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A Low-Rank Solver for the Navier–Stokes Equations with Uncertain Viscosity∗

Kookjin Lee† , Howard C. Elman‡ , and Beďrich Soused́ık§

Abstract. We study an iterative low-rank approximation method for the solution of the steady-state stochastic
Navier–Stokes equations with uncertain viscosity. The method is based on linearization schemes
using Picard and Newton iterations and stochastic finite element discretizations of the linearized
problems. For computing the low-rank approximate solution, we adapt the nonlinear iterations to
an inexact and low-rank variant, where the solution of the linear system at each nonlinear step is
approximated by a quantity of low rank. This is achieved by using a tensor variant of the GMRES
method as a solver for the linear systems. We explore the inexact low-rank nonlinear iteration with
a set of benchmark problems, using a model of flow over an obstacle, under various configurations
characterizing the statistical features of the uncertain viscosity, and we demonstrate its effectiveness
by extensive numerical experiments.
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1. Introduction. We are interested in the efficient computation of solutions of the steady-
state Navier–Stokes equations with uncertain viscosity. Such uncertainty may arise from
measurement error or uncertain ratios of multiple phases in porous media. The uncertain
viscosity can be modeled as a positive random field parameterized by a set of random variables
[23, 28, 31], and, consequently, the solution of the stochastic Navier–Stokes equations also
can be modeled as a random vector field depending on the parameters associated with the
viscosity (i.e., a function of the same set of random variables). As a solution method, we
consider the stochastic Galerkin method [1, 12] combined with the generalized polynomial
chaos (gPC) expansion [34], which provides a spectral approximation of the solution function.
The stochastic Galerkin method results in a coupled algebraic system of equations. There has
been considerable progress in the development of solvers for these systems [7, 22, 24, 29, 32],
although costs may be high when the global system becomes large.
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1276 KOOKJIN LEE, HOWARD C. ELMAN, AND BEDŘICH SOUSEDÍK

One way to address this issue is through use of tensor Krylov subspace methods, which
operate in tensor format and reduce the costs of matrix operations by exploiting a Kronecker-
product structure of system matrices. Variants of this approach have been developed for the
Richardson iteration [14, 18], the conjugate gradient and the BiCGstab methods [14], the
minimum residual method [30], and the generalized minimum residual (GMRES) method [2].
Efficiencies are also obtained from the fact that solutions can often be well approximated by
low-rank objects. These ideas have been shown to reduce costs for solving steady [6, 11, 16, 18]
and unsteady stochastic diffusion equations [4].

In this study, we adapt the low-rank approximation scheme to a solver for the systems
of nonlinear equations obtained from the stochastic Galerkin discretization of the stochastic
Navier–Stokes equations. In particular, we consider a low-rank variant of linearization schemes
based on Picard and Newton iteration, where the solution of the nonlinear system is computed
by solving a sequence of linearized systems using a low-rank variant of the GMRES method
(lrGMRES) [2] in combination with inexact nonlinear iteration [5].

We base our development of the stochastic Galerkin formulation of the stochastic Navier–
Stokes equations on ideas from [23, 28]. In particular, we consider a random viscosity affinely
dependent on a set of random variables as suggested in [23] (and in [28], which considers a
gPC approximation of the lognormally distributed viscosity). The stochastic Galerkin for-
mulation of the stochastic Navier–Stokes equations is also considered in [3], which studies
an optimal control problem constrained by the stochastic Navier–Stokes problem and com-
putes an approximate solution using a low-rank tensor-train decomposition [21]. Related work
[31] extends a proper generalized decomposition method [20] for the stochastic Navier–Stokes
equations, where a low-rank approximate solution is built from successively computing rank-
one approximations. See the book [15] for an overview and other spectral approximation
approaches for models of computational fluid dynamics.

An outline of the paper is as follows. In section 2, we review the stochastic Navier–Stokes
equations and their discrete Galerkin formulations. In section 3, we present an iterative low-
rank approximation method for solutions of the discretized stochastic Navier–Stokes problems.
In section 4, we introduce an efficient variant of the inexact Newton method, which solves linear
systems arising in nonlinear iteration using low-rank format. We follow a hybrid approach,
which employs several steps of Picard iteration followed by Newton iteration. In section 5,
we examine the performance of the proposed method on a set of benchmark problems that
model the flow over an obstacle. Finally, in section 6, we draw some conclusions.

2. Stochastic Navier–Stokes equations. Consider the stochastic Navier–Stokes equa-
tions: Find velocity ~u(x, ξ) and pressure p(x, ξ) such that

−∇ · ν(x, ξ)∇~u(x, ξ) + (~u(x, ξ) · ∇)~u(x, ξ) +∇p(x, ξ) = ~f(x, ξ),

∇ · ~u(x, ξ) = 0
(1)

in D × Γ, with boundary conditions

~u(x, ξ) = ~g(x, ξ) on ∂DDir × Γ,

ν(x, ξ)∇~u(x, ξ) · ~n− p(x, ξ)~n = ~0 on ∂DNeu × Γ,

where ∂D = ∂DDir ∪ ∂DNeu. The stochasticity of (1) stems from the random viscosity
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ν(x, ξ), which is modeled as a positive random field parameterized by a set of independent and
identically distributed random variables ξ = {ξ1, . . . , ξnν}. The random variables comprising
ξ are defined on a probability space (Ω,F , P ) such that ξ : Ω → Γ ⊂ Rnν , where Ω is a
sample space, F is a σ-algebra on Ω, P is a probability measure on Ω, and Γ = Γ1× · · ·×Γnν
is the joint image of ξ. For each i, Γi is a finite interval symmetric about the origin. The
joint probability density function (PDF) of ξ is denoted by ρ(ξ) =

∏nν
i=1 ρi(ξi), where ρi(ξi) is

assumed to be symmetric about 0, i.e., ρi(−δ) = ρi(δ) for all δ ∈ Γi. The expected value of a
random function v(ξ) on Γ is then 〈v〉ρ = E[v] ≡

∫
Γ v(ξ)ρ(ξ)dξ.

For the random viscosity, we consider a random field that has affine dependence on the
random variables ξ,

ν(x, ξ) ≡ ν0 + σν

nν∑
k=1

νk(x)ξk,(2)

where {ν0, σ
2
ν} are parameters characterizing the statistical properties of the random field

ν(x, ξ). The random viscosity leads to the random Reynolds number

Re(ξ) ≡ UL

ν(ξ)
,(3)

where U is the characteristic velocity and L is the characteristic length. We denote the
Reynolds number associated with ν0 by Re0 = UL

ν0
. In this study, we ensure that the viscosity

(2) has positive values by controlling {ν0, σ
2
ν} and only consider small enough Re0 so that the

flow problem has a unique solution.

2.1. Stochastic Galerkin method. In the stochastic Galerkin method, a mixed varia-
tional formulation of (1) can be obtained by employing Galerkin orthogonality: Find (~u, p) ∈
(VE , QD)⊗ L2(Γ) such that〈∫

D
ν∇~u : ∇~v + [(~u · ∇) ~u] · ~v − p(∇ · ~v)

〉
ρ

=

〈∫
D

~f · ~v
〉
ρ

∀~v ∈ VD ⊗ L2(Γ),(4) 〈∫
D
q(∇ · ~u)

〉
ρ

= 0 ∀q ∈ QD ⊗ L2(Γ).(5)

The velocity solution and test spaces are VE = {~u ∈ H1(D)2|~u = ~g on ∂DDir} and VD =
{~v ∈ H1(D)2|~v = ~0 on ∂DDir}, where H1(D) refers to the Sobolev space of functions with
derivatives in L2(D), for the pressure solution, QD = L2(D), and L2(Γ) is a Hilbert space
equipped with the inner product

〈u, v〉ρ ≡
∫

Γ
u(ξ)v(ξ)ρ(ξ)dξ.

