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Abstract

We study the problem of packing arborescences in the random digraph D(n, p),
where each possible arc is included uniformly at random with probability p = p(n).
Let λ(D(n, p)) denote the largest integer λ ≥ 0 such that, for all 0 ≤ ` ≤ λ, we
have

∑`−1
i=0(`− i)|{v : din(v) = i}| ≤ `. We show that the maximum number of arc-

disjoint arborescences in D(n, p) is λ(D(n, p)) a.a.s. We also give tight estimates
for λ(D(n, p)) depending on the range of p.

1 Introduction and main result

Many important problems in discrete mathematics deal with packing structures with some
desired property into a larger structure, and their goal is typically to find as many disjoint
structures with the desired property as possible. Several classical results in combinato-
rial optimization fit into this general framework. For instance, the maximum matching
problem can be seen as packing vertex-disjoint edges. We also highlight Tutte’s [21]
and Nash-Williams’s [20] results on packing spanning trees, as well as Menger’s [19] and
Mader’s [18] results on packing paths. See the book by Cornuéjols [6] for many more
examples.

Given the extensive literature on this topic, it is only natural that there is a great
number of packing results in extremal combinatorics and random structures. For instance,
the problem of packing Hamiltonian cycles in random structures has been studied quite
intensively since the 1980s (see [3, 4, 5, 11, 15, 16, 17]). In the particular case of digraphs,
some significant results have been obtained recently (see [7, 8, 9]).

Recently, Gao, Pérez-Giménez and the third author [12, 13] obtained results concern-
ing packing spanning trees in random graphs. As usual, given a function p : N → [0, 1]
and a positive integer n, we let G(n, p) be the random graph on [n] = {1, . . . , n} such that
each edge is included independently with probability p. Moreover, given a sequence of
probability spaces (Ωi,Fi,Pri)i∈N, we say that a sequence of events (Ai)i∈N holds asymp-
totically almost surely (a.a.s. for short) if Prn(An)→ 1 as n→∞.
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Theorem 1.1 (Pu–Pérez-Giménez–Sato1 [12, 13]). For p = p(n) ∈ [0, 1], the maximum
number of edge-disjoint spanning trees in G(n, p) is a.a.s.

min
{
δ(G(n, p)),

⌊
m(G(n, p))/(n− 1)

⌋}
.

It is easy to see that δ(G(n, p)) and
⌊
m(G(n, p))/(n − 1)

⌋
are upper bounds for the

number of edge-disjoint spanning trees since every spanning tree has at least one edge
incident to every vertex and has exactly n−1 edges. The following classical result proved
by Tutte and Nash-Williams is the main tool in [12, 13] to prove that the maximum is
achieved by one of these two parameters.

Theorem 1.2 (Tutte [21] and Nash-Williams [20]). Given a graph G = (V,E) and an
integer k ≥ 0, G contains k edge-disjoint spanning trees if and only if, for every partition
of V with ` parts, the number of edges with ends in different parts is at least k(`− 1).

It is quite natural that this result (which is actually a min-max relation) can be suc-
cessfully used for random graphs since the partition condition is essentially an expansion
condition and random graphs are well known to have nice expansion properties.

Our main result is an analogue of Theorem 1.1 for digraphs. A digraph D = (V,A)
is given by its finite set V of vertices and its set A ⊂ {(u, v) ∈ V 2 : u 6= v} of arcs. We
say that an arc (u, v) leaves u and enters v, or, alternatively, that it points at v. The
underlying graph of a digraph D = (V,A) is the graph (actually multigraph) obtained by
ignoring orientations on arcs. Our result deals with packing arborescences, which are an
analogue of spanning trees in digraphs. Indeed, an arborescence of a digraph is a spanning
sub-digraph such that its underlying graph is a rooted tree and each vertex except the
root has in-degree 1 and the root has in-degree zero. Roughly speaking, an arborescence
is a spanning tree with the arcs “pointing away” from the root. Let D(n, p) denote the
random digraph on [n] = {1, . . . , n} such that each arc is included independently at
random with probability p. Let τ(D(n, p)) denote the maximum number of arc-disjoint
arborescences in D(n, p). For every digraph D and v ∈ D, let the in-degree dinD (v) of v
be the number of arcs entering v in D, while the out-degree doutD (v) of v is the number of
arcs leaving v in D. Our main result may be stated as follows.

Theorem 1.3. For every p = p(n) ∈ [0, 1], the maximum number of arc-disjoint arbores-
cences in D(n, p) a.a.s. satisfies

τ(D(n, p)) = λ(D(n, p)), (1)

where λ(D(n, p)) is the maximum integer λ ≥ 0 such that, for all 0 ≤ ` ≤ λ,

`−1∑
i=0

(`− i)|{v : dinD(n,p)(v) = i}| ≤ `. (2)

Moreover,

(a) if p = (log(n)− h(n))/(n− 1) with h(n) = ω(1), then λ(D(n, p)) = 0 a.a.s.;

(b) if p = (log(n)+h(n))/(n−1) with h(n) = O(log log n), then λ(D(n, p)) ∈ {δin, δin+
1} a.a.s.;

1The result stated here is not the strongest result obtained in [12, 13].
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(c) if p = (log(n) + h(n))/(n − 1) with h(n) = o(log n) and h(n) = Ω(log log n), then
λ(D(n, p)) ∼ δin a.a.s.

One interesting feature of our result is that τ(D(n, p)) has a very strong relation with
the number of vertices with low degrees. This differs from the graph case in the following
sense. Theorem 1.1 tells us that, for random graphs, the obstacles to pack spanning trees
are quite simple: either we do not have enough edges to get more spanning trees or we
exhausted the edges incident with a vertex. Our result shows that for random digraphs
the obstacles to pack arborescences are more intricate while still arising from natural
constraints. This is due to the fact that the root of an arborescence plays a special role,
which does not happen for undirected graphs. In our case, the reason why λ(D(n, p))
is an upper bound for τ(D(n, p)) is that, in order to pack ` arborescences, every vertex
of D(n, p) whose in-degree is ` − i must be the root of at least i arborescences since its
in-degree would be exhausted. Quite interestingly, our condition does not involve the
out-degrees.

