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EXTREMAL PROBLEMS ON THE HYPERCUBE AND
THE CODEGREE TURAN DENSITY OF COMPLETE 7"-GRAPHS

ALEXANDER SIDORENKO*

Abstract. Let G be a finite abelian group, and r be a multiple of its exponent. The generalized
Erdds-Ginzburg-Ziv constant s,(G) is the smallest integer s such that every sequence of length s
over G has a zero-sum subsequence of length r. We show that som(Z9) < Cn24/™ 4+ O(1) when
d — 00, and s25,, (Z¢) > 24/™ + 2m — 1 when d = km. We use results on s,(G) to prove new bounds
for the codegree Turan density of complete r-graphs.
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1. Introduction. In this paper, we consider three problems: the Sidon problem
for Z4 (section 3), the generalized Erdés-Ginzburg-Ziv problem (section 4), and the
codegree Turdn problem for complete r-graphs (sections 2 and 5). Sections 3 and 4
can be read independently from the rest of the article. In the proof of Theorem 4.4,
we use the notion of r-graphs. The necessary definitions and notation are given below.

An r-graph is a pair H = (V(H), E(H)) where V (H) is a finite set of vertices, and
the edge set F(H) is a collection of r-subsets of V(H). We denote v(H) = |V(H)| and
e(H) = |E(H)|. The independence number a(H) is the maximum size of a subset of
V(H) which contains no edges of H. The degree of a subset A C V(H) is the number
of edges of H which contain A. For 0 < <, let A;(H) denote the maximum degree
among of I-subsets of V(H). Notice that Ag(H) = e(H) and

Ao(H) Aq(H) A,_1(H)
mo S Taeny, S S ooy -
(’I") (7‘—1) ( 1 )

2. Codegree Turan density. The classical Turdn number, T'(n, k,r), is the
minimum number of edges in an n-vertex r-graph H with a(H) < k. Correspond-
ingly, (?) — T(n,k,r) is the largest number of edges in an n-vertex r-graph that
does not contain a complete subgraph on k vertices. There exists the limit ¢(k,r) =
lim, oo T'(n, k,7) /(7). The exact values of Turdn numbers for r = 2 were found
by Mantel [22] in the case k = 3, and by Turdn [29] for all k. In particular,
t(k,2) = 1/(k —1). For k > r > 2, not a single value t(k,r) is known. For de-
tails, see surveys [16, 26).

One of the ways to generalize the Turdn numbers is

(1.1)

Ti(n,k,r) = min{A/(H): v(H)=n, a(H) <k} .
Notice that T'(n,k,r) = To(n, k,r). Lo and Markstrom [20] proved the existence of
the limit ¢;(k,r) = lim,_ o T1(n, k,7) /(’::ll) . Inequalities (1.1) imply
to(k,’f‘) S fl(k,T‘) S S tr_l(k,T‘).

The case | = 1 is known as a Zarankiewicz type problem (see [28, Chapter 3]),
and t1(k,r) = to(k,r) = t(k,r). The problem of determining #;(k,r) has been studied
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in [3, 8, 20, 23] in its complimentary form (see also Chapter 13.2 of survey [16]). In
notation of [20], t;(k,r) = 1 — m (KJ). The case [ = r — 1 was first introduced by
Mubayi and Zhao [23] under the name of codegree density. Lo and Markstrom [20]
proved that for alll =1,2,...,r — 1,

(2.1) tl(k,T) < tq(k—1,7r— 1) .

To simplify notation for the codegree density, we define 7(k,r) = ¢,_1(k,r). The
known upper bounds for 7(k,r) follow from (2.1) and upper bounds for the classical
Turdn density: 7(k,r) < 1/(k —r + 1). Czygrinow and Nagle [3] conjectured that
7(4,3) = 1/2. Lo and Markstrém [20] extended this conjecture to 7(r + 1,r) = 1/2.

We will prove upper bounds on the codegree density which are significantly better
than 7(k,r) <1/(k—r+1).