The solution of the variational formulation (4)–(5) satisfies

(6) R(~u, p;~v, q) = 0 ∀~v ∈ VD ⊗ L2(Γ), ∀q ∈ QD ⊗ L2(Γ),

where R(~u, p;~v, q) is a nonlinear residual

R(~u, p;~v, q) ≡
[
〈
∫
D
~f · ~v − ν∇~u : ∇~v − [(~u · ∇) ~u] · ~v +

∫
D p(∇ · ~v)〉ρ

〈−
∫
D q(∇ · ~u)〉ρ

]
.(7)

To compute the solution of the nonlinear equation (6), we employ linearization techniques
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1278 KOOKJIN LEE, HOWARD C. ELMAN, AND BEDŘICH SOUSEDÍK

based on either Picard iteration or Newton iteration [9]. Replacing (~u, p) of (4)–(5) with
(~u+δ~u, p+δp) and neglecting the quadratic term c(δ~u; δ~u,~v), where c(~z; ~u,~v) ≡

∫
D [(~z · ∇)~u] · ~v,

gives [
〈
∫
D ν∇δ~u : ∇~v + c(δ~u; ~u,~v) + c(~u; δ~u,~v)−

∫
D δp(∇ · ~v)〉ρ

〈
∫
D q(∇ · δ~u)〉ρ

]
= R(~u, p;~v, q).(8)

In the Newton iteration, the (n + 1)st iterate (~un+1, pn+1) is computed by taking ~u = ~un,
p = pn in (8), solving (8) for (δ~un, δpn), and updating

~un+1 := ~un + δ~un, pn+1 := pn + δpn.

In the Picard iteration, the term c(δ~u; ~u,~v) is omitted from the linearized form (8).

2.2. Discrete stochastic Galerkin system. To obtain a discrete system, the velocity
~u(x, ξ) and the pressure p(x, ξ) are approximated by a generalized polynomial chaos expansion
[34]:

(9) ~u(x, ξ) ≈
nξ∑
i=1

~ui(x)ψi(ξ), p(x, ξ) ≈
nξ∑
i=1

pi(x)ψi(ξ),

where {ψi(ξ)}
nξ
i=1 is a set of nν-variate orthogonal polynomials (i.e., 〈ψiψj〉ρ = 0 if i 6= j)

consisting of products of univariate orthogonal polynomials ψi(ξ) =
∏nν
j=1 `dj(i)(ξj), where

d(i) = (d1(i), . . . , dnν (i)) is a multi-index consisting of nonnegative integers and `dj(i) is the
dj(i)th-order polynomial of ξj . In this study, we set the total degree space, Λnν , dtot =
{d(i) ∈ Nnν0 : ‖d(i)‖1 ≤ dtot}, where N0 is the set of nonnegative integers, ‖d(i)‖1 =∑nν

k=1 dk(i), and dtot defines the maximal degree of {ψi(ξ)}
nξ
i=1. For ordering the index set

{d(i)}nξi=1, we consider the graded lexicographical ordering [33, section 5.2], where i > j
if and only if ‖d(i)‖1 > ‖d(j)‖1 or ‖d(i)‖1 = ‖d(j)‖1 and the rightmost nonzero entry of
d(i) − d(j) is positive (e.g., Λ3,2 = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (2,0,0), (1,1,0), (0,2,0),
(0,1,1), (0,0,2)}). This set of orthogonal polynomials gives rise to a finite-dimensional approx-
imation space S = span({ψi(ξ)}

nξ
i=1) ⊂ L2(Γ). For spatial discretization, a div-stable mixed

finite element method [9] is considered, the Taylor–Hood element consisting of biquadratic
velocities and bilinear pressure. Basis sets for the velocity space V h

E and the pressure space
QhD are denoted by {[

φi(x)
0

]
,

[
0

φi(x)

]}nu
i=1

and {ϕi(x)}npi=1, respectively. Then the fully discrete version of (9) can be written as

(10) ~u(x, ξ) =

[
ux(x, ξ)

uy(x, ξ)

]
≈

[∑nξ
i=1

∑nu
j=1 u

x
ijφj(x)ψi(ξ)∑nξ

i=1

∑nu
j=1 u

y
ijφj(x)ψi(ξ)

]
, p(x, ξ) ≈

nξ∑
i=1

np∑
j=1

pijϕj(x)ψi(ξ).

Let us introduce a vector notation for the coefficients, ūxi ≡ [uxi1, . . . , u
x
inu

]T ∈ Rnu , ūyi ≡
[uyi1, . . . , u

y
inu

]T ∈ Rnu , and p̄i ≡ [pi1, . . . , pinp ]
T ∈ Rnp for i = 1, . . . , nξ, which, for each gPC

index i, groups the horizontal velocity coefficients together followed by the vertical velocity
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coefficients, and then by the pressure coefficients, giving a vector

(11) ūi = [(ūxi )T , (ūyi )
T , pTi ]T .

Taking ν(x, ξ) from (2) and replacing ~u(x, ξ), p(x, ξ) in (8) with their discrete approximations
(10) yields a system of linear equations of order (2nu + np)nξ. The coefficient matrix has a
Kronecker-product structure,

J ≡
nξ∑
l=1

Gl ⊗Fl,(12)

where Gl refers to the “stochastic matrix”

[Gl]ij = 〈ψlψiψj〉ρ, l = 1, . . . , nξ,

with ψ1 = 1, ψl(ξ) = γξl−1, l = 2, . . . , nν + 1, where the scalar γ is chosen so that 〈ψ2
l 〉ρ = 1,

and

F1 =

F
xx
1 F xy1 BxT

F yx1 F yy1 ByT

Bx By 0

, Fl =

F
xx
l F xyl 0

F yxl F yyl 0

0 0 0

, l = 2, . . . , nξ,(13)

where some of the block entries in (13) depend on whether Newton or Picard iteration is used,
with F xxl ≡ Al + Nl + W xx

l , F yyl ≡ Al + Nl + W yy
l , F xyl ≡ W xy

l , F yxl ≡ W yx
l for the Newton

iteration and F xxl ≡ Al+Nl, F
yy
l ≡ Al+Nl, F

xy
l ≡ 0, F yxl ≡ 0 for Picard iteration. We denote

the matrices of (12) and (13) derived from the Newton iteration and the Picard iteration by
JN , FNl and JP , FPl , respectively. Here, Al is a symmetric matrix defined as

[A1]ij ≡
∫
D
ν0(∇φi · ∇φj), [Al]ij ≡

∫
D

σννl−1

γ
(∇φi · ∇φj), l = 2, . . . , nν + 1,(14)

Nl is a discrete convection operator, which depends on the coefficient ~ul of the current velocity
estimate and is derived from the convection term, c(~u; δ~u,~v),

[Nl]ij ≡
∫
D

(~ul · ∇φj)φi,

W xx
l ,W xy

l ,W yx
l , and W yy

l are matrices representing weak derivatives of the current velocity
estimate in the x and y directions, which are derived from c(δ~u; ~u,~v), for example,

[W xy
l ]ij ≡

∫
D

∂uxl
∂y

φiφj ,

and Bx and By make up a discrete divergence operator,

[Bx]ij ≡ −
∫
D
ϕi
∂φj
∂x

, [By]ij ≡ −
∫
D
ϕi
∂φj
∂y

.(15)

If the number of gPC polynomial terms in (10) is larger than the number of terms in (2)
(i.e., nξ > nν + 1), we simply set {Al}

nξ
l=nν+2 as matrices containing only zeros so that for the
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Newton iteration F xxl = Nl +W xx
l , F yyl = Nl +W yy

l and for the Picard iteration Fl = Nl for
l = nν + 2, . . . , nξ.