Similarly to the undirected case, the core of our proof relies on a result on combina-
torial optimization, which was proved by Frank [10] and is an analogue of Theorem 1.2
for digraphs. Instead of dealing with partitions, Frank’s result imposes conditions on
subpartitions. A subpartition of a set S is a collection of pairwise disjoint non-empty
subsets of S. Note that, unlike a partition, a subpartition does not need to include every
element of S. For every digraph D = (V,A) and S ⊆ V , let dinD (S) denote the number of
arcs entering S (from V \ S). For future reference, let also doutD (S) be the number of arcs
leaving S (to V \ S) in D.

Theorem 1.4 (Frank [10]). Let D = (V,A) be a digraph and let k ≥ 0 be an integer.
Then D contains k arc-disjoint arborescences if, and only if, for every subpartition P
of V , we have ∑

U∈P

dinD (U) ≥ k(|P| − 1). (3)

One of the difficulties of working with subpartitions instead of partitions is that some
vertices may be not included in any part and the arcs entering such vertices do not
contribute to the summation in (3), which is something that did not occur in the graph
case.

In terms of previous results about arborescences in random digraphs, Bal, Bennett,
Cooper, Frieze, and Pra lat [2] have proved that in the random digraph process (where
the arcs are added one-by-one), the digraph contains an arborescence a.a.s. in the step
where there is single a vertex with in-degree zero2.
Organization of the paper. This paper is organized as follows. In Section 2, we
introduce the main definitions and notation used in the paper. In Section 3, we present the
main properties of D(n, p) that are used: in Section 3.2 we study properties of the degrees
in D(n, p); in Section 3.3 we show the relation between λ(D(n, p)) and the minimum in-
degree; and in Section 3.4 we prove a few basic expansion properties of D(n, p). Finally,
in Section 4 we combine the results from Section 3 with the result by Frank (Theorem 1.4)
to complete the proof of Theorem 1.3.

2This is part of their main result about rainbow arborescences.
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2 Definitions and notation

In this section, we define the main concepts used in this paper. We will repeat a few
definitions already presented in the introduction so that the reader can easily find any of
them.

Definition 2.1. (Random digraph D(n, p)) Given a function p = p(n) : N → [0, 1], let
D(n, p) denote the random digraph with vertex set [n] = {1, 2, . . . , n} such that each of
the n(n− 1) arcs is included independently at random with probability p.

Definition 2.2. (Neighbourhoods and degrees) Given a digraph D = (V,A) and v ∈ V ,
we define the in-neighbourhood of v, denoted by ΓinD (v), as the set {u ∈ V : (u, v) ∈ A}.
Similarly, we define the out-neighbourhood of v, denoted by ΓoutD (v), as the set {u ∈
V : (v, u) ∈ A}. Moreover, we define the in-degree of v as dinD (v) = |ΓinD (v)| and the
out-degree of v as doutD (v) = |ΓoutD (v)|. That is, dinD (v) is the number of arcs “entering” v
and doutD (v) is the number of arcs “leaving” v. Let δin(D) = minv∈V d

in
D (v) and δout(D) =

minv∈V d
out
D (v).

Definition 2.3. (Cuts) Given a digraph D = (V,A) and disjoint sets S, S ′ ⊆ V , we
define AD(S, S ′) as the set of arcs (u, v) ∈ A such that u ∈ S and v ∈ S ′.
Definition 2.4. (Induced digraphs) Given a digraph D = (V,A) and S ⊆ V , we define
D[S] as the digraph with vertex set S with edge set AD[S] = {(u, v) ∈ A : u ∈ S, v ∈ S}.
Definition 2.5. (Arborescences) An arborescence of a digraph D = (V,A) is a digraph
T = (V,AT ) where AT ⊆ A such that the underlying graph of T is tree and each vertex
except the root has in-degree 1 and the root has in-degree zero. Let τ(D) denote the
maximum number of arc-disjoint arborescences in D.

Definition 2.6. Given a digraph D = (V,A), let λ(D) denote the maximum integer
λ ≥ 0 such that, for all 0 ≤ ` ≤ λ,

`−1∑
i=0

(`− i)|{v : dinD (v) = i}| ≤ `. (4)

We use din(v) to denote dinD(n,p)(v) for ease of notation. Similarly, dout(v) = doutD(n,p)(v),

δin = δin(D(n, p)), δout = δout(D(n, p)), τ = τ(D(n, p)) and λ = λ(D(n, p)), and so on.
In all results in this paper, except stated otherwise, the probability space is the one

defined by D(n, p) and the asymptotics are for n going to infinity. We use standard
asymptotic notation, which may be found in [14, Section 1.2].

In many proofs, we will use the well known subsubsequence principle, which states
that, if x is a constant and (xn) is a real sequence whose subsequences always have a
subsubsequence converging to x, then xn → x.

3 Properties of the random digraph D(n, p)
In this section, we study the behaviour of the degrees in D(n, p). We also prove some
simple properties about cuts in D(n, p). In Section 3.1, we state two basic results on
binomial random variables that are used throughout the paper. For basic probabilistic
results (such as Markov’s and Chebyshev’s inequality), we refer the reader to Alon and
Spencer [1].
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3.1 Properties of binomial random variables

In this section, we state two results on binomial random variables.

Theorem 3.1 (Chernoff’s bounds [14]). Let X1, . . . , Xn denote n independent Bernoulli
variables. Let X =

∑n
i=1Xi and let µ = E[X]. Then, for any 0 < τ < 1,

Pr(X ≥ (1 + τ)µ) ≤ e−τ
2µ/3, (5)

Pr(X ≤ (1− τ)µ) ≤ e−τ
2µ/2. (6)

Lemma 3.2 (Lemma 16 [12, 13]). For every constant η > 0 there exist positive constants
C1 and C2 such that the following holds for any function 0 ≤ p = p(n) ≤ 1/

√
n and every

integer 0 < k ≤ (1− η)np. Let X ∼ Bin(n, p). Then,

Pr(X ≤ k) = C

(
e−pn√
k

)(epn
k

)k
, with C1 ≤ C ≤ C2. (7)

3.2 Degrees in D(n, p)

In this section, we present some results on the minimum in-degree and out-degree in
D(n, p). We also prove some properties of vertices with low degree.

The following lemma is an application of Lemma 3.2 to the in-degrees and out-degrees
of D(n, p).