In sections 3 and 4 of this article, we study Sidon sets and zero-sum-free sequences
in group Z4. The results of sections 3 and 4 are used in section 5 to obtain new upper
bounds for 7(k,r) when k — r is small. In particular, for r = 3, we prove

(2.2) 7(2aq +1,3) < 374,

where a4 is the maximum size of a cap in the affine geometry AG(d, 3) (a2 =4, a3 =
9, ag =20, a5 = 45, ag = 112). For r > 4, we prove

(2.3) T(r+2,7)<1/4, 7(r+3,r)<1/8, t(r+5,r)<1/16,

and in general,

(2.4) T(r+bg,r) < 277,

where by = | (291 — 7/4)"/2 —1/2|. Notice that d = 1 in (2.4) gives 7(r+1,7) < 1/2
which is in line with the conjecture of Lo and Markstrom.

3. Sidon problem for ZZ. A Sidon set A in an abelian group G is a set with
the property that all pairwise sums of its elements are different (see [1]). If G is finite,
let 3(G) denote the largest size of its Sidon set. Obviously, (B(QG)) <|G]|.

We denote by Zz the group of d-dimensional vectors over Zj.

THEOREM 3.1.
7
B(2Z3) < 21—+

Proof. Let A be a Sidon set in Zg. Since two unequal elements can not have zero
sum, (“3‘) < 2¢ — 1 which results in |A] < (241 — 7/4)1/2 4 1/2. 0

THEOREM 3.2 ([19]). For even values of d,

N~

B(zg) > 242,

THEOREM 3.3. 3(Z3}) =2, B(Z3) =3, B(Z3) =4, and B(Z3) =6.

Proof. Let Ag be the set of vectors from Z¢ with at most one non-zero component.
This is a Sidon set, and |A4| = d + 1 provides a lower estimate for d < 3. For d = 4,
Ay with the addition of vector (1, 1,1, 1) demonstrates that 8 (Zé) > 6. The matching
upper bounds follow from Theorem 3.1. a
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4. Zero-sum-free sequences in Z4. Let G be a finite abelian group with ex-
ponent exp(G) (that is the least common multiple of the orders of its elements). The
Erdés—Ginzburg—Ziv constant s(G) is the smallest integer s such that every sequence
of length s over G has a zero-sum subsequence of length exp(G) (see [4, 5, 9, 12, 14,
17, 25]). In 1961, Erdds, Ginzburg, and Ziv [6] proved s(Z;) = 2k — 1. Kemnitz’
conjecture, s(Z2) = 4k — 3 (see [17]), was open for more than twenty years and finally
was proved by Reiher [25] in 2007.

Harborth [14] introduced constant g(G) which is the smallest integer g such that
every subset of size g in G contains exp(G) elements with zero sum. When exp(G) =
3, the sum of three elements of G is zero if and only if they form an arithmetic
progression. It is known that

(4.1) s(z5) = 29(Z3) -1,

and ag = g(Z4) — 1 is the maximum size of a cap in the affine geometry AG(d,3) (see
[4]). The known exact values (see [4, 24]) are ag = 4, a3 = 9, ag = 20, a5 =
45, ag = 112. Ellenberg and Gijswijt [5] proved g(Z4) — 1 < n?, where n =

(3/8)v/207 + 33v/33 < 2.756. Consequently,
(4.2) s(Z3) < 2t +1.

The following generalization of the Erdés—Ginzburg—Ziv constant was introduced
by Gao [12]. If r is a multiple of exp(G) then s,.(G) denotes the smallest integer s
such that every sequence of length s over G has a zero-sum subsequence of length
r. (Notice that if r is not a multiple of exp(G) then there is an element x € G
whose order is not a divisor of r, and the infinite sequence z,x,x,... contains no
zero-sum subsequence of length r.) Obviously, sexp(c)(G) = s(G). Constants s, (G)
were studied in [2, 10, 11, 12, 13, 15, 18]. In the case when k is a power of a prime,
Gao proved sgm(Z3) = km + (k — 1)d for m > k9! (see [11, 18]) and conjectured
that

(4.3) sem(Z3) = km+ (k—1)d for km > (k—1)d.

