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Abstract

We examine the challenging problem of constructing reduced models
for the long time prediction of systems where there is no timescale separa-
tion between the resolved and unresolved variables. In previous work we
focused on the case where there was only transfer of activity (e.g. energy,
mass) from the resolved to the unresolved variables. Here we investigate
the much more difficult case where there is two-way transfer of activity
between the resolved and unresolved variables. Like in the case of activity
drain out of the resolved variables, even if one starts with an exact for-
malism, like the Mori-Zwanzig (MZ) formalism, the constructed reduced
models can become unstable. We show how to remedy this situation by
using dynamic information from the full system to renormalize the MZ
reduced models. In addition to being stabilized, the renormalized mod-
els can be accurate for very long times. We use the Korteweg-de Vries
equation to illustrate the approach. The coefficients of the renormalized
models exhibit rich structure, including algebraic time dependence and
incomplete similarity.

1 Introduction

There exist many systems whose sizes preclude the complete simulation of their
dynamics given finite computational power and time. Applications such as
physical chemistry, nuclear engineering, plasma physics, and climate modeling
regularly produce prohibitively large systems. Reduced order modeling seeks to
reduce a prohibitively large system to a computationally realizable problem size
(resolution) while maintaining the essential features of the dynamics. Moreover,
even if one could fully resolve a very complex system, reduced order modeling
is an attractive concept because it allows one to follow the most important
features of the dynamics while accounting for the rest implicitly. In both cases,
the process of model reduction itself can be particularly helpful. It allows us
to probe the dynamic interaction of the system constituents and often extract
remarkable structure that is not at all obvious for complex systems.



The principal goal of reduced order modeling is to reduce the system in such
a way that the dynamics for the reduced set of variables agree as closely as
possible with what their dynamics would be in a fully resolved system. More
often than not, the degrees of freedom that are not simulated (unresolved)
affect strongly the degrees of freedom that are kept. The Mori-Zwanzig (MZ)
formalism [19] T3] is an exact formalism for the reduction of the dynamics of
a full system to the dynamics of a reduced set of variables. The impact of the
unresolved variables on the reduced set of variables manifests in several ways,
including a memory term [4,[5]. The memory term depends on the history of the
trajectory of a variable up until the current time. It is fundamental to reduced
order models, and usually represents a significant computational challenge. This
is particularly true when there is no timescale separation between the resolved
and unresolved variables.

Due to the significant cost of computing the memory term, several approxi-
mations and expansions have been suggested [5], [9] 15, 12| [14]. In certain cases
such reduced models have resulted in significant improvement of our predictive
ability. However, some of them can also suffer from instabilities. Ideas from
renormalization theory in physics [8] [7] have been recently used to stabilize re-
duced models [16, [I7]. The form of the problematic terms is retained but their
strength is controlled by “renormalized” coefficients. These coefficients are cho-
sen so that the predictions of the reduced model match observed quantities from
the full system. We note that dealing with time-dependent systems of equations
makes the application of the renormalization concept rather delicate.

Such renormalized reduced models have been constructed so far for systems
where there is only drain of activity (energy) from the resolved to the unre-
solved variables [16, [I7]. Here we extend this construction to the much more
difficult case of systems with two-way transfer of activity between resolved and
unresolved variables. In order to do that, first we derive a new way of approxi-
mating the memory term which we call the “complete memory approximation”.
We provide a way of automating the calculation of the terms of the approxima-
tion through the use of software e.g. Mathematica. Then we show, using the
example of the Korteweg-de Vries (KdV) equation with small dispersion, that
renormalization is necessary even if the amount of activity transferred back and
forth between resolved and unresolved variables is small. We describe a way to
renormalize the reduced models in such a case. Our construction allows us to
reveal the rich structure of the renormalized coeffcients. This includes algebraic
time dependence and incomplete similarity in the magnitude of the dispersion
and the resolution of the reduced model. Finally, the renormalized reduced
models are used successfully for the long time prediction of solutions to the
KdV equation.

The paper is organized as follows. Section 2 gives a brief overview of the
Mori-Zwanzig formalism, the complete memory approximation, and the main
idea behind the renormalized models. In Section 3, we construct reduced order
models for the KdV equation utilizing the complete memory approximation. We
also compute the renormalized coefficients for these reduced models. Section 4
contains numerical results of the long time behavior of solutions of the renor-



malized reduced models. The final section involves a discussion of the results
and suggestions for future work.

2 The Mori-Zwanzig Formalism

Consider a system of (in general nonlinear) autonomous ordinary differential
equations

du(t)

dt

with an initial condition u(0) = u’. For example, if one considers a partial
differential equation, spectral or finite volume methods can be employed to
convert the infinite-dimensional PDE to a system of ODEs. Let u(t) = {u(t)},
k € FUG. We separate u(t) into resolved variables u = {ux(t)}, k € F and
unresolved variables 1 = {ug(¢)}, k € G. Let Ri(u) be the kth entry in the
vector-valued function R(u). We can transform this nonlinear system of ODEs
into a linear system of PDEs by way of the Liouvillian operator, also known
as the generator of the Koopman operator [11]:

= R(u) (1)

0
L= Ry (u®) 5. (2)
DT
It can be shown [4] that if ¢(u’,t) satisfies
d¢(u®,
ALY L6, o(u,0) = fu'), Q

for a given function f(u) and an initial condition u®, then f(u(t)) = ¢(u’,t).
Thus, the nonlinear ODE and linear PDE are equivalent. In particular, if we
consider ¢ the solution of with f(u%) = u?, ¢p(u®t) = uk(t), so the
evolution of any component uj can be expressed in terms of a linear PDE.

