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Abstract. We study quench detection in superconducting accelerator
cavities cooled with He-II. A rigorous mathematical formula is derived
to localize the quench position from dynamical data over a finite time
interval at a second sound detector.

1. Introduction

Superconducting radio-frequency (SRF) cavities are an important tech-
nology for particle accelerators. Unlike normal conducting cavities, SRF
cavities have the ability to withstand high electromagnetic fields and ef-
ficiently accelerate particle beams [4]. These cavities, typically made of
niobium, are bathed in liquid helium at low temperatures (1.6K-2.0K) to
maintain superconductivity. However, the appearance of defects on the sur-
face of the cavity can enhance localized power losses in a cavity, which leads
to heating of the surrounding area; and eventually, local superconductivity
will return to a normal conducting state after reaching a critical tempera-
ture. This transition from superconducting to normal conducting, called a
quench, can happen quickly [4]. It severely limits the accelerating gradient
of the cavity and can lead to damage of the device. For quality assurance
of the cavity, it is crucial to identify defects by finding any localized quench
positions.

We introduce two quench localization systems, temperature mapping sys-
tem and second sound system, that are widely used in laboratories. Many
other diagnostic techniques exist, such as X-ray radiation mapping [24] and
optical inspection, and we refer to [2] and the references therein for more
information. The temperature mapping system (T-mapping) [2] is a tra-
ditional approach for locating a quench position by measuring small tem-
perature increases on the exterior of SRF cavities in liquid helium bath.
Thousands of temperature sensors are placed on the outer cavity surface to
develop a mapping system that helps pinpoint hot spots in the cavity wall,
known as quench spots. This technique is fairly time consuming compared
with second sound system, discussed below, which requires less time and
fewer detectors. The second sound system is based on a special property
of superfluid helium in which normal and superfluid components coexists.
This is known as the two fluid model of Tisza, and it was later refined by
Landau [18, 30].
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In the two fluid model, superfluid helium is described as an interpenetrat-
ing mixture of a normal component, which behaves like normal fluid, and
a superfluid component with zero viscosity and zero entropy. It consists of
conservation laws for the total density ρ = ρs+ρn, entropy S per unit mass,
and the total momentum j = ρsvs + ρnvn, where subscript s and n denote,
respectively, the superfluid and normal components. Here vs and vn denote
the superfluid and normal velocities. Let P be the pressure and T be the
temperature. At low temperatures, since the entropy depends significantly
on temperature, it leads to the following second sound wave:

q∂2
t δT −∆δT = 0,

where T = T0 + δT with δT is the small variation of temperature in su-
perfluid helium and q−1 is the second sound velocity S2ρsT0/(ρncv) with
the specific heat capacity cv at constant volume. We refer to [16, 22, 25]
for detailed discussions on the two fluid model and second sound wave, and
chapter 8 in [16] for a discussion of relevant boundary conditions.

When a quench occurs on a cavity surface, heat does not propagate by
diffusion as it does in classical fluids; instead, temperature in the superfluid
helium propagates by a wave. In the second sound system, by measuring
the time delays between the quench and arrival of the second sound wave to
detectors, in principle, the distance from the detector to the quench location
is determined by the multiplication of theoretical second sound velocity and
time delays. There are two distinct detectors in the second sound system to
measure second sound waves that are high-sensitivity resistive temperature
detectors [26, 27] and oscillating superleak transducers (OSTs) [28]. The
former uses thermometers to measure the thermal fluctuations of the second
sound wave, while OSTs detect the fluctuation of counterflow velocity of
the wave. In 2008, these special temperature microphones, OSTs, were first
introduced by Conway, Hartill, Padamsee, and Smith at Cornell University
[3, 4] to detect second sound emitted by a quench. The technique depends
on the high sensitivity of OSTs to the fluctuation of superfluid and normal
fluid counterflow. By observing the first high fluctuation, the time of arrival
of waves can be detected.

