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We explore the dynamics of strongly localized periodic solutions (discrete solitons, or discrete
breathers) in a finite one-dimensional chain of asymmetric vibro-impact oscillators. The model
involves a parabolic on-site potential with asymmetric rigid constraints (the displacement domain
of each particle is finite), and a linear nearest-neighbor coupling. When the particle approaches
the constraint, it undergoes an impact (not necessarily elastic), that satisfies Newton impact law.
Nonlinearity of the system stems from the impacts; their possible non-elasticity is the sole source
of damping in the system. We demonstrate that this vibro-impact model allows derivation of exact
analytic solutions for the asymmetric discrete breathers, both in conservative and forced-damped
settings. The asymmetry makes two types of breathers possible: breathers that impact both or
only one constraint. Transition between these two types of the breathers corresponds to a grazing
bifurcation. Special character of the nonlinearity permits explicit derivation of a monodromy matrix.
Therefore, the stability of the obtained breather solutions can be exactly studied in the framework of
simple methods of linear algebra, and with rather moderate computational efforts. All three generic
scenarios of the loss of stability (pitchfork, Neimark-Sacker and period doubling bifurcations) are
observed.
PACS numbers: 05.45.Yv, 63.20.Pw, 63.20.Ry

INTRODUCTION

Localization is an important and widely studied phe-
nomenon in discrete dynamical systems [1–9]. Contrary
to the localization in linear systems, in nonlinear systems
it is possible without any disorder, i.e. localization may
occur even in a purely homogeneous nonlinear lattice.
Interesting examples of such localized responses are Dis-
crete Breathers (DBs), sometimes referred to as Intrinsic
Localized Modes (ILMs) or Discrete Solitons. The DB is
a periodic strongly localized response of the lattice sys-
tem. It can be simply imagined as an oscillating envelope
localized in the vicinity of a single or several sites of the
lattice. The DB’s localization is typically exponential;
however, in the systems with strong nonlinearity, it may
be hyper-exponential[2]. The DBs are known in various
branches in physics. They were experimentally observed
and theoretically discussed in a variety of model systems,
such as superconducting Josephson junctions [10], non-
linear magnetic metamaterials[11], electrical lattices[12],
micro-mechanical cantilever arrays[13–17], Bose-Einstein
condensates[18], and chains of mechanical oscillators[19–
23].

The exact DB solutions in specific nonlinear chain
models remain scarce due to the nonlinearity and dis-
creteness of the systems that encumbers the derivation
of exact solutions. Current theoretical research primarily
concentrates on numerical explorations and approximate
analytic approaches [1, 2, 9, 24]. Few known exceptions
are the completely integrable Ablowitz-Ladic model[25],
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chains with homogeneous interaction[26], and vibro-
impact chains[19]. Recently the latter approach was ex-
tended to the forced-damped vibro-impact chains[21, 23],
chains with self-excitation[27], and, most recently, to
Multi-Breather (MB) solutions [22], namely the DBs with
more than a single localization site.

The aforementioned vibro-impact chains are essentially
linear, except for the possibility of collisions, i.e. all the
on-site and coupling interactions, that are not impacts,
are linear. This feature not only allows the derivation
of the exact solution, but also considerably simplifies the
stability analysis. The stability of the periodic DB solu-
tion is determined by location of the eigenvalues of the
Monodromy matrix [28]. In most cases, the monodromy
matrix can only by obtained numerically by integration
of the equations of motion over the period of the solu-
tion. This task can be extremely difficult when treat-
ing systems with a large number of particles, to the ex-
tent that super-computers may be necessary. The consid-
ered vibro-impact models allow explicit derivation of the
monodromy matrix [21–23]. Thus the stability analysis
is reduced to evaluation of the spectrum of easily com-
puted matrices. Consequently, even simple PCs suffice
for chains with thousands of particles. Furthermore, even
for the finite chains, one can accomplish these derivations
without further approximations.

This work is based on the approach used in refs.
[19, 21–23], but introduces important novel feature into
the model. In symmetric models, a breakdown of the DB
symmetry is one of the instability scenarios [21]. In cur-
rent model, the asymmetry is imbedded into the lattice
itself. To be more specific, the model comprises a finite
number of linearly coupled oscillators; each of the latter
includes on-site coupling with two asymmetric rigid bar-
riers bounding the movement. Thus one can obtain the
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asymmetric DBs and explore their zones of existence and
stability properties in the space of parameters. Further-
more, the considered asymmetry allows a new type of the
DB – the single-sided DB – where the impact only occurs
at one of the constraints. In sec. I we present a detailed
description of the system. For this new type of DBs we
observe for the first time the period doubling bifurcations
and obtain an analytic solution for the emerging solution
in a similar manner. Section II contains the derivations
of an exact analytic solution for both conservative and
forced/damped DBs, as well as for the single-sided DB.
The method of the stability analysis is explained in sec.
III. Numerical validation of the results is presented in
sec. IV, followed by concluding remarks in sec. V.

I. DESCRIPTION OF THE MODEL

We consider a chain of (N + 1) identical unit masses,
coupled to their neighbors via linear springs, and with
periodic boundary conditions. In addition, all masses
are subject to identical on-site potentials. The on-site
interaction is via linear spring, but the motion is bounded
by a set of asymmetric impact barriers. The on-site and
coupling potentials can be described as follows:

V (u) =

{
γ1u

2 |u− a| < 1

Impact |x− a| = 1
(1)

W (u) = γ2u
2 (2)

where a ≥ 0 is the parameter of asymmetry and γ1 and
γ2 are the on-site and coupling stiffnesses, respectively.

This yields the following Hamiltonian for the full finite
chain:

H =
N∑
n=0

(
1

2
p2n + V (un)

)
+

+
N−1∑
n=0

W (un − un+1) +W (uN − u0)

(3)

The impact, which could be either elastic or non-
elastic, obeys the following traditional Newton impact
law:

u̇(ti+) = −eu̇(ti−) (4)

where ti is the time instance of the impact and 0 < e ≤ 1
is the coefficient of restitution.