Consider the space of functions of u. Let P be an orthogonal projection onto
the subspace of functions depending only on the resolved variables u. For exam-
ple, Pf might be the conditional expectation of f given the resolved variables.
Let Q = I — P. If we write ¢y (u’,t) = e'“u{ and Dyson’s formula:

¢
eth = elQL +/ et L PLesQE ds, (4)
0

we find

8 t

&ewug = e PLUY + ' FQLuY + / =L PLesYEQ LU ds. (5)
0

This is the Mori-Zwanzig identity. It represents an alternative, but exact way of

writing the full dynamics. The first term on the right hand side in (5] is called

the Markovian term, because it depends only on the instantaneous values of



the resolved variables. The second term is called ‘noise’ and the third is called
‘memory’. If we project again

gpew O = Pe'*PLu) + P / =)L PLesRLQLul ds. (6)

Here, we made use of the fact that
Pe'RtQLuf) = P [T +tQL+t*(QL)* +...] QLu) =0

because PQQ = 0. For k € F, @ describes the projected dynamics of the
resolved variables. The system is not closed, however, due to the presence
of the orthogonal dynamics operator e’?% in the memory term. In order to
simulate the dynamics of @ exactly, one needs to evaluate the second term
which requires the dynamics of the unresolved variables. One key fact must be
understood: reducing a large system to one of comparatively fewer variables
necessarily introduces a memory term encoding the interplay between the unre-
solved and resolved variables. Dropping both the noise and memory terms and
simulating only the “average” dynamics (the Markovian term) may not accu-
rately reflect the dynamics of the resolved variables in the full simulation. Any
reduced dynamical model must in some way approximate or compute the mem-
ory term, or argue convincingly why the memory term is negligible. In fact, we
will demonstrate that even in cases where the magnitude of the memory term
is very small, it must be included in order to produce accurate simulations of
the resolved modes.

2.1 The Complete Memory Approximation

Constructing a reduced order model (ROM) from the Mori-Zwanzig formalism
requires approximating the memory integral in terms of only the resolved vari-
ables. In [I6], a class of ROMs is derived under the assumption of the almost
commutativity of the PL and QL operators (see also Appendix|A.1l). Here, we
derive a new class of ROMs that avoids this assumption. If PLQL = QLPL, the
two classes are equivalent. For this reason, we call our new class the “complete
memory approximation.”

We rewrite the memory term using the definitions of e~
then computing the integral termwise:

5L and e’9f and

¢
P/ =L PLesCEQLul ds
0

=Petr <Z ( Z') i ,Cl) PL Z i‘(Qﬁ)J QLu) ds
0 \i=o0 ’ =0
t1+]+1

i j 0
iljl(i +J Wi+ R @)

etl ZZ

=0 j=0



Consider writing the first few terms arranged by powers of ¢:
t
P/ e=EPLeSPEQLuY ds
0
2
=tPe'* [PLQL|ud + 5Pew [PLQLQL — LPLQL]uY +O(t%)  (8)

The O(t) term is the t-model which has been used to great success in [2] 5] [4].
The O(t?) term, presents a new problem. The first term in it can be computed
in a manner similar to the t-model, but the second term is not projected prior
to its evolution. This makes it impossible to compute as part of a reduced-order
model, as it would depend on the specific dynamics of the unresolved quantities.

To close the model in the resolved variables we start with constructing an ad-
ditional reduced order model for the unclosed term. This term is PetLEPLiQﬁug.
First note that

P LPLQLuY = %Pefﬁchcug. (9)

That is, it is the derivative of the t-model term itself. Now consider a reduced
order model for this derivative under the Mori-Zwanzig formalism again:

t
%Pet£P£Q£u2 = Pet*PLPLQLY) + P / e=IEPLSPEQLPLQLYY ds
0
=Pe* PLPLQLuf + Pe'” i i wcim@ﬁ)ﬁ“mmuo
k Sl +1) k
(10)

If we replace Pet*LPLQLuY in with (I0), only the first term of
contributes at the O(t?) level. All the double sum terms contribute at O(t3)
and higher. We find

t
P/ =L PLeSREQLuY ds
0

2
=tPe!* [PLQL|uf — %Pefﬁ [PLPLQL — PLQLQL]u) +O(t*)  (11)

where all the terms are now projected prior to evolution and so it involves only
resolved variables.

We can naturally extend this to higher orders in a straightforward manner.
Any time we are left with a term that is not projected prior to evolution, we can
construct a reduced-order model for that term using the MZ formalism. The re-
sult is a telescoping construction of reduced order models. It can become tedious
to derive higher ordered terms by hand, but we developed a symbolic algorithm
in Mathematica to compute them automatically (the software is available upon
request).



2.2 Renormalized Memory Approximations

The complete memory approximation framework provides a series representa-
tion of the memory integral. Different ROMs can be created by truncating the
series at different terms. In this case, the differential equation for a resolved
mode is:

u _1)i+14e .
D gy + . U Ry, (12)

where R (1) is the Markov term, R} () = Pet“[PLQL]uY is the t-model, and
higher ordered terms are found by grouping similar powers of ¢ in the complete
memory approximation. For the examples we have tried, the resulting ROMs
are unstable.