Lemma 3.3. Let 0 < η < 1 be a constant. There exist constants C1 > 0 and C2 > 0 such
that, for any function α = α(n) ∈ (0, 1−η] and any function p satisfying 0.9 log n/(n−1) ≤
p ≤ 1/

√
n, the following holds3:

(i) There exists C = C(n) ∈ [C1, C2] such that, for every v ∈ [n],

Pr
(
din/out(v) ≤ αp(n− 1)

)
=

C√
αp(n− 1)

exp
(
−p(n− 1)

(
1− α log

( e
α

)))
.

(ii) Pr
(
δin/out ≤ αp(n− 1)

)
≤ C2√

αp(n− 1)
exp

(
log n− p(n− 1) (1− α log (e/α))

)
;

(iii) Pr
(
δin/out > αp(n− 1)

)
≤
√
αp(n− 1)

C1

exp
(
p(n− 1) (1− α log (e/α))− log n

)
.

(iv) Pr
(
∃v ∈ [n] s.t. min{din(v), dout(v)} ≤ αp(n− 1)

)
≤ (C2)2

αp(n− 1)
exp

(
log n− 2p(n− 1)

(
1− α log

( e
α

)))
.

Proof. The proof of (i)–(iii) is basically the same as the proof of [12, 13, Lemma 18]. We
include it here for the sake of completeness.

3Here we use din/out(v) to denote either din(v) or dout(v).
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For every v ∈ V , the in-degree din(v) of v has distribution Bin(n − 1, p). Thus, by
Lemma 3.2, there exist C1 and C2 (depending only on η) and a constant C = C(n) ∈
[C1, C2] such that

Pr
(
din(v) ≤ αp(n− 1)

)
= C

(
e−p(n−1)√
αp(n− 1)

)( e
α

)αp(n−1)

=
C√

αp(n− 1)
exp

(
−p(n− 1)

(
1− α log

( e
α

)))
. (8)

This proves (i). Let Y denote the number of vertices v ∈ [n] such that din(v) ≤ αp(n−1).
Then, by (8), we conclude that

E(Y ) ≥ C1√
αp(n− 1)

exp
(

log n− p(n− 1)
(

1− α log
( e
α

)))
and

E(Y ) ≤ C2√
αp(n− 1)

exp
(

log n− p(n− 1)
(

1− α log
( e
α

)))
. (9)

Thus, (ii) follows by applying Markov’s inequality. Since the in-degrees of distinct vertices
are independent random variables, Y is a binomial random variable with probability p′

given by (8). Thus, Var(Y ) = np′(1 − p′) ≤ EY and so, by Chebyshev’s inequality, we
obtain

Pr(Y = 0) ≤ Var(Y )

(EY )2
≤ 1

EY
≤
√
αp(n− 1)

C1

exp
(
− log n+ p(n− 1)

(
1− α log

( e
α

)))
.

Proving (i), (ii) and (iii) for dout and δout is analogous.
For any v ∈ [n], (iv) follows trivially from (9) (and its analogue for dout(v)) and the

fact that din(v) and dout(v) are independent random variables. �

Corollary 3.4. Let α ∈ (0, 1) and let h(n) be a function such that h(n) = o(log n). Let
p = p(n) = (log(n) + h(n))/(n − 1). Then there is C > 0 such that δin < α log n with
probability at least 1− n−C .

Proof. It suffices to prove the result for h(n) ≥ 0. Let α ∈ (0, 1) be a constant. Note
that β := 1− α log (e/α) is a constant less than 1. Lemma 3.3(iii) leads to

Pr(δin > αp(n− 1)) ≤
√
αp(n− 1)

C1

exp
(
β(log n+ h(n))− log n

)
= o(n(β−1)/2).

�

Lemma 3.5. Let p = p(n) = (log(n) + h(n))/(n − 1) be such that h(n) ≤ C ′ log log n,
where C ′ is a positive constant. Then, for any constant C > C ′, δin ≤ C a.a.s.

Proof. The expected number of vertices with in-degree C in D(n, p) is

n

(
n− 1

C

)
pC(1− p)n−C−1 ≥ exp (log n+ C log log n− C logC − (n− 1)p+ o(1))

≥ exp (−h(n) + C log log n− C logC + o(1)) = ω(1).

As in the proof of Lemma 3.3(iii), we may apply Chebyshev’s inequality to conclude that
the minimum in-degree is at most C a.a.s. �
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It turns out that the following real function appears often in our paper:

F (x) = 1− x log
e

x
= 1− x+ x log x. (10)

This is a continuous and strictly decreasing function for x ∈ (0, 1). Moreover, F (1) = 0
and limx→0+ F (x) = 1. In particular, for every φ > 1, there exists a single α ∈ (0, 1) such
that F (α) = 1/φ.

Corollary 3.6. Let φ > 1 be a constant. Let α ∈ (0, 1) be such that F (α) = 1 −
α + α logα = 1/φ. For p = p(n) ∼ φ log(n)/(n − 1), we have δin ∼ αp(n − 1) and
δout ∼ αp(n− 1) a.a.s.

Proof. Let γ = γ(n) be such that γ(n) log n = p(n − 1). Thus, γ ∼ φ. Let ε ∈
(0,min{α, 1− α}) be a constant.

We have limn→∞ γ(n)F (α + ε) < F (α) limn→∞ γ(n) = 1 and then by Lemma 3.3(iii),
we obtain δin ≤ (α + ε)p(n − 1) with probability going to 1. On the other hand, since
limn→∞(γ(n)F (α− ε)) > 1, by Lemma 3.3(ii), we have δin ≥ (α − ε)p(n− 1) a.a.s. The
proof for δout is similar. �

Definition 3.7. We say that a vertex v ∈ [n] is ε-in-light if din(v) ≤ δin + εnp and
ε-out-light if dout(v) ≤ δout + εnp.

Lemma 3.8. For every constant ϕ ≥ 0.9, there exists ε > 0 such that the following holds
for sufficiently large n. For any 0.9 log n/(n− 1) ≤ p ≤ ϕ log n/(n− 1), with probability
at least 1 − n−0.18, there is no pair (u, v) of ε-in-light vertices such that uv ∈ A or
Γin(v)∩Γin(u) 6= ∅ and there is no pair (u, v) of ε-out-light vertices such that uv ∈ A or
Γout(v) ∩ Γout(u) 6= ∅.