Although the second sound system for SRF quench detection has been
successful, there has been interest in the physics community to better un-
derstand two issues: uncertainties of the the exact location of the quench
and the underlying physical process during emission of the entropy waves.
Many of second sound systems assume that the quench is a singular point
on the cavity surface, and then triangulate the exact quench location from
the response of a few OSTs [4, 6, 20]. That is to find the intersection point
of spheres with centers at OSTs and radii equal to distances to the quench
which are determined by travel time of second sound wave and its theoretical
velocity. However, in practice, they have experienced difficulties in exactly
locating a quench. For instance, when the real wave velocity is higher than
the theoretical one, the radii are too small to have an intersection point on
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the cavity surface, see [7, 19, 20, 21] and the references therein. The size of
the quench is another potential source of inaccuracy. On the outer surface
of the cavity, the size of heat source depends on dynamics of the heat propa-
gation on the surface and the superfluid helium. Therefore, signals arriving
at different OSTs might come from different positions of the quench spot
[19]. This results in an overestimated wave velocity for a closer OST; and
therefore, the usage of the measured travel time in computing radii in tri-
angulation might not provide precise determination of the quench position.
This issue regarding a large quench spot has been studied in laboratories;
we refer to papers [19, 20]. More sophisticated models of heating at the
boundary of the SRF have also been studied in [7].

In this paper, we mathematically investigate the detection of a quench on
the cavity surface by using second second wave that emitted on the quench
propagates in superfluid helium. As mentioned above, the arrival second
sound wave can be detected by special thermometers that are very sensi-
tive to small change of temperature and also detectable by OSTs which are
widely employed in many laboratories, however there are many factors that
can affect the accuracy of travel time. Further investigations are needed for a
better understanding of physical process involved during emission and prop-
agation of the second sound wave in order to precisely localize a quench. To
achieve this, we place thermometers around the OST such that the temper-
ature information on the boundary of OST can be detected. More precisely,
we apply both temperature data detected by thermometers and an approxi-
mate travel time obtained by an OST to derive a mathematical formula for
the distance between a quench location and an OST. This formula provides
an exact distance information that can be utilized to recover the position
and geometry information of the quench. We would like to note that cav-
ities equipped with OSTs and thermometry sensors have been considered
in physical papers [1, 29] in which this hybrid technique combines with two
methods, OSTs and T-mapping, in order to cross check the consistency of
their results.

The mathematical model and the main result are introduced as follows.
Let D represent the cavity in R3 and be an open bounded and connected
subset of R3 with smooth boundary ∂D. Here we suppose the cavity’s
location and shape are known. Assume that one quench occurs on part
of the cavity surface and the second sound wave emitted from the quench
propagates in the helium bath to an OST.

We denote the variation of temperature by u = δT , which satisfies the
wave equation with associated boundary conditions. Let T0 be the observed
time of the second sound wave propagation. Then the mathematic model
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for the second sound wave in a superfluid helium bath is modeled as follows:
∂2
t u−∆u = 0 in (0, T0)× (R3 \D),

u|t=0 = 0,
∂tu|t=0 = 0,

u|(0,T0)×∂D = f,
∂νu|(0,T0)×∂D = g,

(1.1)

where f ∈ L2(0, T0;H1(∂D)) and g ∈ L2(0, T0;L2(∂D)) with the support
of f and g in spatial dimensions contained in Γ. Here the quench spot is
represented by Γ which is an open and connected smooth surface of the
boundary ∂D, and ν is the unit outer normal to D. Notice that since the
adjacent material around a small defect is still superconducting, there is no
considerable heat loss there. Thus one can consider the boundary condi-
tions f and g are compactly supported on a subset of the cavity surface
∂D. Suppose that f ≥ µ > 0 and −g ≥ µ > 0 for some µ > 0 and
‖f‖L2(0,T0;H1(∂D)), ‖g‖L2(0,T0;H1(∂D)) ≤ M for some constant M > 0. An
analysis can also be performed on (1.1) under Robin-type boundary condi-
tions under similar support and lower bound assumptions on the boundary
data.

D

OST b

Γ

Figure 1. A simple layout of quench detection: One quench
occurs on the surface of 2-cell cavity with an OST installed
in the superfluid helium.

We denote an OST by an open ball B = B(p, r) centered at p with radius
r such that B ⊂ R3 \D. Let χB be a characteristic function on B. Then,
for fixed constant τ > 0, there exists a solution v ∈ H1(R3) to the equation

∆v − τ2v + χB = 0 in R3.