Similarly structured ROMs have been stabilized through renormalization,
in which we attach additional coefficients to each term in the series, such that
the terms represent an effective memory, given knowledge only of the resolved
modes [16} [I7]. The evolution equation for a reduced variable then becomes

duy, 0/n = i pi (4
“k— R(w) +Zai(t)t Ri(1). (13)

Here, we allow the renormalization coefficients «;(t) to be time dependent.
These coefficients must be chosen in a way that captures information we know
about the memory term. Designating them is done in a problem-specific man-
ner, frequently by comparing the reduced system to a larger system prior to
the point where the larger system becomes unresolved. Concrete examples and
details will be provided in the following sections.

3 Reduced Order Models of the Korteweg-de
Vries Equation with Small Dispersion

The Korteweg-de Vries equation with small dispersion € is
Up + Uty + € Upgy = 0. (14)

We will consider solving this equation on [0, 27] with periodic boundary condi-
tions and initial condition u® = u(x,0).

Renormalized MZ models have already been applied to the Burgers equa-
tion which corresponds to the case e = 0 in [16, 17]. The Burgers equation
develops singularities in the form of shocks in finite time. For € # 0, the dis-
persive term precludes a finite time singularity. Instead, the solution can be
fully resolved with O(1/¢) Fourier modes [I8]. Additionally, the presence of a
dispersive term causes energy to flow from the resolved modes to the unresolved
modes and back, unlike Burgers where there is a constant drain of energy out
of the resolved variables.



We have to make a comment here about terminology. In the dispersive
equation community (which includes KdV), the square magnitude of a Fourier
mode is called the “mass” of the mode while in the fluid dynamics community
(which includes the study of Burgers) it is called the “energy” of the mode.
Since we will consider the KdV equation we will from now on use the word
“mass.”

Because of the periodic boundary conditions, we use Fourier series as a basis
for the solution. That is, let

u(z,t) = Z u (t)etr®

keFUG

where FUG = [-M,...,M —1] and F = [-N,...,N—1] for N < M. We
call F' the resolved modes and G the unresolved modes. Let u = {uy(¢)}reruc.
We partition u = (@1, ) where & = {ug }rer and @ = {ug treg. Our goal is to
construct a reduced order model for each component wuy(t) of G. u is the “full”
model, which will be fully resolved if G exceeds the maximal resolution for the
chosen e.
The equation of motion for the Fourier mode wuy is
93 ik

= Ri(u) = i’k up, — — Z Uplg. (15)

2
p+q=Fk
p,q€FUG

duk
dt

The convolution sum in the second term on the right hand side can be computed
efficiently by transforming data to real space and computing the sum there as
the FFT of the product of the real space solution.

We define £ as in (2)) such that Lu) = Ry (u®). We must define the projection
operator P. Consider a function h(u) that depends on all the Fourier modes. We
define Ph(u®) = Ph(id°,a") = h(d°,0). That is, we set each unresolved variable
to zero. In order to remain consistent with our initial condition, our initial
condition must be u’(z) = (1% 0). We must begin with an initial condition
that does not have any unresolved modes activated. For example, we will use
u®(x) = sin(x), for which only the first Fourier mode is nonzero.

The Markovian term for @ (t) for k € F is given by Pe'* PL4Y):

ik

0/8) — Ptlppsd — ptlp |;:.27.3-0 W <020
Ry (0) = Pe'~PLay, = Pe'~P |ie“k >y, 5 Z Uy,
p+q=k
p,qEFUG
05, 9y3. 1k P
Ry (0Q) = ie“k >ty — 5 Uply.
p+q=k
RIS

The Markovian term has the same form as the full system, but has been re-
stricted to sums over the resolved modes. We can easily compute the convo-
lution sum in this expression using fast Fourier transforms, but only retaining



the resolved modes of the result. In fact, it will be prudent to define a function
representing a convolution of two vector valued functions f and g with their
respective components labeled f; and g;. We define the convolution of f with g
with resolved modes retained as:

Cr(f(u),g(u)) = -5 > fr(w)gy(w). (16)

ptq=k

With this definition, the Markovian term is
RY(0) = i’ k3t + Cp (1, 10). (17)

For future use, we also define the same convolution, but with only unresolved
modes retained. Thus we define:

Culf(w), &) =~ 2 3 fy(wgq(u). (18)
ptHq=k
keG

Finally, it will be useful to define the vector-valued functions C(f(u), g(u))
and C(f(u), g(u)) whose components are the appropriate convolutions (16| and
. It can be shown that the Markovian term conserves energy in the resolved
modes. Thus, it does not allow any transfer of energy out of the resolved modes,
which must occur if we are to accurately reproduce what would happen in the
full system. That must be accomplished through the memory term.

We can compute terms in the complete memory approximation to generate
reduced order models for KdV. We will consider up to fourth order in ¢. This
reduced order model for u; can be written

ddit’“ = RR(0) + Y cilt)t Ry (1), (19)

The Markov term R% was computed above in . We next compute the
t-model term R} (1). First, we compute QL4 (again for k € F):
QLG = L4 — PLuY
ik

_ W ~0~0 ﬁ =00 % ~0~0
= — Z Uyl — 5 Z Uyl — 5 Uply
ptg=k pta=Fk pt+q=k
pEF,qeG pEG,qeF p,q€G
-0
Next we compute PLQ LY,
otk Z 001 0k 0,0
P£Q£ k= _E Pﬁ[ puq] — 5 Z Pﬁ[upuq]
p+q=k p+q=k
pEF,qeCG pEG,qEF
ik 1iq
_ § : ~0 20,40
- _E Up Y rls
p+q=k r4+s=q
PEF,qEG rs€F



We have here repeatedly used the projection operator P to eliminate terms
that become zero. We have also made use of the symmetry of the two sums that
remained. Therefore, the t-model term is

R} () = 2C(a, C(i,0)). (20)

Because the convolutions involve a function with only resolved modes convolved
with a function with only unresolved modes, the result is dealiased by construc-
tion if we augment our Fourier vectors with one additional mode.