Proof. We claim that it is possible to choose α and ε so that, for large n, we have

Pr(δin > α(n− 1)p) ≤ n−0.19 and Pr(din(v) ≤ (α + ε)p(n− 1)) ≤ n−0.7, ∀v ∈ V. (11)

Assuming that this claim holds, and conditioning on the event that δin ≤ α(n− 1)p, let
S be the set of vertices v ∈ [n] such that din(v) ≤ (α+ ε)p(n− 1). Note that S contains
all ε-in-light vertices. Then, for any vertices u, v ∈ V , by our choice of α and ε, we have

Pr (uv ∈ A, u ∈ S and v ∈ S) = pPr(v ∈ S|uv ∈ A) Pr(u ∈ S|uv ∈ A)

≤ (1 + o(1))pn−1.4.

Since we have at most n(n − 1) choices for (u, v) and p ≤ ϕ log n/(n − 1), the expected
number of pairs of adjacent vertices in S is (1 + o(1))ϕn−0.4 log n. Thus, the probability
that there are adjacent ε-in-light vertices is at most n−0.19+(1+o(1))ϕn−0.4 log n ≤ 1

4
n−0.18

for sufficiently large n.
For any vertices u, v, z ∈ V , by our choice of α and ε, we have

Pr (zu, zv ∈ A, u ∈ S and v ∈ S) = p2 Pr(v ∈ S|zv ∈ A) Pr(u ∈ S|zu ∈ A)

≤ (1 + o(1))p2n−1.4.

Hence, since we have at most n(n− 1)(n− 2) choices for (u, v, z) and p ≤ ϕ log n/(n− 1),
the expected number of pairs of adjacent ε-in-light vertices is (1 + o(1))ϕn−0.4 log2 n and
the result follows as above. Note that the same argument applies for the out-degree.

7



Finally we show how to choose α and ε to obtain the desired bounds for the prob-
abilities in (11). To this end, let F (x) = 1 − x + x log x be the function defined
in (10), and let β be the constant such that β ∼ (n − 1)p/ log n. By hypothesis,
0.9 ≤ β ≤ ϕ. Choose α so that βF (α) = 0.81. Then the RHS of Lemma 3.3(iii) is
at most O(1) exp(−0.2 log n+ (1/2) log log n) ≤ n−0.19. We can then choose ε > 0 so that
βF (α + ε) = 0.71 and the RHS of Lemma 3.3(i) becomes O(1) exp(−β log nF (α + ε) −
(1/2) log log n) ≤ exp(−0.7 log n− (1/2) log log n) ≤ n−0.7. �

The next result follows immediately from Chernoff’s inequality (Theorem 3.1).

Lemma 3.9. Let ψ = ψ(n) = ω(1) and φ = 1/
√

log n. Let p = p(n) be such that
(n− 1)p = ψ log n a.a.s. for all v ∈ [v] we have (1−φ)p(n− 1) ≤ din(v) ≤ (1 +φ)p(n− 1)
and (1− φ)p(n− 1) ≤ dout(v) ≤ (1 + φ)p(n− 1).

For a function p : N → [0, 1] and integers n, k ∈ N, we consider the random variable
Yk = Yk(D(n, p)) that counts the number of vertices of in-degree k in D(n, p).

Definition 3.10. Let δ∗ = δ∗(D(n, p)) denote the minimum integer k ≥ 0 such that
E [Yk] ≥ 1 in D(n, p).

The following result shows the relation between δ∗ and δin.

Lemma 3.11. Let p = p(n) ∼ log(n)/(n − 1). Then δin ∈ {δ∗ − 1, δ∗, δ∗ + 1} a.a.s.
Moreover, we have that, if E [Yδ∗−1] = o(1), then δin ∈ {δ∗, δ∗+1} and, if E [Yδ∗−1] = Ω(1),
then δin ∈ {δ∗ − 1, δ∗}.

Proof. It is straightforward to show that there exists k∗(n) = o(log n) such that E
[
Yk∗(n)

]
=

ω(1). Thus, δ∗ = o(log n). For every k = o(log n), we have

E [Yk−1] /E [Yk] ∼ k/((n− 1)p) (12)

First assume that E [Yδ∗−1] = o(1). By Markov’s inequality and by (12), we have δin ≥ δ∗

a.a.s.
Again by (12), we obtain E [Yδ∗+1] ∼ np/δ∗ · E [Yδ∗ ] = ω(1). Hence, by Chebychev’s

inequality (using the independence of the in-degrees), we have Pr(Yδ∗+1 = 0) = o(1), so
that δin ≤ δ∗ + 1 a.a.s. The proof for the case E [Yδ∗−1] = Ω(1) is similar.

�

3.3 Estimating λ(D(n, p))

In this section, we give tight estimates for λ = λ(D(n, p)) depending on the range of p.
The easiest case is p = ω(log n/n), when our estimate follows immediately from

Lemma 3.9 and the fact that λ is between the minimum and the maximum in-degree.

Corollary 3.12. If φ = φ(n) = ω(1) is a function and p = p(n) ∼ φ log(n)/(n− 1), then
λ(n) ∼ p(n− 1) a.a.s.

Next we consider other ranges of p.

Lemma 3.13. Let φ > 1 be a constant. If p = p(n) ∼ φ log(n)/(n− 1), then λ ∼ δin.

8



Proof. By Corollary 3.6, for α ∈ (0, 1) such that F (α) = 1/φ, we have δin ∼ αp(n − 1)
a.a.s. Given ε > 0, Lemma 3.3(i) ensures that there is 0 < β < 1 (depending on α and
ε) such that, for any vertex v, we have

Pr(din(v) ≤ α(1 + ε)p(n− 1)) = Θ
(
n−β

)
.

Since the in-degrees of distinct vertices are independent, we may apply Chernoff’s inequal-
ity (Theorem 3.1) to the binomial random variable counting the number of vertices whose
in-degree is at most α(1 + ε)p(n − 1) to conclude that there are Θ(n1−β) such vertices
a.a.s. Since n1−β = ω(α(1 + ε)p(n−1)), this implies that λ ≤ α(1 + ε)p(n−1) ∼ (1+ε)δin

a.a.s. Since λ ≥ δin holds trivially, our result follows. �

In the next cases, we use the following simple fact.

Claim 3.14. Let D be a digraph and k ≥ 0 an integer. If Yk > k + 1, then λ(D) ≤ k.