The collected dynamical data over a finite time interval on ∂B is described
by the indicator function I∂B, defined as follows:

I∂B(τ) =

∫
∂B

∫ T0

0
e−τs(u(s, x)∂νv − v∂νu(s, x))dsdS,

where ν is the unit outer normal to B.
Suppose D and position of each OST are known. Notice that the bound-

ary data u on (0, T0)×∂B determines the normal derivative of u on (0, T0)×
∂B, see proposition 2.1. The inverse problem is to find the quench location,
Γ, from the information u on (0, T0) × ∂B where T0 can be determined by
the OST.
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We define the shortest path between x, y ∈ R3 \D as follows. Let d(x, y)
denote the infimum of the lengths of all the piecewise C1 paths in R3 \ D
joining x to y. It is clear that when D is an empty set, we have d(x, y) =
|x− y|. We define the distance between two subsets A1 and A2 in R3 \D by

d(A1, A2) = inf{d(x, y) : x ∈ A1, y ∈ A2}.
We also define the Euclidean distance of A′1 and A′2 in R3 by

de(A
′
1, A

′
2) = inf{|x− y| : x ∈ A′1, y ∈ A′2}.

Since |x − y| ≤ d(x, y) for all x, y ∈ R3 \ D, it implies that de(A1, A2) ≤
d(A1, A2) for subsets A1 and A2 in R3 \D.

A quench can be detected if the following conditions are satisfied. Suppose
that for any x ∈ Γ, x satisfies −α < ν(x) · (y − x) < β for all y ∈ B, where
α, β > 0. Suppose that the subset

Γ0(0) = {x ∈ Γ : ν(x) · (y − x) > 0 for all y ∈ B}
of Γ has nonzero measure. Moreover, suppose that for all x ∈ Γ1 = Γ \
Γ0(0) = {x ∈ Γ : ν(x) · (y − x) ≤ 0 for some y ∈ B}, x satisfies de(x,B) >
d(Γ, B). Suppose that the shortest distance between the quench, Γ, and an
OST, B, is a direct light of sight path which implies that de(Γ, B) = d(Γ, B).
Here we note that this assumption is reasonable since the second sound
travels in straight line to OSTs from a quench is a general assumption in
papers in physics.

Suppose de(x, p) has either a nondegenerate minimum on Γ or a minimum
on boundary of Γ which is not a critical point. Then the distance from a
quench spot to an OST is characterized by the following formula.

Theorem 1.1. If T0 > d(Γ, B), then

lim
τ→∞

τ−1 log I∂B(τ) = −d(Γ, B).(1.2)

Moreover, if Γ = ∅ (empty set), then for all T0 > 0, we have

lim
τ→∞

eτT0I∂B(τ) = 0;(1.3)

if Γ 6= ∅, then for all T0 > d(Γ, B), we have

lim
τ→∞

eτT0I∂B(τ) =∞.(1.4)

Quench localization is different from inverse obstacle scattering problems
in which scattering waves are used to detect hidden obstacles in a medium.
In particular, inverse scattering takes advantage of a wave source outside a
known surface that surrounds the obstacle, and then one infers information
on the obstacle from the scattering data collected over the surface in a
finite time period. The enclosure method, first introduced by Ikehata in
[8], was developed for inverse obstacle scattering problems and gave the
distance between the source and the unknown obstacle from the asymptotic
behavior of the indicator function. Though our setting is very different
from inverse obstacle scattering, we are inspired by work on the enclosure
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method in [9, 10, 11, 12, 13, 14], and we develop quantitative estimates on
this indicator function in order to establish a distance formula from the OST
to the quench.

We remark several features of the result in this paper. First, we do not
need the whole physical process and boundary information on the interface
between the superfluid helium and the cavity. Partial information on the
boundary data is sufficient in the derivation of the distant formula (1.2).
This is also coincide with the experimental setting in which only when re-
solving power is small, the thermal transport on the niobium surface needs
to be considered. Second, the derivation of the formula only depends on
sufficiently large observation time that does not need to be exact. This
is different from the experiments by using OSTs solely in which the time
of propagation of the second sound waves is important since timing un-
certainties could only give an approximate location of the quench [19, 20].
Moreover, the size of a quench in our setting is not necessarily to be a singu-
lar point while it is a common assumption in papers in physics. In addition,
we also allow part of the quench area can be outside of the OST’s line of
sight.

