) denote the integer q ∈ {0, 1, . . . , r−1} such thatm+q ≡ 0
(mod r). Denote λr = 2(m+ q(r))/r + 2r − q(r) − 3 if q(r) > 0, and λr = 2m/r − 1
if q(r) = 0. It is easy to see that λr is a positive integer. We say that an r-subset
X ⊆ A is exceptional if q(r) > 0 and there exist r-subsets X1, X2, . . . , Xλr

⊆ A such
that X1, X2, . . . , Xλr

, X are pairwise disjoint and Σ(X1) = Σ(X2) = . . . = Σ(Xλr
) =

Σ(X).
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Our first step will be to prove that if q(r) > 0 then two exceptional r-subsets
can not have intersection of size q(r). Indeed, let X and Y be exceptional r-subsets
and |X ∩ Y | = q(r). There exist r-subsets X1, X2, . . . , Xλ and Y1, Y2, . . . , Yλ such
that X1, X2, . . . , Xλ, X are pairwise disjoint, Y1, Y2, . . . , Yλ, Y are pairwise disjoint,
Σ(X1) = Σ(X2) = . . . = Σ(Xλ) = Σ(X), and Σ(Y1) = Σ(Y2) = . . . = Σ(Yλ) = Σ(Y ),
where λ = λr . It is possible that Σ(X) = Σ(Y ) and Xi = Yj for some i, j. Notice that
X − Y can intersect at most r − q(r) subsets among Y1, Y2, . . . , Yλ. As λ > r − q(r),
there is an index j such that X ∩ Yj = ∅. Similarly, Y − X can intersect at most
r−q(r) subsets amongX1, X2, . . . , Xλ. Also, Yj can intersect at most r subsets among
X1, X2, . . . , Xλ. Since λ−(r−q(r))−r = 2k−3 with k = (m+q(r))/r, there exist 2k−3
indices 1 ≤ i1 < i2 < . . . < i2k−3 ≤ λ such that

(

Xi1 ∪Xi2 ∪ . . . ∪Xi2k−3

)

∩(Y ∪Yj) =
∅. Among 2k subsets X,Xi1 , Xi2 , . . . , Xi2k−3

, Y, Yj, the only pair with non-empty
intersection is {X,Y }. Let

B = (X ∪Xi1 ∪Xi2 ∪ . . . ∪Xi2k−3
∪ Y ∪ Yj) − (X ∩ Y ) .

Then |B| = 2kr− 2|X ∩Y | = 2kr− 2q(r) = 2m and Σ(B) = (2k− 2)Σ(X)+ 2Σ(Y )−
2Σ(X ∩Y ) = 0 which contradicts the assumption that A is a zero-free set of rank 2m.

Our second step is to obtain an upper bound on the number of exceptional r-
subsets. Fix B ⊂ A where |B| = q(r) > 0 and consider a family FB of subsets
F ⊂ A−B such that |F | = r − q(r) and F ∪B is an exceptional r-subset. Then any
two members of FB must have non-empty intersection. Since n = β2m(Zd

2) ≥ 2m− 1
and r < m, we have |A − B| = n − q(r) ≥ 2(r − q(r)). By Lemma 4.6, |FB| ≤
(|A−B|−1
r−q(r)−1

)

=
(n−q(r)−1
r−q(r)−1

)

. Then the total number of exceptional r-subsets is at most

(

n

q(r)

)(

n− q(r) − 1

r − q(r) − 1

)

=
r − q(r)

n− q(r)

(

n

r

)(

r

q(r)

)

,

which is a polynomial in n of degree r − 1.
In the case q(r) > 0, let Gr denote an m-graph with vertex-set A where an

m-subset B ⊆ A is an edge if B contains an exceptional r-subset. Then e(Gr) ≤
r−q(r)
n−q(r)

(

n
r

)(

r
q(r)

)(

n−r
m−r

)

. Denote

Pm(n) =

m−1
∑

r=2
q(r)>0

r − q(r)

n− q(r)

(

n

r

)(

n− r

m− r

)(

r

q(r)

)

.

Notice that Pm(n) is a polynomial in n of degree at most m− 1. For r = 1, 2, . . . ,m
and z ∈ Z

d
2, we denote by Hr(z) an r-graph with vertex set A whose edges are r-

subsets X such that Σ(X) = z and X does not contain an exceptional subset. Notice
that

∑

z∈Z
d

2

e(Hm(z)) ≥
(

n

m

)

−
m−1
∑

r=2
q(r)>0

e(Gr) ≥
(

n

m

)

− Pm(n) .

As the third step, we will obtain an upper bound on e(Hr(z)). Let N1 = 1 and
Nr = λr · (1+ r · (Nr−1−1)) for r = 2, 3, . . . ,m. We are going to prove e(Hr(z)) ≤ Nr

for every r ≤ m and every z ∈ Zd
2. We will use induction on r. The case r = 1

serves as the induction base. Indeed, H1(z) has either 1 edge (that is z itself) if
z ∈ A, or no edges if z /∈ A. Now we will prove the induction step from r − 1 to r.
Notice that the degree of vertex x in Hr(z) is at most e(Hr−1(z + x)) ≤ Nr−1. If
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q(r) > 0 then Hr(z) has no exceptional r-subset as its edge, hence, it has at most
λr independent edges. If q(r) = 0, then r is a divisor of m, and Hr(z) can not have
2m/r = λr + 1 independent edges: their union would be an (2m)-subset with zero
sum. We apply Lemma 4.5 to Hr(z) with λ = λr and ∆1(Hr(z)) ≤ Nr−1, to get
e(Hr(z)) ≤ λr · (1 + r · (Nr−1 − 1)) = Nr .