Lemma 3.15. Let p = p(n) = (log(n) + h(n))/(n− 1) be such that h(n) = O(log log n).
Then λ(D(n, p)) ∈ {δin, δin + 1} a.a.s.

Proof. Consider δ∗ from Definition 3.10. First assume that E [Yδ∗−1] = o(1). We shall
prove that λ ≤ δ∗ + 1 a.a.s., which leads to the desired conclusion because λ ≥ δin and
Lemma 3.11 ensures that δin ∈ {δ∗, δ∗+1} a.a.s.. The definition of δ∗ implies that E [Y ∗δ ] ≥
1, and Lemma 3.5 implies that there exists C > 0 such that δin ≤ C a.a.s., and hence
δ∗ = O(1). Moreover, E [Yδ∗+1] ∼ np/δ∗ · E [Yδ∗ ], so that E [Yδ∗+1] ≥ np/δ∗(1 + o(1)) =
ω(1). By Chernoff’s inequality (Theorem 3.1), Pr(Yδ∗+1 ≤ E [Yδ∗+1] /2) ≤ exp(−A log n)),
where A > 0. Thus, Yδ∗+1 > δ∗ + 2 a.a.s. and so λ ≤ δ∗ + 1 a.a.s. by Claim 3.14.

The proof is similar for the case E [Yδ∗−1] = Ω(1), where we prove that λ ≤ δ∗ a.a.s.
The result then follows by the subsubsequence principle. �

Lemma 3.16. Let p = p(n) = (log(n) + h(n))/(n− 1) be such that h(n) = o(log n) and
h(n) = ω(log log n). Then λ(D(n, p)) ∼ δin a.a.s.

Proof. The proof is very similar to the proof for Lemma 3.15. Let ε > 0 be a constant
and fix T = b(1 + ε)δinc. By Lemma 3.3(ii), we have T > δin a.a.s. We will address
only the case where E [Yδ∗−1] = o(1). By Lemma 3.11, we have δin ∈ {δ∗, δ∗ + 1} a.a.s.
To show that λ ≤ T , we prove that YT > T + 1 a.a.s. By Corollary 3.4, we have that
δin = o(log n) and so T = o(log n) as well. Then, for k = δin, we have

E [YT ]

E [Yk]
∼
(np
k

)T−k
= ω(T ). (13)

Since E [Yk] = Ω(1), we have that YT = ω(T ) a.a.s. by Chernoff’s inequality (Theo-
rem 3.1), which implies that λ ≤ T a.a.s. �

3.4 Expansion properties

In this section, we investigate properties of the cuts of D(n, p). We start by proving a
simple result about the number of arcs going from a “large” set to another “large” set of
vertices.
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Lemma 3.17. Let f(n) → ∞ and let ζ be a positive constant. There exists a positive
constant C such that, for p = p(n) ∈ [f(n)/n, 1] and large n, the probability that there
exist disjoint sets S, S ′ ⊆ [n] with size at least ζn such that |A(S ′, S)| < ζ2n2p/2 is at
most n−C .

Proof. Let S, S ′ ⊆ [n] be disjoint sets with size at least ζn. Then |A(S, S ′)| has dis-
tribution Bin(|S ′||S|, p). Thus, E(|A(S ′, S)|) = |S||S ′|p and by Chernoff’s inequality
(Theorem 3.1), we have

Pr

(
|A(S ′, S)| ≤ ζ2n2p

2

)
≤ exp

(
−ζ

2n2p

8

)
. (14)

By the union bound, the probability that there exist disjoint sets S, S ′ ⊆ [n] with size at
least ζn such that |A(S ′, S)| < ζ2n2p/2 is at most∑

s,s′≥ζn

(
n

s

)(
n

s′

)
exp

(
−ζ

2n2p

4

)
≤ 4n exp

(
−ζ

2n2p

4

)
< exp

(
2n− ζ2n2p

4

)
,

and the result follows since np ≥ f(n)→∞. �

Next we prove a lemma about the number of induced arcs in sets that are “not too
large”. Later we will use this lemma to argue that many arcs must leave such sets.

Lemma 3.18. Consider a function f = f(n)→∞, and let φ be positive constant. There
exists a positive constant ζ such that, for p = p(n) ∈ [f/n, 1] and large n, the probability
that there exists S ⊆ [n] with size |S| ≤ ζn such that |A[S]| > φn|S|p is at most e−f

2/2.

Proof. Let ζ > 0 be sufficiently small so that eζ/φ ≤ e−1/φ2 . Let S ⊆ [n] be a set with
size s ≤ ζn. If s ≤ φnp, then |A[S]| ≤ s(s − 1) ≤ φnps. So assume s ≥ φnp. Then the
probability that |A[S]| > dφnpse is at most

(
s(s−1)
dφnpse

)
pdφnpse. Thus, the expected number

of sets S with size at most ζn with |A[S]| > φpn|S| is at most

∑
φnp≤s≤ζn

(
n

s

)(
s2

dφnspe

)
pdφnspe ≤

∑
φnp≤s≤ζn

(ne
s

)s( se
φn

)dφnspe

=
∑

φnp≤s≤ζn

((
e2

φ

)(
se

φn

) dφnspe
s
−1
)s

≤
∑

φnp≤s≤ζn

((
e2

φ

)(
ζe

φ

) dφnspe
s
−1
)s

since s ≤ ζn and np ≥ f →∞

≤
∑

φnp≤s≤ζn

((
e2

φ

)(
ζe

φ

)φnp−1
)s

since ζe/φ < 1

≤
∑

φnp≤s≤ζn

(
βe−

np
φ

)s
, for β = e/ζ since ζe/φ < e−1/φ2

≤ 2(βe−
np
φ )φnp ≤ e−(np)2/2 ≤ e−f

2/2,

for n sufficiently large. The result then follows by Markov’s inequality. �
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In the next lemma, we compare din(S) and δin in the range where p = (1+Ω(1)) log n/(n−
1) for S of size from 2 to n− 2.

Lemma 3.19. Let ψ be a positive constant. There is a positive constant C such that,
for p = p(n) ∈ [(1 + ψ) log n/(n − 1), 1] and large n, the probability that there exists a
set S ⊂ [n] with 2 ≤ |S| ≤ n− 2 such that din(S) < 1.5δin is at most n−C .