This paper is organized as follows. In section 2, we show that the quench
can be detected by a distance formula that gives the distance from the
quench to the OST. A further discussion on this problem is stated in section
3.

2. Detection of a quench on the cavity surface

In this section, we will derive a formula which reveals the shortest distance
between the location of a quench spot on the surface of the cavity and an
OST.

We start by showing that knowing u on (0, T0)× ∂B, one can recover the
Neumann data of u on (0, T0)× ∂B as well.

Proposition 2.1. Let u solve (1.1). Then u|(0,T0)×∂B determines uniquely

u in (0, T0)×B and the normal derivative of u on (0, T0)× ∂B.

Proof. Let Φ satisfy the wave equation
∂2
t Φ−∆Φ = 0 in (0, T0)×B,

Φ|t=0 = 0,
∂tΦ|t=0 = 0,

Φ|(0,T0)×∂B = u|(0,T0)×∂B.

Then u−Φ satisfies the wave equation (∂2
t −∆)(u−Φ) = 0 with zero Dirichlet

data and zero initial data. Then u = Φ in (0, T0) × B and ∂νu = ∂νΦ in
(0, T0)× ∂B. �

For a fixed τ > 0, the equation

∆v − τ2v + χB = 0 in R3(2.1)
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has a C2 solution of the form

v(x) =
1

4π

∫
B

e−τ |x−y|

|x− y|
χB(y)dy, x ∈ R3,

known as the volume potential, we refer to [17].
By the assumed regularity of f ∈ L2(0, T0;H1(∂D)) and g ∈ L2(0, T0;L2(∂D)),

from [5], there exists a unique solution u such that u ∈ L∞(0, T0;H1(R3\D))
and ∂tu ∈ L∞(0, T0;L2(R3 \ D)). Similar to [9], we denote Wτ (x) =∫ T0

0 e−τsu(s, x)ds. Then Wτ is the weak solution to the equation

∆Wτ − τ2Wτ = e−τT0(τu(T0, x) + ∂tu(T0, x)) in R3 \D

with the Dirichlet boundary fτ (x) =
∫ T0

0 e−τsf(s, x)ds and the Neumann

boundary gτ (x) =
∫ T0

0 e−τsg(s, x)ds.
Applying integration by parts, the integral on the boundary of B is trans-

fered to the one on the quench Γ and a lower order term. Since f and g are
supported in Γ, we have

I∂B =

∫
∂B

(Wτ∂νv − v∂νWτ )dS

= −
∫
∂D

(Wτ∂νv − v∂νWτ )dS +

∫
(B∪D)c

e−τT0(τu(T0, x) + ∂tu(T0, x))vdx

=

∫
Γ
(fτ∂νv − vgτ )dS +

∫
(B∪D)c

e−τT0(τu(T0, x) + ∂tu(T0, x))vdx.

(2.2)

We begin by showing the lower bound for the indicator function. We
estimate the first integral in (2.2) in the Lemma 2.2-2.4. To derive the lower
bounded of the first integral, since f and g are bounded below by a positive
constant µ, we only focus on the estimate of

∫
vdS and

∫
∂νvdS. Thus, it is

crucial to quantitatively study the function v. The proof of lemma 2.2 can
be found in [9] and is provided below for the sake of completeness.

Lemma 2.2. There exists τ0 > 0 such that for all τ ≥ τ0, we have

τ2eτde(x,B)v(x) ≥ C0 > 0,(2.3)

where C0 is independent of x ∈ Γ.

Proof. Fix x ∈ Γ, we consider the spherical coordinate. Then any point y
in B(p, r) can be expressed as y = x+ ρω with

R−(ω) < ρ < R+(ω), ω ∈ Ex,

where Ex = {ω ∈ S2 : (p− x) · ω >
√
|p− x|2 − r2} and

R±(ω) = (p− x) · ω ±
√
r2 − |p− x|2 + ((p− x) · ω)2.
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Hence by changing of coordinates we have

v(x) =
1

4π

∫
B

e−τ |x−y|

|x− y|
χB(y)dy

=
1

4π

∫
Ex

∫ R+(ω)

R−(ω)
e−τρρdρdω

≥ −de(x,B)

4πτ

∫
Ex

e−τρ|R+(ω)
R−(ω)dω

=
de(x,B)

4πτ

∫
Ex

(
e−τR−(ω) − e−τR+(ω)

)
dω.