The Harborth constant g(G) allows a similar generalization. We say that A C G
is a zero-free set of rank r if the sum of any r distinct elements of A is non-zero. When
r is a multiple of exp(G), we denote the largest size of such set by §,.(G). Obviously,
ﬂexp(G) (G) = g(G) -1

In section 3, we studied 3(Z2), the largest size of a Sidon set in Zg. Tt is easy to see
that a zero-free set of rank 4 in Zg is the same as a Sidon set. Hence, 84(Z4) = 3(Z3).
Note that a zero-free set of rank 2m in Z4, where m > 3, may contain different m-
subsets with the same sum, for example, x1 + z2 + 3 = £1 + x4 + =5. Nevertheless,
we will prove that both Ba,, (Z$) and so,, (Z4) are of order 2%/™ as d — oco.

THEOREM 4.1.
som(Z3) < Bom(ZI) + 2m —1.

Proof. Consider a sequence S of length 8+ 2m — 1 over Z$ where 3 = Bon (Z3).
We are going to show that S contains a zero-sum subsequence of size 2m. For each
x € Z&, denote by k() the number of appearances of x in S. Let B be the set of
elements = € Z4 such that k(x) > 1. If |B| > 3, a zero-sum subsequence exists by the
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definition of 32,,(Z4). We may assume |B| < 8. Let k'(x) be the largest even number
that does not exceed k(x). Then

Zk'(m)zZ(k(:v)—l)zZk(m)—|B|=(ﬁ+2m—1)—|B|22m—1.

zEB zeB zeB

Since the values of k'(x) are even, > 5 k'(2) > 2m. Select a set of even numbers
E"(x) such that £"(z) < k'(x) and ) _p k" (x) = 2m. Then k”(x) appearances of
every x € B in S constitute a zero-sum subsequence of length 2m. a

From Theorems 3.1 and 4.1 we get
COROLLARY 4.2.

7T
84(23) S 2d+1 - Z + 5 .

THEOREM 4.3.
s4(23) = B(zd) + 3.

Proof. Let A = {x1,72,...,25} be a Sidon set in Z¢ where 8 = 3(Z4). Notice
that in the sequence z,x2,...,zg all subsequences of size 2 and 4 have non-zero
sums. Consider the sequence x1, za, ..., 28, Tg+1, Tg+2 Where g 0 = g1 = xg. All
4-element subsequences of this sequence will have non-zero sums. Hence, s4(Z$) >
B(Z4) + 3. The opposite inequality follows from Theorem 4.1. 0

THEOREM 4.4. For each m, there is a constant C,, such that
Bam(Z3) < Cp2¥™ +0(1) as d — 0.

A subset of edges in an r-graph is called independent if they are pairwise disjoint.
In order to prove Theorem 4.4, we need the following two lemmas.

LEMMA 4.5. If an r-graph H has no more than X independent edges, then e(H) <
A-(1+7- (A (H)-1)).

Proof. We will use induction on A. The basis for A\ = 0 is trivial. Suppose, the
statement of the lemma holds for A < k. We will show that it holds for A = k as well.
Select an arbitrary edge A in H and remove r vertices that form A together with all
edges that intersect A. The resulting r-graph H; has no more than k& — 1 independent
edges, hence e(Hy) < (k—1)(1 +r - (A1(H1) — 1)). The number of edges we have
removed is at most 1 +r - (A1(H) — 1), hence e(H) <e(Hy)+1+7r-(A1(H)—1) <
E-(14+7r-(A(H)-1)). O

LEMMA 4.6 (The Erdés-Ko—Rado theorem [7]). Let H be an r-graph withn > 2r

vertices. If every pair of edges in H has non-empty intersection, then e(H) < (Z:%)

