
Blind Deconvolution by a Steepest Descent Algorithm on a

Quotient Manifold

Wen Huang ∗ Paul Hand †

April 17, 2018

Abstract

In this paper, we propose a Riemannian steepest descent method for solving a blind de-
convolution problem. We prove that the proposed algorithm with an appropriate initialization
will recover the exact solution with high probability when the number of measurements is,
up to log-factors, the information-theoretical minimum scaling. The quotient structure in our
formulation yields a simpler penalty term in the cost function compared to [LLSW16], which
eases the convergence analysis and yields a natural implementation. Empirically, the proposed
algorithm has better performance than the Wirtinger gradient descent algorithm and an alter-
nating minimization algorithm in the sense that i) it needs fewer operations, such as DFTs and
matrix-vector multiplications, to reach a similar accuracy, and ii) it has a higher probability of
successful recovery in synthetic tests. An image deblurring problem is also used to demonstrate
the efficiency and effectiveness of the proposed algorithm.

1 Introduction

We consider the problem of separating two unknown signals w ∈ CL and x ∈ CL given their
circular convolution y ∈ CL, which is an instance of blind deconvolution. Blind deconvolution is
of interest due to many applications, e.g., astronomy, medical imaging, optics and communications
engineering [JC93, WP98, CE07, LWDF11, WBSJ15]. The blind deconvolution problem is ill-posed
without any additional assumptions. One commonly-used assumption is to suppose that the two
signals w and x belong to known subspaces [ARR14, LLJB15, LS15]. Specifically, the signal w and
x can be written as

w = Bh, h ∈ CK and x = Cm,m ∈ CN ,

for some matrices B ∈ CL×K and C ∈ CL×N , where overbar denotes the complex conjugate.
Therefore, the blind deconvolution model with noise e ∈ CL is to find h amd m such that

y = w ∗ x + e = Bh ∗Cm+ e, (1.1)

given y ∈ CL,B ∈ CL×K and C ∈ CL×N , where ∗ denotes circular convolution, i.e., yi =∑L
j=1 wjxi+1−j and the subscript i+ 1− j of x is understood to be modulo {1, 2, . . . , L}. For theo-

retical and numerical purposes, we express (1.1) in the Fourier domain, see e.g., [ARR14, LLSW16].

∗huwst08@gmail.com, Department of Computational and Applied Mathematics, Rice University, Houston, TX
77005-1827, USA
†Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005-1827, USA

1

ar
X

iv
:1

71
0.

03
30

9v
2

 [
cs

.I
T

]
 1

4
A

pr
 2

01
8

Let F denote the L×L unitary Discrete Fourier Transform (DFT) matrix. Taking Fourier transform
for both sides of (1.1) yields

Fy√
L

= (FBh)� (FCm) +
Fe√
L
, (1.2)

where � denotes the Hadamard product. Throughout this paper, we denote Fy/
√
L, FB, FC̄,

and Fe/
√
L by y, B, C̄, and e respectively. Therefore, (1.2) becomes y = Bh � Cm + e and the

blind deconvolution problem is equivalent to

find h ∈ CK ,m ∈ CN such that y = Bh� Cm+ e. (1.3)

In recent years, two important frameworks [ARR14, LLSW16] have been proposed to solve (1.3)
and to admit a rigorous recovery guarantee. In [ARR14], a convex optimization framework is
proposed for the blind deconvolution problem. Specifically, the problem (1.3) is reformulated into a
problem of recovering a rank-one matrix from an underdetermined system of linear equations by the
well-known lifting trick1. Replacing the rank-one constraint with a nuclear norm penalty converts
the original problem into a semidefinite program. Theoretical results given in the paper show that
this program enjoys a recovery guarantee under reasonable condition, such as appropriate sample
complexity. The primary drawback is that the computational cost of the semidefinite program is
high for large-scale problems since the lifting trick squares the dimension of the problem. The
paper indeed proposes an algorithm which is based on the matrix-factorization in [BM03]; however,
the convergence guarantee to the solution is not provided therein. The paper [LLSW16] overcomes
the difficulty by resorting to a nonconvex approach directly. The idea closely follows from [CLS16],
which shows that with high probability i) a point sufficiently close to the solution can be computed,
and ii) the proposed algorithm converges to the desired solution with the computed point as the
initial iterate. The cost function in [LLSW16] is

F (h,m) = ‖y −Bh� Cm‖22 = ‖y − diag(Bhm∗C∗)‖22. (1.4)

The minimizer of F (h,m) is not unique since a solution (h],m]) implies that (h]p
−1,m]p), for any

p ∈ C, p 6= 0 is also a solution. To ensure numerical stability, the authors in [LLSW16] add a
penalty function to (1.4) so that ‖h]‖2 and ‖m]‖2 are roughly equal in magnitude.2 Note that
hm∗, h 6= 0,m 6= 0 is a rank-one matrix. The cost function (1.4) is well-defined as a function:

f :CK×N1 → R
X 7→ ‖y − diag(BXC∗)‖22,

where CK×N1 = {X ∈ CK×N | rank(X) = 1} denotes the set of rank-one matrices. In practice,
working CK×N is usually inefficient especially when K and N are large. Therefore, we resort to the
quotient manifold CK∗ ×CN∗ /C∗ since this manifold is a diffeomorphism to CK×N1 , where Cn∗ denotes
a non-zero n-dimensional vector (the subscript n is dropped when n = 1), and the definition of
CK∗ × CN∗ /C∗ is given in Sections 2 and 4.1. A representation of a point in CK∗ × CN∗ /C∗ is in the
space CK∗ × CN∗ , which requires much smaller storage than CK×N . By slightly abusing notation,

1In [ARR14], the vectors h and m are in real domain, i.e., h ∈ RK and m ∈ RN .
2The penalty term in [LLSW16] also includes a term for coherence between h and the rows of B. This will be

discussed later.

2

the cost function defined on the quotient manifold is

f :CK∗ × CN∗ /C∗ → R
π(h,m) 7→ ‖y − diag(Bhm∗C∗)‖22, (1.5)

where π(h,m) denotes the point in the quotient manifold corresponding to (h,m). We refer to
Sections 2 and 4.1 for the more detailed discussions about the quotient manifold. One can apply
manifold optimization techniques to find the minimizer of (1.5) directly.

In this paper, we propose a Riemannian steepest descent method for solving the blind decon-
volution problem (1.1). We prove that the proposed algorithm with an appropriate initialization
will recover the exact solution with high probability when the number of measurements is, up to
log-factors, the information-theoretical minimum scaling. The quotient structure in our formula-
tion yields a simpler penalty term in the cost function compared to [LLSW16], which eases the
convergence analysis and yields a natural implementation. In addition, unlike the cost function
in [LLSW16], the objective f is strongly convex in a neighborhood of the solution, which yields
efficiency in optimization algorithms since the convergence rate of a steepest descent method is
related to the condition number of the Hessian at the minimizer [NW06, AMS08]. Empirically,
the proposed algorithm has better performance than the Wirtinger gradient descent algorithm
in [LLSW16] and an alternating minimization algorithm, see e.g., [YK94] in the sense that i) it
needs fewer operations, such as DFTs and matrix-vector multiplications, to reach a similar accuracy,
and ii) it has a higher probability of successful recovery.

Applying Riemannian optimization methods for solving signal processing problems, of course,
is not new. To name a few, a Riemannian trust-region Newton method is used in [BSA13] to
solve the synchronization of rotations problem. Various Riemannian methods are used to solve the
matrix completion problem [BA11, Van13, Mis14, HAGH16, WCCL16]. A limited memory version
of Riemannian BFGS method with adaptive rank strategy is used to solve the phase retrieval prob-
lem [HGZ17]. It has been shown that Riemannian methods perform very well and are competitive,
and sometimes the best, methods in many applications.

In this paper, we will use the following notation. CK×Nr = {X ∈ CK×N | rank(X) = r} denotes
the set of fixed rank matrices. Cn×p∗ = {X ∈ Cn×p | rank(X) = p} denotes the noncompact Stiefel
manifold. In particular, Cn∗ denotes the set of non-zero vectors. GL(r) = {X ∈ Cr×r | rank(X) = r}
denotes the generalized linear group. Superscript ∗ denotes the conjugate transpose operator.
Overbar ·̄ denotes the complex conjugate. B is denoted by [b1b2 . . . bL]∗ and [b1b2 . . . bK]; C denotes
[c1c2 . . . cL]∗ and [c1c2 . . . cN]; A denote the linear operator A(Z) = {b∗lZcl}Ll=1 = diag(BZC∗). The

adjoint operator A∗ therefore is A∗(z) =
∑L

l=1 zlblc
∗
l = B∗ diag(z)C. Given a function f :M→ R

whereM⊂ Cn is a Riemannian manifold, ∇f denotes the Euclidean gradient of f , i.e., with respect
to the metric 〈η, ξ〉2 = Re(trace(η∗ξ)) and grad f denotes the Riemannian gradient of f , i.e., with
respect to the Riemannian metric of M. Given a function h : M1 → M2, notation Dh(x)[ηx]
denotes the directional derivative of h at x along direction ηx ∈ TxM1, where M1 and M2 are
two manifolds, and TxM1 is the tangent space of M1 at x.

This paper is organized as follows. Section 2 presents the Riemannian framework. Section 3
gives the initialization, proposed Riemannian method and its convergent results. Section 4 derives
the Riemannian ingredients of the quotient manifold. Section 5 reports numerical experiments and
Section 6 states the conclusion.

3

2 Problem Statement

In order to state the method, we first introduce coherence. As observed in [ARR14, LLSW16],
the number of measurements required for solving the blind deconvolution problem depends on
how much h] is correlated with the rows of the matrix B. This phenomenon also holds for the
Riemannian framework. The coherence between the rows of B and h] is defined as3

µ2
h =

L‖Bh]‖2∞
‖h]‖22

.

Note that a small coherence µh is preferred.
For a fixed-rank manifold in real space, multiple representations have been proposed to represent

a point in RK×Nr , see [Van13, Mis14]. The same idea can be applied for the fixed-rank manifold
in complex space. In this paper, the quotient manifold CK∗ × CN∗ /GL(1) = CK∗ × CN∗ /C∗ is used,
where CK∗ × CN∗ /C∗ = {[(h,m)] | (h,m) ∈ CK∗ × CN∗ }, and [(h,m)] = {(hp−1,mp∗) | p ∈ C∗} is the
orbit of an element (h,m) ∈ CK∗ ×CN∗ under the the group C∗. The group action of C∗ on CK∗ ×CN∗
is (h,m) • p = (hp−1,mp∗), where p ∈ C∗ and (h,m) ∈ CK∗ ×CN∗ . Note that the manifolds here are
over R, i.e., it has a real parameterization.