II. EXACT SOLUTION FOR THE
ASYMMETRIC BREATHER

A. Discrete Breathers in the Conservative Model

If the external forcing is absent, one should set the
coefficient of restitution to e = 1 in order to preclude

the dissipation. Equations of motion for the chain can
be easily obtained from the Hamiltonian given in (3).
Furthermore, the periodicity of the DB allows introduc-
ing the impact into the equations of motion as exter-
nal forcing in the the form of a sum of delta functions
with advanced-delayed arguments. Without restricting
the generality, we adopt that the DB is localized at the
particle with n = 0. One obtains the following equations
of motion:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =

= 2p1
∑∞
j=−∞ δ

(
t− φ−

2πj

ω

)
−

−2p2
∑∞
j=−∞ δ

(
t−

2πj

ω

) (5)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (6)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (7)

where 2p1 and 2p2 correspond to the amounts of mo-
mentum transferred in the course of each of the impacts,
δ is the Dirac delta and φ is the phase instance of the
secondary impact in the period of the DB.

The expression for the impact forcing can be re-written
in the form of generalized Fourier series:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =
= ω

π

∑∞
j=−∞ (p1 cos (jω (t− φ))− p2 cos (jωt))

(8)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (9)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (10)

Thus, one further obtains:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) = ω
π (p1 − p2) +

+ 2ω
π

∑∞
j=1 (p1 cos (jω (t− φ))− p2 cos (jωt))

(11)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (12)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (13)

To obtain the exact solution, the displacement of each
particle is also searched in the form of Fourier series, and
the following anzats is used:

un = un,0 +

∞∑
j=1

(un,j,1 cos (jω (t− φ)) + un,j,2 cos (jωt))

(14)
where,

un,0 = A0f
n
0 +B0f

−n
0 (15)

un,j,1 = Ajf
n
j +Bjf

−n
j (16)

un,j,2 = Cjf
n
j +Djf

−n
j (17)
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Linearity of the equations of motion between the impacts
yields:

fj =
γ1 + 2γ2 − j2ω2 ±

√
(j2ω2 − γ1 − 2γ2)

2 − 4γ22

2γ2
=

=
γ1 + 2γ2 − j2ω2 ±

√
(j2ω2 − γ1 − 4γ2) (j2ω2 − γ1)

2γ2
(18)

Account of the periodic boundary conditions in eq.
(13) yields the following relations:

Aj = Bjf
−N−1
j (19)

Cj = Djf
−N−1
j (20)

Finally, substituting these derivations into the first
equation of system (11), that describes the dynamics of
impacting mass, one obtains for j > 0:

Bj = − 2ωp1

πγ2
(
fj − f−1j

) (
f−N−1j − 1

) (21)

Dj =
2ωp2

πγ2
(
fj − f−1j

) (
f−N−1j − 1

) (22)

and for j = 0:

B0 =
ω (p2 − p1)

πγ2
(
f0 − f−10

) (
f−N−10 − 1

) (23)

Summarizing, one obtains the following exact solution
for the DB:

un = un,0 +

∞∑
j=1

(un,j,1 cos (jω (t− φ)) + un,j,2 cos (jωt))

(24)
where

un,0 =
ω (p2 − p1)

(
fn−N−10 + f−n0

)
πγ2

(
f0 − f−10

) (
f−N−10 − 1

) (25)

un,j,1 = −
2ωp1

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (26)

un,j,2 =
2ωp2

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (27)

To obtain the values of the unknown parameters, we
explicitly take into account the conditions of impacts,
that should be enforced when the particle achieves the
barriers:

u0(0) =
ω
(
f−N−10 + 1

)
(p2 − p1)

πγ2
(
f0 − f−10

) (
f−N−10 − 1

)−
−
∑∞
j=1

2ω
(
f−N−1j + 1

)
p1

πγ2
(
fj − f−1j

) (
f−N−1j − 1

) cos (jωφ)+

+
∑∞
j=1

2ω
(
f−N−1j + 1

)
p2

πγ2
(
fj − f−1j

) (
f−N−1j − 1

) = 1 + a

(28)

u0(φ) =
ω
(
f−N−10 + 10

)
(p2 − p1)

πγ2
(
f0 − f−10

) (
f−N−10 − 1

)−
−
∑∞
j=1

2ω
(
f−N−1j + 1

)
p1

πγ2
(
fj − f−1j

) (
f−N−1j − 1

)+
+
∑∞
j=1

2ω
(
f−N−1j + 1

)
p2

πγ2
(
fj − f−1j

) (
f−N−1j − 1

) cos (jωφ) =

= −1 + a

(29)

Reordering these equations, one can write them down
in a somewhat simplified form:

− p1χ1(φ) + p2χ2 = 1 + a (30)
−p1χ2 + p2χ1(φ) = −1 + a (31)

where

χ1(φ) ≡
ω

πγ2

 (f−N−1
0 +1)

(f0−f−1
0 )(f−N−1

0 −1)
+

+
∑∞
j=1

2(f−N−1
j +1)

(fj−f−1
j )(f−N−1

j −1)
cos (jωφ)


(32)

χ2 ≡
ω

πγ2

 (f−N−1
0 +1)

(f0−f−1
0 )(f−N−1

0 −1)
+

+
∑∞
j=1

2(f−N−1
j +1)

(fj−f−1
j )(f−N−1

j −1)

 (33)

So far there are 3 unknowns (p1, p2 and φ) and only 2
equations. Additional equation is derived from the condi-
tion of energy conservation in the course of each impact:

u̇0(0) = −ω
∞∑
j=1

u0,j,1j sin (jωφ) = 0 (34)

Due to orthogonality of sin (jωφ), these conditions can
hold only for φ = π/ω. In other terms, the DB solution
turns out to be symmetric with respect to the time in-
version. Fortunately, this conclusion crucially simplifies
the problem as the expression for χ1 takes the following
form:

χ1 =
ω

πγ2

 (f−N−1
0 +1)

(f0−f−1
0 )(f−N−1

0 −1)
+

+
∑∞
j=1

2(−1)j(f−N−1
j +1)

(fj−f−1
j )(f−N−1

j −1)

 (35)

With φ no longer an unknown, eq. (30)-(31) can now
easily be solved:

p1 =
1

χ2 − χ1
−

a

χ1 + χ2
(36)

p2 =
1

χ2 − χ1
+

a

χ1 + χ2
(37)

Summarizing, we obtain the following exact solution

3
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for the conservative DB:

un(t) =
4ω
(
fn−N−1
0 + f−n

0

)
a

πγ2
(
f0 − f−1

0

)(
f−N−1
0 − 1

)
(χ1 + χ2)

+

+
∞∑
j=1

 8ωa
(
fn−N−1
2j + f−n

2j

)
πγ2

(
f2j − f−1

2j

)(
f−N−1
2j − 1

)
(χ1 + χ2)

 cos (jωt)+

+
∞∑
j=1

 8ω
(
fn−N−1
2j−1 + f−n

2j−1

)
πγ2

(
f2j−1 − f−1

2j−1

)(
f−N−1
2j−1 − 1

)
(χ2 − χ1)

 cos (jωt)

(38)

1. Single-Sided Discrete Breathers

The asymmetric barriers allow a new type of DB so-
lution – the single-sided DB, i.e. the regime, in which
the impacting mass does not reach more distant barrier
and impacts only one of the barriers. Consequently, this
regime can be described by the following equations of
motion:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) = 2p

∞∑
j=−∞

δ

(
t−

2πj

ω

)
(39)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (40)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (41)

As previously, the system is closed with the help of
equations, that fix the impact at the desired location:

u0(0) = −1 + a (42)

Finally, the solution is written as follows:

un = −
ω (1− a)

(
fn−N−10 + f−n0

)
πγ2χ2

(
f0 − f−10

) (
f−N−10 − 1

)−
−
∑∞
j=1

2ω (1− a)
(
fn−N−1j + f−nj

)
πγ2χ2

(
fj − f−1j

) (
f−N−1j − 1

) cos (jωt)

(43)

The complete derivation of the solution is available in
Appendix A.

B. Discrete Breathers in the Forced-Damped
Setting

Now let us adopt that all masses are subjected to an
external force F (t). We examine the case of a sym-
metric force F (t) which satisfies F (t) = F (t+ 2π/ω)
and F (t) = −F (t+ π/ω). Additionally, the damping
is introduced through the non-unit restitution coefficient
0 < e < 1. Similarly to the conservative case, we look for
the periodic solution, thus the impacts can be introduced

in the same form as above. The solution should obey the
following set of equations:

v̈0 + γ1v0 + γ2 (2v0 − v1 − vN ) = F (t+ ψ)+

+2p1
∑∞
j=−∞ δ

(
t− φ−

2πj

ω

)
−

−2p2
∑∞
j=−∞ δ

(
t−

2πj

ω

) (44)

v̈n + γ1vn + γ2 (2vn − vn+1 − vn−1) = F (t+ ψ) (45)

v̈N + γ1vN + γ2 (2vN − v0 − vN−1) = F (t+ ψ) (46)

where ψ is the phase of the external force with respect
to DB’s impacts.

The external force F (t) can be removed from the equa-
tions with the help of a simple transformation. Let
vn(t) = un(t) + G(t+ ψ) where G̈(t) + γ1G(t) = F (t).
Substitution into the above equations yields:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =

= 2p1
∑∞
j=−∞ δ

(
t− φ−

2πj

ω

)
−

−2p2
∑∞
j=−∞ δ

(
t−

2πj

ω

) (47)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (48)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (49)

Similarly, the impact forcing terms are re-written in
the form of generalized Fourier series:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =
= ω

π

∑∞
j=−∞ (p1 cos (jω (t− φ))− p2 cos (jωt))

(50)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (51)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (52)

The equations are identical to those of the conservative
model. Hence, the solution is similar:

un = un,0 +

∞∑
j=1

(un,j,1 cos (jω (t− φ)) + un,j,2 cos (jωt))

(53)
where

un,0 =
ω (p2 − p1)

(
fn−N−10 + f−n0

)
πγ2

(
f0 − f−10

) (
f−N−10 − 1

) (54)

un,j,1 = −
2ωp1

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (55)

un,j,2 =
2ωp2

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (56)

4
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As in the conservative setting, the solution must satisfy
the impact location equations:

v0(0) = −p1χ1(φ) + p2χ2 +G(ψ) = 1 + a (57)

v0(φ) = −p1χ2 + p2χ1(φ) +G(ψ + φ) = −1 + a (58)

Also, the impact law must be satisfied:

v̇0(0+) = u̇0(0+) + Ġ(ψ) =

= −e
(
u̇0(0−) + Ġ(ψ)

)
= −ev̇0(0−)

(59)

u̇0
(
0+
)

+ eu̇0
(
0−
)

= −Ġ(ψ) (1 + e) (60)

For the symmetric case it is clear that the energy must
be conserved during each impact in terms of u0, namely,
in terms of the reduced un-forced system. Hence, for
the un-forced system and the symmetric DB u̇0(0+) =
−u̇0(0−) and similarly for the second impact. However,
this is not true for the asymmetric DB – the energy must
be conserved for the reduced un-forced system (other-
wise, the DB solution cannot exist), but it holds for the
complete period of oscillations, and not necessarily in
each single impact. So, more refined treatment is re-
quired in this case.

The generalized Fourier series converges to the average
of the velocities on both sides of the discontinuity:

u̇0(0+) + u̇0(0−)

2
= −p1χ3 (61)

where

χ3 ≡
∞∑
j=1

2jω2
(
f−N−1j + 1

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) sin (jωφ) (62)

Conservation of momentum during the impact yields:

u̇0(0+)− u̇0(0−)

2
= −p2 (63)

From these equations we extract terms for the veloci-
ties:

u̇0
(
0+
)

= −p2 − p1χ3 (64)

u̇0
(
0−
)

= p2 − p1χ3 (65)

Note that the energy gain for the reduced un-forced
system during the impact is ∆E1 = 2p1p2χ3. Energy
gain is possible since the reduced un-forced system does
not represent a physical system.