Proof. Let γ(n) be such that p(n − 1) = γ(n) log n. First assume that γ(n) ≥ 100. Let
0 < ε1 < 5/2−

√
6, τ = 2(1+ε1)/10 and ε2 > 0 be such that 2(1−τ)(1−ε1) ≥ 1.5(1+ε2).

Let S ⊆ [n] and let S̄ = [n]\S. Then din(S) = dout(S̄) = |A(S̄, S)| which is distributed
as Bin(ss̄, p) where s = |S| and s̄ = |S̄|. Then, by Chernoff’s inequality (Theorem 3.1)
and the union bound, the probability that there exists a set S ⊂ [n] with 2 ≤ |S| ≤ n− 2
such that din(S) < (1− τ)ss̄p is at most∑

2≤s≤n−2

(
n

s

)
exp

(
−τ

2ss̄p

2

)
≤ 2

∑
2≤s≤n/2

(
n

s

)
exp

(
−τ

2ss̄p

2

)

≤ 2
∑

2≤s≤n/2

exp

(
s+ s log n− s log s− τ 2|S||S̄|p

2

)

≤ 2
∑

2≤s≤n/2

exp

(
s log n

(
1 +

1− log s

log n
− γτ 2

4

))
(15)

≤ 2
∑

2≤s≤n/2

exp (−ε1s log n) ≤ 4n−2ε1 . (16)

To obtain (15), we use |S||S̄| = s(n − s) ≥ sn/2, and to obtain (16), we use γτ 2/4 ≥
(1 + ε1)2. Note that, if |S| ≤ ε1n or |S̄| ≤ ε1n, by our choice of τ , ε1 and ε2,

(1− τ)|S||S̄|p ≥ (1− τ)2(1− ε1)np ≥ 1.5(1 + ε2)np. (17)

If |S| ≥ ε1n and |S̄| ≥ ε1n, then for sufficiently large n,

(1− τ)|S||S̄|p ≥ (1− τ)ε2
1n

2p > 1.5(1 + ε2)np. (18)

It is easy to see that δin ≤ (1 + ε2)np with very large probability. Indeed, by Chernoff’s
inequality (Theorem 3.1), the total number of arcs in the random digraph satisfies |A| ≥
(1 + ε2)n(n− 1)p with probability at most exp(−ε2

2n(n− 1)p/2) ≤ n−C for any C > 0.
Now assume that 1 +ψ ≤ γ(n) ≤ 100. By Corollary 3.6, there exist α1(n), α2(n) and

a constant x1 > 0 such that

x1 < α1(n) < α2(n) < 1, α2(n)− α1(n) ≤ x1/7

and
α1pn ≤ δin ≤ α2pn and α1pn ≤ δout ≤ α2pn.

Let ζ > 0 be given by Lemma 3.18 applied to φ = x1/7 and f(n) = γ(n) log n. Let
also C2 be given by Lemma 3.17 for ζ and f(n).
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Fix S ⊆ [n]. If |S|, |S̄| ≥ ζn, by Lemma 3.17, din(S) = |A(S̄, S)| ≥ (ζ2/2)n2p ≥
1.5α2np ≥ 1.5δin with probability at least 1−n−C2 for sufficiently large n. If 2 ≤ |S| < ζn,
by Lemma 3.18, with probability at least 1− e−(γ logn)2/2, for sufficiently large n,

din(S) =
∑
v∈S

din(v)− |A[S]| ≥ δin|S| − φnp|S|

≥ δin|S| − α1np|S|/7 ≥ 6δin|S|/7 ≥ 1.5δin.

If 2 ≤ |S̄| ≤ ζn, then

dout(S̄) =
∑
v∈S̄

dout(v)− |A[S̄]| ≥ δout|S̄| − φnp|S̄| (19)

> |S̄|np(α1 − φ) ≥ 1.5npα2 ≥ 1.5δin (20)

since 2(α1 − φ) > 1.5(α1 + φ) ≥ 1.5α2, and the result follows since din(S) = dout(S̄).
Observe that it suffices to fix C < C2 to get the desired result. �

The next lemma will be useful when we apply Theorem 1.4 to subpartitions with a
very large class, namely subpartitions where one part contains a (1 − ε)-fraction of the
vertex set.

Lemma 3.20. There exist positive constants φ and ψ such that the following holds. For
any function g = g(n) such that 0 ≤ g(n) = o(log n), there exist positive constants ε > 0
and C > 0 such that, for any p = p(n) ∈ [(log(n)− g(n))/(n− 1), (log(n) + g(n))/(n− 1)]
and for large n, with probability at least 1− n−C , there is no partition (X, Y, Z) of [n] of
the vertex set of D(n, p) satisfying the following conditions:

(i) |X| ≥ (1− ε)n,

(ii) |Y | ≥ |Z| or |Z| ≤ φp(n− 1),

(iii) din(X) + din(Y ) ≤ ψp(n− 1)|Y |.

Proof. Let φ ≤ 3/400 and ψ < 3/20. Let ζ > 0 be obtained by Lemma 3.18 with f(n) =
log n− g(n) and φ. Let ε ≤ ζ and let (X, Y, Z) be a partition of [n] satisfying conditions
(i) and (ii) of the lemma. By Lemma 3.3(iv) with α = 0.09, we have, for n suficiently
large, with probability at least 1−n−0.2, that din(v)+dout(v) ≥ 0.18(n−1)p for all v ∈ Y .
Lemma 3.18, we have that |A[Y ]| ≤ φ(n− 1)p|Y | and |A[Y ∪ Z]| ≤ φ(n− 1)p(|Y |+ |Z|)
with probability at least 1− e− log2 n/4. Thus,

din(X) + din(Y ) =
∑
v∈Y

(
din(v) + dout(v)

)
− 2|A[Y ]| − |A(Y, Z)|+ |A(Z,X)|.

≥ 0.18(n− 1)p|Y | − 2φ(n− 1)p|Y | −min{|A[Y ∪ Z]|, |Y ||Z|}
≥ 0.18(n− 1)p|Y | − 2φ(n− 1)p|Y | − 2φ(n− 1)p|Y |
≥ 0.15(n− 1)p|Y |,

as required. �

In the next two lemmas, we bound din(S) in the range p ∼ log n/(n− 1).
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Lemma 3.21. Let g = g(n) be a function such that 0 ≤ g(n) = o(log n). There exist
positive constants η > 0 and C > 0 with the following properties. For all functions
(log n − g(n))/(n − 1) ≤ p = p(n) ≤ (log n + g(n))/(n − 1), with probability at least
1 − n−C , there are at least two vertices with in-degree zero or there is no S ⊆ [n] with
size 2 ≤ |S| ≤ ηn such that din(S) < max{δin + 1, 2δin}.