The discrete system of equations to be solved at each iteration then has the form

Jnδun = −r̄n,(16)

where J = JN or JP as appropriate, evaluated at the nth discrete iterate ūn := [(ūn1 )T . . . (ūnnξ)
T ]T

∈ R(2nu+np)nξ with ūni as in (11), and r̄n is the discrete version of the residual (7) evaluated
at ūn.

2.3. Nonlinear iteration. For the nonlinear iteration, we consider a hybrid Picard–Newton
strategy. An initial approximation for the nonlinear solution is computed by solving the pa-
rameterized Stokes equations,

−∇ · ν(x, ξ)∇~u(x, ξ) +∇p(x, ξ) = ~f(x, ξ),

∇ · ~u(x, ξ) = 0.

The discrete Stokes operator, which is obtained from the stochastic Galerkin discretization as
shown in section 2.2, is (

nν+1∑
l=1

Gl ⊗ Sl

)
ūst = bst,(17)

where

S1 =

[
A1 BT

B 0

]
, Sl =

[
Al 0
0 0

]
, l = 2, . . . , nν + 1,

with {Al}nν+1
l=1 defined in (14) and B defined in (15). After this initial computation, updates

to the solution are computed by first solving mp Picard systems with coefficient matrix JP and
then using Newton’s method with coefficient matrix JN to compute the solution. The Newton
iteration is performed until a certain stopping criteria is satisfied, i.e., either the nonlinear
residual norm meets a relative error tolerance εnl or a maximal number mn of Newton steps
is performed. Algorithm 1 summarizes the hybrid nonlinear iteration method.

At each nonlinear iteration step, the update δūn is computed by solving (16). The order
of the system (2nu+np)nξ grows fast as the number of random variables used to parameterize
the random viscosity increases. Even for a moderate-dimensional stochastic Navier–Stokes
problem, solving a sequence of linear systems of order (2nu + np)nξ can be computationally
prohibitive. To address this issue, we present an efficient variant of nonlinear iteration using
the Kronecker-product structure in the following sections. See [26] for adaptive strategies for
switching from Picard iteration to Newton’s method, and [17] for an alternative approach of
hybridizing Picard iteration and Newton’s method.

3. Low-rank Newton–Krylov method. In this section, we outline the formalism in which
the solutions to (16) can be efficiently approximated by low-rank objects while not losing
much accuracy and we show how solvers are adjusted within this formalism.

3.1. Approximation in low rank. In order to develop a low-rank variant of Algorithm
1, we begin by introducing some concepts to define the rank of computed quantities. Let
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Algorithm 1 Nonlinear iteration—The hybrid approach

1: compute an approximate solution of Astūst = bst in (17)
2: set an initial approximate for the Navier–Stokes problem ū0 := ūst

3: for k = 0, . . . ,mp − 1 do {Picard iteration}
4: solve JkP δū

k = −r̄k
5: update ūk+1 := ūk + δūk

6: end for
7: while k < mn and ‖r̄k‖2 > εnl‖r̄0‖2 do {Newton iteration}
8: solve JkN δū

k = −r̄k
9: update ūk+1 := ūk + δūk

10: end while

X = [x̄1, . . . , x̄n2 ] ∈ Rn1×n2 and x̄ = [x̄T1 , . . . , x̄
T
n2

]T ∈ Rn1n2 , where x̄i ∈ Rn1 for i = 1, . . . , n2.
That is, x̄ can be constructed by rearranging the elements of X, and vice versa. Suppose X
has rank αx. Then two mathematically equivalent expressions for X and x̄ are given by

(18) X = Y ZT =

αx̄∑
i=1

ȳiz̄
T
i ⇔ x̄ =

αx̄∑
i=1

z̄i ⊗ ȳi,

where Y ≡ [ȳ1, . . . , ȳαx̄ ] ∈ Rn1×αx̄ , Z ≡ [z̄1, . . . , z̄αx̄ ] ∈ Rn2×αx̄ with ȳi ∈ Rn1 , and z̄i ∈ Rn2 for
i = 1, . . . , αx̄. The representation of X and its rank is standard matrix notation; we also use
αx to refer to the rank of the corresponding vector x̄.

With this definition of rank, our goal is to inexpensively find a low-rank approximate solu-
tion ūk satisfying ‖r̄k‖2 ≤ εnl‖r̄0‖2 for small enough εnl. To achieve this goal, we approximate
updates δūk in low-rank form using a low-rank variant of the GMRES method, which exploits
the Kronecker product structure in the system matrix as in (12) and (17). In the following
section, we present the solutions ū (and δū) in the formats of (18) together with matrix and
vector operations that are essential for developing the low-rank GMRES method.

3.2. Solution coefficients in Kronecker-product form. We seek separate low-rank ap-
proximations of the horizontal and vertical velocity solutions and the pressure solution. With
the representation shown in (18), the solution coefficient vector ū ∈ R(2nu+np)nξ , which con-
sists of the coefficients of the velocity and pressure solutions (10), has an equivalent matri-
cized representation U = [UxT , UyT , P T ]T ∈ R(2nu+np)×nξ , where Ux = [ūx1 , . . . , ū

x
nξ

], Uy =

[ūy1, . . . , ū
y
nξ ] ∈ Rnu×nξ , and P = [p̄1, . . . , p̄nξ ] ∈ Rnp×nξ . The components admit the following

representations:

Ux =

αūx∑
i=1

(v̄xi )(w̄xi )T = (V x)(W x)T ⇔ ūx =

αūx∑
i=1

w̄xi ⊗ v̄xi ,(19)

Uy =

αūy∑
i=1

(v̄yi )(w̄yi )T = (V y)(W y)T ⇔ ūy =

αūy∑
i=1

w̄yi ⊗ v̄
y
i ,(20)

P =

αp̄∑
i=1

(v̄pi )(w̄
p
i )
T = (V p)(W p)T ⇔ p̄ =

αp̄∑
i=1

w̄pi ⊗ v̄
p
i ,(21)
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where V x = [v̄x1 . . . v̄
x
αūx

], W x = [w̄x1 . . . w̄
x
αūx

], αūx is the rank of ūx and Ux, and the same
interpretation can be applied to ūy and p̄.