Plugging into eq. (60), one obtains:

Ġ(ψ) = p1χ3 + qp2 (66)

where q = (1− e) / (1 + e).

Similarly, it is possible to perform the same procedure
for the second impact:

u̇0
(
φ+
)

+ eu̇
(
φ−
)

= −Ġ(φ+ ψ) (1 + e) (67)

The generalized Fourier series converges to the average
of the velocities on both sides of the discontinuity:

u̇(φ+) + u̇(φ−)

2
= −p2χ3 (68)

Conservation of momentum during the impact yields:

u̇(φ+)− u̇(φ−)

2
= p1 (69)

From these equations we extract the terms for the ve-
locities:

u̇
(
φ+
)

= p1 − p2χ3 (70)

u̇
(
φ−
)

= −p1 − p2χ3 (71)

Note that the energy loss in this impact is ∆E2 =
−2p1p2χ3; hence the energy of the reduced un-forced sys-
tem is conserved throughout the period as expected.

Plugging into eq. (67), one obtains:

Ġ(φ+ ψ) = p2χ3 − qp1 (72)

1. Harmonic Excitation

In order to solve the equations we need to choose the
forcing function, that satisfies the symmetry conditions.
For simplicity, let us choose F (t) = A cos (ωt). Solving
the ODE, we obtain:

G(t) = Ã cos (ωt) (73)

where,

Ã =
A

γ1 − ω2
(74)

Plugging the solution into eq. (57), (58), (66) and (72),
one obtains the following expressions:

− p1χ1(φ) + p2χ2 + Ã cos (ωψ) = 1 + a (75)

− p1χ2 + p2χ1(φ) + Ã cos (ω (ψ + φ)) = −1 + a (76)

− Ãω sin (ω (ψ + φ)) = p2χ3 − qp1 (77)

− Ãω sin (ωψ) = p1χ3 + qp2 (78)

5
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To find the exact solution explicitly, we assume that φ
is known and the barrier asymmetry a is the unknown.
Solution of the above set of equations under this assump-
tion yields:

ψ =

± arccos

(
2
(
q2 + χ2

3

)
σÃ

)
+ α

ω
(79)

p1 =
Ãω (q sin (ω (ψ + φ))− χ3 sin (ωψ))

q2 + χ2
3

(80)

p2 = −
Ãω (χ3 sin (ω (ψ + φ)) + q sin (ωψ))

q2 + χ2
3

(81)

a = −p1χ1(φ) + p2χ2 + Ã cos (ωψ)− 1 (82)

where,

σ =

√√√√ 2ω2χ2
3 (χ1 − χ2)

2
(1 + cos (ωφ)) + 4ωχ3

(
q2 + χ2

3

)
(χ1 − χ2) sin (ωφ)+

+2
(
q4 + χ4

3 + q2
(
ω2 (χ1 − χ2)

2
+ 2χ3

))
(1− cos (ωφ))

(83)

α = ± arccos

( (
q2 + χ2

3

)
(1− cos (ωφ))− (q − χ3) (χ1 − χ2)ω sin (ωφ)

σ

)
(84)

2. Single-Sided Forced-Damped Discrete Breathers

The single-sided DB is also possible in the forced-
damped model. The equations of motion can be written
as follows:

v̈0 + γ1v0 + γ2 (2v0 − v1 − vN ) =

= F (t+ ψ) + 2p
∑∞
j=−∞ δ

(
t−

2πj

ω

)
(85)

v̈n + γ1vn + γ2 (2vn − vn+1 − vn−1) = F (t+ ψ) (86)

v̈N + γ1vN + γ2 (2vN − v0 − vN−1) = F (t+ ψ) (87)

where ψ is the phase of the external force with respect
to the DB’s impacts.

The external force F (t) can be removed from the equa-
tions in the same manner as the previous case.

As in the conservative model, the solution must satisfy
the impact location equations:

v0(0) = −pχ2 +G(ψ) = −1 + a (88)

Also, the impact law must be satisfied:

v̇(0+) = u̇(0+) + Ġ(ψ) = p+ Ġ(ψ) =

= −e
(
−p+ Ġ(ψ)

)
= −e

(
u̇(0−) + Ġ(ψ)

)
= −ev̇(0−)

(89)
By further simplification, one obtains:

Ġ(ψ) = −qp (90)

The full derivations are given in AppendixB.

Harmonic Excitation Let F (t) = A cos (ωt) and,

G(t) = Ã cos (ωt) (91)

where,

Ã =
A

γ1 − ω2
(92)

In a similar manner to the regular DB, we obtain the
following equations:

− pχ2 + Ã cos (ωψ) = −1 + a (93)

− ωÃ sin (ωψ) = −qp (94)

Solving the equation yields:

ψ =

± arccos

(
q (a− 1)

Ã
√
q2 + ω2χ2

2

)
+ α

ω
(95)

p =
ωÃ

q
sin (ωψ) (96)

where,

α = ± arccos

(
q√

q2 + ω2χ2
2

)
(97)
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3. Single-Sided Forced-Damped Discrete Breathers with
Period Doubling

The stability analysis discussed in detail in the follow-
ing Section shows that one of the mechanisms for the
loss of stability of the single-sided forced DB is the pe-
riod doubling bifurcation. Numerical investigation shows
that the period doubling is reflected by a consecutive set
of collisions with different exchange of momentum in the
new doubled period of the DB. This type of solution can
also be obtained analytically in a similar manner to that
of the forced DB with minor modifications. The location
of the second impact in the period is set to the same bar-
rier as the first collision, i.e. the closer barrier, and the
period of the DB is doubled. However, obtaining a solu-
tion in this manner is only possible if the frequency of the
doubled period solution is in the attenuation zone of the
chain for a given set of parameters. The full derivation

is given in detail in Appendix C.