Proof. Let p = p(n) be a function as in the statement of the lemma and let ε > 0 and C1

be obtained through Lemma 3.8 with ϕ = 1.1. By Corollary 3.4 we have δin < (ε/16) log n
with probability at least 1−nC0 for some constant C0. Let η = ζ > 0 given by Lemma 3.18
applied to f(n) = log n−g(n) and φ ≤ ε/16. Assume that the random digraph has at most
one vertex with in-degree zero and fix S ⊆ [n] with size 2 ≤ |S| ≤ ηn. By Lemma 3.18,
with probability at least 1 − e− log2 n/4, |A[S]| ≤ εn|S|p/16. Let S` denote the ε-in-light
vertices in S and let Sh = S \ S`.

First assume that all vertices in S are ε-in-light. By Lemma 3.8, with probability at
least 1 − n−C1 , no pair of ε-in-light vertices are adjacent, and thus din(S) ≥ |S|δin ≥
2δin ≥ δin + 1 if δin > 0. If δin = 0, because there is a single vertex with din(v) = 0, we
have din(S) ≥ |S| − 1 ≥ 1 = max{2δin, δin + 1}. Next suppose that there is at least one
vertex u in S that is not ε-in-light. Note that din(u) ≥ δin + εnp, which implies that, for
|S| < εnp/2, we have din(S) ≥ |A(S̄, u)| ≥ din(u)− |S| + 1 ≥ δin + εnp/2 ≥ 2δin + 1 for
large n. So we can assume that |S| ≥ εnp/2.

If |Sh| ≥ |S|/8, then din(S) ≥
∑

v∈Sh d
in(v) − |A[S]| ≥ |S|εnp/8 − εnp|S|/16 ≥

ε(n − 1)p/8 ≥ 2δin + 1. So assume that |Sh| ≤ |S|/8. Thus, |S`| ≥ 7|S|/8. Then
din(S) ≥ δin|S`| − |Sh| since no pair of ε-in-light vertices have a common in-neighbour
by Lemma 3.8. If δin > 0, then din(S) ≥ |S`| − |Sh| ≥ 3ε(n − 1)p/8 ≥ 2δin + 1.
So assume that δin = 0. Since there is a single vertex with in-degree zero, we have
din(S) ≥ |S`| − 1− |Sh| ≥ ε(n− 1)p/4 ≥ 2δin + 1. �

Lemma 3.22. Let φ > 0 be a constant and g = g(n) be a function such that 0 ≤ g(n) =
o(log n). There exist positive constants η > 0 and C > 0 such that the following holds for
all functions (log n−g(n))/(n−1) ≤ p = p(n) ≤ (log n+g(n))/(n−1). With probability
at least 1− n−C , there exist two vertices with in-degree zero or there is no S ⊆ [n] with
size φ log n ≤ |S| ≤ ηn such that dout(S) < 2δin + 1.

Proof. Let φ > 0 be constant. Let p = (log(n) + h(n))/(n − 1) such that |h(n)| ≤ g(n)
and let ε > 0 and C1 be obtained through Lemma 3.8 with ϕ = 1.1. We may assume that
φ < ε/16. By Corollary 3.4 we have δin < (φ/16) log n with probability at least 1 − nC0

for some constant C0. Let η = ζ > 0 from Lemma 3.18 applied to φ and let ψ ≤ φ/2.
If h(n) < − log(ψ log n), at least two vertices have in-degree zero a.a.s. by Chernoff’s

inequality (Theorem 3.1), so we consider the case h(n) ≥ − log(ψ log n).
Assume that at most one vertex has in-degree zero and fix S ⊆ [n] with size φ log n ≤

|S| ≤ ηn. By Lemma 3.18, |A[S]| ≤ εn|S|p/16 with probability at least 1 − e− log2 n/4.
Let S` denote the ε-out-light vertices in S and let Sh = S \ S`. If |Sh| ≥ |S|/8, then
dout(S) ≥

∑
v∈Sh d

out(v) − |A[S]| ≥ εnp|S|/8 − εnp|S|/16 ≥ 2δin + 1. So assume that
|Sh| ≤ |S|/8, and thus |S`| ≥ 7|S|/8. Then dout(S) ≥ δout|S`| − |Sh| since no pair of ε-
out-light vertices have a common out-neighbour. If δout > 0, then dout(S) ≥ |S`| − |Sh| ≥
(3/8)ε(n− 1)p ≥ 2δin + 1. We may assume that δout = 0. We first estimate the number
of vertices with out-degree zero. The expected number of vertices with out-degree zero
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is n(1 − p)n−1 = exp(−h(n) + o(1)). It is obvious that the smaller is h(n), the higher is
the number of vertices with out-degree zero. If h(n) = − log(ψ log n), then the expected
number of vertices with out-degree zero is equal to ψ log n(1 + o(1)). Thus, by Chernoff’s
inequality (Theorem 3.1), there exists C > 0 such that the probability that there are more
than 5φ log n/8 vertices with out-degree zero is at most exp(−C log n). Then, dout(S) ≥
|S`| − (5φ/8) log n− |S|/8 ≥ 3|S|/4− 5φ log n/8 ≥ 2δin + 1 for h(n) ≥ − log(ψ log n). �

4 Proof of Theorem 1.3

In the proof of Theorem 1.3, we consider four different probability regimens, which are
described in the following result.

Lemma 4.1. Let p = p(n) ∈ [0, 1]. If

(i) p ≤ (log(n)− g(n))/(n− 1), for a function g(n) = Ω(log n); or

(ii) (log(n)−g(n))/(n−1) ≤ p ≤ (log(n)+g(n))/(n−1), for a function g(n) = o(log n);
or

(iii) p ∼ (1 + ψ) log(n)/(n− 1), for a constant ψ > 0; or

(iv) p = g(n) log(n)/(n− 1), for a function g(n) = ω(1),

then τ(D(n, p)) = λ(D(n, p)) a.a.s.