3.2.1. Matrix operations. In this section, we introduce essential matrix operations used
by the low-rank GMRES methods, using the representations shown in (19)–(21). First, con-
sider the matrix-vector product with the system matrix (12) and vectors (19)–(21),

Jnūn =

( nξ∑
l=1

Gl ⊗Fnl

)
ūn.(22)

The expression (22) has the equivalent matricized form
∑nξ

l=1F
n
l U

nGTl , which can be evaluated
using the componentwise representation of Fl as in (13), for example,

Fn1 UnGT1 =

F xx,n1 V x,n(G1W
x,n)T + F xy,n1 V y,n(G1W

y,n)T +BxTV p,n(G1W
p,n)T

F yx,n1 V x,n(G1W
x,n)T !F yy,n1 V y,n(G1W

y,n)T +ByTV p,n(G1W
p,n)T

BxV x,n(G1W
x,n)T +ByV y,n(G1W

y,n)T

 .(23)

Equivalently, in the Kronecker-product structure, the matrix-vector product (23) updates each
set of solution coefficients as follows:

nξ∑
l=1

(
(Gl ⊗ F xx,nl )ūx,n + (Gl ⊗ F xy,nl )ūy,n

)
+ (G1 ⊗BxT )p̄n (x-velocity),(24)

nξ∑
l=1

(
(Gl ⊗ F yx,nl )ūx,n + (Gl ⊗ F yy,nl )ūy,n

)
+ (G1 ⊗ByT )p̄n (y-velocity),(25)

(G1 ⊗Bx)ūx,n + (G1 ⊗By)ūy,n (pressure),(26)

where each matrix-vector product can be performed by exploiting the Kronecker-product
structure, for example,

nξ∑
l=1

(Gl ⊗ F xx,nl )ūx,n =

nξ∑
l=1

Gl ⊗ F xx,nl

αūx∑
i=1

wxi ⊗ vxi =

nξ∑
l=1

αūx∑
i=1

Glw
x
i ⊗ F

xx,n
l vxi .(27)

The matrix-vector product shown in (24)–(26) requires O(2nu + np + nξ) flops, whereas (22)
requires O((2nu + np)nξ) flops. Thus, as the problem size grows, the additive form of the
former count grows much less rapidly than the multiplicative form of (22).

The addition of two vectors ūx and ūy can also be efficiently performed in the Kronecker-
product structure,

(28) ūx + ūy =

αūx∑
i=1

wxi ⊗ vxi +

αūy∑
i=1

wyi ⊗ v
y
i =

αūx+αūy∑
i=1

ŵi ⊗ v̂i,

where v̂i = vxi , ŵi = wxi for i = 1, . . . , αūx , and v̂i = vyi , ŵi = wyi for i = αūx +1, . . . , αūx +αūy .
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Inner products can be performed with similar efficiencies. Consider two vectors x̄1 and
x̄2, whose matricized representations are

X1 =

Y11Z
T
11

Y12Z
T
12

Y13Z
T
13

 , X2 =

Y21Z
T
21

Y22Z
T
22

Y23Z
T
23

 .(29)

We consider the Frobenius inner product [19] between X1 and X2, 〈X1, X2〉F, as

x̄T1 x̄2 = trace((Y11Z
T
11)TY21Z

T
21) + trace((Y12Z

T
12)TY22Z

T
22) + trace((Y13Z

T
13)TY23Z

T
23),

where trace(X) is defined as a sum of the diagonal entries of the matrix X. An efficient
implementation of this inner product does not use the trace formulas, but instead constructs
Ŷj = Y1jY

T
2j , Ẑj = Z1jZ

T
2j , for j = 1, 2, 3, and

〈X1, X2〉F = sum
(
Ŷ1 ◦ Ẑ1

)
+ sum

(
Ŷ2 ◦ Ẑ2

)
+ sum

(
Ŷ3 ◦ Ẑ3

)
,

where Y ◦ Z is the elementwise (Hadamard) matrix product and the sum is over all matrix
elements. We used this construction in our implementation.

Although the matrix-vector product and the sum, as described in (27) and (28), can be
performed efficiently, the results of (27) and (28) are represented by nξαūx terms and αūx+αūy

terms, respectively, which typically causes the ranks of the computed quantities to be higher
than the inputs for the computations and potentially undermines the efficiency of the solution
method. To resolve this issue, a truncation operator will be used to modify the result of
matrix-vector products and sums and to force the ranks of quantities used to be small.

3.2.2. Truncation of Ux,n, Uy,n, and Pn. Consider the velocity and the pressure rep-
resented in a matrix form as in (19)–(21). The best α-rank approximation of a matrix can
be found by using the singular value decomposition (SVD) [14, 18]. We define a truncation
operator for a given matrix U = VW T whose rank is αU ,

Tεtrunc : U → Ũ ,

where the rank of U is larger than the rank of Ũ (i.e., αU � αŨ ). The truncation operator

Tεtrunc compresses U to Ũ such that ‖Ũ − U‖F ≤ εtrunc‖U‖F , where ‖ · ‖F is the Frobenius
norm. To achieve this goal, the SVD of U can be computed (i.e., U = V̂ DW̃ T , where
D = diag(d1, . . . , dn) is the diagonal matrix of singular values).1 Letting {v̂i} and {w̃i}
denote the singular vectors, the approximation is Ũ =

∑αŨ
i=1 ṽiw̃

T
i with ṽi = div̂i and the

1In computing the SVD, we follow the approach used in [10], where, based on complexity analysis of costs,
one can adaptively choose a method to compute the SVD of U either by computing QR decompositions of the
factors V = QVRV and W = QWRW , and computing the SVD of RVR

T
W as in [14], or by computing the SVD

of U directly when that is less expensive.
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truncation rank αŨ is determined by the condition√
d2
αŨ+1 + · · ·+ d2

n ≤ εtrunc

√
d2

1 + · · ·+ d2
n.(30)

3.3. Low-rank GMRES method. We describe the lrGMRES method with a generic linear
system Ax = b. The method follows the standard Arnoldi iteration used by GMRES [25]:
construct a set of basis vectors {vi}

mgm

i=1 by applying the linear operator A to basis vectors,
i.e., wj = Avj for j = 1, . . . ,mgm, and orthogonalizing the resulting vector wj with respect

to previously generated basis vectors {vi}j−1
i=1 . In the low-rank GMRES method [2], iterates,

basis vectors vi, and intermediate quantities wi are represented in terms of the factors of
their matricized representations (so that X in (18) would be represented using Y and Z
without explicit construction of X), and matrix operations such as matrix-vector products
are performed as described in section 3.2.1. As pointed out in section 3.2.1, these matrix
operations typically tend to increase the rank of the resulting quantity, and this is resolved
by interleaving the truncation operator T with the matrix operations. The low-rank GMRES
method computes a new iterate by solving

min
β̄∈Rmgm

‖b−A(x0 + Vmgm β̄)‖2(31)

and constructing a new iterate x1 = x0+Vmgm β̄, where x0 is an initial guess. Due to truncation,
the basis vectors {vi} are not orthogonal and span(Vmgm), where Vmgm = [v1 . . . vmgm ], is not
a Krylov subspace, so that (31) must be solved explicitly rather than exploiting Hessenberg
structure as in standard GMRES. Algorithm 2 summarizes the lrGMRES method. We will
use this method to solve the linear system of (16).