III. STABILITY

The stability of the derived DB solutions will be in-
vestigated by Floquet theory[28]. The Floquet multipli-
ers are often evaluated numerically, but, as mentioned
above, the special nature of the system allows explicit
construction of the monodromy matrix. Then, computa-
tion of its eigenvalues is a relatively simple computational
task, and comprehensive study of the stability patterns
in the space of parameters becomes possible [21]. More-
over, eigenvectors corresponding to the unstable Floquet
multipliers can be easily computed and examined to gain
some qualitative insight into the mechanism of the loss
of stability.

The governing equations of motion can also be written in the following equivalent form:

~̇u = A~u (98)

where ~u =
[
u0 · · · uN u̇0 · · · u̇N

]T and:

A =

[
0(N+1)×(N+1) I(N+1)×(N+1)

Ã(N+1)×(N+1) 0(N+1)×(N+1)

]
(99)

Ã =



γ1 + 2γ2 −γ2 0 · · · 0 −γ2
−γ2 γ1 + 2γ2 −γ2 0 · · · 0

0 −γ2
. . . . . . . . .

...
...

. . . . . . γ1 + 2γ2 −γ2 0
0 · · · 0 −γ2 γ1 + 2γ2 −γ2
−γ2 0 · · · 0 −γ2 γ1 + 2γ2


(100)

or for the forced-damped model:

~̇v = A~v + ~F (101)

where ~F = F (t)
[

1 · · · 1
]T .

From the above equation we can derive the evolution
of the perturbed phase trajectory between two impacts:

L1 = exp (φA) (102)

L2 = exp

((
2π

ω
− φ

)
A
)

(103)

or for the single-sided impact:

L = exp

(
2π

ω
A
)

(104)

The impacts mapping cannot simply be based on the
impact law for the stability analysis, but saltation matrix

must be constructed to take into account the linear per-
turbations of the mapping and of the flight time to the
discontinuity[29]. The saltation matrix for the adopted
impact law obtains the following form:

S1,2 =

[
S̃(N+1)×(N+1) 0(N+1)×(N+1)

Ŝ(N+1)×(N+1) S̃(N+1)×(N+1)

]
(105)

where,

S̃ =



−e 0 · · · · · · 0

0 1 0
...

... 0
. . . . . .

...
...

. . . 1 0
0 · · · · · · 0 1


(106)
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Ŝ1,2 =



(1 + e) ∆1,2

Γ1,2
0 · · · · · · 0

0 0 0
...

... 0
. . . . . .

...
...

. . . 0 0
0 · · · · · · 0 0


(107)

where ∆1 = ü0(φ−),∆2 = ü0(0−), , Γ1 = −p1,Γ2 = p2
for the conservative model; ∆1 = ü0(φ−),∆2 = ü0(0−),
, Γ1 = −p1− p2χ3 + Ġ(φ+ ψ),Γ2 = p2− p1χ3 + Ġ(ψ) for
the forced-damped model. Similarly for the Single-sided
DB – ∆1 = ü0(0−) and Γ1 = −p for the conservative
model; ∆1 = ü0(0−), , Γ1 = −p + Ġ(ψ) for the forced-
damped model. Note that for the conservative model the
coefficient of restitution e is set to unity.

The Monodromy matrix can be written compactly as
follows:

M = L1S1L2S2 (108)

or for the single-sided DB:

M = LS1 (109)

Then, the stability of the DB solution is assessed just
by easy computation of this Monodromy matrix and eval-
uation of its spectrum.

IV. NUMERICAL VALIDATION AND
STABILITY PATTERNS

A. Conservative Model

In order to qualitatively examine the properties of the
asymmetric DBs, and to validate the accuracy of our re-
sults, we turn to numerical methods. The simulations
in this section are performed using MatLab. The vibro-
impact response was modeled according to the impact
law using event-driven algorithm. The numerical results
were in agreement with the analytical results, as one
should expect for the exact solutions. Thus, one can see
these results as illustrations. Unless otherwise stated, the
simulations were done for the following set of parameters:

γ1 = 0.2 γ2 = 0.1 ω = 1.5
N = 20 a = 0.4

(110)

As was the case in the symmetric DB, the oscillatory
profile is qualitatively the same when the length of the
chain is modified, as shown in fig. 1. This result conforms
to the strong localization of the DB solution.

FIG. 1. The displacements of the masses for a DB solution
at the instances of the two impacts for N = 10 (Black) and
N = 100 (Dashed gray).

Figure 2 shows the strong effect of the asymmetry pa-
rameter a on the DB shape. However, when examining
the displacement of the impacting mass throughout the
period of the DB , the difference is only a small change
in the curvature as demonstrated in fig. 3. It appears
that for the conservative DB, the asymmetry mainly con-
tributes to the value to which the DB converges apart
from the localization site.

FIG. 2. The displacements of the masses for a DB solution
at the instances of the two impacts for a = 0 (Black), a = 0.2
(Gray) and a = 0.5 (Dashed Black).
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FIG. 3. The displacements of the first mass for a DB solution
for a = 0 (Black), a = 0.2 (Gray) and a = 0.5 (Dashed Black).

Another type of DB enabled by the asymmetry of the
system is the single-sided DB. Figure 4 presents the ex-
ample of the single-sided DB; note that the impacting
mass does not reach the more distant barrier at (1 + a).

FIG. 4. The displacements of the masses for a single-sided
DB solution at the instances of the two impacts.

B. Forced-Damped Model

This model is a bit more complicated to examine. As
mentioned in sec. II B, we are unable to find φ without
approximations with unknown error. Therefore, φ is re-
garded as a known parameter and instead we obtain the
asymmetry parameter a. Fortunately, numerical investi-
gation reveals that the relation between a and φ behaves
in a manner that allows finding the wanted value of a
by means of iterative extrapolation with the maximal er-
ror of our choice. For time consumption purposes, the
allowed error in a was taken to be 10−12. Furthermore,

unless stated otherwise, the parameters are as follows:

γ1 = 0.2 γ2 = 0.1 ω = 1.5 N = 20
A = 0.1 e = 0.9 a = 0.4

(111)

FIG. 5. The displacements of the masses for the forced DB so-
lution at the instances of the two impacts for N = 10 (Black)
and N = 100 (Dashed gray).