The cost function that we consider in the Riemannian framework is

f̃ :CK∗ × CN∗ /C∗ → R
π(h,m) 7→ ‖y − diag(Bhm∗C∗)‖22 +G(π(h,m)), (2.1)

where

G(π(h,m)) = ρ
L∑
i=1

G0

(
L|b∗ih|2‖m‖22

8d2µ2

)
, (2.2)

G0(t) = max(t − 1, 0)2 is a C1 function, ρ ≥ d2 + 2.5‖e‖22, 9
10d∗ ≤ d ≤ 11

10d∗, µ ≥ µh :=√
L‖Bh]‖∞/‖h]‖2 and d∗ = ‖h]mT

] ‖F = ‖h]‖2‖m]‖2. The penalty term G promotes a small
coherence. The parameter d can be computed by a spectral initialization (see Algorithm 1). The
value of ρ can be selected by ρ ≥ d2 + 2.5‖e‖22 and in the case that e is Gaussian, we choose

ρ ≈ d2 + 2.5σ2d2
∗ where ‖e‖22 ∼

σ2d2
∗

2L χ2
2L, χ2

2L is the χ-squared distribution and therefore ‖e‖22
concentrates around σ2d2

∗. The parameter µ can be selected as described in the last paragraph
of [LLSW16, Section 3.2].

The framework (2.1)- (2.2) is a simplified version of that in [LLSW16], where the cost function
is

F̃ :CK × CN → R
(h,m) 7→ F̃ (h, x) = ‖y − diag(Bhm∗C∗)‖22 + G̃(h,m), (2.3)

where

G̃(h,m) = ρ

[
G0

(
‖h‖22
2d

)
+G0

(
‖m‖22

2d

)
+

L∑
i=1

G0

(
L|b∗ih|2

8dµ2

)]
(2.4)

is the penalty term, G0, ρ, d, µ are defined as those in (2.2). The first two terms in G̃ penalize
large values of ‖h‖2 and ‖m‖2. It follows that the norms of h and m are not different too much,

3In [LLSW16, (3.2)], the authors use the term ’incoherence’ rather than ’coherence’.

4

which avoids a numerical stability problem. The third term in G̃ comes from an earlier work [SL16]
for matrix completion. Note that a discussion about the choices of G0, ρ, d and µ has been given
in [LLSW16, Sections 3.1 and 3.2].

The framework in [LLSW16] and the Riemannian framework are similar in the sense that their
cost functions, (2.1) and (2.3), are non-convex. Here, we emphasize their differences:

• the penalty term in (2.1) scales by ‖m‖22 so that it is well-defined on the quotient manifold.

• the penalty term in (2.1) does not directly penalize ‖m‖2 and ‖h‖2 because the iterates
{π(hk,mk)} generated by an optimization algorithm is invariant to the representation in
orbits {[hk,mk]}. Therefore, one can choose any representation, such as (hk,mk) satisfying
‖hk‖2 = ‖mk‖2.

3 Optimization Algorithm and Theoretical Results

In this section, we state the proposed optimization algorithm for minimizing the function (2.1)
as well as the main theoretical results. Because the cost function (2.1) is nonconvex, the pro-
posed algorithm has two phases: initialization and Riemannian steepest descent method stated in
Sections 3.1 and 3.2 respectively.

We consider the following model:

• the noise e is drawn from the Gaussian distribution N(0, σ
2d2
∗

2L IL) +
√
−1N(0, σ

2d2
∗

2L IL);

• C is a complex Gaussian distribution, i.e., Cij ∼ N(0, 1
2) +

√
−1N(0, 1

2); and

• B satisfies B∗B = IK and ‖bi‖22 ≤ φKL , i = 1, . . . , L for some constant φ.

The Riemannian steepest descent method that we use requires an initial iterate sufficiently close
to the desired solution. Two neighborhoods of the desired solution in the quotient manifold CK∗ ×
CN∗ /C∗ are defined as

Ωµ = {π(h,m) |
√
L‖Bh‖∞‖m‖2 ≤ 4d∗µ} and Πε = {π(h,m) | ‖hm∗ − h]m∗]‖F ≤ εd∗},

where d∗ and µ are defined in (2.3) and ε is assumed to be smaller than 1/15 throughout this paper.

3.1 Initialization

We consider the initialization by the spectral method in [LLSW16]. The following algorithm and
theorem have been given therein and we give them here in Algorithm 1 and Theorem 3.1 for
completeness.

Algorithm 1 Initialization via spectral method and projection

Output: (h0,m0) and d
1: Compute A∗(y);
2: Find the leading singular value d, left singular vector h̃0 and right singular vector m̃0 of A∗(y);

3: Find h0 = arg minz ‖z −
√
dh̃0‖22 such that

√
L‖Bz‖∞ ≤ 2

√
dµ and set m0 =

√
dm̃0;

5

Theorem 3.1 (Initialization [LLSW16]). The initialization obtained via Algorithm 1 satisfies4

π(h0,m0) ∈ Ω 1
2
µ ∩Π 2

5
ε (3.1)

and
9

10
d∗ ≤ d ≤

11

10
d∗

holds with probability at least 1− L−γ if the number of measurements satisfies

L ≥ Cγ(µ2
h + σ2) max(K,N) log2(L)/ε,

where ε is any predetermined constant in (0, 1
15], and Cγ is a constant only linearly depending on

γ with γ ≥ 1.

3.2 Convergence Analysis

The proposed algorithm is stated in Algorithm 2, which is an implementation of a Riemannian
steepest descent method. Theorem 3.2 states that if the initial iterate is close enough to the desired
solution and has sufficiently low coherence, then with high probability, the sequence {π(hk,mk)}
generated by Algorithm 2 converges to the desired solution linearly, up to noise. The proof of
Theorem 3.2 is given in Appendices A and B.

Algorithm 2 An implementation of a Riemannian steepest descent method

1: Given h0,m0, and set k ← 0;
2: for k = 0, 1, 2, . . . do
3: Set

dk = ‖hk‖2‖mk‖2, hk ←
√
dk

hk
‖hk‖2

; mk ←
√
dk

mk

‖m2‖2
(3.2)

and
(hk+1,mk+1) = (hk,mk)−

α

dk

(
∇hk f̃(hk,mk),∇mk f̃(hk,mk)

)
(3.3)

where ∇hf̃(h,m) = J1m+ Lρ
4d2µ2

∑L
i=1G

′
0

(
L|b∗i h|2‖m‖22

8d2µ2

)
(bib

∗
ih‖m‖22) is the Euclidean gradient

with respect to h, ∇mf̃(h,m) = J∗1h+ Lρ
4d2µ2

∑L
i=1G

′
0

(
L|b∗i h|2‖m‖22

8d2µ2

)
(m|b∗ih|2) is the Euclidean

gradient with respect to m, and J1 = 2 (B∗ diag(diag(Bhm∗C∗)− y)C).
4: end for

Theorem 3.2. Suppose the initialization π(h0,m0) ∈ Ω 1
2
µ∩Π 2

5
ε and L ≥ Cγ(µ2+σ2) max(K,N) log2(L)/ε2.

Then the iterates generated by Algorithm 2 convergence linearly to π(h],m]) in the sense that with
probability at least 1− 4L−γ − 1

γ exp(−(K +N)), it holds that

‖hkm∗k − h]m∗]‖F ≤
2

3

(
1− αa0

2

)k/2
εd∗ + 50‖A∗(e)‖2,

4It follows from [LLSW16, Theorem 3.1] that one representation in the orbit [(h0,m0)] is in the neighborhood
Ω 1

2
µ ∩ Π 2

5
ε. Since Ω 1

2
µ ∩ Π 2

5
ε is independent of representation, (3.1) holds.

6

where a0 = 1/1500, α < 1/(2aL) is a fixed step size, aL is the smoothness constant of the Rieman-
nian objective as defined by Condition A.4,

‖A∗(e)‖2 ≤ ψσd∗max

(√
(γ + 1) max(K,N) log(L)

L
,
(γ + 1)

√
KN log2(L)

L

)
,

and ψ > 0 is a constant.

The convergence rate of Algorithm 2 is determined by the step size α. If µ2 = O(L
(K+N) log2 L

)

and ρ ≈ d2 + 2.5‖e‖22, then aL = O((1 + σ2)(K + N) log2 L). See more details in Section B
and [LLSW16, Page 13].

We emphasize the differences between Algorithm 2 and the algorithm in [LLSW16]. The steepest
descent method in [LLSW16] is stated in Algorithm 3, where (∇whk F̃ ,∇

w
mk
F̃) denotes the Wirtinger

derivatives. It can be shown that the Wirtinger derivatives
(
∇whk F̃ (hk,mk),∇wmk F̃ (hk,mk)

)
and

Euclidean gradient
(
∇hk F̃ (hk,mk),∇mk F̃ (hk,mk)

)
satisfy

(
∇whk F̃ (hk,mk),∇wmk F̃ (hk,mk)

)
=

1

2

(
∇hk F̃ (hk,mk),∇mk F̃ (hk,mk)

)
, (3.4)

which yields (3.5). The differences are given as follows:

1. The gradient of f̃ in Algorithm 2 is different from the gradient of F̃ in Algorithm 3 due to
the differences in their penalty terms;

2. The coefficient of the Euclidean gradient in Algorithm 2 is related to the norms of hk and mk

while the coefficient in Algorithm 3 is a constant;

3. The hk and mk are normalized in Algorithm 2 so that hk and mk have the same norm while
the norms of hk and mk can be different in Algorithm 3.

Algorithm 3 The steepest descent method in [LLSW16, Algorithm 2]

1: k ← 0;
2: for k = 0, 1, 2, . . . do
3: Set

(hk+1,mk+1) =(hk,mk)− α(∇whk F̃ (hk,mk),∇wmk F̃ (hk,mk))

=(hk,mk)−
α

2
(∇hk F̃ (hk,mk),∇mk F̃ (hk,mk)). (3.5)

4: end for

In order to understand the behavior of a generic Riemannian optimization algorithm, such as
Newton method, quasi-Newton method, CG method etc, in a small neighborhood of the solution,
we give the following remark, which will be formally stated and proven in Theorem 4.1 after we
introduce appropriate Riemannian tools.

7

Remark 3.1. With high probability provided L large enough, i) a Riemannian version of the
Hessian of f in (1.5) at π(h],m]) is positive definite, ii) there exists a lower bound, not dependent
on K and N , of the smallest eigenvalue of the Riemannian Hessian, and iii) the condition number
of the Riemannian Hessian at π(h],m]) is small.