Notice that de(x,B) = |p− x| − r. From the definition of R+(ω), it implies

that R+(ω) >
√
|p− x|2 − r2 =

√
de(x,B)

√
|p− x|+ r, which leads to

∫
Ex

e−τR+(ω)dω ≤ m(Ex)e−τ
√
de(x,B)

√
|p−x|+r

= m(Ex)e−τde(x,B)eτ(de(x,B)−
√
de(x,B)

√
|p−x|+r).(2.4)

Here we denote the measure of set Ex by m(Ex). In addition, we have

de(x,B)−
√
de(x,B)

√
|p− x|+ r < 0.

Thus the integral

eτde(x,B)

∫
Ex

e−τR+(ω)dω ≤ m(Ex)eτ(de(x,B)−
√
de(x,B)

√
|p−x|+r)(2.5)

is decreasing exponentially as τ increases.
Now we will estimate the integral

∫
Ex
e−τR−(ω)dω. First, for ω ∈ Ex, we

write

ω(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ) ,

where 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ sin−1(r/|p− x|). Then R−(ω) can be expressed
as

R−(ω(φ, θ)) = |p− x| cosφ−
√
r2 − |p− x|2 sin2 φ.
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Furthermore we need the following inequality:

R−(ω(φ, θ))− de(x,B) ≤ |p− x| cosφ−
√
r2 − |p− x|2 sin2 φ− |p− x|+ r

= |p− x| (cosφ− 1) +

(
r −

√
r2 − |p− x|2 sin2 φ

)
= |p− x|

(
− sin2 φ

cosφ+ 1
+

|p− x| sin2 φ

r +
√
r2 − |p− x|2 sin2 φ

)

≤ |p− x| |p− x| sin2 φ

r +
√
r2 − |p− x|2 sin2 φ

≤ |p− x|
2 sin2 φ

r
.

The integral can be written as∫
Ex

e−τR−(ω)dω =

∫ 2π

0

∫ sin−1(r/|p−x|)

0
e−τR−(ω(φ,θ)) sinφdφdθ

= e−τde(x,B)

∫ 2π

0

∫ sin−1(r/|p−x|)

0
e−τ(R−(ω(φ,θ))−de(x,B)) sinφdφdθ

≥ e−τde(x,B)

∫ 2π

0

∫ sin−1(r/|p−x|)

0
e−τ |p−x|

2 sin2 φ/r sinφdφdθ

≥ e−τde(x,B)

∫ 2π

0

∫ sin−1(r/|p−x|)

0
e−τ |p−x|

2 sin2 φ/r sinφ cosφdφdθ

=
e−τde(x,B)πr

τ |p− x|2
(
1− e−τr

)
.(2.6)

From (2.5) and (2.6), we deduce that for x ∈ Γ, the following estimate holds:

τ2eτde(x,B)v(x)

≥ de(x,B)r

4|p− x|2
(1− e−τr)− de(x,B)τ

4π
m(Ex)eτ(de(x,B)−

√
de(x,B)

√
|p−x|+r).

When τ is sufficiently large, the above estimate is controlled by de(x,B)r
4|p−x|2

that is bounded from below by a positive constant which can be chosen to
be independent of x in Γ. This completes the proof. �

Suppose there exists a diffeomorphism φ of Γ such that φ : R→ Γ whose
domain is an open subset R in R2. Let h(s, t) = |φ(s, t)−p| for all (s, t) ∈ R.
Let (s0, t0) be the global minimum of h on R. We need the following estimate
to derive the lower bound for (2.2).

Lemma 2.3. There exists τ0 > 0 such that for all τ ≥ τ0, if (s0, t0) is a
nondegenerate critical point of h, then

τ3eτd(Γ,B)

∫
Γ
v(x)dS > 0;(2.7)
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if (s0, t0) is on the boundary of R and is not a critical point of h, then

τ7/2eτd(Γ,B)

∫
Γ
v(x)dS > 0.(2.8)

Proof. From estimate (2.3), for τ ≥ τ0, we have

eτd(Γ,B)

∫
Γ
v(x)dS ≥ τ−2eτd(Γ,B)

∫
Γ
e−τde(x,B)dS

≥ τ−2eτd(p,Γ)

∫
Γ
e−τ |x−p|dS.