FIG. 6. The displacements of the masses for the forced DB
solution at the instances of the two impacts for A = 0.9 and
a = 0 (Black), a = 0.2 (Gray) and a = 0.4 (Dashed Black).

In general, the effect of the asymmetry in the forced-
damped model is similar to one observed in the conser-
vative model. In fig. 5 we see that there is no notable
change in the DB profile as a result of adding masses to
the chain. Figure 6 shows that, while the shape is gener-
ally different since the oscillating term converges to G(t)
and not to zero, as the mass is farther away from the
localization site, the most profound consequence of the
asymmetry is still the shift of the center of oscillations.

9
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FIG. 7. The displacements of the first mass for A = 0.9 and
a = 0 (Black), a = 0.2 (Gray) and a = 0.5 (Dashed Black).

Figure 7 demonstrates a main difference from the con-
servative DB; it clearly shows that there is a shift of the
second impact, i.e. φ is diverted from π/ω. Numerical
investigation shows this difference is typically very small
until the appearance of multiple solutions mentioned be-
low.

FIG. 8. The displacements of the masses for the forced single-
sided DB solution at the instances of the two impacts for
ω = 0.92.

Just like in the conservative model, the forced single-

sided DBs exist as well. An example is presented in fig.
8.

FIG. 9. The displacements of the first mass for some of the
solutions for γ1 = 0.1, γ2 = 0.05, ω = 1.33, A = 1.5 and
a = 0.

An interesting phenomenon appearing for stronger ex-
ternal forcing, i.e. larger values of A, is a multitude of
solutions. For certain sets of parameters the analytic so-
lution yields more than a single solution. Figure 9 shows
that these solutions can even be very different from each
other. It is interesting to note that it is possible that
more than one of these solutions are stable.

Another interesting fact is that even for a symmetric
model, namely a = 0, an asymmetric solution could ex-
ist as predicted by Grinberg and Gendelman [22]. one
or more of these solutions appear to become stable when
the symmetric DB losses stability via the pitchfork bifur-
cation.

C. Stability

The procedure for the stability analysis is described
in detail in sec. III. Additionally, the following stability
maps also refer to existence of the solution, i.e. solu-
tions that are not physical, e.g. some masses exceed the
boundaries, are marked as non-existent. The set of pa-
rameters is similar to that in the previous sub-sections,
unless stated otherwise.

We begin with investigation of the forced-damped model; since the stable solutions of the forced-damped model
generically are hyperbolic attractors, the numeric validation of the stability analysis is easier than in the conservative
model.
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FIG. 10. Existance-stability map for the forced-damped DB. The map shows non-existing or not-physical solutions (black),
stable forced DB (dark gray), stable single-sided forced DB (gray), unstable forced DB (light gray), and unstable single-sided
forced DB (white)

Figure 10 shows the region of stability and existence of
the forced-damped DB in the frequency – coupling stiff-
ness plane of parameters. In this map the mechanism for
loss of stability for both double- and single-sided forced
DBs is Neimark-Sacker bifurcation; however, other mech-
anisms for the loss of stability appear for other sets of
parameters – the period doubling and pitchfork bifurca-
tions are also encountered. One can also clearly see the
grazing threshold where the forced double-sided DB sur-
passes the grazing point and turns into the single-sided
DB.

It is important to note that at the grazing limit, the
stable solution of the single-sided forced DB meets the
unstable forced DB. The convergence of the stability
and grazing boundaries can be explained by the sudden
breaking of symmetry of the solution. While the single-
sided forced DB is symmetric with respect to the peak
between two impacts, after reaching the grazing point
and with the transition to the forced DB the second im-
pact in the period immediately diverges from φ = π/w,
where it occurs at the grazing point.

t
5 10 15 20 25 30

u 0

-1+a

a

1+a

FIG. 11. The displacements of the first mass (Numerical re-
sult in black and analytic solution in dashed gray) for an un-
stable single-sided forced DB via Neimark-Sacker bifurcation.
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FIG. 12. The displacements of the first mass (Numerical re-
sult in black and analytic solution in dashed gray) for an
unstable forced DB via Neimark-Sacker bifurcation.

Figures 11 and 12 present examples of the loss of sta-
bility via Neimark-Sacker bifurcation. The discrepancy
between the numerical solution and analytic prediction
for the unstable solution validates the procedure of the
stability analysis presented above.

t
2 4 6 8 10 12 14 16

u 0

-0.05

0

0.05

0.1

0.15

0.2

FIG. 13. The displacements of the first mass (Numerical re-
sult in black and analytic solution in dashed gray) for the
forced single-sided DB with period doubling.

As aforementioned, there are two more mechanisms for
the loss of stability. The first is the pitchfork bifurcation
of the forced DB; pair of stable asymmetric solutions is
formed. These asymmetric solutions were predicted nu-
merically in ref. [22] and found analytically in this work.
The last mechanism for loss of stability is through period
doubling bifurcation relevant to the single-sided forced
DB. The period doubling obtained analytically is demon-
strated in fig. 13. The period doubling is clearly visible
in the form to two consecutive peaks of different heights
in each period.
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FIG. 14. Existence-stability maps for a DB with N = 5, N = 10, N = 20 and N = 40 (Top to Bottom). The map shows
non-existing or not-physical solutions (black), stable DB (dark gray), stable single-sided DB (gray), unstable DB (light gray),
and unstable single-sided DB (white)

Figure 14 shows the existence-stability map for the conservative model. There is a lot of similarity in this map
to that of the forced DB. The loss of stability here as well is via Neimark-Sacker bifurcation. However, in the case
of the conservative system it is difficult to validate the loss of stability, since its solutions are not attractors. Other
similar features are the stripes of instability. These stripes are related to the chain length as demonstrated in the
existence-stability maps for different chain length in fig. 14, and correspond to the spatial modes appearing in the
eigenvectors of the Monodromy matrix due to the finite size of the system, resembling the observations in ref. [22].
It is also interesting to note that ,with the exception of these stripes, the stability patterns are not strongly affected
by the system size.