We can compute additional terms entirely in the shorthand established above
by recognizing the following rules:

1. Because a convolution sum is a product of terms and L is a differential
operator, it operates according to the product rule. That is, for every
argument in a convolution, we get a term that is a duplicate of that
convolution, but with £ applied to that argument. For example:

LOy (0, C(a°, a°)) =Cy(L£a

2. Each £4° term is expanded as
LﬁO:i€2ﬁk3+C(fl )+2c( ~0 ~O)+C( 0 ~~0)7

where (4*?); = j%49. £ is expanded in an identical manner, but with

each term being the unresolved part, rather than the resolved part.
3. When £ is applied to terms involving powers of k, the following occurs:
L(ie*a*), = Lie® k30l
= (ie2k%)%09 + (ie2k%)[C (0, 0°) 4 20 (uO, 0°) + Cy (%, 0°)]
_ ( a0 2 [ER3 (a0, 00) + 2673 (@0, &%) + CFF (a0, @ ~0)})k

where (40); = j%a9, (C*(a,b)); = j3C;(a,b). That is, the further
expansion of powers of k proceed in an easily understandable manner.

The projection operator P is also simple to implement. When applied to a
convolution, it applies to each term in the convolution. P sets equal to zero
any occurrence of ’. @ can be represented as I — P. Finally, Pet* merely
advances the initial conditions u® to the current time u. We implemented these
definitions into a Mathematica notebook, which can then generate ROMs of any
order for KdV. In fact, through redefinitions of P and L, this software can be
used to derive ROMs of any order for a generic PDE with a generic projector
(the software is available upon request).



Using this, we computed expressions for R% R% and Ri, though they are too
large to express here. They can be found in the Appendix. These terms involve
convolutions of unresolved terms with other unresolved terms, necessitating that
we further augment our vectors using the 3/2-rule to dealias the results.

The functional form of these higher-order terms in the complete memory
approximation are quite complicated, and it is unlikely that a mathematical
modeler would propose them. However, because they are derived from the
dynamics themselves through the Mori-Zwanzig formalism, we find that they
inherit significant structure from the full KdV equation.

3.1 Renormalization Coeflicients

The non-renormalized ROMs as produced directly from the complete memory
approximation are numerically unstable, so we focus on the renormalized
ROMs (|13]). We must develop a procedure for computing the renormalization
coefficients «;. An important quantity in a ROM for KdV is the mass in a
Fourier mode:

M () = u(t)[2. (21)

For select values of €, we computed the exact solution, from which we compute
the rate of change of the mass:

AMk(t) = uk(t)Rk(u) + uk(t)Rk(u) (22)

Contrary to Burgers, the mass in a subset of modes is not monotonically de-
creasing. Instead, there is a “mass rebound” as the dispersive term opposes
the formation of a shock, and mass returns from high-frequency modes to low-
frequency modes.

We also computed Rj(u) for ROMs constructed for those subsets. From
this, we can measure the impact each R} term has upon the rate of change of
the mass in individual modes. This is given by:

AM;(t) = 1y, () Ry, (@) + @i () R}, (9). (23)

Any net rate of change of mass in the resolved modes must be accounted for
by these memory terms alone, because the Markovian term conserves mass in
the resolved modes.

We found that the AM? and AM;}! terms closely mirror the exact net mass
derivative AMj, as depicted in Figure[]

From this, we draw several conclusions. First, this close agreement suggests
that the complete memory approximation is in some sense a “correct” way of
expanding the memory integral. Second, because the curves appear to differ
by only a constant factor, it suggests a functional form for the renormalization
coefficients of

(67} (t) = Oéitii, (24)

such that the time dependence of the renormalization coefficient cancels the
time dependence in the memory terms. Note that the coefficients «;(t) exhibit

10
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Figure 1: (Top) The exact net mass derivative of the first N = 20 positive modes
of the solution to the KdV equation with € = 0.1 up to time 10. (Middle) The
rate of change of the mass in the first N = 20 positive modes for the R? term
in an ROM of size N = 20 provided the exact solution @ as input. (Bottom)
The rate of change of the mass in the first N = 20 positive modes for the R}
term in an ROM of size N = 20 provided the exact solution t as input. Note
that the ROM curves seem to differ from the exact solution by only a constant
scaling factor.
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algebraic temporal dependence which characterizes the absence of timescale sep-
aration between the resolved and unresolved variables. Also, that the reduced-
order models we employ do not require an integral memory convolution, yet
they incorporate long memory effects.

For a fixed € and simulation length T', we used a least squares fit to identify
optimal choices for the constants «;. Suppose we have the exact solution at

times {tg,...,tm}. The cost function for a given set of resolved modes F is:
m 4 2
Crla)=)_>Y" lAMk(tj) -3 alAM,i(tj)]
j=0keF i=1
" 2
YT (mk Z MM ﬂ . (25)
j=0 LkeF

That is, we sought to minimize the error in representing the derivative of the
mass of each individual mode, as well as the net mass flow in and out of the
resolved modes at all times.