In the following we will show that
∫

Γ e
−τ |x−p|dS is bounded away from zero

when τ is sufficiently large. By the definition of surface integral, we have∫
Γ
e−τ |x−p|dS =

∫ ∫
R
e−τ |φ(s,t)−p||φs × φt|dsdt =: J(τ).

Since p is not in Γ, it implies that h(s, t) is a smooth function on R. The
global minimum of h could be either in the interior of R or on the boundary
of R. We apply the Laplace method to derive a nonzero lower bound for
J(τ), then the two estimates in this lemma hold. In the following, we first
consider the minimum occurs inside R. Then there exists a point (s0, t0) in
the interior of R such that h(s0, t0) = d(p,Γ). Since (s0, t0) is an interior
point, we can find a small open ball R0 containing (s0, t0) and R0 is in
the interior of R. Moreover, we choose R0 such that the Morse’s lemma
applies. Then there are neighborhood D0 of 0 in R3 and a diffeomorphism
ψ : D0 → R0 so that ψ(0) = (s0, t0). By changing of variables, ψ(ζ) = (s, t),
we have

J(τ) ≥
∫ ∫

R0

e−τh(s,t)|φs × φt|dsdt

= e−τh(s0,t0)

∫ ∫
ψ−1(R0)

e−
1
2
τ(µ1ζ21+µ2ζ22 )φ̃(ζ)dζ,

where ζ = (ζ1, ζ2) and µ1, µ2 are positive eigenvalues of Hessian of h at

(s0, t0). Here we denote φ̃(ζ) = |φs × φt|(ψ(ζ))det(Dψ(ζ)). By Taylor’s
theorem, we have

φ̃(ζ) = φ̃(0) +∇φ̃(ξ) · ζ
for ξ ∈ D0. Integrating each term, J(τ) is bounded from below by the
leading term:

J(τ) ≥ e−τh(s0,t0)φ̃(0)τ−1

for τ large and some constant C depending on µ1, µ2. It leads to the lower
bound (2.7).

Now we consider the case where h has a minimum at the boundary point
(s0, t0). Then h(s0, t0) = d(p,Γ). If ∇h(s0, t0) = 0, then by following a
similar argument as above, we have the same order as in the previous case.
Thus, we only discuss the situation when (s0, t0) satisfies ∇h(s0, t0) 6= 0.
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Suppose there exists an open subset R̃ of R such that (s0, t0) ∈ R̃ and

∇h 6= 0 in R̃. We denote k(s, t) = |φs × φt| and define functions n0, n1, and
k1 by

n0 =
∇h
|∇h|2

k, n1 =
∇h
|∇h|2

k1, k1 = ∇ · n0.

By the divergence theorem, we have

J(τ) ≥
∫ ∫

R̃
e−τh(s,t)k(s, t)dsdt

=
1

τ2

∫ ∫
R̃

(∇ · n1)e−τhdsdt−
1∑
j=0

1

τ j+1

∫
∂R̃

(nj · ν)e−τhdl,(2.9)

where dl is the line integral, ν is the normal to the boundary of R̃ (that is,

∂R̃). The leading term is

−1

τ

∫
∂R̃

(n0 · ν)e−τhdl.

Assume that ∂R̃ is parametrized by γ(z), for z in the parameter domain I
so that (s0, t0) = γ(z0) for some interior point z0 in I. By the definition of
the line integral, we have∫

∂R̃
(n0 · ν)e−τhdl =

∫
I
(n0 · ν)(γ(z))e−τh(γ(z))|γ′(z)|dz.

Let h̃(z) = h(γ(z)). Since z0 is the interior point of I and the minimizer of

h̃(z), it implies that h̃′(z0) = 0 and h̃′′(z0) > 0. Since h̃ is smooth, for ε > 0,

there exists δ > 0 such that if |c− z0| < δ, then 0 < h̃′′(c) < h̃′′(z0) + ε. By
Taylor’s theorem, for any |z − z0| < δ, we have

−h̃(z) ≥ −h̃(z0)− 1

2
(h̃′′(z0) + ε)(z − z0)2.