Algorithm 2 lrGMRES(mgm) (restarted low-rank GMRES method)

1: set the initial solution x0

2: for k = 0, 1, . . . do
3: rkgm := b−Axk
4: if ‖rkgm‖2/‖b‖2 < εgmres or ‖rkgm‖2 ≥ ‖rk−1

gm ‖2 then
5: return xk
6: end if
7: v̄1 := Tεtrunc(r

k
gm)

8: v1 := v̄1/‖v̄1‖2
9: for j = 1, . . . , mgm do

10: wj := Avj
11: solve (V T

j Vj)ᾱ = V T
j wj where Vj = [v1, . . . , vj ]

12: v̄j+1 := Tεtrunc

(
wj −

∑j
i=1 αivi

)
13: vj+1 := v̄j+1/‖v̄j+1‖2
14: end for
15: solve (W T

mgm
AVmgm)β̄ = W T

mgm
rkgm where Wj = [w1, . . . , wj ]

16: xk+1 := Tεtrunc(xk + Vmgm β̄)
17: end forD
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3.4. Preconditioning. We also use preconditioning to speed up convergence of the lrGM-
RES method. For this, we consider a right-preconditioned system

Jn(Mn)−1δũn = −r̄n,

where Mn is the preconditioner and Mnδūn = δũn such that Jnδūn = −r̄n. We consider
an approximate mean-based preconditioner [22], which is derived from the matrix G1 ⊗ F1

associated with the mean ν0 of the random viscosity (2),

(32) Mn = G1 ⊗
[
Mn
A BT

0 −Mn
s

]
,

where

Mn
A =

[
Axx1 +Nn

1 0
0 Ayy1 +Nn

1

]
(Picard iteration),

Mn
A =

[
Axx1 +Nn

1 +W xx,n
1 0

0 Ayy1 +Nn
1 +W yy,n

1

]
(Newton iteration).

For approximating the action of the inverse, (Mn
s )−1, we choose the boundary-adjusted least-

squares commutator (LSC) preconditioning scheme [9],

Mn
s = BF−1

1 BT ≈ (BH−1BT )(BM−1
∗ F1H

−1BT )−1(BM−1
∗ BT ),

where M∗ is the diagonal of the velocity mass matrix and H = D−1/2M∗D
−1/2, where D is a

diagonal scaling matrix deemphasizing contributions near the boundary. During the iteration,
the action of the inverse of the preconditioner (32) can be applied to a vector in a manner
analogous to (24)–(26).

4. Inexact nonlinear iteration. As outlined in Algorithm 1, we use the hybrid approach,
employing a few steps of Picard iteration followed by Newton iteration, and the linear systems
(lines 4 and 8 in Algorithm 1) are solved using lrGMRES (Algorithm 2). We extend the
hybrid approach to an inexact variant based on an inexact Newton algorithm, in which the
accuracy of the approximate linear system solution is tied to the accuracy of the nonlinear
iterate (see, e.g., [13] and references therein). That is, when the nonlinear iterate is far from
the solution, the linear systems may not have to be solved accurately. Thus, a sequence of
iterates ūn+1 := ūn + δūn is computed where δūn satisfies

‖JnNδūn + r̄n‖2 ≤ εngmres‖r̄n‖2 (JP for Picard iteration),

where the lrGMRES stopping tolerance (εngmres of Algorithm 2) is given by

(33) εngmres := ρgmres‖r̄n‖2,

where 0 < ρgmres ≤ 1. With this strategy, the system (22) is solved with increased accuracy
as the error becomes smaller, leading to savings in the average cost per step and, as we will
show, with no degradation in the asymptotic convergence rate of the nonlinear iteration.
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In addition, in Algorithms 1 and 2, the truncation operator Tεtrunc is used for the low-
rank approximation of the nonlinear iterate (i.e., truncating ūx, ūy, and p̄ at lines 5 and
9 in Algorithm 1) and updates (i.e., truncating δūx, δūy, and δp̄ at lines 7, 12, and 16 in
Algorithm 2). As the lrGMRES stopping tolerance is adaptively determined by the criterion
(33), we also choose the value of the truncation tolerances εtrunc,sol and εntrunc,corr, adaptively.
For truncating the nonlinear iterate, the truncation tolerance for the iterate εntrunc,sol is chosen
based on the nonlinear iteration stopping tolerance,

εtrunc,sol := ρnlεnl,

where 0 < ρnl ≤ 1. For truncating the updates (or corrections), the truncation tolerance
for the correction εntrunc,corr is adaptively chosen based on the stopping tolerance of the linear
solver,

εntrunc,corr := ρtrunc,Pε
n
gmres (for the nth Picard step),

εntrunc,corr := ρtrunc,Nε
n
gmres (for the nth Newton step),

where 0 < ρtrunc,P, ρtrunc,N ≤ 1. Thus, for computing nth update δūn, we set εtrunc = εntrunc,corr

in Algorithm 2. The complete computation is shown in Algorithm 3.

Algorithm 3 Inexact nonlinear iteration with adaptive tolerances
1: set εtrunc,sol := ρnlεnl

2: compute an approximate solution of Astūst = bst using Algorithm 2
3: set an initial guess for the Navier–Stokes problem ū0 := ūst

4: for k = 0, . . . ,mp − 1 do {Picard iteration}
5: set εkgmres = ρgmres‖r̄k‖2, and εktrunc,corr = ρtrunc,P‖r̄k‖2
6: solve JkP δū

k = −r̄k using Algorithm 2
7: update ūk+1 := Tεtrunc,sol

(ūk + δūk)
8: end for
9: while ‖r̄k‖2 > εnl‖r̄0‖2 do {Newton iteration}

10: set εkgmres = ρgmres‖r̄k‖2, and εktrunc,corr = ρtrunc,N‖r̄k‖2
11: solve JkN δū

k = −r̄k using Algorithm 2
12: update ūk+1 := Tεtrunc,sol

(ūk + δūk)
13: end while

5. Numerical results. In this section, we present the results of numerical experiments on
a model problem, flow around a square obstacle in a channel, for which the details are depicted
in Figure 1. The domain has length 12 and height 2, and it contains a square obstacle centered
at (2,0) with sides of length .25.

For the numerical experiments, we define the random viscosity (2) using a stochastic
expansion with νi(x) =

√
λiν̃i(x),

ν(x, ξ) = ν0 + σν

∞∑
i=1

√
λiν̃i(x)ξi,(34)

where {ξi} are uncorrelated random variables with zero mean and unit variance, ν0 and σ2
ν

are the mean and the variance of ν(x, ξ), and {(λi, ν̃i(x))} are eigenpairs of the eigenvalue
problem associated with a covariance kernel C(x, y). We consider two types of covariance
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0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Figure 1. Spatial domain and finite element discretization.

kernel: absolute difference exponential (AE) and squared difference exponential (SE), which
are defined via

CAE(x, y) = exp

(
−

2∑
i=1

|xi − yi|
l

)
, CSE(x, y) = exp

(
−

2∑
i=1

(xi − yi)2

l

)
,(35)

where x = (x1, x2) and y = (y1, y2) are points in the spatial domain, and l is a correlation
length.2 We assume that ξi (for i = 1, . . . , nν) follows a uniform distribution over [−

√
3,
√

3].
With this choice, γ = 1 in (14). For the mean of the viscosity, we consider several choices,
ν0 = { 1

50 ,
1

100 ,
1

150}, which correspond to Re0 = {100, 200, 300}. We will also refer to the
coefficient of variation (CoV ), the relative size of the standard deviation with respect to the
mean,

CoV ≡ σν
ν0
.(36)

To ensure the positivity of the random field, we check ν0(1−
√

12
2 CoV ) > 0, which holds for all

benchmark problems tested. In most experiments, we use a truncated stochastic expansion of
(34) with the largest five eigenvalues (nν = 5). For constructing the finite-dimensional approx-
imation space S = span({ψi(ξ)}

nξ
i=1) in the parameter domain, we use orthogonal polynomials

{ψi(ξ)}
nξ
i=1 of total degree dtot = 3, which results in nξ = 56. The orthogonal polynomials

associated with uniform random variables are Legendre polynomials. For the spatial dis-
cretization, Taylor–Hood elements are used on a stretched grid, which results in {6320, 6320,
1640} degrees of freedom in {ux, uy, p}, respectively (i.e., nu = 6320 and np = 1640.) The
implementation is based on the Incompressible Flow and Iterative Solver Software (IFISS)
package [8, 27].