We conducted least squares fits for many sets of resolved modes and choices
of dispersion e. In each case, we used data for t; € [t,, ] in increments of 0.001.
In practice, we found the results were insensitive to the details of the data used.
As long as the width of the interval, ¢, — t,, was greater than 3 time units, the
coefficients were not substantially different. For our calculations here, we used

= 0 and ¢, = 10. We found that the optimal coefficients displayed power law
behavior both in € and in the size of the reduced order model N. We used an
additional least squares fit to identify the scaling coefficients for each variable.

The scaling law behavior of the coefficients suggests the presence of incom-
plete similarity for appropriate non-dimensional parameters which we now de-
scribe [I]. We begin with the non-dimensionalization of the KAV equation (14)).
If L and U are characteristic length and velocity scales then we can define the
non-dimensional variables 2’ = z/L, v’ = u/U, and t' = t¥ = ¢/T. We chose
the length of the domain for tgle characteristic length L while for the character-
istic velocity we used U = [710 u‘Q)L(I)dIPm. After dropping the primes, Eq.
becomes

U + Uy + @uzmm =0, (26)

where Re = @ is a “dispersive” Reynolds number. From Eq. we know
that the renormalized coefficients ozi(t) are non-dimensional. This is because the
terms ¢' R} that they multiply in ) have the correct dimensions by construc-
tion, since they are produced through the MZ formalism and not added by hand.
Also, from Eq. (24) we know that the prefactors a; have dimension T = (ﬁ)l.
If in addition to the Reynolds number Re we define the non-dimensional pa-
rameters II; = (g—)t and A = % we can represent the renormalized coefficients
as

Hi = aiReb"'Ac"'. (27)
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Figure 2: Log-log plots of the absolute values of the nondimensionalized renor-
malization coefficients II;. Computed by minimizing using data from time
[0,10] for a variety of values of dispersive Reynolds numbers Re and resolu-
tions A with an initial condition ug(z) = sin(z). (Top) log(A) plotted against
log(|T2]) (blue) and log(|Tl4|) (black) for Reynolds numbers corresponding to
€ equal to 0.1 (dots), 0.09 (circles), 0.08 (stars), and 0.07 (crosses). (Bottom)
log(Re) plotted against log(|II2]) (blue) and log(|I14]) (black) for A correspond-
ing to N equal to 32 (dots), 38 (circles), 44 (stars), 50 (crosses), and 56 (pluses).



Figure [2| presents the results of the least squares fit in appropriate non-
dimensional variables. For ¢ = 1 and i = 3, we found a; = 0, so the power law
exponents b; and ¢; were irrelevant. It is notable that the odd numbered terms
in the memory expansion seem to be unnecessary for capturing the dynamics

(we will discuss this more in Section [f]). For i = 2, we found a; = —1.2473,
by = 3.6910, and ¢ = —5.7356. For i = 4, we found ay = —0.3675, by = 7.3881,
and ¢4 = —11.4719 (we will refer to reduced order models of this form with these

renormalization coefficients the fourth order complete renormalized model). We
note that by and c4 are roughly double by and cy respectively. It seems likely
that these scaling laws belie an even deeper structure in the memory inherited
by the ROMs from the original KdV equation than we have uncovered here.
This is a subject of future investigation by the authors.

The non-dimensional renormalization constants II; in exhibit incomplete
similarity in both parameters Re and A. If we keep the resolution of the reduced
model fixed (A fixed), then II; — oo as Re — oo. This is a hallmark of a
singular perturbation problem which is to be expected since for Re = oo we
recover the Burgers equation which develops shocks in finite time, while KdV
does not. Similarly, if we keep Re fixed, and let the resolution of the reduced
model A — oo then II; — 0 which is also expected since in this limit there is no
need for a memory term.

We used a similar approach to find renormalization coefficients 3; for a ROM
of the form

o 2
B B+ .0 R a).
i=1

Similarly, the time dependence of the coefficients was 3;(t) = B;t~%. Let II. be
the non-dimensionalized form of 5;. It also obeys a scaling law formula:

I, = d;Re® AJ", (28)

where d; = 0 (so the t-model again is not included), and do = —0.7615,
e = 3.7681, and fy = —5.8081. Observe that the scaling coefficients for A;
and Re are very similar to the results for the second order term in the fourth
order model, but that the prefactor is different (we will call reduced order mod-
els with this form and renormalization coefficients the second order complete
renormalized model). Once again, the fact that the ¢-model is unimportant
for capturing the memory effects of the KdV equation is noteworthy, as is the
scaling structure inherent in the ¢2-model coefficient.

Finally, we should note that the renormalization constant for the R? term
is negative in both cases, though the non-renormalized R% term closely mir-
rors the rate of change of the energy in the resolved modes. The sign change
causes this agreement to be lost, though the change of energy in each individual
mode is well-captured. This curious phenomenon is also the subject of further
investigation.
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4 Results

Because a fully resolved solution is possible for sufficiently large values of ¢,
we are able to test these new renormalized reduced order models for both sta-
bility and accuracy by comparing them against the exact solution. A natural
comparison for our ROMs is the “average dynamics” given by the Markov term
alone, disregarding memory terms. All simulations are conducted using a time
step of At = 0.001 using an implicit-explicit integration scheme that has proven
effective for the KdV equation with periodic boundary conditions [0, [].