Note that since z0 is a minimum, h̃′(z0) = 0 implies that ν(γ(z0)) =
−∇h/|∇h|(s0, t0). Then −(n0 · ν)(γ(z0)) = k(γ(z0))/|∇h| is positive at
z0. By choosing δ sufficiently small such that −(n0 ·ν) > 0 in (z0−δ, z0 +δ),
then we have the following lower bound:∫
∂R̃
−(n0 · ν)e−τhdl

≥ e−τh̃(z0)

∫ z0+δ

z0−δ
−(n0 · ν)(γ(z))e−

1
2
τ(h̃′′(z0)+ε)(z−z0)2 |γ′(z)|dz −O(e−τ(c+h̃(z0)))

= η(τ)−1e−τh̃(z0)

∫ δη(τ)

−δη(τ)
−(n0 · ν)(γ(z(y)))e−y

2 |γ′(z(y))|dy −O(e−τ(c+h̃(z0))),

where η(τ) =
√

1
2τ(h̃′′(z0) + ε) and constant c is independent of τ . Here the

identity comes from the change of variables,

y = η(τ)(z − z0).
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We denote q(y) = −(nj · ν)(γ(z(y)))|γ′(z(y))|. Applying Taylor’s theorem
again, there exist an interval (−β, β) with 0 < β < δη(τ) and a point c in
it, then we have

q(y) = q(0) + q′(c)y

for all y in the interval (−β, β). Then we have∫ δη(τ)

−δη(τ)
−(n0 · ν)(γ(z(y)))e−y

2 |γ′(z(y))|dy

≥
∫ β

−β
q(0)e−y

2
dy +

∫ β

−β
q′(c)ye−y

2
dy ≥ 2q(0)βe−β

2
.

From this inequality, we deduce that∫
∂R̃
−(n0 · ν)e−τhdl ≥ 2q(0)βe−β

2
η(τ)−1e−τh̃(z0).(2.10)

We recall that q(0) can be expressed by the original function k, that is,

q(0) =
k(s0, t0)|γ′(z0)|
|∇h(s0, t0)|

.

Combining (2.9) and (2.10), if (s0, t0) is a minimum and ∇h(s0, t0) 6= 0,
then we have

J(τ) ≥ O(τ−3/2e−τh(s0,t0))

as τ goes to infinity. This leads to the inequality (2.8).
�

Lemma 2.4. Let δ = 3 if h has a nondegenerate minimum; otherwise,
δ = 7/2 if h has a minimum on ∂R and it is not a critical point. Then the
estimate

lim inf
τ→∞

τ δ+1eτd(Γ,B)

∫
Γ
fτ∂νv − vgτdS > 0(2.11)

holds provided that T0 > d(Γ, B). Moreover, one has the following estimate

lim inf
τ→∞

τ δ+1eτd(Γ,B)I∂B(τ) > 0.(2.12)

Proof. We now estimate
∫

Γ ∂νv(x)dS. Recall that for any x ∈ Γ(connected),
−α < ν(x) · (y − x) < β for all y ∈ B where α, β > 0. We denote for ε > 0,

Γ0(ε) = {x ∈ Γ : ν(x) · (y − x) > ε for all y ∈ B}
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and Γ1 = Γ \ Γ0(0). There exists a point x0 on Γ such that de(x,B) ≤
de(x0, B) for all x ∈ Γ. We deduce that∫

Γ
∂νv(x)dS ≥

∫
Γ0(0)

∂νv(x)dS −
∣∣∣∣∫

Γ1

∂νv(x)dS

∣∣∣∣
≥
∫

Γ0(ε)

1

4π

∫
B
ε

(
τ +

1

|x− y|

)
e−τ |x−y|

|x− y|2
dydS − L

≥
∫

Γ0(ε)

ε

(d(x0, B) + 2r)

(
τ +

1

d(x0, B) + 2r

)
v(x)dS − L,

where L is defined in the following estimate∣∣∣∣∫
Γ1

∂νv(x)dS

∣∣∣∣
≤ (α ∨ β)

∫
Γ1

1

4π

∫
B

(
τ +

1

|x− y|

)
e−τ |x−y|

|x− y|2
dydS

≤ (α ∨ β)

∫
Γ1

1

4π
m(B)

(
τ +

1

de(x,B)

)
e−τde(x,B)

de(x,B)2
dS =: L.