We recall that
∑

z∈Z
d

2

e(Hm(z)) ≥
(

n
m

)

− Pm(n), where Pm(n) is a polynomial of

order less than m. On the other hand, e(Hm(z)) ≤ Nm for every z ∈ Zd
2. Therefore,

(

n
m

)

− Pm(n) ≤ 2dNm. Since n = β2m(Zd
2), we get β2m(Zd

2) ≤
(

2dm!Nm

)1/m
+ O(1)

as d → ∞.

Remark 4.7. In the proof of Theorem 4.4, one may estimate λr < 2
(

m
r + r

)

, and
hence, (Cm)

m
< m!

∏m
r=2 rλr < m!

∏m
r=2 2(m + r2). This implies Cm = O(m3) as

m → ∞. For small m, C3 = 601/3 < 3.9149 and C4 = 32881/4 < 7.5724.

The next result is a generalization of Theorem 3.2.

Theorem 4.8. If d is a multiple of m then

β2m(Zd
2) ≥ 2d/m , s2m(Zd

2) ≥ 2d/m + 2m− 1 .

Proof. Let d = m · k. Since Zk
2 is the additive group of GF

(

2k
)

, the elements of

Zmk
2 can be represented by vectors (x1, x2, . . . , xm) where xi ∈ GF

(

2k
)

. Let A be

a set of 2k vectors (x, x3, x5, . . . , x2m−1) where x ∈ GF
(

2k
)

. We are going to prove
that A is a zero-free set of rank 2n for each n = 1, 2, . . . ,m. Indeed, suppose that
x1, x2, . . . , x2n ∈ GF

(

2k
)

and
∑2n

i=1(xi)
r = 0 for every odd r ≤ 2n − 1. We need to

show that there are i, j such that xi = xj , i 6= j. As
(

∑2n
i=1(xi)

r
)2

=
∑2n

i=1(xi)
2r,

we get
∑2n

i=1(xi)
r = 0 for all r ≤ 2n− 1. Let M = [Mij ] be a square matrix of order

2n over GF
(

2k
)

, where Mij = (xi)
j−1. Notice that (1, 1, . . . , 1) ·M = (0, 0, . . . , 0), so

det(M) = 0 (where 0 and 1 are elements of GF
(

2k
)

). On the other hand, det(M) =
∏

1≤i<j≤2n(xi − xj) which means that there are i, j such that xi = xj , i 6= j. We

have proved by now that β2m(Zmk
2 ) ≥ 2k.

To prove the lower bound for s2m(Zmk
2 ), select an element a ∈ A and consider a

sequence S of length 2k+2m−2 where a appears 2m−1 times and each other element
from A appears once. We claim that S does not contain a zero-sum subsequence of
length 2m. Indeed, suppose that such a subsequence S′ exists, and let t be the number
of appearances of a in it. Let 2s be the largest even number that does not exceed
t. Let S′′ be obtained from S by removing 2s copies of a. Then S′′ is a zero-sum
subsequence of length 2m − 2s which does not contain multiple copies of the same
element. It contradicts with the fact that A is a zero-free set of rank 2(m − s).
Therefore, s2m(Zmk

2 ) > 2k + 2m− 2.

5. Bounds for codegree Turán densities. Let G be a finite abelian group,
and r be a multiple of its exponent. In section 4, we defined sr(G) as the smallest
integer s such that every sequence of length s over G contains a zero-sum subsequence
of length r.

Theorem 5.1. If G is a finite abelian group and r is a multiple of exp(G) then

τ
(

sr(G), r
)

≤ 1

|G| .

Proof. Let Hn be an r-graph with n vertices that are divided into |G| baskets
of almost equal sizes, each basket is associated with an element of G, and r vertices
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form an edge when the sum of their associated elements is zero. The degrees of all
(r − 1)-subsets of V (Hn) are |G|−1n + O(1) as n → ∞. By the definition of sr(G),
any subset of vertices of size sr(G) contains an edge of Hn.

Theorem 5.1 provides the strongest results when r is small and |G| is large. The
best cases are G = Zd

3 with r = 3, and G = Zd
2 with even values of r. When G = Zd

2

and r = 4, Theorem 5.1 and Corollary 4.2 yield

(5.1) τ

(⌊

√

2d+1 − 7

4
+

7

2

⌋

, 4

)

≤ 2−d ,

as well as
τ(k, 4) ≤ 2k−2 +O

(

k−3
)

as k → ∞ .

By combining (2.1) and (5.1), we obtain (2.3) and (2.4). Theorems 4.1, 4.4 and 5.1,
together with (2.1), yield for r ≥ 4

τ(k, r) ≤ O
(

k−⌊r/2⌋
)

as k → ∞ .

As s3(Z
d
3) = s(Zd

3), Theorem 5.1 together with (4.1) yield (2.2). Theorem 5.1

together with (4.2) yield τ(k, 3) ≤ O
(

k− ln(3)/ ln(η)
)

where η = (3/8)
3

√

207 + 33
√
33.

As ln(3)/ ln(η) > 1.084, it results in

τ(k, 3) = o
(

k−1.084
)

as k → ∞ .

Recently, Lo and Zhao [21] proved that for each r ≥ 3,

(5.2) c1
ln k

kr−1
≤ τ(k, r) ≤ c2

ln k

kr−1
as k → ∞ .

The upper estimate in (5.2) is better than our asymptotic bounds. Nevertheless, in
the case when k − r is small, our bounds (2.2) and (2.3) are still better.

Very recently, Gao’s conjecture (4.3) was proved in [27] for k = 2. As a conse-
quence, we may derive from Theorem 5.1 that

τ(r + d, r) ≤ 2−d for r ≥ 2⌈d/2⌉ .
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