There are several metrics for identifying the accuracy of a reduced order
model of this kind. First, we have seen from the exact solution that for a given
subset of modes F' in the exact solution, mass should flow both in and out
as time passes. This corresponds to mass passing from the resolved modes to
the unresolved modes and back. A ROM for the same subset of modes should
accurately capture this net in and out flow of mass. The Markov term alone
conserves mass in the resolved modes, and so is unable capture this effect at all.

An example of this dynamic mass loss and gain is depicted in Figure[3] Ob-
serve that the second order ROM drains mass when the exact system should
be gaining it, and vice versa. This is a consequence of the fact that the renor-
malization constant is negative, while the R} term itself appears to be a scaled
version of the derivative of the total mass in the resolved modes (as seen in
Figure [1)). The fourth order ROM, on the other hand, drains too much mass
in the initial three units of time, but then gains and drains mass consistently
with the exact rate. The addition of the fourth order term seems to improve
the model’s ability to capture mass transfer in and out of the resolved modes.
Note, finally, how little the mass in the resolved modes actually changes. In the
N = 20 case, less than 0.08% ever leaves the resolved modes. For this reason,
intuition would suggest that the memory is not important, and that the Markov
model will be sufficient. This proves to not be the case. Also, it is remarkable
that this little amount of mass flow in and out of the resolved variables carries
with it the rich structure for the renormalized coefficients presented in Section
B.1

The need for the inclusion of memory can be seen by inspecting our solutions
in real space. We compute the Lo norm of the difference between the exact real
space solution and that predicted by the ROM. We divide this error by the Lo
norm of the exact solution, producing a global relative error between the exact
and approximated solution trajectories. Here, it is reasonable to also compute
the error of the Markov approximation for comparison. Figure [4 depicts the
global relative error at time ¢ = 100 for ROMs of several different resolutions
with € = 0.1 (the error results for other values of € are qualitatively similar).
Recall that the formulae for the renormalization coefficients were fit only with
data between t € [0, 10], so it appears that these coefficients are valid for a long
time.

The accuracy of complete ROMs is not achieved until N is sufficiently large.
For € = 0.1 this is around N = 20. For € = 0.09, it is approximately N = 24.
Qualitatively, our results suggest that a stable and accurate ROM can only be
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Figure 3: The mass in the first N = 20 positive fourier modes for an initial
condition of sin(x) according to several models. The blue curve depicts the
exact solution, found by running a simulation with N = 256 positive modes.
The red curve depicts the Markov model with N = 20 modes. The green curve
depicts the renormalized second order complete ROM, while the black curve
depicts the renormalized fourth order complete memory ROM. The cyan curve
is a non-renormalized version of the 4th order ROM, which is unstable.

constructed for sets of resolved modes whose “full models” comprise at least half
of the modes needed for a fully resolved simulation. Because KdV is a dispersive
problem, the total mass is conserved. Therefore, a reduced order model can only
hope to capture the dynamic flow of a fixed amount of mass if the full model
upon which it is based contains a large proportion of the modes through which
the mass must flow.

As ¢ — 0, the initial draining of mass passes to higher frequencies before
beginning to rebound. When ¢ = 0, the problem becomes Burgers’ equation,
which has a finite time singularity, and the mass (in the Burgers literature called
energy) cascades to higher frequencies indefinitely. For this case, a renormalized
model in which the coefficients «;(t) are actually constant performs very well
[16]. As ¢ — 0, the renormalization coefficients as computed by our formulae
and grow to infinity. This suggests that, as ¢ becomes small, the
assumptions made in deriving our complete renormalized ROMs fail to hold. As
mentioned before, this is an indication of the singular nature of the perturbation
problem as € — 0.

Finally, we must comment on the computational cost of these reduced or-
der models. As observed, stable and accurate ROMs can only be constructed
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Figure 4: The relative global error at time ¢ = 100 for several models plotted
on a logarithmic axis with e = 0.1 and initial condition sin(z). The error is
computed as the ratio between the Lo norm of the real space error and the Lo
norm of the exact real space solution. All three ROMs improve as the number of
resolved modes increases, but the complete memory ROMs are far more accurate
than the Markov model alone.

for resolutions that are approximately four times smaller than a fully resolved
solution. The FFTs employed in an ROM are large enough to contain the “full
model,” which is twice as large as the ROM itself. Thus, in the best case sce-
nario, we will be using FFT's that are half as large as those needed for the full
solution. The second order ROM uses six FFTs and IFFTs per timestep, while
the fourth order ROM requires 22. A fully resolved simulation, on the other
hand only uses one FFT and IFFT per timestep, though it is twice as large.
Consequently, the ROMs produced in this paper are necessarily less efficient
than simply solving the problem outright. Their value is not found in produc-
ing efficient computational schemes, but in shedding light on the role of memory
in dispersive problems.

5 Discussion and future work
We have developed a new method of constructing reduced order models from the
Mori-Zwanzig formalism. This method involves expanding the memory term in

a Taylor series in time, and repeatedly applying the Mori-Zwanzig formalism to
unprojected terms. Different ROMs can be constructed by truncating the Taylor
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series at different terms. The telescoping terms in the expansion are challenging
to derive, but the process can be automated in a symbolic software package.
The functional forms of these terms are complex, and would be unlikely to be
discovered by classical mathematical modeling techniques. Instead, these terms
are derived from the dynamics themselves.

The resulting ROMs are numerically unstable, unless each term is tamed
with a specific renormalization coefficients. We find that these renormalization
coefficients decay algebraically in time, canceling the time dependence originally
found in the Taylor expansions. This differs from previous efforts to renormalize
ROMs derived from the Mori-Zwanzig formalism, which became stable with
renormalization coefficients that were constant in time.