The results in Remark 3.1 have important implications. Positive definiteness of the Hessian
at π(h],m]) implies that there exists a neighborhood of π(h],m]) in which f has a unique min-
imizer. Therefore, if an optimization algorithm generates iterates that converge and stay in the
neighborhood, then the limit must be π(h],m]). The independence of the lower bound of the small-
est eigenvalue from K and N indicates that it is worthwhile investigating whether the size of the
neighborhood depends on K and N . Note that it is unknown if the neighborhood is in the basin of
attraction Ω 1

2
µ ∩Π 2

5
ε in Theorem 3.2. We leave this work for future research. The good condition

number of the Hessian at the minimizer implies that a Riemannian steepest descent method can
converge quickly.

4 Riemannian Optimization

Recently many Riemannian optimization methods have been systemically analyzed and efficient li-
braries have been designed, e.g., Riemannian trust-region Newton method (RTR-Newton) [Bak08],
Riemannian Broyden family method including BFGS method and its limited-memory version
(RBroyden family, RBFGS, LRBFGS) [RW12, Hua13, HGA15, HAG18], Riemannian trust-region
symmetric rank-one update method and its limited-memory version (RTR-SR1, LRTR-SR1) [Hua13,
HAG15], Riemannian Newton method (RNewton) and Riemannian non-linear conjugate gradient
method (RCG) [AMS08, SI15, Sat16, Zhu17].

This section follows the optimization framework on quotient manifolds in [AMS08] and uses it
to derive the tools for optimization problems on CK∗ × CN∗ /C∗. Specifically, we describe the repre-
sentation of the manifold CK×Nr for r ≥ 1, and the ingredients which are required in Riemannian
optimization, such as tangent space, retraction, vector transport and gradient. We use only r = 1
in this paper for the blind deconvolution problem. The results for r > 1 are also provided since
deriving them does not require much more work and is interesting for future research.5

4.1 Fixed-rank Manifold and Two-Factor Representation

A point on a quotient manifold is an equivalence class, which is often cumbersome computationally.
In practice, choosing a representative for an equivalence class and definitions of related mathemat-
ical objects have been developed in many papers in the literature of computation on manifolds,
e.g., [AMS08].

LetNr denote the total space CK×r∗ ×CN×r∗ andQr denote the quotient spaceNr/GL(r). Define
a function π : Nr → Qr : (H,M) 7→ π(H,M). Let π(H,M) denote [(H,M)] = {(HP−1,MP ∗) |
P ∈ GL(r)} viewed as an element of Qr and π−1(π(H,M)) is used to denote [(H,M)] viewed as a
subset of Nr. Let T(H,M)Nr denote the tangent space of Nr at (H,M). Given ζ(H,M) ∈ T(H,M)Nr,
denote the first and second components of ζ(H,M) by ζH and ζM , i.e., ζ(H,M) = (ζH , ζM), where

5The following provides an example of a problem where taking r > 1 is useful. As shown in [HGZ17], it is known
that the desired solution for the phase retrieval problem by a lifting approach is a rank-1 matrix. If the number of
measurements is small, then optimizing over a fixed-rank manifold with rank greater than 1 is empirically shown to
be more efficient and more effective than r = 1.

8

ζH ∈ CK×r and ζM ∈ CN×r. The vertical space at a point (H,M) ∈ π−1(π(H,M)) is defined to
be the tangent space of π−1(π(H,M)) at (H,M). That is

V(H,M) = {(−HΛ,MΛ∗) | Λ ∈ Cr×r}.

The Riemannian metric of Nr that we use is

g(H,M)

(
η(H,M), ξ(H,M)

)
= Re (trace (η∗HξH(M∗M) + η∗MξM (H∗H))) , (4.1)

where η(H,M), ξ(H,M) ∈ T(H,M)Nr. It follows that the induced norm is

‖η(H,M)‖g(H,M)
=

√
g(H,M)

(
η(H,M), η(H,M)

)
.

We remove the subscript (H,M) of g in ‖η(H,M)‖g(H,M)
, i.e., use ‖η(H,M)‖g, when there is no

confusion.
The idea of using the Riemannian metric (4.1) is not new. A similar metric on the real fixed-rank

manifold has been used in [Mis14]. The Euclidean metric
〈
η(H,M), ξ(H,M)

〉
2

= Re (trace (η∗HξH + η∗MξM))

on Nr is not used here since it is not invariant to the representative in π−1(π(H,M)). This can be
verified by Lemma 4.1. The Riemannian metric (4.1) is not equivalent to the Euclidean metric in
CK×N , i.e.,

g(H,M)

(
η(H,M), ξ(H,M)

)
6= Re (trace ((ηHM

∗ +Hη∗M)∗(ξHM
∗ +Hξ∗M)))

in general. Note that the tangent vector (ηH , ηM) of Nr at (H,M) corresponds to the tangent
vector ηHM

∗ +Hη∗M of CK×N at HM∗.
The horizontal space at (H,M), denoted by H(H,M), is defined to be the subspace of T(H,M)Nr

that is orthogonal to V(H,M) with respect to the metric (4.1). That is

H(H,M) =

{([
H H⊥

] [K
T

]
,
[
M M⊥

] [K∗
Q

])
| K ∈ Cr×r, T ∈ C(K−r)×r, Q ∈ C(N−r)×r

}
,

where H⊥ denotes a K × (K − r) orthonormal matrix such that H∗H⊥ = 0 and likewise for M⊥.
The horizontal space H(H,M) is a representation of the tangent space Tπ(H,M)Qr. It is known that
for any ηπ(H,M) ∈ Tπ(H,M)Qr, there exists a unique vector in H(H,M), called the horizontal lift of
ηπ(H,M) and denoted by η↑(H,M)

, satisfying Dπ(H,M)[η↑(H,M)
] = ηπ(H,M), see e.g., [AMS08]. The

relationship among horizontal lifts of a tangent vector ηπ(H,M) is given in Lemma 4.1. The result
follows from [Hua13, Theorem 9.3.1].

Lemma 4.1. A vector field (θ̂, ϑ̂) on Nr is the horizontal lift of a vector field on Qr if and only if,
for each (H,M) ∈ Nr, we have(

θ̂HP−1 , ϑ̂MP ∗

)
=
(
θ̂HP

−1, ϑ̂MP
∗
)
, (4.2)

for all P ∈ GL(r).

The Riemannian metric (4.1) on Nr defines a Riemannian metric on Qr.

9

Lemma 4.2. The following defines a Riemannian metric on Qr:

gπ(H,M)

(
ηπ(H,M), ξπ(H,M)

)
= Re

(
trace

(
η∗↑H ξ↑H (M∗M) + η∗↑M ξ↑M (H∗H)

))
. (4.3)

Proof. It can be easily verified that the right hand side of (4.3) is invariant to representions in
π−1(π(H,M)).

The orthogonal projections onto the horizontal space or the vertical space are similar to those
in [Mis14, Table 4.3]. We give them below for completeness.

Lemma 4.3. The orthogonal projection to the vertical space V(H,M) is P v(H,M)

(
η(H,M)

)
= (−HΛ,MΛ∗),

where Λ = 0.5(η∗MM(M∗M)−1−(H∗H)−1H∗ηH). The orthogonal projection to the horizontal space
H(H,M) is P h(H,M)

(
η(H,M)

)
= η(H,M) − P v(H,M)

(
η(H,M)

)
.

Proof. It is easy to verify that g
(
P v(H,M)

(
η(H,M)

)
, P h(H,M)

(
η(H,M)

))
= 0 and P v(H,M)

(
η(H,M)

)
+

P h(H,M)

(
η(H,M)

)
= η(H,M).

4.2 Retraction and Vector transport

Retraction is used to update iterates in a Riemannian algorithm and vector transport is used
to compare tangent vectors in different tangent spaces. Specifically, a retraction R is a smooth
mapping from the tangent bundle TM, which is the set of all tangent vectors to M, onto a
manifold M such that (i) R(0x) = x for all x ∈ M (where 0x denotes the origin of TxM) and
(ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. The restriction of R to TxM is denoted by Rx. A
vector transport T : TM ⊕ TM → TM, (ηx, ξx) 7→ Tηxξx with associated retraction R is a
smooth mapping such that, for all (x, ηx) in the domain of R and all ξx ∈ TxM, it holds that (i)
Tηxξx ∈ TR(ηx)M, (ii) T0xξx = ξx, (iii) Tηx is a linear map. A retraction in the total space Nr is

R(H,M)(η(H,M)) = (H + ηH ,M + ηM). (4.4)

It follows from Lemma 4.1 that π(R(H,M)(η(H,M))) = π(R(HP−1,MP ∗)(η(HP−1,MP ∗))). Therefore,
(4.4) defines a retraction in the quotient manifold Qr, i.e.,

R̃π(H,M)(ηπ(H,M)) := π(R(H,M)(η↑(H,M)
)). (4.5)

The vector transport used is the vector transport by parallelization [HAG16]:

Tηx = ByB†x, (4.6)

10

where y = Rx(ηx), B is a smooth tangent basis field defined on an open set of a manifold M and

B†x denotes the pseudo-inverse of Bx. A smooth orthonormal basis of H(H,M) is{(
1√
2
HL−∗H eie

T
j L
−1
M ,

1√
2
ML−∗M eje

T
i L
−1
H

)
, i = 1, . . . , r, j = 1, . . . , r

}
⋃{(

1√
2
HL−∗H eie

T
j L
−1
M

√
−1,− 1√

2
ML−∗M eje

T
i L
−1
H

√
−1

)
, i = 1, . . . , r, j = 1, . . . , r

}
⋃{(

H⊥ẽie
T
j L
−1
M , 0N×r

)
, i = 1, . . .K − r, j = 1, . . . r

}⋃{(
H⊥ẽie

T
j L
−1
M

√
−1, 0N×r

)
, i = 1, . . .K − r, j = 1, . . . r

}⋃{(
0K×r,M⊥êie

T
j L
−1
H

)
, i = 1, . . . N − r, j = 1, . . . r

}⋃{(
0K×r,M⊥êie

T
j L
−1
H

√
−1
)
, i = 1, . . . N − r, j = 1, . . . r

}
,

where (e1, . . . , er) is the canonical basis of Rr, (ẽ1, . . . , ẽ(K−r)) is the canonical basis of RK−r,
(ê1, . . . , ê(N−r)) is the canonical basis of RN−r, and H∗H = LHL

∗
H and M∗M = LML

∗
M are

Cholesky decompositions. Therefore, the vector transport (4.6) with the above orthonormal basis
yields locally smooth, linear mapping from H(H,M) to HR(H,M)(η(H,M)). In the case of r = 1,

one can choose h⊥ to be the last K − 1 columns of the Householder matrix I − 2vv∗/‖v‖22, where
v = h−‖h‖e1, and similarly for m⊥. It follows that any corresponding pair of tangent vectors η(h,m)

and (ηhp−1 , ηmp∗) in bases B(h,m) and B(hp−1,mp∗) satisfies (4.2), i.e., (ηhp−1 , ηmp∗) = (ηhp
−1, ηmp

∗).
Therefore, the mapping (

Tηπ(h,m)
ξπ(h,m)

)
↑(h,m)

:= B(h̃,m̃)B
†
(h,m) (4.7)

defines a vector transport on Q1, where (h̃, m̃) = R(h,m)

(
η↑(h,m)

)
.