Proof of Theorem 4.4. For a subset X C Zg, let X(X) denote the sum of its
elements. Let n = B2, (Z3), and A C Z4 be a zero-free set of rank 2m and size n. For
eachr =2,3,...,m, let ¢q(r) denote the integer ¢ € {0,1,...,7—1} such that m+¢ =0
(mod 7). Denote A\, = 2(m 4+ q(r))/r +2r — q(r) =3 if ¢(r) > 0, and A\, = 2m/r — 1
if g(r) = 0. It is easy to see that A, is a positive integer. We say that an r-subset
X C Ais exceptional if q(r) > 0 and there exist r-subsets X1, Xa,..., X, C A such
that Xy, Xs,..., X, X are pairwise disjoint and £(X;) = Z(X3) =... =2(X),) =
3(X).
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Our first step will be to prove that if g(r) > 0 then two exceptional r-subsets
can not have intersection of size ¢(r). Indeed, let X and Y be exceptional r-subsets
and |X NY| = ¢(r). There exist r-subsets X1, Xo,..., X, and Y7,Y5,...,Y) such
that X1, Xo,..., X, X are pairwise disjoint, Y71,Ys,...,Y),Y are pairwise disjoint,
(X1) =2(X2) =...=3(X)) =2(X),and B(Y7) =2(Y2) =... = X(Y)) = X(Y),
where A = A,.. It is possible that 3(X) = £(Y') and X; = Y; for some 7, j. Notice that
X — Y can intersect at most r — g(r) subsets among Y7,Ya,...,Yx. As A > r — ¢(r),
there is an index j such that X N'Y; = (. Similarly, Y — X can intersect at most
r—q(r) subsets among X1, Xo, ..., X). Also, Y; can intersect at most r subsets among
X1, Xo,..., Xy Since \—(r—q(r))—r = 2k—3 with k = (m+q(r))/r, there exist 2k—3
indices 1 < iy < iy < ... <iz—g < Asuchthat (X; UX;, U...UX,, ,)N(YUY;) =
(. Among 2k subsets X, X;,, X;,,-..,X Y,Y;, the only pair with non-empty
intersection is {X,Y}. Let

12k—3)

B=(XUX;,,UuX,U...UX uYuy;) — (XnY).

i2k—3

Then |B| = 2kr —2|X NY| = 2kr — 2¢(r) = 2m and X(B) = (2k —2)2(X) +23(Y) —
2%(X NY) = 0 which contradicts the assumption that A is a zero-free set of rank 2m.

Our second step is to obtain an upper bound on the number of exceptional 7-
subsets. Fix B C A where |B| = ¢(r) > 0 and consider a family Fp of subsets
F C A— B such that |F| =r —¢(r) and F'U B is an exceptional r-subset. Then any
two members of Fp must have non-empty intersection. Since n = Ba,,(Z$) > 2m — 1
and r < m, we have |[A — B| = n —q(r) > 2(r — ¢(r)). By Lemma 4.6, |Fp| <

(lﬁ;(]i )‘:i) = (Z:Zg:;j) Then the total number of exceptional r-subsets is at most

q(r)) \r—q(r) =1 n—q(r)\r/)\a(r)/)’
which is a polynomial in n of degree r — 1.
In the case ¢(r) > 0, let G, denote an m-graph with vertex-set A where an

m-subset B C A is an edge if B contains an exceptional r-subset. Then ¢(G,) <
r—alr) ™ (qT )(17"). Denote

n—q(r) \r/) \q(r)) \m
Puln) = mZ i (G ()

=2

q(r)>0

Notice that P,,(n) is a polynomial in n of degree at most m — 1. For r =1,2,...,m
and z € ZZ, we denote by H,(z) an r-graph with vertex set A whose edges are -
subsets X such that ¥(X) = z and X does not contain an exceptional subset. Notice

that .
> e(Hu(2) > <:L) - > eG) = (;) — Pn(n).
e 720

As the third step, we will obtain an upper bound on e(H,(z)). Let Ny =1 and
Ny, =X (14r-(Ny—1—1)) forr =2,3,...,m. We are going to prove e(H,(z)) < N,
for every r < m and every z € Z4. We will use induction on 7. The case r = 1
serves as the induction base. Indeed, Hi(z) has either 1 edge (that is z itself) if
z € A, or no edges if 2 ¢ A. Now we will prove the induction step from r — 1 to 7.
Notice that the degree of vertex x in H,(z) is at most e(H,_1(z + z)) < N,_;. If
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q(r) > 0 then H,(z) has no exceptional r-subset as its edge, hence, it has at most
Ar independent edges. If ¢(r) = 0, then r is a divisor of m, and H,(z) can not have
2m/r = A\ + 1 independent edges: their union would be an (2m)-subset with zero
sum. We apply Lemma 4.5 to H,.(z) with A = A, and Ay(H,.(2)) < N,_1, to get
e(H (2)) <A - (1+7r-(Ny—1—1))=N,.