We will now show how Theorem 1.3 follows from the lemma above. Let p = p(n) ∈
[0, 1]. Let An be the event that τ(D(n, p)) = λ(D(n, p)) and let Ān be its complement.
We will show that limn→∞ Pr(Ān) = 0. We will use the subsubsequence principle. To this
end, let (ni)i∈N be an arbitrary increasing sequence where ni ∈ N for all i ∈ N. It suffices
to show that there is a subsequence (mi)i∈N of (ni)i∈N such that limi→∞ Pr(Āmi) = 0.

Let h(n) = (n − 1)p/ log n. Note that h(n) ≥ 0. Thus, there exists a subsequence
(mi)i∈N of (ni)i∈N such that limi→∞ h(mi) = c, where c is a nonnegative constant or∞. If
c < 1, we have limi→∞ Pr(Āmi) = 0 by Lemma 4.1(i). If c = 1, we have limi→∞ Pr(Āmi) =
0 by Lemma 4.1(ii). If 1 < c < ∞, we have limi→∞ Pr(Āmi) = 0 by Lemma 4.1(iii). If
c = ∞, we have limi→∞ Pr(Āmi) = 0 by Lemma 4.1(iv). Thus, we may apply the
subsubsequence principle and conclude that Pr(Ān) = o(1).

Proof of Lemma 4.1. Case (i): Suppose that p ≤ (log(n)− g(n))/(n− 1), for a function
g(n) = ω(1). If we have two vertices with in-degree 0, then τ = λ = 0. The expected
number of vertices with in-degree 0 is n(1 − p)n−1 ≥ exp(g(n) + o(1)) → ∞. So, by
Chernoff’s inequality (Theorem 3.1), there are at least two vertices with in-degree 0 a.a.s.

For the remaining cases, let P = (V0, . . . , Vt) be a partition of [n]. We need to
show that

∑t
i=1 d

in(Vi) ≥ λ(t − 1), since this is equivalent to proving that τ(D(n, p)) ≥
λ(D(n, p)) by Theorem 1.4.

Case (ii): Fix g(n) given in this case. Let φ and ψ of Lemma 3.20, and consider ε > 0
and C > 0 given by it. Fix η1 > 0 and C1 as in Lemma 3.21 and let η2 > 0 and C2 be
obtained by applying Lemma 3.22 to φ. Let α = min{ε, η1, η2}. We may assume that the
number of vertices with in-degree zero is at most one, otherwise τ = λ = 0 trivially.
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Suppose first that there exists j > 0 such that |Vj| ≥ (1− α)n. Let B =
⋃
i>0, i 6=j Vi.

Note that the result is trivial if B = ∅, as t − 1 = 0 in this case, thus suppose |B| > 0.
If |V0| ≤ φnp or |V0| ≤ |B|, then din(Vj) + din(B) = Ω(p(n − 1)|B| with probability
1 − n−C by Lemma 3.20. Since λ = O(δin) almost surely by Lemmas 3.15 and 3.16 and
δin = o(log n) by Corollary 3.4, we have din(Vj) + din(B) = ω(λ|B|), so that

t∑
i=1

din(Vi) ≥ din(Vj) + din(B) ≥ λ|B| ≥ λ(t− 1).

So assume that |V0| > φnp and |V0| > |B| ≥ 1. Let I = {i > 0 : |Vi| = 1, din(Vi) ≤ λ}.
Observe that din(Vj) = dout(V0∪B) and by Lemma 3.22 we have din(Vj) = dout(V0∪B) ≥
2δin + 1, which is at least λ a.a.s. (see Lemmas 3.15 and 3.16).

Moreover, for every Vi ∈ P \ I for i 6= j, by Lemma 3.21, din(Vi) ≥ max{δin + 1, 2δin},
which is at least λ a.a.s. Let V (I) =

⋃
i∈I Vi. Then we have

t∑
i=1

din(Vi) ≥ λ(t− |I|) +
∑
i∈I

din(Vi) = tλ−
∑
v∈V (I)

(λ− din(v)) ≥ tλ− λ,

by the definition of λ.
Next suppose that |Vi| ≤ (1 − α)n for all i > 0. If 2 ≤ |Vi| ≤ αn, then din(Vi) ≥

max{δin + 1, 2δin} by Lemma 3.21 and din(Vi) ≥ λ a.a.s. by Lemmas 3.15 and 3.16. If
|Vi| ≥ αn for some i, since we have |V i| ≥ αn and so, by Lemma 3.17 with ζ = α,
din(Vi) = |A(V i, Vi)| ≥ α2n2p/2 ≥ λ. Thus, a.a.s.

t∑
i=1

din(Vi) ≥ λ(t− |I|) +
∑
i∈I

din(Vi) ≥ tλ− λ,

again by the definition of λ.
Case (iii): By Lemma 3.19, every set S ⊆ [n] of size in [2, n − 2] has din(S) ≥ 1.5δin

a.a.s. By Lemma 3.13 we have λ ∼ δin a.a.s., which implies that din(S) ≥ λ. Let
I = {i > 0: |Vi| = 1, din(Vi) ≤ λ− 1}. If |Vi| ≤ n− 2 for all i, then a.a.s. din(Vi) ≥ λ for
all i 6∈ I and so

t∑
i=1

din(Vi) ≥ λ(t− |I|) +
∑
i∈I

din(Vi) ≥ tλ− λ,

by the definition of λ.
Now suppose, without loss of generality, that |V1| = n − 1 (the case |V1| = n is

trivial). Then there is a single vertex v 6∈ V1. We can assume that t = 2 since the case
t = 1 is trivial. Thus, V2 = {v} and din(V1) + din(V2) = din(v) + dout(v) ≥ δin + δout.
By Corollary 3.6 we have δin + δout ≥ 1.5δin a.a.s. By Lemma 3.13, we conclude that
din(V1) + din(V2) ≥ 1.5δin ≥ λ a.a.s.
Case (iv): We may proceed as in the previous case, since, for every S ⊆ [n] of size in
[2, n−2], we again have δin ∼ λ and din(S) ≥ 1.5δin ≥ λ a.a.s. (since δin ∼ (n−1)p a.a.s.
by Lemma 3.9 and λ ∼ (n− 1)p a.a.s. by Corollary 3.12). This leads to the desired result
with the above arguments if |Vi| ≤ n − 2 for every i. Otherwise, we use Lemma 3.9 to
show that δin + δout ≥ 1.5δin a.a.s., and we may again repeat the analysis of the previous
case. �
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