The renormalization constants that most effectively capture the correct dy-
namics of the resolved modes also suggest significant structure in the memory.
The odd terms in the memory expansion seem to be unimportant for capturing
the dynamics of the memory. This is at odds with previous results for dissipa-
tive problems, such as Burgers’ equation, for which the odd terms seemed to be
more important [I7]. It is possible that the even terms in the memory expansion
account for the memory of dispersive terms, while the odd terms account for
the memory of dissipative terms. To clarify the situation, the authors plan to
apply it to dissipative problems (such as Burgers’ equation) and problems with
dissipation and dispersion (such as the KdV-Burgers equation). For the case of
KdV-Burgers equation, averaging and renormalization for traveling waves was
considered in [3].

The structure of the memory is also evident in the fact that the coefficients
of the even terms in the memory expansion obey strict scaling laws in € and IV,
with the power law dependence for the Ré term being approximately twice as
large as that of the Rz term. Due to this structure, we can construct ROMs
for any € and N without needing to know the exact solution for that specific e.
The highly structured nature of the renormalization coeflicients suggest that the
complete memory approximation is, in some manner, a natural way of describing
the dynamics of a subset of modes in this problem.

We found qualitatively that accurate ROMs were only possible when the
“full model” on which the reduced model is based is nearly fully resolved itself.
This was not the case for dissipative problems, and we hypothesize that it
is the dispersive nature of the problem that necessitates large “full models.”
Once accurate ROMs can be constructed, however, they prove to be much more
effective than the Markov term alone. This is noteworthy, because the amount of
mass leaving the resolved modes is exceptionally small. This indicates that, even
when the memory term is extremely small, ignoring it will lead to inaccurate
results, especially during long time simulations. This is a hallmark of a singular
perturbation problem (in our case the perturbation is the small magnitude of
the dispersion coefficient €). Also, this agrees with the discovered incomplete
similarity exhibited by the renormalized coefficients [IJ.

The results of the complete memory approximation and its renormalization
are promising and important. First, they support the need for memory terms in
reduced models. Second, the suggested distinction of different order MZ memory
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terms as relevant for different physical mechanisms points towards a systematic
classification of the memory. This realization supports the advantage of model
reduction starting from an exact formalism like MZ over adding terms by hand.
Finally, the success of renormalization in producing stable and accurate models
for long times indicates an elegant and effective way of incorporating dynamic
information about the scales we aim to resolve.
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A Complete Memory Approximation

Once the evolution operators in the memory integral of the Mori-Zwanzig for-
malism @ are expanded and integrated termwise, we are left with @, which
has been reproduced here:

(71)iti+j+1

t 0o 0o
P (tfs)[:PL sQL L 0 ds=P tL
/Oe e~ QLuy ds e Zzilj!(i—l—j—i—l)

i=0 j=0

LIPLQL)Y T uf

The O(t) term is the t-model tPe'*[PLQL]uf, and the O(t?) term is

tQ
5136“[135@/:@5 — LPLQL)UY.

In order to produce a term that is projected prior to evolution, we expand the
second term in the parentheses according to its own Mori-Zwanzig formalism,
with its memory term also computed as a termwise integrated double sum. This
yields

0

P LPLQLUY = aPetﬁp,ccg,cug

:Pet['P,CP,CQ,CU,O—‘rP@t[' = iw
k S il g+ 1)

LIPLQLY T PLQLYY

(29)
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Recall that this term is being multiplied by t2/2, so only the first term in
remains O(t?). Thus, the O(t?) of the complete memory approximation is

2
_ %Petﬁ [PLPLQL — PLQLQLIY. (30)

In order to account for O(t?) we must also include the O(t) term of , since
it becomes O(t3) when multiplied by ¢2/2. In addition, some of the O(#3) from
the expansion of the sum have a leading £, and must be expanded in its
own memory expansion in the same manner as above. Once this is done, the
O(#3) term is:
t3
a

Finally, we can repeat these same steps to find the O(%):

PLPLPLQL — 2PLPLQLQL — 2PLQLPLQL + PLQLQLQLIY. (31)

- % PLQLQLQLQL — 3PLQLQLPLQL — 5PLQLPLQLQL

— 3PLPLQLQLQL + 3PLPLPLQLQL + 5PLPLQLPLQL

+3PLQLPLPLQL — PLPLPLPLQL|uY,. (32)

A.1 The BCH Approximation

In previous work [16], a different method was used to approximate the memory
integral. We rewrite the memory term by reversing our use of Dyson’s formula

t
P / TIEPLAVEQLUR ds =PeCQLuf — Pe'FQLu;
0
=Pt (QLu) — e L' RLQLuY)

where C(t) = —tPL + [tPL,tQL] + ... is the BCH series, which expands in
powers of the commutator [tPL,tQL]. In the event that [tPL,tQL] is small,
which corresponds to cases in which the orthogonal and the projected dynamics
approximately commute, C'(¢) can be approximated by —tPL. This may be the
case for particular initial conditions. The resulting approximation is:

t oo j
P/ e=IEPLSCEQ LU ds ~ Z(—l)jJrl %Pew (PLY QLuY. (33)
0 = :

We designate this method of approximating the memory term the “BCH
approximation.” If we allow PL and QL to commute, we can arrange the terms
derived from the complete memory approximation , 7 and into the
form expressed in . Thus, the BCH approximation represents a special case
of the complete memory approximation.
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B Complete Memory Approximation of KdV

In order to simulate ROMs for KdV constructed through the complete memory
approximation, we must use the definition of £ and P to construct the t-model
term, and the higher order terms (30)), (31, and (32). We derived the form of
the t-model term and a set of rules for applying £ and P to the convolution
sums that arise in these expansions.