We recall that Zzezg e(Hpm(2)) = () = Pm(n), where Py, (n) is a polynomial of
order less than m. On the other hand, e(H,,(z)) < N,, for every z € Z3. Therefore,

(™) = Pp(n) < 29Ny, Since n = Bon(Z3), we get Bom(Z3) < (2'mINy,) ey o(1)

a7snd — Q. a

Remark 4.7. In the proof of Theorem 4.4, one may estimate A\, < 2 (% + T), and
hence, (Cp)™ < m! [y rA. < m! T2, 2(m + r?). This implies C,,, = O(m?) as
m — oo. For small m, Cs = 60'/3 < 3.9149 and C, = 32881/ < 7.5724.

The next result is a generalization of Theorem 3.2.

THEOREM 4.8. If d is a multiple of m then
Bom (24) > 2d/m som(Z3) > 2™ 4 2m — 1.

Proof. Let d =m - k. Since Z& is the additive group of GF (2’“), the elements of
Z7* can be represented by vectors (r1,Z2,...,2,) where z; € GF (2’“). Let A be
a set of 2% vectors (z,23,2°,...,2°™ ') where z € GF (2¥). We are going to prove
that A is a zero-free set of rank 2n for each n = 1,2,...,m. Indeed, suppose that

r1,%2,...,To, € GF (2’“) and Zfﬁl(xl)T = 0 for every odd r < 2n — 1. We need to
2
show that there are i, j such that z; = x;, i # j. As (Z%l(%)r) =2 (@)%,

we get ngl(:vi)’” =0 for all » < 2n — 1. Let M = [M;;] be a square matrix of order
2n over GF (2%), where M;; = (z;)7~*. Notice that (1,1,...,1)- M = (0,0,...,0), so
det(M) = 0 (where 0 and 1 are elements of GF (2¥)). On the other hand, det(M) =

1<i<j<on(Ti — x;) which means that there are 4, j such that z; = z;, i # j. We
have proved by now that Bo, (Z3*) > 2F.

To prove the lower bound for sa,, (Z5*), select an element a € A and consider a
sequence S of length 2% 4-2m — 2 where a appears 2m — 1 times and each other element
from A appears once. We claim that S does not contain a zero-sum subsequence of
length 2m. Indeed, suppose that such a subsequence S’ exists, and let ¢ be the number
of appearances of a in it. Let 2s be the largest even number that does not exceed
t. Let S” be obtained from S by removing 2s copies of a. Then S” is a zero-sum
subsequence of length 2m — 2s which does not contain multiple copies of the same
element. It contradicts with the fact that A is a zero-free set of rank 2(m — s).
Therefore, so,, (Z5F) > 2% + 2m — 2. 0

5. Bounds for codegree Turan densities. Let G be a finite abelian group,
and r be a multiple of its exponent. In section 4, we defined s, (G) as the smallest
integer s such that every sequence of length s over GG contains a zero-sum subsequence
of length r.

THEOREM 5.1. If G is a finite abelian group and r is a multiple of exp(G) then

1

T(ST(G), T) < @

Proof. Let H, be an r-graph with n vertices that are divided into |G| baskets
of almost equal sizes, each basket is associated with an element of GG, and r vertices
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form an edge when the sum of their associated elements is zero. The degrees of all
(r — 1)-subsets of V(H,,) are |G|™*n + O(1) as n — co. By the definition of s,(G),
any subset of vertices of size s,.(G) contains an edge of H,,. O

Theorem 5.1 provides the strongest results when r is small and |G| is large. The
best cases are G = Z3 with r = 3, and G = Z¢ with even values of 7. When G = ZJ
and r = 4, Theorem 5.1 and Corollary 4.2 yield

(5.1) TQ,/%H—;JF;JA) < 274,

as well as
T(k,4) < 2672+ 0 (k%) as k— 0.