5.1. Low-rank inexact nonlinear iteration. In this section, we compare the results ob-
tained from the low-rank inexact nonlinear iteration with those obtained from other methods,
the exact and the inexact nonlinear iteration with full rank solutions, and the Monte Carlo
method. Default parameter settings are listed in Table 1, where the truncation tolerances only
apply to the low-rank method. Unless otherwise specified, the linear system is solved using
a restarted version of low-rank GMRES, lrGMRES(20), which generates 20 basis vectors at
each GMRES cycle.

We first examine the convergence behavior of the inexact nonlinear iteration for two model
problems characterized by Re0 = 100, CoV = 1%, l = 32 and Re0 = 100, CoV = 5%, l = 1.

2Note that the expansion (34) has covariance given by σ2
νC, where C is one of the functions in (35).
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Table 1
Tolerances and adaptive parameters.

Nonlinear iteration stopping tolerance εnl = 10−5

GMRES tolerance (Stokes) εgmres = 10−4

GMRES tolerances (Picard and Newton) εngmres = ρgmres‖r̄n‖2 (ρgmres = 10−.5)

Truncation tolerance for solutions εtrunc,sol = ρnlεnl (ρnl = 10−1)

Truncation tolerance for corrections εntrunc,corr = ρtruncε
n
gmres (ρtrunc = 10−1)

<N 

0 
1..._ 

----
<N 

10-5

t • . • • • . I- • 

t· ··· · ·I-· 

--a-- Full rank, Exact 
10-10

------e--- Full rank, Inexact 

-*- Low rank(l0-5), Inexact 

----v- Low rank(l0-6), Inexact

----+- Low rank(l0-7), Inexact

-------*- Low rank(l0-8), Inexact

1 2 3 4 5 6 7

k ( step counts for the nonlinear iteration) 

(a) CoV = 1% and l = 32

10-5

10-10

1 

+·· · ·  ··I-· 

+·· · ·  ··I-· 

----e---- Full rank, Exact 
------8--- Full rank, Inexact 
� Low rank(l0-5), Inexact
-�-Low rank(l0-6), Inexact
----+- Low rank(l0-7), Inexact
-------k-- Low rank(l0-8), Inexact

2 3 4 5 6 7 

k (step counts for the nonlinear iteration) 

(b) CoV = 5% and l = 1

Figure 2. Convergence of both exact and inexact nonlinear iterations (full-rank) and the low-rank inexact
nonlinear iteration.

Also, the SE covariance kernel in (35) is considered for both problems. We compute a full-
rank solution using the exact nonlinear iteration (εngmres = 10−12 and no truncation) until
the nonlinear iterate reaches the nonlinear stopping tolerance, εnl = 10−8. Then we compute
another full-rank solution using the inexact nonlinear iteration (i.e., adaptive choice of εngmres

as shown in Table 1 and no truncation). Last, we compute a low-rank approximate solution
using the low-rank inexact nonlinear iteration (i.e., adaptive choices of εngmres and εntrunc,corr

as shown in Table 1 and for varying εtrunc,sol = {10−5, 10−6, 10−7, 10−8}). Figure 2 shows
the convergence behavior of the three methods. We use a hybrid approach, in which the
first step corresponds to the Stokes problem (line 2 of Algorithm 3), the second–fifth steps
correspond to the Picard iteration (lines 4–8 of Algorithm 3, and mp = 4), and the sixth–
seventh steps correspond to the Newton iteration (lines 9–13 of Algorithm 3). The choice of
mp = 4 (number of Picard steps) was derived from our empirical observation (also made in
[28]) that with this choice the following Newton iteration always converged. We also allowed
a maximal number of Newton steps mn = 4, which was not reached in any of the experiments.
Figure 2 confirms that the inexact nonlinear iteration is as effective as the exact nonlinear
iteration. The low-rank inexact nonlinear iteration behaves similarly up to the sixth nonlinear
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Figure 3. Mean and variances of full-rank velocity solutions ux(x, ξ), uy(x, ξ), and pressure solution p(x, ξ)
for Re0 = 100, CoV = 1%, and l = 32.
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Figure 4. Difference between the means and variances of the full-rank and the low-rank solutions for
Re0 = 100, CoV = 1%, and l = 32.

step but when the truncation tolerances are large, εtrunc,sol = {10−5, 10−6} in Figure 2(a) and
εtrunc,sol = {10−5, 10−6, 10−7} in Figure 2(b), it fails to produce a nonlinear solution satisfying
εnl = 10−8.

Figure 3 shows means and variances of the components of the full-rank solution of the
problem with Re0 = 100, CoV = 1%, and l = 32, given by

µux = E[ux], µuy = E[uy], µp = E[p],(37)

σ2
ux = E[(ux − µux)2], σ2

uy = E[(uy − µuy)2], σ2
p = E[(p− µp)2].(38)

These quantities are easily computed by exploiting the orthogonality of basis functions in the
gPC expansion. Figure 4 shows the differences in the means and variances of the solutions
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computed using the full-rank and the low-rank inexact nonlinear iteration. Let us denote
the full-rank and low-rank horizontal velocity solutions by ux,full and ux,lr, with analogous
notation for the vertical velocity and the pressure. Thus, the differences in the means and the
variances are

ηxµ = µux,full − µux,lr , ηyµ = µuy,full − µuy,lr , ηpµ = µpfull − µplr ,

ηxσ = σ2
ux,full − σ2

ux,lr , ηyσ = σ2
uy,full − σ2

uy,lr , ηpσ = σ2
pfull − σ2

plr .

Figure 4 shows these differences, normalized by graph norms ‖∇~µufull‖ + ‖µpfull‖ for the

means and ‖∇~σ2
ufull‖ + ‖σ2

pfull‖ for the variances, where ‖∇~u‖ = (
∫
D∇~u : ∇~u dx)

1
2 and

‖p‖ = (
∫
D p

2dx)
1
2 . Figure 4 shows that the normalized differences in the mean and the variance

are of order 10−10 to 10−9 and 10−12 to 10−10, respectively, i.e., the errors in low-rank solutions
are considerably smaller than the magnitude of the truncation tolerances εtrunc,sol, εtrunc,corr

(see Table 1). This outcome is typical of our experience. For example, in another experiment
with CoV = 5% and l = 1, the normalized differences in the mean and the variance are of
order 10−9 to 10−8 and 10−11 to 10−9.

5.2. Characteristics of the Galerkin solution. In this section, we examine various prop-
erties of the Galerkin solutions, with emphasis on comparison of the low-rank and full-rank
versions of these solutions and development of an enhanced understanding of the relation be-
tween the Galerkin solution and the polynomial chaos basis. We use the same experimental
settings studied above and describe the result mainly with the model problem with CoV = 1%
and l = 32.