Section [3| describes these details. The process becomes quite exhausting,
because each nested convolution expands into multiple terms with additional
applications of £. Each term in the complete memory approximation also con-
tains more terms than those that preceded it. The process of deriving and
simplifying these terms has been automated in a Mathematica notebook.

We will demonstrate the derivation of the t>-model term for a resolved mode
i), here as an example. We have already computed Qﬁﬁg, but future applica-
tions of QL will be computed by QL = £ — PL. Thus, the t>-model term
is:

Pe“[PLPLQL — PLQLQL)WY = Pe'*[2PLPLQL — PLLQL)GY.

The first term can be computed by applying PL to PLQL4Y, which we have
already found:

PLPLQLE =PL [2C‘k(ﬁ0, C@’, ﬁo))}
=P {2@(@3&’“3 + C@°, 4% 4 2C(0°, a°) + €, u’), C(u’, a?))
+4C, (%, C(ie*a* + c(a,0°) + 2C(0°, &%) + C(a°, @), 0°))
=20 (ie*0" 4+ c(1®, a%), C* (0°, 0°)) + 4C (0, C(ieu*® + C(u, 0%), a°)).
The second term in the O(t?) expansion is:
PLLQLAY =PLLR2C, (R, 0%) + Cp(w°, 0")]

=PL |20 (ie*a* + C(a°,4%) 4 2C(a°, a°) + C(w°, u°), u°)

+2C3,(0%,ie%a™ + C(@°, 4% + 2C (a0, &%) + C(@°, a%)

+ 203 (@°ie?ah + C(a°, 4% + 2C (@0, @) + C(@a°,a%)|.

We will apply the projection P in the same step that we apply £ to save space
writing out terms that will be eliminated. The result is:

(a”,
+2C(0°, ie?u*® + C(1°,0°) + C(u°, 1))



Combining these two results gives us the O(t?) term of the complete memory
approximation:

R2 () =Pe'*[2PLPLQL — PLLQL]GY
=— ZCk( (@, 1), C(a, i)
— 20 (4, zeQCk3(ﬁ 1) + 2C(a, C(11, 0))
—2C(4, 0™ + C(a, ). (34)
One can clearly see how frustrating it would be to compute the O(t3) and O(t*)

terms by hand. Instead, we use an automated procedure written in Mathematica
to derive these expressions. We have reproduced them here:

R} (1) =2C, (0, —*CFS (1, 1) — 2ie2CH3 (11, 2ie0* + 2C (0, 1) — C(a, 1))
+2C (0, —'a*0 + i CF3 (0, 1) + 2C (1, i u*? u
+ie2CF3 (0, 1) 4 2C(11, —2(ic*0*® 4+ C(1, 1)) + C(a, 1))
C(ie*a*® + C(1, 1), ie2a"® + C(d,0) — C(a, 1))
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R}(0) =2C, (1, ie5CH (11, 01) — 2¢*C*0 (1, 3ie20" 4 3C (0, 1) — C(a, ﬁ_))
— 2i2CP3 (@, =3¢k + 3ie2CF (1, ) 4 2C (1, 3ie>a*® + 3C (1, @) — 5C(11, 1))
+ie2CF3 (a, 0) — 2C(1, 3ie?0”® 4 3C (1, ) — C(a, @)
—2C (1, ie0* + 640’“"(11 ﬁ) — 2i2CP (@, 1" 4 C(a, w) — 3C(
+2C (0, e'aF ECF(a, 1) — 2C(1, ie?0™ + C(a
— 32620k3(fl ) + 2C (1, 5ie2a*® + 5C(1,
—2C(ie*t*® + C(u, 1), 720" + C(i, 1) — 2C(a, 1))
—6C(C(ir, 1), C(a, 1))
— 1CH (11, 1) + 2i2CF3 (1w, —3ie?u*® — 3C (1, 1) + C(a, 1))
+2C (11, —3e*0*® + 3ie2CF3 (i, ) + 2C (1, 3ieu*® + 3C(a, 1) — 5C(4, 1))
+ ie2CP3 (1, 01) 4 2C (1, —3ie>0* — 3C (0, 1) + C(a, 1))
+2C (120" + C(, 1), 3ie0* + 3C(a, 1) — 2C(1, 1))

:@
[

Q)
2
e

+ 2ie2CF3 (ie?

11
—2C 32" + C(a, ), e4ﬁk6 — 3ie2CF3 (w1, 0)
(

— 2i®CM(C(a, 1), C(a, )
— 8C(C (1, 1), —e*CHS (1, 1) + 2i€2C*3 (1, —2ie® " — 2C (1, 0) +
+2C (1, —*a*0 + ie2CF3 (0, 1) + 2C (0, ic? 0" + C(a, 1
(

+2
+2C(C(a, 1), C(4, 1))
+ 48C,(C (1, ie*0* 4 C(a, 1)), ie>CH3 (1, 0) + 2C(a, C(11, 0)))
— 6C(i€2CF3 (1, 1) + 2C (1, ie?u*® + C(i,0) + C(1,0)),
ie2CF3 (@, 1) + 2C(1, ie?a*® + C(i,0) + C(1,0)))
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