By combining (2.1) and (5.1), we obtain (2.3) and (2.4). Theorems 4.1, 4.4 and 5.1,
together with (2.1), yield for r > 4

r(k,7) < O(ka‘ZJ) as k — 00

As s3(Z3) = 5(24), Theorem 5.1 together with (4.1) yield (2.2). Theorem 5.1

together with (4.2) yield 7(k,3) < O (k~G)/ (M) where 5 = (3/8)v/207 + 331/33.
As In(3)/1In(n) > 1.084, it results in

7(k,3) = o(k™"%) as k—oo.
Recently, Lo and Zhao [21] proved that for each r > 3,

Ink Ink

Gt S T(k,r) < Cap,—y 98 kE—oo.

(5.2)
The upper estimate in (5.2) is better than our asymptotic bounds. Nevertheless, in
the case when k — r is small, our bounds (2.2) and (2.3) are still better.

Very recently, Gao’s conjecture (4.3) was proved in [27] for k = 2. As a conse-
quence, we may derive from Theorem 5.1 that

(r+d,r) < 274 for r>2[d/2] .
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REFERENCES

[1] L. BABAI AND V. T. S6s, Sidon sets in groups and induced subgraphs of Cayley graphs, Europ.
J. Comb., 6 (1985), pp. 101-114, https://doi.org/10.1016/S0195-6698(85)80001-9.

(2] J.Birz, C. GRIFFITH, AND X. HE, Ezponential lower bounds on the generalized Erdos-Ginzburg-
Ziv constant, (2017), https://arxiv.org/abs/1712.00861.

[3] A. CzYGRINOW AND B. NAGLE, A note on codegree problems for hypergraphs, Bull. Inst. Com-
bin. Appl., 32 (2001), pp. 63-69.

[4] Y. EpEL, C. ELSHOLTZ, A. GEROLDINGER, S. KUBERTIN, AND L. RACKHAM, Zero-sum problems
in finite abelian groups and affine caps, Quarterly. J. Math., 58 (2007), pp. 159-186,
https://doi.org/10.1093 /qmath /ham003.

[5] J. S. ELLENBERG AND D. GuUswuT, On large subsets of Fy with no three-term arithmetic
progression, Ann. of Math., (2), 185 (2017), pp. 339-343, https://doi.org/10.4007/annals.
2017.185.1.8.


https://doi.org/10.1016/S0195-6698(85)80001-9
https://arxiv.org/abs/1712.00861
https://doi.org/10.1093/qmath/ham003
https://doi.org/10.4007/annals.2017.185.1.8
https://doi.org/10.4007/annals.2017.185.1.8

[6]
7]

(8]

[29]

p.

P.

V.

W.

®“ oz U = =

A.

B.

A
A
W
D.
A
C
A
A

M.

P.

ALEXANDER SIDORENKO

ERDOS, A. GINZBURG, AND A. Z1v, Theorem in the additive number theory, Bull. Research
Council Israel, 10F (1961), pp. 41-43.

ErDOs, C. Ko, AND R. RADO, Intersection theorems for systems of finite sets, Quarterly.
J. Math., 12 (1961), pp. 313-320, https://doi.org/10.1093/qmath/12.1.313.
FALGAS-RAVRY, On the codegree density of complete 3-graphs and related problems, The
Electronic Journal of Combinatorics, 20 (2013), 28, https://doi.org/10.1137/130926997.
GAO AND A. GEROLDINGER, Zero-sum problems in finite abelian groups: a survey, Expo.
Math., 24 (2006), pp. 337-369, https://doi.org/10.1016/j.exmath.2006.07.002.

Gao, D. HaN, J. PENG, AND F. SUN, On zero-sum subsequences of length kexp(G), J.
Comb. Theory Ser. A, 125 (2014), pp. 240-253, https://doi.org/10.1016/j.jcta.2014.03.
006.

. GAo AND R. THANGADURAI, On zero-sum sequences of prescribed length, Aequationes
Math., 72 (2006), pp. 201-212, https://doi.org/10.1007/s00010-006-2841-y.

. D. Gao, On zero-sum subsequences of restricted size, II, Discrete Math., 271 (2003), pp. 51—
59, https://doi.org/10.1016/S0012-365X(03)00038-4.

. HAN AND H. ZHANG, On zero-sum subsequences of prescribed length, Int. J. Number Theory,

14 (2018), pp. 167-191, https://doi.org/10.1142/S1793042118500112.