4.3 Riemannian Gradient

The Riemannian gradient of a function f :M→ R : x 7→ f(x) is defined to be the unique tangent
vector grad f ∈ TxM satisfying

Df(x)[ηx] = g(grad f(x), ηx), ∀ηx ∈ TxM,

where g is the Riemannian metric ofM. The Riemannian gradient of (2.1) is derived in Lemma 4.4.

Lemma 4.4. Given any π(h,m) ∈ Q1, the gradient of f̃π(h,m) is(
grad f̃(π(h,m))

)
↑(h,m)

= P h(h,m)

(
∇hf̃(h,m)(m∗m)−1,∇mf̃(h,m)(h∗h)−1

)
, (4.8)

where ∇hf̃(h,m) = J1m + Lρ
4d2µ2

∑L
i=1G

′
0

(
L|b∗i h|2‖m‖22

8d2µ2

)
(bib

∗
ih‖m‖22) is the Euclidean gradient with

respect to h, ∇mf̃(h,m) = J∗1h + Lρ
4d2µ2

∑L
i=1G

′
0

(
L|b∗i h|2‖m‖22

8d2µ2

)
(m|b∗ih|2) is the Euclidean gradient

with respect to m, and J1 = 2 (B∗ diag(diag(Bhm∗C∗)− y)C). Moreover, if the representation
(h,m) satisfies ‖h‖2 = ‖m‖2, then(

grad f̃(π(h,m))
)
↑(h,m)

=
(
∇hf̃(h,m)(m∗m)−1,∇mf̃(h,m)(h∗h)−1

)
. (4.9)

11

Proof. Taking directional derivative along any direction ηπ(h,m) ∈ Tπ(h,m)Qr yields

D f̃(π(h,m))[ηπ(h,m)] = D

(
‖y − diag(Bhm∗C∗)‖22 + ρ

L∑
i=1

G0

(
L|b∗ih|2‖m‖22

8d2µ2

))
[(η↑h , η↑m)]

=2Re trace
(
(diag(Bhm∗C∗)− y)T diag(Bη↑hm

∗C∗)
)

+ 2Re trace
(
(diag(Bhm∗C∗)− y)T diag(Bhη∗↑mC

∗)
)

+ Re

(
Lρ

4d2µ2

L∑
i=1

G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
(η∗↑hbib

∗
ih‖m‖22)

)

+ Re

(
Lρ

4d2µ2

L∑
i=1

G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
(η∗↑mm|b

∗
ih|2)

)
=Re

(
η∗↑h∇hf̃(h,m) + η∗↑m∇mf̃(h,m)

)
.

Combining the above equation with the definition [AMS08, (3.31)] and (4.3) yields (4.8). If ‖h‖2 =

‖m‖2, then the projection is not necessary since
(
∇hf̃(h,m)(m∗m)−1,∇mf̃(h,m)(h∗h)−1

)
is in

H(h,m) already.

4.4 A Riemannian Steepest Descent Algorithm

Algorithm 2 is an instance of a Riemannian steepest descent method. A Riemannian steepest de-
scent iteration for optimizing a real-valued function f on M is xk+1 = Rxk(−α grad f(xk)), where
α > 0 is a step size and R is a retraction. In the case of optimizing f̃ in (2.1), the iteration
is π(h(k+1),m(k+1)) = Rπ(hk,mk)(grad f̃(π(hk,mk))), which yields implementations stated in Algo-
rithm 4. The update (4.10) is the generic Riemannian steepest descent update formula and (4.11) is
for this specifical problem. Since the iteration π(h(k+1),m(k+1)) = Rπ(hk,mk)(grad f̃(π(hk,mk))) is
independent of representations chosen in equivalence class, we can choose hk and mk such that they
always have the same norm. In addition, the projection onto the horizontal space is not necessary
due to (4.9). It follow that we have the update formula (4.12), which is used in Algorithm 2.

4.5 Local Convexity

In this section, we give the complete version of Remark 3.1 in Theorem 4.1. We consider the
Riemannian Hessian of the function f ◦R̃π(h],m]), which is defined on the tangent space Tπ(h],m])Q1.
Since a tangent space is a vector space, the Riemannian Hessian with respect to the metric (4.3) is(

Hess f ◦ R̃π(h,m)(ξπ(h,m))[ηπ(h,m)]
)
↑(h,m)

=P h(h,m)

(
(J3(m+ ξ↑m) + J1η↑m)(m∗m)−1, (J∗3 (h+ ξ↑h) + J∗1η↑h)(h∗h)−1

)
,

where J1 is defined in (4.8) and J3 = 2Re
(
B∗ diag(diag(B

(
η↑h(m+ η↑m)∗ + (h+ +ξ↑h)η∗↑m

)
C∗))C

)
.

The complete version of Remark 3.1 is given below.

12

Algorithm 4 A Riemannian steepest descent method

1: k ← 0;
2: for k = 0, 1, 2, . . . do
3: Set

(hk+1,mk+1) = R̃(hk,mk)

(
−α

(
grad f̃(π(h,m))

)
↑(h,m)

)
; (4.10)

or equivalently

(hk+1,mk+1) = (hk,mk)− αP h(h,m)

(
∇hk f̃(hk,mk)(m

∗
kmk)

−1,∇mk f̃(hk,mk)(h
∗
khk)

−1
)

;

(4.11)
or equivalently dk = ‖hk‖2‖mk‖2, hk ←

√
dk

hk
‖hk‖2 ; mk ←

√
dk

mk
‖m2‖2 and

(hk+1,mk+1) = (hk,mk)−
α

dk

(
∇hk f̃(hk,mk),∇mk f̃(hk,mk)

)
; (4.12)

4: end for

Theorem 4.1. With probability at least 1−L−γ, the eigenvalues of the Hessian of f ◦ R̃π(h],m]) at

0π(h],m]) are between 9d2
∗/5 and 22d2

∗/5 up to noise, i.e.,

22d2
∗

5
+ 4‖A∗(e)‖2d∗ ≥

g
(
ηπ(h],m]),Hess f ◦ R̃π(h],m])(0π(h],m]))[ηπ(h],m])]

)
g(ηπ(h],m]), ηπ(h],m]))

≥ 9d2
∗

5
− 4‖A∗(e)‖2d∗,

for all ηπ(h],m]) ∈ Tπ(h],m])Qr, where R̃ is defined in (4.5).

Proof. Without loss of generality, we assume ‖h]‖2 = ‖m]‖2 =
√
d∗. We have

g
(
ηπ(h],m]),Hess f ◦ R̃π(h],m])(0π(h],m]))[ηπ(h],m])]

)
=

d2

dt2
f ◦ R̃π(h],m])(tηπ(h],m]))|t=0

=
d2

dt2
‖y − diag(B(h] + tη↑h])(m] + tη↑m])

∗C∗)‖22|t=0

=Re
(

trace
(
η∗↑h]

(J2m] + J1η↑m]) + η↑∗m]
(J∗2h] + J∗1η↑h])

))
,

where J1 is defined in (4.8) and J2 = 2Re
(
B∗ diag(diag(B

(
η↑h]m

∗ + hη∗↑m]

)
C∗))C

)
. It follows

from the definition of π(h],m]) that J1 = 2A∗(e). Thus,

d2

dt2
f ◦ R̃π(h],m])(tηπ(h],m]))|t=0 = Re(trace(2η↑h]J1η↑m] + J∗2 (η↑h]m

∗ + h]η
∗
↑m]

)))

=4Re trace
(
η∗↑h]
A∗(e)η↑m]

)
+ 2‖A(η↑h]m

∗ + h]η
∗
↑m]

)‖22. (4.13)

It holds that

|4Re trace
(
η∗↑h]
A∗(e)η↑m]

)
| ≤4‖A∗(e)‖2‖η↑m]‖2‖η↑h]‖2 ≤ 4‖A∗(e)‖2

(
‖η↑m]‖

2
2 + ‖η2

↑h]
‖2
)

≤4‖A∗(e)‖2d∗g(ηπ(h],m]), ηπ(h],m])). (4.14)

13

Using [LLSW16, Lemma 5.12] yields

11

5
‖η↑h]m

∗
] + h]η

∗
↑m]
‖2F ≥ 2‖A(η↑h]m

∗ + h]η
∗
↑m]

)‖22 ≥
9

5
‖η↑h]m

∗
] + h]η

∗
↑m]
‖2F , (4.15)

with probability at least 1−L−γ provided L ≥ Cγ max(K,µ2
hN) log2(L). Note that this probability

is independent of ηπ(h],m]).
Decompose η↑h] = ah] + bη↑h⊥ and η↑m] = a∗m] + βη↑m⊥ , where h∗]η↑h⊥ = 0, ‖η↑h⊥‖2 = 1,

m∗]η↑m⊥ = 0, and ‖η↑m⊥‖2 = 1. Therefore, we have

‖η↑h]m
∗ + h]η

∗
↑m]
‖2F =‖2ah]m∗]‖2F + ‖bη↑h⊥m

∗
]‖2F + ‖βh]η∗↑m⊥‖

2
F = |2a|2d2

∗ + b2d∗ + β2d∗

≥2|a|2d2
∗ + b2d∗ + β2d∗ = (|a|2d∗ + b2 + |a|2d∗ + β2)d∗

=d∗(‖η↑h]‖
2
2 + ‖η↑m]‖

2
2) = d2

∗g(ηπ(h],m]), ηπ(h],m])). (4.16)

Similarly, we have

‖η↑h]m
∗+h]η

∗
↑m]
‖2F = |2a|2d2

∗+b
2d∗+β

2d∗ ≤ 2(|a|2d∗+b2+|a|2d∗+β2)d∗ ≤ 2d2
∗g(ηπ(h],m]), ηπ(h],m])).

(4.17)
Combining (4.13), (4.14), (4.15), (4.16) and (4.17) yields

22d2
∗

5
+ 4‖A∗(e)‖2d∗ ≥

g
(
ηπ(h],m]),Hess f ◦ R̃π(h],m])(0π(h],m]))[ηπ(h],m])]

)
g(ηπ(h],m]), ηπ(h],m]))

≥ 9d2
∗

5
− 4‖A∗(e)‖2d∗.