V. CONCLUDING REMARKS

In this work, we derive the exact DB solutions for
asymmetric vibro-impact lattice. Contrary to the sym-
metric setting, two types of such solutions exist – the
single-sided and the double-sided DBs, divided by the
grazing boundary. The asymmetric DBs can appear not
only in the intrinsically asymmetric lattice considered in
the paper, but also can result from the symmetry braking
in the symmetric lattices investigated in previous works.

Another interesting finding is the multiplicity of the
stable forced DB solutions, not observed in the symmet-
ric lattice. It is possible to observe more than one stable
asymmetric solution for the same set of parameters. The
finite system size leads to formation of the "stripes of

instability", which appear due to the finite set of eigen-
modes available in the finite system. This peculiarity es-
sentially modifies the domain of stability on the space of
parameters and can be considered as generic consequence
of the finite system size.

Finally, the asymmetric setting reveal all three generic
mechanisms for loss of stability of the periodic solutions
- pitchfork, Neimark-Sacker and period doubling bifurca-
tions. The latter was not observed in previously studied
symmetric models and an exact analytic solution for the
doubled period solutions is also obtained.
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Appendix A: Single-Sided Discrete Breather –
Derivations

The governing equations of motion are:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) = 2p

∞∑
j=−∞

δ

(
t−

2πj

ω

)
(A1)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (A2)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (A3)

The terms for the impacts can also be written in the
form of generalized Fourier series:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =
ωp

π

∞∑
j=−∞

cos (jωt)

(A4)
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ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (A5)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (A6)

This can be rewritten as follows:

ü0 +γ1u0 +γ2 (2u0 − u1 − uN ) =
ω

π
p+

2ωp

π

∞∑
j=1

cos (jωt)

(A7)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (A8)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (A9)

Solving in a similar manner, we obtain:

un = un,0 +

∞∑
j=1

un,j cos (jωt) (A10)

where,

un,0 = −
ωp
(
fn−N−10 + f−n0

)
πγ2

(
f0 − f−10

) (
f−N−10 − 1

) (A11)

un,j = −
2ωp

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (A12)

As previously, the system is closed with the help of
equations, that fix the impact at the desired location:

u0(0) = −
ω
(
f−N−10 + 10

)
p

πγ2
(
f0 − f−10

) (
f−N−10 − 1

)−
−
∑∞
j=1

2ω
(
f−N−1j + 1

)
p

πγ2
(
fj − f−1j

) (
f−N−1j − 1

) = −1 + a

(A13)

− pχ2 = −1 + a→ p =
1− a
χ2

(A14)

Appendix B: Single-Sided Forced-Damped Discrete
Breather – Derivations

The single-sided DB is also possible in the forced-
damped model. The equations of motion can be written
as follows:

v̈0 + γ1v0 + γ2 (2v0 − v1 − vN ) =

= F (t+ ψ) + 2p
∑∞
j=−∞ δ

(
t−

2πj

ω

)
(B1)

v̈n + γ1vn + γ2 (2vn − vn+1 − vn−1) = F (t+ ψ) (B2)

v̈N + γ1vN + γ2 (2vN − v0 − vN−1) = F (t+ ψ) (B3)

where ψ is the phase external force with respect to DB’s
impacts.

The external force F (t) can be removed from the equa-
tions with the help of a simple transformation. Let
vn(t) = un(t) + G(t+ ψ) where G̈(t) + γ1G(t) = F (t).
Substitution into the above equations yields:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) = 2p

∞∑
j=−∞

δ

(
t−

2πj

ω

)
(B4)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (B5)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (B6)

Similarly, the terms for the impacts can is written in
the form of generalized Fourier series:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =
ωp

π

∞∑
j=−∞

cos (jωt)

(B7)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (B8)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (B9)

Since the equations are identical to those of the con-
servative model, the solution is similar:

un = un,0 +

∞∑
j=1

(un,j cos (jωt)) (B10)

where,

un,0 = −
ωp
(
fn−N−10 + f−n0

)
πγ2

(
f0 − f−10

) (
f−N−10 − 1

) (B11)

un,j = −
2ωp

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (B12)

As in the conservative model, the solution must satisfy
the impact location equations:

v0(0) = −pχ2 +G(ψ) = −1 + a (B13)

Also, the impact law must be satisfied:

v̇(0+) = u̇(0+) + Ġ(ψ) = p+ Ġ(ψ) =

= −e
(
−p+ Ġ(ψ)

)
= −e

(
u̇(0−) + Ġ(ψ)

)
= −ev̇(0−)

(B14)
By further simplification, one obtains:

Ġ(ψ) = −qp (B15)

where q = (1− e) / (1 + e).
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Appendix C: Single-Sided Forced-Damped Discrete
Breather with Period Doubling – Derivations

We examine once more the case of a symmetric force
F (t) which satisfies F (t) = F (t+ 2π/Ω) and F (t) =
−F (t+ π/Ω), however, with a frequency of Ω = 2ω .
The solution should obey the following set of equations:

v̈0 + γ1v0 + γ2 (2v0 − v1 − vN ) = F (t+ ψ)+

+2p1
∑∞
j=−∞ δ

(
t− φ−

2πj

ω

)
−

+2p2
∑∞
j=−∞ δ

(
t−

2πj

ω

) (C1)

v̈n + γ1vn + γ2 (2vn − vn+1 − vn−1) = F (t+ ψ) (C2)

v̈N + γ1vN + γ2 (2vN − v0 − vN−1) = F (t+ ψ) (C3)

where ψ is the phase of the external force with respect
to DB’s impacts.