. HARBORTH, Ein extremalproblem fir gitterpunkte, J. Reine Angew. Math., 262 (1973),

pp. 356-360.

. HE, Zero-sum subsequences of length kq over finite abelian p-groups, Discrete Math., 339

(2016), pp. 399-407, https://doi.org/10.1016/].disc.2015.09.005.

. KEEVASH, Hypergraph Turdn problems, in Surveys in Combinatorics 2011, R. Chapman,

ed., London Mathematical Society Lecture Note Series, Cambridge University Press, 2011,
pp. 83-140, https://doi.org/10.1017/CBO9781139004114.004.
KEMNITZ, On a lattice point problem, Ars Combinatoria, 16b (1983), pp. 151-160.

. KUBERTIN, Zero-sums of length kq in Z¢, Acta Arithmetica, 116 (2005), pp. 145-152, https:
q

doi.org/10.4064/aal16-2-3.
LINDSTROM, Determination of two vectors from the sum, J. Comb. Theory, 6 (1969), pp. 402—
407, https://doi.org/10.1016,/S0021-9800(69)80038-4.

. Lo AND K. MARKSTROM, [-degree Turdn density, SIAM J. Discrete Math., 28 (2014),

pp. 1214-1225, https://doi.org/10.1137/120895974.

. Lo AND Y. ZHAO, Codegree Turdn density of complete r-uniform hypergraphs, (2018),

https://arxiv.org/abs/1801.01393.

. MANTEL, Vraagstuk XX VIII, Wiskundige Opgaven met de Oplossingen, 10 (1907), pp. 60—
61.

MUBAYI AND Y. ZHAO, Co-degree density of hypergraphs, J. Combin. Theory Ser. A, 114
(2007), pp. 1118-1132, https://doi.org/10.1016/j.jcta.2006.11.006.

. POTECHIN, Mazimal caps in AG(6,3), Des. Codes Cryptogr., 46 (2008), pp. 243-259,

https://doi.org/10.1007/s10623-007-9132-z.

. REIHER, On Kemnitz conjecture concerning lattice-points in the plane, Ramanujan J., 13

(2007), pp. 333-337, https://doi.org/10.1007/511139-006-0256-y.

. SIDORENKO, What we know and what we do not know about Turdn numbers, Graphs and

Combinatorics, 11 (1995), pp. 179-199, https://doi.org/10.1007/BF01929486.

. SIDORENKO, On generalized Erdés—Ginzburg—Ziv constants for Zg, (2018), https://arxiv.

org/abs/1808.06555.

SIMONOVITS, How to solve a Turdn type extremal graph problem? (Linear decomposition),
in Contemporary Trends in Discrete Mathematics (Stifl’n Castle, 1997), vol. 49 of DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., 1999, pp. 283-305.

TURAN, Egy grdfelméleti szélsoértékfeladatrol, Mat. Fiz. Lapok, 48 (1941), pp. 436-453.


https://doi.org/10.1093/qmath/12.1.313
https://doi.org/10.1137/130926997
https://doi.org/10.1016/j.exmath.2006.07.002
https://doi.org/10.1016/j.jcta.2014.03.006
https://doi.org/10.1016/j.jcta.2014.03.006
https://doi.org/10.1007/s00010-006-2841-y
https://doi.org/10.1016/S0012-365X(03)00038-4
https://doi.org/10.1142/S1793042118500112
https://doi.org/10.1016/j.disc.2015.09.005
https://doi.org/10.1017/CBO9781139004114.004
https://doi.org/10.4064/aa116-2-3
https://doi.org/10.4064/aa116-2-3
https://doi.org/10.1016/S0021-9800(69)80038-4
https://doi.org/10.1137/120895974
https://arxiv.org/abs/1801.01393
https://doi.org/10.1016/j.jcta.2006.11.006
https://doi.org/10.1007/s10623-007-9132-z
https://doi.org/10.1007/s11139-006-0256-y
https://doi.org/10.1007/BF01929486
https://arxiv.org/abs/1808.06555
https://arxiv.org/abs/1808.06555

	1 Introduction
	2 Codegree Turán density
	3 Sidon problem for Z2d
	4 Zero-sum-free sequences in Z2d
	5 Bounds for codegree Turán densities
	References