We begin by comparing the Galerkin solution with the solution of the parameterized dis-
crete system via Monte Carlo simulation. For the latter approach, spatial discretization of the
Navier–Stokes equations (1), using the same Taylor–Hood element described in section 2.2,
produces a deterministic parameterized nonlinear algebraic system whose finite element veloc-
ity (uxh(x, ξ), uyh(x, ξ))T and pressure ph(x, ξ) solutions for ξ comprise discrete approximations
to solutions of the parameterized system (1). We can use these discrete solutions to esti-
mate PDFs at a specific point in the spatial domain. For Monte Carlo simulation, we solve
nMC = 25000 such deterministic systems associated with nMC realizations {ξ(k)}nMC

k=1 in the
parameter space. Using the Matlab function ksdensity, the PDFs of (uxh(x, ξ), uyh(x, ξ),
ph(x, ξ)) are estimated at the spatial point with coordinates (3.6436, 0), where the variance of
uxh(x, ξ) is large (see Figure 3). The results are shown in Figure 5, where the same sampling
points ξ(k) are used with the Galerkin solutions and the Monte Carlo simulation of the pa-
rameterized discrete system. They indicate that the PDF estimate of the Galerkin solution is
virtually identical to that obtained from Monte Carlo simulation of the parameterized discrete
system, and there is essentially no difference between the low-rank and full-rank results.

Next, we explore some characteristics of the Galerkin solution, focusing on the horizon-
tal velocity solution; the observations made here also hold for the other components of the
solution. Given the coefficients of the discrete velocity solution in matricized form, Ux, the
velocity solution is then approximated by

ux(x, ξ) ≈ ΦT (x)UxΨ(ξ),
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-+-MC 

20 � SG(full rank)
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0.5 0.55 0.6 

(a) uxh(ξ) (b) uyh(ξ) (c) ph(ξ)

Figure 5. Estimated PDFs of the velocities uxh(ξ), uyh(ξ), and the pressure ph(ξ) at the point (3.6436, 0).

Figure 6. Norms of the gPC coefficients ‖ūxi ‖2 for Re0 = 100, CoV = 1%, and l = 32.

where Φ(x) = [φ1(x), . . . , φnu(x)]T and Ψ(ξ) = [ψ1(ξ), . . . , ψnξ(ξ)]
T . Consider in particular

the component of this expression corresponding to the jth column of Ux,(
nu∑
i=1

uxijφi(x)

)
ψj(ξ)

so that this (jth) column ūxj = [Ux]j corresponds to the coefficient of the jth polynomial
basis function ψj . Figure 6 plots the values of the coefficients ‖ūxj ‖2. (This data is computed
with Re0 = 100, CoV = 1%, and SE covariance kernel with l = 32.) Note that the gPC
indices {j} are in one-to-one correspondence with multi-indices d(j) = (d1(j), . . . , dnu(j)),
where the element of the multi-index indicates the degree of univariate Legendre polynomial.
The multi-indices {d(j)}nξj=1 are ordered using the graded lexicographic order [33, Chapter 5.2].
In Figure 6, the blue square is associated with the zeroth-order gPC component (d(1)), the red
circles are associated with the first-order gPC components ({d(j)}6j=2), and so on. Let us focus
on three gPC components associated only with ξ1, {ψ2(ξ) = `1(ξ1), ψ7(ξ) = `2(ξ1), ψ22(ξ) =
`3(ξ1)}, where, for j = 2, 7, 22, the multi-indices are d(2) = (1, 0, 0, 0, 0), d(7) = (2, 0, 0, 0, 0),
and d(22) = (3, 0, 0, 0, 0). Figure 6 confirms that the gPC components {ψ2(ξ), ψ7(ξ), ψ22(ξ)}
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Figure 7. Plots of coefficients of gPC components 2–7 of ux(x, ξ) (left) and coefficients vxi of θxi (ξ) for
i = 2, . . . , 7 (right) for Re0 = 100, CoV = 1%, and l = 32.

associated with the input variable ξ1, which has the highest impact on the input (34), also
have the highest impact in the output.

We continue the examination of this data in Figure 7 (left), which shows two-dimensional
mesh plots of the second through seventh columns of Ux. These images show that these
coefficients are either symmetric with respect to the horizontal axis or reflectionally symmetric
(equal in magnitude but of opposite sign), and (as also revealed in Figure 6) they tend to have
smaller values as the index j is increased.

We now look more closely at features of the factors of the low-rank approximate solution
and compare these with those of the (unfactored) full-rank solution. In the low-rank format,
the discrete solution is represented using factors (ΦT(x)V x)(ΨT(ξ)W x)T. Let us introduce a
concise notation for the approximation of ux(x, ξ),

ux(x, ξ)≈Zxαūx(x)TΘx
αūx

(ξ) =

αūx∑
i=1

ζxi (x)θxi (ξ),

where Zxαūx (x) = [ζx1 (x), . . . , ζxαūx (x)] and Θx
αūx

(ξ) = [θx1 (ξ), . . . , θxαūx (ξ)] with

ζxi (x) = [ΦT (x)V x]i and θxi (ξ) = [(ΨT (ξ)W x)]i for i = 1, . . . , αūx . Figure 7 (right) shows
the coefficients of the ith random variable θxi (ξ). As opposed to the gPC coefficients of the
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Figure 8. Heat maps of (W x)T for CoV = 1% and l = 32 (left) and CoV = 5% and l = 1 (right).

full-rank solution, the norms of the coefficients vxi of θxi (ξ) decrease monotonically as the index
i increases. This is a consequence of the fact that the ordering for θxi (ξ) comes from the sin-
gular values of Ux. Figure 7 (right) shows the second–seventh columns of V x. Figure 7 shows
that the coefficients vxi of θxi (ξ) are comparable to the coefficients uxi of the gPC components.
Each pair of components in the following parenthesized collection is similar: (u2, v2), (u3, v3),
(u7,−v4), (u4,−v7), (u5, v5), and (u6,−v6).

Figure 8 shows a “heat map” of (W x)T , where values of the elements in W x are represented
as colors and the map shows that very few elements of W x

i are dominant and a sum of those
elements is close to 1. Using the fact that θxi (ξ) = ΨT (ξ)wxi , the figure shows how θxi (ξ) is
represented in terms of Ψ(ξ). For the case CoV = 1% and l = 32 shown on the left, W x

tends to act as a permutation matrix. In particular, many dominant elements of W x are
located in its diagonal, with a value approximately 1, which results in θxi (ξ) ≈ ±ψi(ξ) (e.g.,
i = 1, 2, 3, 5, 6, 8). For the fourth column of W x, the most dominant entry is the seventh with
a value close to −1, which results in θx4 (ξ) ≈ −ψ7(ξ). As shown in Figure 6, ψ7(ξ) has a larger
contribution than most other gPC components, and θx4 (ξ), which consists mainly of ψ7(ξ),
has a smaller index in the new solution representation. For the case of CoV = 5% and l = 1
depicted on the right side of Figure 8, the dominant modes determined from the SVD, i.e.,
θxi (ξ) for small i, tend to correspond to multiple gPC components with larger contributions;
for example, θx4 (ξ) ≈ [W x]64ψ6(ξ) + [W x]84ψ8(ξ).