5 Experiments

In this section, numerical simulations are used to illustrate the performance of the proposed method.
Section 5.1 gives the experimental environment, synthetic problem settings, parameters and com-
plexities. The synthetic problems are used in Sections 5.2–5.4. Specifically, Section 5.2 compares
the efficiency of the proposed method to the method in [LLSW16] and an alternating minimiza-
tion method; Section 5.3 presents an empirical estimation for the probability of successful recovery
against the number of measurements; and Section 5.4 shows the robustness of the proposed method.
In Section 5.5, an image from FLAVIA dataset [WBX+07], rather than a synthetic data, is used to
show the performance of the proposed method in an image deblurring problem.

5.1 Environment, Step Size, Problem Setting and Complexities

The codes of Algorithm 4 are written in C++ using the library ROPTLIB [HAGH16] through its
Matlab interface. All experiments are performed in Matlab R2016b on a 64bit Windows system with
3.4GHz CPU (Intel(R) Core(TM) i7-6700). The DFT is performed using the library FFTW [FJ05]
with one thread. The code is available at www.math.fsu.edu/~whuang2/papers/BDSDAQM.htm.

In signal recovery problems, including the blind deconvolution problem, theoretical results usu-
ally require the step size to be a sufficiently small constant. However, in practice, a too small step
size slows down algorithm significantly while a too large step size makes algorithm fail to converge.
Therefore, heuristic ideas have been used. In [CLS16], the step size is given by a predetermined

14

www.math.fsu.edu/~whuang2/papers/BDSDAQM.htm

nonincreasing sequence. In [LLSW16], the step size is chosen by backtracking with initial step size
1/d, where d is the singular value in Algorithm 1. In this paper, the step size is given by the
backtracking algorithm with BB initial step size [BB88]. Specifically, suppose the iterates gener-
ated by Algorithm 2 is {xk} and ηk = R−1

xk
(xk+1). We use the initial step size g(sk, yk)/g(yk, yk),

where sk = Tηkηk and yk = grad f(xk+1) − Tηk grad f(xk) and the vector transport T is defined
in (4.6). Note that this initial step size may or may not be smaller than 1/(2aL), which is assumed
by Theorem 3.2.

The matrix B is the first K columns of a unitary L×L DFT matrix. The matrix A is a Gaussian
random matrix. The initial iterate, ρ, and µ are given using the same method as [LLSW16],
i.e., the initial iterate is the normalized leading singular vectors of A∗(y), ρ = d2/100 and µ =
6
√
L/(K +N)/ log(L). Unless otherwise indicated, the measurements y are noiseless, i.e., y =

A(h]m
∗
]), where h] and m] are Gaussian random vectors. The stopping criterion requires ‖y −

A(hm∗)‖2/‖y‖2 ≤ 10−8.
Since B =

√
LFB and C =

√
LF̄C, the cost function f̃ is6

f̃(π(h,m)) =‖y − Ldiag
(
(FBh)(F̄Cm)∗

)
‖22 + ρ

L∑
i=1

G0

(
L|b∗ih|2‖m‖22

8d2µ2

)
.

If B has K nonzero entries, C is a random dense matrix and the order of computations of multi-
plications is to compute Bh and then apply FFT to the resulting vector F(Bh) and likewise for
F̄(Cm), then the complexity of a function evaluation is 2FFT + 2LN + O(L) flops, where a flop
is a float point operation [GV96, Section 1.2.4]. Using the same idea, the complexity of a gradient
evaluation after evaluating the function value at the same point is 3FFT + 2LN +O(L) flops. The
complexity of the vector transport (4.6) is O(K+N) using the intrinsic representation (see detailed
discussions about intrinsic representation in [HAG16]).

5.2 Efficiency

Algorithm 2 is compared to the algorithm in [LLSW16] and an alternating minimization algorithm.
The alternating minimization algorithm is stated in Algorithm 5, which approximately optimizes
over h and m alternatively. Specifically, when one of h and m is fixed, the function F in (1.4) is
quadratic and the step size in Steps 3 and 4 has a closed form which can be compute cheaply. Let

Algorithm 5 An alternating minimization algorithm

1: k ← 0;
2: for k = 0, 1, 2, . . . do
3: t∗ = arg mint>0 F (hk,mk − t∇mkF (hk,mk)) and set mk+1 = mk − t∗∇mkF (hk,mk);
4: t∗ = arg mint>0 F (hk − t∇hkF (hk,mk+1),mk+1) and set hk+1 = hk − t∗∇hkF (hk,mk+1);
5: end for

NCBT denote the algorithm in [LLSW16], NCBB denote the algorithm in [LLSW16] with modified
initial step size: using BB step size rather than 1/d; AMA denote the alternating minimization
algorithm; and ROBB denote the proposed Algorithm 4 with the BB initial step size. NCBT,
NCBB, and AMA are implemented in Matlab. The parameters K, N are set to be 100 and 100
respectively.

6F̃ can be done similarly and therefore its complexity is not discussed here.

15

Table 1 reports the results of an average of 100 random runs for L = 400 and 600. Since
the algorithms are performed on different languages, it is unfair to compare their computational
time. Therefore, the machine-independent operations are reported. It is shown that using BB step
size as the initial step size improves efficiency significantly. Increasing the number of measurements
reduces the difficulty of the optimization problem in the sense that the numbers of various operations
decrease. ROBB method outperforms the other methods in the sense that it needs fewer number
of all the operations to reach a similar accuracy.

Table 1: An average of 100 random runs. nFFT denotes the number of fast Fourier transforms
(or inverst FFT). nBh and nCm denote the numbers of matrix vector multiplications Bh and Cm

respectively. Note that nBh = nCm. RMSE denotes the relative error
‖hmT−h]mT] ‖
‖h]‖‖m]‖ . The subscript

k indicates a scale of 10k. The algorithms NCBT, NCBB, AMA, and ROBB are introduced in the
first paragraph of Section 5.2.

L = 400 L = 600
Algorithms NCBT NCBB AMA ROBB NCBT NCBB AMA ROBB
nBh/nCm 1040 349 718 208 403 162 294 122
nFFT 2533 865 1436 518 984 401 588 303
RMSE 3.73−8 2.24−8 3.67−8 2.20−8 2.39−8 1.48−8 2.34−8 1.42−8

5.3 Number of Measurements vs Success Rate

Both parametersK andN are set to be 50. L/(K+L) takes 21 values: {1, 1.05, 1.1, . . . , 1.45, 1.5, 1.6, . . . , 2.4, 2.5}.
We consider an algorithm to successfully recover π(h],m]) if the RMSE of the final iterate π(h,m)
is less than 10−2, i.e., ‖hm∗ − h]m∗]‖F /‖h]m∗]‖F ≤ 10−2.

Figure 1 shows an empirical phase transition curves for the four algorithms: NCBT, NCBB,
AMA, and ROBB. NCBT and NCBB perform similarly while AMA and ROBB outperform NCBT
and NCBB. Given the same number of measurements, the Riemannian method ROBB has the
largest successful recovery probability among the four methods.

1 1.5 2 2.5

L/(K+N)

0

0.2

0.4

0.6

0.8

1

P
ro

b.
 o

f S
uc

c.
 R

ec
.

Transition curve

NCBT
NCBB
AMA
ROBB

Figure 1: Empirical phase transition curves for 1000 random runs. The algorithms NCBT, NCBB,
AMA, and ROBB are introduced in the first paragraph of Section 5.2.

16

5.4 Noisy Measurements

Figure 2 shows the relationships between RMSE and SNR for Algorithm 4 with L = 500 and 1000,
and K = N = 100. The algorithm stops when the norm of the initial gradient over the norm of the
last gradient is less than 10−12. The noise measurements y are given by A(h]m

∗
]) + e, where the

noise e is τw
‖w‖2‖A(h]m

∗
])‖2 for some positive value τ . Clearly, increasing the number of measurements

improves the accuracy, i.e., reduces the RMSE. In addition, the curves indicate that inreasing SNR
in dB reduces the RMSE in dB linearly.

10 20 30 40 50 60 70 80

SNR(dB)

-90

-80

-70

-60

-50

-40

-30

-20

-10

R
M

S
E

(d
B

)

Reconstruction stability of Riemannian method

L=500
L=1000

Figure 2: Performance of Algorithm 2 under different SNR.

5.5 Natural Image

A leaf image (Figure 3) with 1024 × 1024 pixels from FLAVIA dataset [WBX+07] is used to test
the performance of Algorithm 3 on an image deblurring problem.

17

Figure 3: The tested image

A blurred image is a convolution of the original image with a blurring kernel. Let y, ŷ and κ
denote the vectors obtained by reshaping the blurred image, original image and the blurring kernel
respectively. The measurement y is therefore the vector Fy/

√
L. The matrix B is formed by a

subset of columns of a reshaped 2D frequency Fourier matrix, where the columns correspond to the
nonzero entries in κ. Since most natural images are approximately sparse in Haar wavelet basis, the
columns of C ∈ CL×N are set as the N most-significant columns in Haar wavelet matrix W, where
the N most-significant columns denote the columns corresponding to the N largest coefficients of
Haar wavelet transform of the original image (the N largest entries in WT ŷ). However, the original
image, or equivalently ŷ, is unknown. Thus, we use WTy instead to form C.

The number of measurements L is 1024 ∗ 1024 = 1048576. The number of columns N in C is
chosen to be 20000. The number of nonzero entries in a blurring kernel is given later.

Motion kernel with known support: The motion kernel7 and the corresponding blurred image
are shown in (a) and (b) of Figure 4. We assume that the support of the blurring kernel is known.

7The blurring kernel is obtained by Matlab commands: “fspecial(’motion’, 50, 45)”.

18

Figure 4: Left: the blurring kernel; middle: the blurred image; right: the reconstructed image

The number of nonzero entries in the blurring kernel is K = 109. The most-significant wavelet
subspaces with N = 20000 are able to capture 97% of the energy in the original image. Algorithm 3
stops when the number of iterations is 20, 40, 60, 80, 100, 120, 140, 160, or 2000. The reconstructed
image using 80 iterations is given in (c) of Figure 4. As shown in Table 2, a higher accuracy does
not improve the recovery performance in the sense that the relative error relerr, defined in Table 2,
does not necessarily decrease as the number of iterations increases. In the later experiments, the
number of iterations is set to be 80.