The external force F (t) can be removed from the equa-
tions with the help of a simple transformation. Let
vn(t) = un(t) + G(t+ ψ) where G̈(t) + γ1G(t) = F (t).
Substitution into the above equations yields:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =

= 2p1
∑∞
j=−∞ δ

(
t− φ−

2πj

ω

)
−

+2p2
∑∞
j=−∞ δ

(
t−

2πj

ω

) (C4)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (C5)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (C6)

Similarly, the terms for the impacts is written in the
form of generalized Fourier series:

ü0 + γ1u0 + γ2 (2u0 − u1 − uN ) =
= ω

π

∑∞
j=−∞ (p1 cos (jω (t− φ)) + p2 cos (jωt))

(C7)

ün + γ1un + γ2 (2un − un+1 − un−1) = 0 (C8)

üN + γ1uN + γ2 (2uN − u0 − uN−1) = 0 (C9)

The equations are identical to those of the conservative
model. Hence, the solution is similar:

un = un,0 +

∞∑
j=1

(un,j,1 cos (jω (t− φ)) + un,j,2 cos (jωt))

(C10)

where

un,0 = −
ω (p2 + p1)

(
fn−N−10 + f−n0

)
πγ2

(
f0 − f−10

) (
f−N−10 − 1

) (C11)

un,j,1 = −
2ωp1

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (C12)

un,j,2 = −
2ωp2

(
fn−N−1j + f−nj

)
πγ2

(
fj − f−1j

) (
f−N−1j − 1

) (C13)

As in the conservative setting, the solution must satisfy
the impact location equations:

v0(0) = −p1χ1(φ)− p2χ2 +G(ψ) = −1 + a (C14)

v0(φ) = −p1χ2 − p2χ1(φ) +G(ψ + φ) = −1 + a (C15)

Also, the impact law must be satisfied:

v̇0(0+) = u̇0(0+) + Ġ(ψ) =

= −e
(
u̇0(0−) + Ġ(ψ)

)
= −ev̇0(0−)

(C16)

u̇0
(
0+
)

+ eu̇0
(
0−
)

= −Ġ(ψ) (1 + e) (C17)

The generalized Fourier series converges to the average
of the velocities on both sides of the discontinuity:

u̇0(0+) + u̇0(0−)

2
= −p1χ3 (C18)

Conservation of momentum during the impact yields:

u̇0(0+)− u̇0(0−)

2
= p2 (C19)

From these equations we extract terms for the veloci-
ties:

u̇0
(
0+
)

= p2 − p1χ3 (C20)

u̇0
(
0−
)

= −p2 − p1χ3 (C21)

Note that the change in energy for the reduced un-
forced system during the impact is ∆E1 = −2p1p2χ3.

Plugging into eq. (C17), one obtains:

Ġ(ψ) = p1χ3 − qp2 (C22)

where q = (1− e) / (1 + e).
Similarly, it is possible to perform the same procedure

for the second impact:

u̇0
(
φ+
)

+ eu̇
(
φ−
)

= −Ġ(φ+ ψ) (1 + e) (C23)

The generalized Fourier series converges to the average
of the velocities on both sides of the discontinuity:
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u̇(φ+) + u̇(φ−)

2
= p2χ3 (C24)

Conservation of momentum during the impact yields:

u̇(φ+)− u̇(φ−)

2
= p1 (C25)

From these equations we extract the terms for the ve-
locities:

u̇
(
φ+
)

= p1 + p2χ3 (C26)

u̇
(
φ−
)

= −p1 + p2χ3 (C27)

Note that the energy gain in this impact is ∆E2 =
2p1p2χ3; hence the energy of the reduced un-forced sys-
tem is conserved throughout the period as expected.

Plugging into eq. (C23):

Ġ(φ+ ψ) = −p2χ3 − qp1 (C28)

a. Harmonic Excitation

In order to solve the equations we need to choose the
forcing function, that satisfies the symmetry conditions.
Let us choose F (t) = A cos (2ωt). Solving the ODE, we
obtain:

G(t) = Ã cos (2ωt) (C29)

where,

Ã =
A

γ1 − (2ω)
2 (C30)

Plugging the solution into eq. (C14), (C15), (C22) and
(C28), one obtains the following expressions:

− p1χ1(φ)− p2χ2 + Ã cos (2ωψ) = −1 + a (C31)

− p1χ2 − p2χ1(φ) + Ã cos (2ω (ψ + φ)) = −1 + a (C32)

− 2Ãω sin (2ω (ψ + φ)) = −p2χ3 − qp1 (C33)

− 2Ãω sin (2ωψ) = p1χ3 − qp2 (C34)

Note that for φ = π/ω we obtain this set of equation
is reduced to two independent equations and we get the
regular single-sided forced DB solution.

To find the exact solution explicitly, we assume that φ
is known and the barrier asymmetry a is the unknown.
Solution of the above set of equations under this assump-
tion yields:

ψ =
± π

2 + α

2ω
(C35)

p1 =
2Ãω (q sin (2ω (ψ + φ))− χ3 sin (2ωψ))

q2 + χ2
3

(C36)

p2 = −
2Ãω (χ3 sin (2ω (ψ + φ)) + q sin (2ωψ))

q2 + χ2
3

(C37)

a = −p1χ1(φ)− p2χ2 + Ã cos (2ωψ) + 1 (C38)

where,

σ =

√√√√ 8ω2χ2
3 (χ1 − χ2)

2
(1 + cos (2ωφ)) + 8ωχ3

(
q2 + χ2

3

)
(χ1 − χ2) sin (2ωφ)+

+2
(
χ4
3 − q4 + q2

(
4ω2 (χ1 − χ2)

2
+ 2χ3

))
(1− cos (2ωφ))

(C39)

α = ± arccos

( (
q2 + χ2

3

)
(1− cos (2ωφ))− (q − χ3) (χ1 − χ2)ω sin (2ωφ)

σ

)
(C40)
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