5.3. Computational costs. In this section, we assess the costs of the low-rank inexact
nonlinear iteration under various experimental settings: two types of covariance kernels (35),
varying CoV (36), and varying Re0. In addition, for various values of these quantities, we
investigate the decay of the eigenvalues λi used to define the random viscosity (34) and their
influence on the rank of solutions. All numerical experiments are performed on an Intel 3.1
GHz i7 CPU, 16 GB RAM, using MATLAB R2016b, and costs are measured in terms of CPU
wall time (in seconds). For larger CoV and Re0, we found the solver to be more effective
using the slightly smaller truncation tolerance ρtrunc = 10−1.5 and used this choice for all
experiments described below. (Other adaptive tolerances are those shown as in Table 1.)
This change had little impact on results for small CoV and Re0.

Figure 9 shows the 50 largest eigenvalues λi of the eigenvalue problems associated with
the SE covariance kernel and the AE covariance kernel (35) with l = 8, CoV = 1%, and
Re0 = 100. The eigenvalues of the SE covariance kernel decay much more rapidly than those
of the AE covariance kernel. Because we choose a fixed number of terms nν = 5, the random
viscosity derived from the SE covariance kernel retains a smaller variance.
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Figure 9. Eigenvalue decay of the AE and the SE covariance kernels.

250 

200 
�- SE, low rank 

+----++-- SE, full rank 

,__,_ AE, low rank 

150 1-----'ir-- AE, full rank 

1 2 4 8 

l 

16 32 

(a) Computational cost of full-rank computa-
tion and low-rank approximation

(b) Ranks of the low-rank approximate solutions

Figure 10. Computational costs and ranks for varying correlation lengths with SE and AE covariance kernel.

Figure 10(a) shows the computational costs (in seconds) needed for computing the full-
rank solutions and the low-rank approximate solutions using the inexact nonlinear iteration for
the two covariance kernels and a set of correlation lengths, l = {1, 2, 4, 8, 16, 32}. Figure 10(b)
shows the ranks of the low-rank approximate solutions that satisfy the nonlinear stopping
tolerance εεnl

= 10−5. Again, Re0 = 100 and CoV = 1%. For this benchmark problem, 4
Picard iterations and 1 Newton iteration are enough to generate a nonlinear iterate satisfying
the stopping tolerance εnl. It can be seen from Figure 10(a) that in all cases the use of low-rank
methods reduces computational cost. Moreover, as the correlation length becomes larger, the
ranks of the corrections and the nonlinear iterates become smaller. As a result, the low-rank
method achieves greater computational savings for the problems with larger correlation length.
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Figure 11. Computational costs and ranks for varying correlation lengths and varying CoV with Re0 = 100.

Next, we examine the performances of the low-rank approximation method for varying
CoV , which is defined in (36). In this experiment, we fix the value of Re0 = 100 and the
variance σν is controlled. We consider the SE covariance kernel.

Figure 11 shows the performances of the full-rank and the low-rank methods for varying
CoV = {1%, 5%, 10%}. We use Algorithm 3 with four Picard steps, followed by several
Newton steps until convergence. For CoV = {1%, 5%}, one Newton step is required for
convergence and, for CoV = 10%, two Newton steps are required. Figure 11(a) shows the
computational costs. For CoV = {1%, 5%}, the computational benefits of using the low-rank
approximation methods are pronounced whereas, for CoV = 10%, the performances of the
two approaches are essentially the same for shorter correlation lengths. Indeed, for higher
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Figure 12. Computational costs and ranks for varying correlation lengths and varying Re0.

CoV , the ranks of solutions ū (see Figures 11(b)–11(d)) as well as updates δūk at Newton
steps become close to the full rank (nξ = 56).

Next, we study the benchmark problems with varying mean viscosity with SE covariance
kernel and CoV = 1%. As the mean viscosity decreases, Re0 grows, and the nonlinear problem
tends to become harder to solve, and for the larger Reynolds numbers Re0 = 200 or 300, we
use more Picard steps (5 or 6, respectively) before switching to Newton’s method.

Figure 12 shows the performances of the low-rank methods for varying Reynolds num-
ber, Re0 = {100, 200, 300}. For Re0 = 200, after five Picard steps, one Newton step leads
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to convergence (and six Picard steps and one Newton step for Re0 = 300). As the Figures
12(b)–12(d) show, the ranks of the solutions increase slightly as the Reynolds number be-
comes larger and, thus, for all Re0 tested here, the low-rank method demonstrates notable
computational savings (with CoV = 1%). Note that overall computational costs in Figure
12(a) increase as the Reynolds number becomes larger because (1) the number of nonlinear
steps required to converge increases as the Reynolds number increases and (2) to solve each
linearized systems, typically more lrGMRES cycles are required for the problems with higher
Reynolds number.

Finally, we study how the total degree dtot of the gPC basis and the number of random
variables nν effect the performance of the low-rank methods. In these tests, we used the SE
covariance kernel, CoV = 5%, and Re0 = 100; Algorithm 3 with four Picard steps followed
by one Newton step led to convergence.

Figure 13 shows performance results for dtot = 3, 4, and 5 and nν = 5, 7, and 9. For these
choices of dtot, we fixed nν = 5, which results in nξ = 56, 126, and 252. For varying nν , we
fixed dtot = 3, which results in nξ = 56, 120, and 220. Figure 13(a) shows that the benefits of
the low-rank methods are enhanced as dtot increases; this is because increasing dtot has small
impact on the ranks of the low-rank solutions (Figures 13(c)–13(e)). Similarly the increase in
nν does not greatly affect the ranks of the solutions (Figures 13(c)–13(e)). (Note in particular
that as either dtot or nν is increased, the ranks of the solutions increase less dramatically than
nξ.) The effectiveness of low-rank methods is enhanced as nν grows (Figure 13(b)).

6. Conclusion. In this study, we have developed the inexact low-rank nonlinear iteration
for the solutions of the Navier–Stokes equations with uncertain viscosity in the stochastic
Galerkin context. At each step of the nonlinear iteration, the solution of the linear system
is inexpensively approximated in low-rank format using the tensor variant of the GMRES
method. We examined the effect of the truncation on the accuracy of the low-rank ap-
proximate solutions by comparing those solutions to the ones computed using exact, inexact
nonlinear iterations in full rank and the Monte Carlo method. Then we explored the ef-
ficiency of the proposed method with a set of benchmark problems for various settings of
uncertain viscosity. The numerical experiments demonstrated that the low-rank nonlinear
iteration achieved significant computational savings for the problems with smaller CoV and
larger correlation lengths. The experiments also showed that the mean Reynolds number
does not significantly affect the rank of the solution and the low-rank nonlinear iteration
achieves computational savings for varying Reynolds number for small CoV and large corre-
lation lengths. Last, the experiments showed that the low-rank nonlinear iteration performs
better for problems with a larger total degree in the gPC expansion and for larger numbers
of random variables.
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the views of the U.S. Department of Energy or the United States Government. Sandia National
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the U.S. Department of Energy’s National Nuclear Security Administration under contract
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(a) Computational costs for varying to-
tal degree dtot in the gPC expansion

(b) Computational cost for varying
number of random variables nν

(c) Ranks of ux (d) Ranks of uy

(e) Ranks of p

Figure 13. Computational costs and ranks for varying total degrees of the gPC expansion dtot and number
of random variables nν .D
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