Table 2: The computational costs for multiple values of N in Figure 4. nBh, nCm, and
nFFT are defined in Table 1. t denotes the computational time in seconds. relres denotes

‖y − diag(Bhm∗C∗)‖2/‖y‖2. rellerr denotes
∥∥∥ŷ − ‖y‖

‖yf‖yf

∥∥∥ /‖ŷ‖, where yf denotes the vector

obtained by reshaping a reconstructed image.

num. of iter. 20 40 60 80 100 120 140 160 2000
relres 3.9−3 2.6−3 2.5−3 2.4−3 2.3−3 2.3−3 2.2−3 2.2−3 2.0−3

nBh/nCm 43 85 125 168 210 253 294 335 4055
nFFT 107 211 311 417 521 627 729 831 10111
relerr 4.1−2 3.8−2 3.8−2 3.8−2 4.1−2 4.2−2 4.3−2 4.4−2 6.4−2

Other kernels with known supports: Two blurring kernels, their corresponding blurred im-
ages, and the reconstructed images are shown in Figures 5 and 6. The blurring kernel in Figure 5
is from the function sin and has 153 nonzero entries. The covariance of the Gaussian kernel in

Figure 6 is V =

[
1 0.8

0.8 1

]
and the number of nonzero entries is 181.

The number of iterations is 80 and their computational times are approximately 48 seconds.
The relative errors relerr, defined in Table 2, of the “sin” kernel and the Gaussian kernel are 0.0398
and 0.0890, respectively. We can see that the Riemannian method is able to recover a reasonable
image for a more complex kernel.

19

Figure 5: Left: the blurring kernel; middle: the blurred image; right: the reconstructed image

Figure 6: Left: the blurring kernel; middle: the blurred image; right: the reconstructed image

Motion kernel with unknown support: The motion kernel in (a) of Figure 4 is used. In
practice, the true support of the kernel is unknown and an estimation is usually not exact. Figure 7
shows the recovery performance of the Riemannian method when an inexact support is used. We
use four inexact supports, which are obtained by enlarging the true support by 1, 2, 3, and 4 pixels.
Unsurprisingly, the better the estimation of the support is, the better the reconstructed image is.
The Riemannian method is able to recover the image reasonably in these tests.

20

Figure 7: Deconvolution results for unknown supports. Top: the estimated support of the blurring
kernel. Bottom: the reconstructed images using the corresponding above supports. The relative
error relerr from left to right are 0.0440, 0.0484, 0.0522, and 0.0673, respectively.

6 Conclusion

In this paper, we proposed a Riemannian steepest descent method for blind deconvolution. By
inspiring the proofs in [LLSW16], it is proven that the Riemannian method with an appropriate
initialization has high probability to successfully recover the desired signal. Since a quotient mani-
fold is considered, the penalty term that is used to control the norm of h and m is not necessary. The
Hessian at the desired solution is proven to be well-conditioned with high probability and therefore
the optimization is not difficult locally. Numerical experiments show that the Riemannian steepest
descent method is robust to noise, is the most efficient algorithm, and has the empirical largest
successful recovery probability among the alternating minimization algorithm and the algorithm
in [LLSW16].

References

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix mani-
folds. Princeton University Press, Princeton, NJ, 2008.

[ARR14] A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming.
IEEE Transactions on Information Theory, 60(3):1711–1732, March 2014.

21

[BA11] N. Boumal and P.-A. Absil. RTRMC: A Riemannian trust-region method for low-rank
matrix completion. Advances in Neural Information Processing Systems 24 (NIPS),
pages 406–414, 2011.

[Bak08] C. G. Baker. Riemannian manifold trust-region methods with applications to eigen-
problems. PhD thesis, Florida State University, Department of Computational Science,
2008.

[BB88] J. Barzilai and J. M. Borwein. Two-Point Step Size Gradient Methods. IMA Journal
of Numerical Analysis, 8:141–148, 1988.

[BM03] S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization. Mathematical Programming,
95(2):329–357, February 2003. doi:10.1007/s10107-002-0352-8.

[BSA13] N. Boumal, A. Singer, and P.-A. Absil. Robust estimation of rotations from relative
measurements by maximum likelihood. 52nd IEEE Conference on Decision and Con-
trol, (3):1156–1161, December 2013. doi:10.1109/CDC.2013.6760038.

[CE07] P. Campisi and K. Egiazarian. Blind image deconvolution : theory and applications.
CRC press, 2007.

[CLS16] E. J. Candés, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: theory
and algorithms. IEEE Transactions on Information Theory, 64(4):1985–2007, 2016.

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[GV96] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, third edition, 1996.

[HAG15] W. Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian symmetric rank-one trust-
region method. Mathematical Programming, 150(2):179–216, February 2015.

[HAG16] W. Huang, P.-A. Absil, and K. A. Gallivan. Intrinsic representation of tangent vectors
and vector transport on matrix manifolds. Numerische Mathematik, 136(2):523–543,
2016.

[HAG18] Wen Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian BFGS Method without
Differentiated Retraction for Nonconvex Optimization Problems. SIAM Journal on
Optimization, 28(1):470–495, 2018.

[HAGH16] Wen Huang, P.-A. Absil, K. A. Gallivan, and Paul Hand. ROPTLIB: an object-oriented
C++ library for optimization on Riemannian manifolds. Technical Report FSU16-14,
Florida State University, 2016.

[HGA15] W. Huang, K. A. Gallivan, and P.-A. Absil. A Broyden Class of Quasi-Newton Methods
for Riemannian Optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

22

[HGZ17] Wen Huang, K. A. Gallivan, and Xiangxiong Zhang. Solving PhaseLift by low rank
Riemannian optimization methods for complex semidefinite constraints. SIAM Journal
on Scientific Computing, 39(5):B840–B859, 2017.

[Hua13] W. Huang. Optimization algorithms on Riemannian manifolds with applications. PhD
thesis, Florida State University, Department of Mathematics, 2013.

[JC93] S. M. Jefferies and J. C. Christou. Restoration of astronomical images by iterative
blind deconvolution. The Astrophysical Journal, page 415:862, 1993.

[LLJB15] K. Lee, Y. Li, M. Junge, and Y. Bresler. Blind Recovery of Sparse Signals from
Subsampled Convolution. pages 1–43, 2015.

[LLSW16] Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei. Rapid, robust, and reliable
blind deconvolution via nonconvex optimization. CoRR, abs/1606.04933, 2016.

[LS15] S. Ling and T. Strohmer. Self-Calibration and Biconvex Compressive Sensing. Inverse
Problems, 31(11):115002, 2015.

[LWDF11] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating
blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(12):2354–2367, 2011.

[Mis14] B. Mishra. A Riemannian approach to large-scale constrained least-squares with sym-
metries. PhD thesis, University of Liege, 2014.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, second edition, 2006.

[RW12] W. Ring and B. Wirth. Optimization methods on Riemannian manifolds and their
application to shape space. SIAM Journal on Optimization, 22(2):596–627, January
2012. doi:10.1137/11082885X.

[Sat16] H. Sato. A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe
conditions. Computational Optimization and Applications, 64(1):101–118, May 2016.

[SI15] H. Sato and T. Iwai. A new, globally convergent Riemannian conjugate gradient
method. Optimization, 64(4):1011–1031, February 2015.

[SL16] Ruoyu Sun and Zhi Quan Luo. Guaranteed Matrix Completion via Non-Convex Fac-
torization. IEEE Transactions on Information Theory, 62(11):6535–6579, 2016.

[Van13] B. Vandereycken. Low-rank matrix completion by Riemannian optimization—extended
version. SIAM Journal on Optimization, 23(2):1214–1236, 2013.

[WBSJ15] G. Wunder, H. Boche, T. Strohmer, and P. Jung. Sparse Signal Processing Concepts
for Efficient 5G System Design. IEEE Access, 3:195–208, 2015.

[WBX+07] S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang. A
leaf recognition algorithm for plant classification using probabilistic neural network.
2007 IEEE International Symposium on Signal Processing and Information Technology,
pages 11–16, 2007. arXiv:0707.4289v1.

23

[WCCL16] K. Wei, J.-F. Cai, T. F. Chan, and S. Leung. Guarantees of Riemannian Optimization
for Low Rank Matrix Completion. (1), 2016.

[WP98] X. Wang and H. V. Poor. Blind Equalization and Multiuser Detection in Dispersive
CDMA Channels. IEEE Transactions on Communications, 46(1):91–103, 1998.

[YK94] T.-L. You and M. Kaveh. A simple algorithm for joint blur identification and im-
age restoration. Proceedings - International Conference on Image Processing, ICIP,
3(3):167–171, 1994.

[Zhu17] X. Zhu. A Riemannian conjugate gradient method for optimization on the Stiefel
manifold. Computational Optimization and Applications, 67(1):73–110, 2017.

A Four Conditions and the Proof of Theorem 3.2

The convergence analysis of the Riemannian steepest descent method follows the spirit of the anal-
ysis in [LLSW16] and the analyses both rely on the four conditions: local RIP condition, robustness
condition, local regularity condition and local smoothness condition. There exist differences and
the main ones are highlighted as follows. The differences ease the proofs of the Riemannian method
in general.

• The cost function f̃ does not include the penalty terms for the norm of h and m. Therefore,
the penalty terms are not considered in the convergence analysis.

• Since any representation in π−1(π(h,m)) can be used and this does not influence the sequence
{π(hk,mk)} of Q1 generated by Algorithm 4, we can always assume ‖hk‖2 = ‖mk‖2 without
loss of generality.

• The Riemannian gradient is different from the Wirtinger derivative. For the cost function F
in (1.4), if ‖h‖2 = ‖m‖2, then by (4.9) and (3.4), we have

gradF (h,m) =
2

‖hm∗‖2
∇wF (h,m).

Let π(h],m]) denote the ground truth and Υf̃ denote {π(h,m) | f̃(π(h,m)) ≤ 1
3ε

2d2
∗ + ‖e‖22}.

Condition A.1 (Local RIP condition). The following local Restricted Isometry Property for A
holds uniformly for all (h,m) ∈ Πε:

3

4
‖hm∗ − h]m∗]‖2F ≤ ‖A(hm∗ − h]m∗])‖22 ≤

5

4
‖hm∗ − h]m∗]‖2F .

Condition A.2 (Robustness condition). If L ≥ Cγ(σ2/ε2 +σ/ε) max(K,N) log(L), then with high
probability, it holds that

‖A∗(e)‖2 ≤
εd∗

10
√

2
.

Condition A.3 (Local regularity condition). There exists a regularity constant a0 > 0 such that

‖ grad f̃(π(h,m))‖2gπ(h,m)
≥ a0[f̃(π(h,m))− c]+

for all π(h,m) ∈ Ωµ ∩Πε, where c = ‖e‖22 + 1700‖A∗(e)‖22 and a0 = 1/1500.

24

Condition A.4 (Local smoothness condition). Define the lifting function f̂π(h,m) : Tπ(h,m)Q1 →
R : ηπ(h,m) = f̃ ◦ R̃π(h,m)(ηπ(h,m)). There exists a constant aL such that

‖ grad f̂π(h,m)(tηπ(h,m))− grad f̂π(h,m)(0)‖g(h,m)
≤ aLt‖ηπ(h,m)‖g(h,m)

, ∀0 ≤ t ≤ 1,

for all π(h,m) and ηπ(h,m) ∈ Tπ(h,m)Q1 such that R̃π(h,m)(tηπ(h,m)) ∈ Υf̃ ∩ Πε, ∀0 ≤ t ≤ 1, where

R̃ is defined in (4.5).

Conditions A.1 and A.2 are the same as [LLSW16, Conditions 5.1 and 5.2] and have been proven
therein. Conditions A.3 and A.4 are different from[LLSW16, Conditions 5.3 and 5.4] since we use
different penalty term and different gradient and norm. The proofs of Conditions A.3 and A.4 are
given in Section B.

Lemma A.1 generalizes [LLSW16, Lemma 6.1] and is used in Lemma A.2.

Lemma A.1 (Riemannian descent lemma). Suppose Condition A.4 holds. Then

f̂π(h,m)(ηπ(h,m)) ≤ f̂(0π(h,m)) + gπ(h,m)(ηπ(h,m), grad f̃(π(h,m))) + aL‖ηπ(h,m)‖2g,

where 0π(h,m) denotes the origin of Tπ(h,m)Q1.

Proof. Define β(t) = f̂π(h,m)(tηπ(h,m)). We have d
dtβ(t) = g

(
grad f̂π(h,m)(tηπ(h,m)), ηπ(h,m)

)
. It

follows from the Fundamental Theorem of Calculus that

f̂π(h,m)(ηπ(h,m))− f̂(0) =

∫ 1

0

d

dt
β(t)dt =

∫ 1

0
g
(

grad f̂π(h,m)(tηπ(h,m)), ηπ(h,m)

)
dt

=g
(

grad f̂π(h,m)(0π(h,m)), ηπ(h,m)

)
+

∫ 1

0
g
(

grad f̂π(h,m)(tηπ(h,m))− grad f̂π(h,m)(0π(h,m)), ηπ(h,m)

)
dt

≤g
(

grad f̂π(h,m)(0π(h,m)), ηπ(h,m)

)
+ aL‖ηπ(h,m)‖2g.

Therefore, the result holds since grad f̂π(h,m)(0π(h,m)) = grad f̃(π(h,m)), see [AMS08, (4.4)].

Lemma A.2 is used in the proof of Theorem 3.2. Note that this lemma follows from [LLSW16,
Section 5.1].

Lemma A.2. The following properties hold under some of the four conditions.

1. Under conditions A.1 and A.2, function f in (1.5) satisfies

‖e‖22 +
3

4
∆2 − ε∆d∗

5
≤ f(π(h,m)) ≤ ‖e‖22 +

5

4
∆2 +

ε∆d∗
5

(A.1)

for all π(h,m) ∈ Ωµ ∩Πε, where ∆ = ‖hm∗ − h]m∗]‖F .

2. It holds that Υf̃ ⊂ Ωµ; under conditions A.1 and A.2, we have Υf̃ ∩Πε ⊂ Π 9
10
ε.

3. Under conditions A.1 and A.2, if π(h1,m1) ∈ Πε and π ((1− λ)h1 + λh2, (1− λ)m1 + λm2) ∈
Υf̃ for all λ ∈ [0, 1], then π(h2,m2) ∈ Πε.

25

4. Under conditions A.1, A.2 and A.4, suppose the step size α ≤ 1
2aL

, where aL is defined in
Condition A.4 and π(hk,mk) ∈ Πε ∩Υf̃ , then it holds that π(hk+1,mk+1) ∈ Πε ∩Υf̃ and

f̃(π(hk+1,mk+1)) ≤ f̃(π(hk,mk))−
α

2
‖ grad f̃(π(hk,mk))‖2g.

Proof. (1): This has been proven in [LLSW16, (5.5), (5.6)].

(2): If π(h,m) /∈ Ωµ, then G(π(h,m)) ≥ ρG0(2d2
∗

d2). It follows that

f̃(π(h,m)) ≥ρG0(
2d2
∗

d2
) ≥ (d2 + 2.5‖e‖22)

(
2d2
∗

d2
− 1

)2

≥d2

(
2d2
∗

d2
− 1

)2

+ 2.5‖e‖22
(

2d2
∗

d2
− 1

)2

≥ 1

3
ε2d2
∗ + ‖e‖22,

where ρ ≥ d2 + 2.5‖e‖22, ε < 1/15, and 0.9d∗ ≤ d ≤ 1.1d∗. Therefore, π(h,m) /∈ Υf̃ and Υf̃ ⊂ Ωµ.
For any π(h,m) ∈ Υf̃ ∩ Πε, it holds that π(h,m) ∈ Ωµ ∩ Πε. It follows from (A.1) that

‖e‖22 + 3
4∆2 − ε∆d∗

5 ≤ f(π(h,m)) ≤ f̃(π(h,m)) ≤ 1
3ε

2d2
∗ + ‖e‖22, which can be simplified into

45∆2 − 12εd∗∆− 20ε2d2
∗ ≤ 0. This implies ∆ ≤ 0.9εd∗ and hence Υf̃ ∩Πε ⊂ Π 9

10
ε.

(3): Prove by contradiction. If π(h2,m2) /∈ Πε, then there exists λ0 such that

‖ ((1− λ)h1 + λh2) ((1− λ)m1 + λm2)∗ − h1m
∗
1‖ = εd∗,

i.e., π ((1− λ)h1 + λh2, (1− λ)m1 + λm2) ∈ ∂Πε. Therefore, it follows from

π ((1− λ)h1 + λh2, (1− λ)m1 + λm2) ∈ Υf̃

that π ((1− λ)h1 + λh2, (1− λ)m1 + λm2) ∈ Π0.9ε. This is a contradiction.
(4): If grad f̃(π(hk,mk)) = 0, then π(hk+1,mk+1) = π(hk,mk) ∈ Πε∩Υf̃ . Suppose grad f̃(π(hk,mk)) 6=

0. Define the function
φ(λ) = f̂π(hk,mk)(−λ grad f̃(π(hk,mk))).

It follows that φ′(0) = −‖ grad f̃(π(hk,mk))‖2g < 0. By Lemma A.1, we have

φ(λ) ≤φ(0)− λ‖ grad f̃(π(hk,mk))‖2g + aLλ
2‖ grad f̃(π(hk,mk))‖2g (A.2)

=φ(0) + (aLλ
2 − λ)‖ grad f̃(π(hk,mk))‖2g ≤ φ(0) (A.3)

for all λ ∈ [0, α]. Therefore, by (3) in Lemma A.2, we have π(hk+1,mk+1) ∈ Πε ∩Υf̃ . Using (A.3)
yields

f̃(π(hk+1,mk+1)) ≤ f̃(π(hk,mk))−
α

2
‖ grad f̃(π(hk,mk))‖2g.

Now, we are ready to prove Theorem 3.2. With the four conditions, the proof follows from the
proof in [LLSW16] and we give here for completeness.

26

Proof. Since π(h0,m0) ∈ Ω 1
2
µ ∩Π 2

5
ε, we have

L|b∗ih0|2‖m0‖22
8d2µ2

≤ L

8d2µ2

4d2
∗µ

2

L
≤ d2

∗
2d2

< 1,

where
√
L‖Bh0‖∞‖m‖2 ≤ 2d∗µ. Therefore, the penalty term G(π(h0,m0)) = 0. Combining (A.1)

and ∆ ≤ 2
5εd∗ yields

f̃(π(h,m)) = f(π(h,m)) ≤ ‖e‖22 +
5

4
∆2 +

ε∆d∗
5
≤ 1

3
ε2d2
∗ + ‖e‖22,

which implies π(h0,m0) ∈ Υf̃ . It follows from (4) in Lemma A.2 and Condition A.3 that

f̃(π(hk+1,mk+1)) ≤ f̃(π(hk,mk))−
αa0

2

[
f̃(π(hk,mk))− c

]
+

and π(hk,mk) ∈ Ωµ ∩Πε for all k. Therefore, we have

f̃(π(hk+1,mk+1))− c ≤
(

1− αa0

2

) [
f̃(π(hk,mk))− c

]
+

which implies [
f̃(π(hk+1,mk+1))− c

]
+
≤
(

1− αa0

2

) [
f̃(π(hk,mk))− c

]
+
.

Thus, we obtain[
f̃(π(hk,mk))− c

]
+
≤
(

1− αa0

2

)k [
f̃(π(h0,m0))− c

]
+
≤ 1

3

(
1− αa0

2

)k
ε2d2
∗,

where we use f̃(π(h0,m0)) ≤ 1
3ε

2d2
∗ + ‖e‖22 and c = ‖e‖22 + 1700‖A∗(e)‖22 ≥ ‖e‖22. We also have

f̃(π(hk,mk))− ‖e‖22 ≥‖A(hkm
∗
k − h]m∗])‖22 − 2Re(

〈
A∗(e), hkm∗k − h]m∗]

〉
2
)

≥3

4
‖hkm∗k − h]m∗]‖2F − 2

√
2‖A∗(e)‖2‖hkm∗k − h]m∗]‖F .

It follows that

1

3

(
1− αa0

2

)k
ε2d2
∗ ≥

[
f̃(π(hk,mk))− c

]
+
≥ 3

4
‖hkm∗k−h]m∗]‖2F−2

√
2‖A∗(e)‖2‖hkm∗k−h]m∗]‖F−1700‖A∗(e)‖22,

which is equivalent to∣∣∣∣∣‖hkm∗k − h]m∗]‖F − 4
√

2

3
‖A∗(e)‖2

∣∣∣∣∣
2

≤ 4

9

(
1− αa0

2

)t
ε2d2
∗ + (

6800

3
+

32

9
)‖A∗(e)‖22.

Solving for ‖hkmT
k − h]mT

] ‖F yields

‖hkmT
k − h]mT

] ‖F ≤
2

3

(
1− αa0

2

)k/2
εd∗ + 50‖A∗(e)‖2.

The upper bound for ‖A∗(e)‖2 has been proven in [LLSW16].

27

B Proofs of Conditions A.3 and A.4 and Theorem 3.1

Define function f̃T = f̃ ◦ π, fT = f ◦ π, and GT = G ◦ π, which is defined in the total space
RK∗ ×RN∗ . Since the function value fT(h,m) and ‖ grad fT(h,m)‖g are independent of representation
in π−1(π(h,m)), we can always choose h and m such that ‖h‖2 = ‖m‖2. For all π(h,m) ∈ Πε, we
have ‖h‖2‖m‖2 = ‖hm∗‖F ≤ ‖hm∗ − h]m∗]‖F + ‖h]m∗]‖F ≤ (1 + ε)d∗ and ‖h‖2‖m‖2 = ‖hm∗‖F ≥
‖h]m∗]‖F − ‖hm∗ − h]m∗]‖F ≥ (1− ε)d∗. It follows that

(h,m) ∈ Ωd :=

{
(h,m) |

√
14

15
d∗ ≤ ‖h‖2 = ‖m‖2 ≤

√
16

15
d∗

}
, (B.1)

for all π(h,m) ∈ Πε and ε ≤ 1/15. There are unique orthogonal decompositions

h = τ1h] + h̃ and m = τ2m] + m̃,

where h̃∗h] = 0 and m̃∗m] = 0. Let

ĥ = h− τh] and m̂ = m− τ̄−1m],

where τ = 1
(1− ∆

10d∗
)τ̄2

.

Lemma B.1. For all (h,m) such that (h,m) ∈ Ωd and π(h,m) ∈ Πε with ε ≤ 1/15, it holds
that ‖ĥ‖22 ≤ 6.1∆2/d∗, ‖m̂‖22 ≤ 6.1∆2/d∗, and ‖ĥ‖22‖m̂‖22 ≤ 8.4∆4/d2

∗. Moreover, if we assume
π(h,m) ∈ Ωµ additionally, we have

√
L‖B(ĥ)‖∞ ≤ 6µ

√
d∗.

Proof. Inequalities ‖ĥ‖22 ≤ 6.1∆2/d∗, ‖m̂‖22 ≤ 6.1∆2/d∗, and ‖ĥ‖22‖m̂‖22 ≤ 8.4∆4/d2
∗ have been

proven in [LLSW16, Lemma 5.15]. Note the definition of Ωµ and (B.1), we have {(h,m) |√
L‖Bh‖∞‖m‖2 ≤ 4d∗µ, ‖h‖2 = ‖m‖2} ⊂ {(h,m) |

√
L‖Bh‖∞ ≤ 4.5

√
d∗µ}. We also have |τ1τ̄2| ≥

1−ε by [LLSW16, Lemma 5.9] and |τ1| ≤ ‖h‖2
‖h]‖2 =

√
‖h‖2‖m‖2
‖h]‖2‖m]‖2 ≤

√
‖hm∗−h]m∗] ‖F+‖h]m∗] ‖F

d∗
≤
√

1 + ε.

Therefore, it holds that

√
L‖B(ĥ)‖∞ ≤

√
L‖B(h)‖∞ +

1

(1− ∆
10d∗

)τ̄2

√
L‖B(h])‖∞

=4.5µ
√
d∗ +

√
1 + ε

(1− ∆
10d∗

)(1− ε)
≤ 5.7µ

√
d∗,

where ∆/d∗ ≤ ε ≤ 1/15.

Lemma 2.3 is the [LLSW16, Lemm 5.16] and is used in the proof of Condition A.3.

Lemma B.2. For all (h,m) such that (h,m) ∈ Ωd and π(h,m) ∈ Πε ∩ Ωµ with ε ≤ 1/15, it
uniformly holds that

Re
(〈
∇wh fT, ĥ

〉
2

+ 〈∇wmfT, m̂〉2
)
≥ ∆2

8
− 2∆‖A∗(e)‖2,

provided L ≥ a3µ
2(K +N) log2(L) for some constant a3, where ∇w denotes the Wirtinger deriva-

tive (3.4).

28

Lemma B.3. For all (h,m) such that (h,m) ∈ Ωd and π(h,m) ∈ Πε with ε ≤ 1/15 and 9
10d∗ ≤

d ≤ 11
10d∗, it uniformly holds that

Re
(〈
∇whGT, ĥ

〉
2

+ 〈∇wmGT, m̂〉2
)
≥ ∆

5d∗

√
ρG(π(h,m)),

where ρ ≥ d2 + 2.5‖e‖22.

Proof. We have

〈
∇hGT, ĥ

〉
2

+ 〈∇mGT, m̂〉2 =
Lρ

4d2µ2

L∑
i=1

G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)〈
bib
∗
ih, ĥ

〉
2
‖m‖22

+
Lρ

4d2µ2

L∑
i=1

G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
〈m, m̂〉2|b

∗
ih|2

When L|b∗ih|2‖m‖22 ≤ 8d2µ2, we have

Lρ

4d2µ2

L∑
i=1

G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)〈
bib
∗
ih, ĥ

〉
2
‖m‖22 =0 =

ρ

5
G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
and

Lρ

4d2µ2

L∑
i=1

G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
〈m, m̂〉2|b

∗
ih|2 =0 =

ρ

5
G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)

When L|b∗ih|2‖m‖22 > 8d2µ2, by [LLSW16, Lemma 5.9] and (B.1), it holds that |τ1τ̄2 − 1| ≤ ∆
d∗

,
|τ1| ≤ 2, which yields

τ =
1

(1− ∆
10d∗

)|τ̄2|
=

|τ1|
(1− ∆

10d∗
)|τ1τ̄2|

≤ 2

(1− ∆
10d∗

)(1− ∆
d∗

)
.

By µh ≤ µ and ∆/d∗ ≤ ε ≤ 1/15, we obtain

Re(
〈
bib
∗
ih, ĥ

〉
2
) =Re(|b∗ih|2 − τ〈b∗ih, b∗ih]〉2)

≥|b∗ih|(|b∗ih| −
2

(1− ∆
10d∗

)(1− ∆
d∗

)
|b∗ih]|)

≥|b∗ih|(|b∗ih| −
2µ

(1− ∆
10d∗

)(1− ∆
d∗

)

√
d∗
L

) (by |b∗ih]| ≤ µh
√
d∗/L)

≥

√
8d2µ2

L‖m‖22

(√
8d2µ2

L‖m‖22
− 2µ

(1− ∆
10d∗

)(1− ∆
d∗

)

√
d∗
L

)

≥

√
8d2µ2

L‖m‖22

(√
8d2µ2

L‖m‖22
− 2µ

(1− ∆
10d∗

)(1− ∆
d∗

)

√
10d

9L

16

15

10

9

d

‖m‖22

)
(by (B.1) and d∗ ≤ 10

9 d)

≥ 4d2µ2

5L‖m‖22
.

29

Therefore,

Lρ‖m‖22
4d2µ2

G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
Re
(〈
bib
∗
ih, ĥ

〉
2

)
≥ ρ

5
G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
.

We also have

Re(〈m, m̂〉2) = Re(
〈
m,m− τ̄−1m]

〉
2
) =

∆

10d∗
‖m‖22 +

(
1− ∆

10d∗

)
‖m̃‖22 ≥

∆

10d∗
‖m‖22.

It follows that

Lρ

4d2µ2
G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
Re(〈m, m̂〉2)|b∗ih|2 ≥

Lρ

4d2µ2
G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
∆

10d∗
‖m‖22

8d2µ2

L‖m‖22

≥ ρ

75
G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)
.

Therefore, we have

Re
(〈
∇hGT, ĥ

〉
2

+ 〈∇mGT, m̂〉2
)
≥

L∑
i=1

16ρ

75
G′0

(
L|b∗ih|2‖m‖22

8d2µ2

)

=
32ρ

75

L∑
i=1

√
G0

(
L|b∗ih|2‖m‖22

8d2µ2

)
≥ 32ρ

75

√√√√ L∑
i=1

G0

(
L|b∗ih|2‖m‖22

8d2µ2

)
=

32

75

√
ρG(π(h,m))

The final result follows from the above inequality, (3.4) and ∆/d∗ ≤ 1/15.

Proof of Condition A.3. Suppose (h,m) satisfies (h,m) ∈ Ωd and π(h,m) ∈ Πε ∩ Ωµ with
ε ≤ 1/15. Since Lemmas B.1, B.2 and B.3 are exactly the same as [LLSW16, Lemma 5.15,
Lemma 5.16, and Lemma 5.17], we have the same result as [LLSW16, Lemma 5.18], i.e.,

‖∇wf̃T(h,m)‖22 ≥
d∗

5000
[f̃(π(h,m))− c]+

By Lemma 4.4 and (3.4), ‖h‖2 = ‖m‖2 implies that

∇wf̃T(h,m) =
1

2
P h(h,m)∇f̃T(h,m) =

‖h‖2‖m‖2
2

(
grad f̃(π(h,m))

)
↑(h,m)

.

By definition of the induced-norm, we have

‖ grad f̃(π(h,m))‖2gπ(h,m)
=

4

‖h‖2‖m‖2
‖∇wf̃T(h,m)‖22

≥ 1

1500
[f̃(π(h,m))− c]+. (B.2)

Since ‖ grad f̃(π(h,m))‖2gπ(h,m)
and f̃(π(h,m)) are independent of representation in π−1(π(h,m)),

we have that (B.2) holds for all π(h,m) ∈ Πε ∩ Ωµ with ε ≤ 1/15.

30

Proof of Condition A.4. By [LLSW16, Condition 5.4], we have∥∥∥(∇f̃T(tη↑(h,m)
)
)
−
(
∇f̃T(0)

)∥∥∥
2
≤ ãLt‖η↑(h,m)

‖2, ∀0 ≤ t ≤ 1,

for some positive ãL. Choosing (h,m) such that ‖h‖2 = ‖m‖2 yields that

14

15
d∗‖ξ↑(h,m)

‖22 ≤ ‖ξ↑(h,m)
‖2g ≤

16

15
d∗‖ξ↑(h,m)

‖22,

and ∇f̃T(ξ↑(h,m)
) = ‖h‖2‖m‖2

(
grad f̂π(h,m)(ξπ(h,m))

)
↑(h,m)

for all ξπ(h,m) ∈ Tπ(h,m)Q1. Therefore,

we have

‖ grad f̂π(h,m)(tηπ(h,m))− grad f̂π(h,m)(0)‖g(h,m)
≤ 8

7

15

14d∗
ãLt‖ηπ(h,m)‖g(h,m)

, ∀ 0 ≤ t ≤ 1,

where ‖h‖2‖m‖2 ≥ 14d∗/15 from (B.1) is used. Note that both sides are independent of represen-
tation of (h,m) ∈ π−1(π(h,m)), we completed the proof.

31

	1 Introduction
	2 Problem Statement
	3 Optimization Algorithm and Theoretical Results
	3.1 Initialization
	3.2 Convergence Analysis

	4 Riemannian Optimization
	4.1 Fixed-rank Manifold and Two-Factor Representation
	4.2 Retraction and Vector transport
	4.3 Riemannian Gradient
	4.4 A Riemannian Steepest Descent Algorithm
	4.5 Local Convexity

	5 Experiments
	5.1 Environment, Step Size, Problem Setting and Complexities
	5.2 Efficiency
	5.3 Number of Measurements vs Success Rate
	5.4 Noisy Measurements
	5.5 Natural Image

	6 Conclusion
	A Four Conditions and the Proof of Theorem 3.2
	B Proofs of Conditions A.3 and A.4 and Theorem 3.1