Here α ∨ β = max{α, β}. Notice that the result in lemma 2.3 also works
for a small region Γ0(ε). Therefore from the hypothesis T0 > d(Γ, B) and
de(x,B) > d(Γ, B) for all x ∈ Γ1, we obtain

lim inf
τ→∞

τ δeτd(Γ,B)

∫
Γ
∂νv(x)dS > 0.(2.13)

Since f and −g are bounded below by µ > 0, by definitions of fτ and gτ ,
we have

fτ ,−gτ ≥ µ
1− e−τT0

τ
.

Then by lemma 2.3 and (2.13), we can derive

lim inf
τ→∞

τ δ+1eτd(Γ,B)

∫
Γ
fτ∂νv − vgτdS > 0,(2.14)

which is the first estimate in the lemma.
Now we consider the second integral in (2.2). First we recall that u ∈

L∞(0, T0;H1(R3 \D)) and ∂tu ∈ L∞(0, T0;L2(R3 \D)), then one has

‖τu(T0, x) + ∂tu(T0, x)‖L2(R3\D) = O(τ)(2.15)

as τ →∞. Second, by integration by parts, from (2.1) we have∫
R3

|∇v|2dx+

∫
R3

τ2v2dx =

∫
B
vdx.

Then by Hölder’s and Young’s inequalities, we obtain the estimate

‖∇v‖2L2(R3) + τ2‖v‖2L2(R3) ≤ τ‖v‖
2
L2(R3) +

1

4τ
m(B)2
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which leads to

‖v‖L2(R3) = O(τ−3/2)

for τ →∞. Combining with (2.2), (2.14), T0 > d(Γ, B), and using Hölder’s
inequality again, we derive that

lim inf
τ→∞

τ δ+1eτd(Γ,B)I∂B(τ) > 0,

which completes the proof. �

In order to ensure the existence of the limit in (1.2), it remains to estimate
the upper bound of the indicator function.

Proof of Theorem 1.1. We consider the integral which appears in (2.2). From
the assumptions on f and g, we have

|
∫

Γ
fτ∂νv − vgτdS| ≤ ‖fτ‖L2(Γ)‖∂νv‖L2(Γ) + ‖gτ‖L2(Γ)‖v‖L2(Γ)

≤M
(

1− e−2τT0

2τ

)1/2 (
‖∂νv‖L2(Γ) + ‖v‖L2(Γ)

)
.

Then we get

v(x) =
1

4π

∫
B

e−τ |x−y|

|x− y|
dy =

1

4π

∫
Ex

∫ R+

R−

e−τρρdρdω

≤ de(x0, B) + 2r

4πτ

∫
Ex

(
e−τR−(ω) − e−τR+(ω)

)
dω.

From (2.4) and the fact that R−(ω) ≥ d(Γ, B), we can deduce that

|v(x)| ≤ m(Ex)k(τ)
de(x0, B) + 2r

4πτ
,(2.16)

where

k(τ) = e−τd(Γ,B) + e−τd(x,B)eτ(de(x,B)−
√
de(x,B)

√
|p−x|+r).

Since de(x,B) ≥ d(Γ, B) by hypothesis, it implies that

‖v‖L2(Γ) ≤ m(S2)m(Γ)1/2k̃(τ)
de(x0, B) + 2r

4πτ
,

where constant C

k̃(τ) = e−τd(Γ,B) + e−τd(Γ,B)e
τ

−2r
√

de(x0,B)√
de(x0,B)+

√
de(x0,B)+2r .

Furthermore, from the estimate

|∂νv(x)| ≤ α ∨ β
d(Γ, B)

(
τ +

1

d(Γ, B)

)
|v(x)|,

we obtain that

‖∂νv‖L2(Γ) ≤
α ∨ β
d(Γ, B)

(
τ +

1

d(Γ, B)

)
‖v‖L2(Γ).
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Then we have the following estimate

|
∫

Γ
fτ∂νv − vgτdS| = O(τ−1/2e−τd(Γ,B)).

From the above estimate, combining with (2.2), (2.15) and ‖v‖L2(R3) =

O(τ−3/2), we further deduce that

lim sup
τ→∞

τ1/2eτd(Γ,B)I∂B(τ) <∞.

Hence, with (2.12), the estimate (1.2) in Theorem 1.1 holds. The identities
(1.3) and (1.4) can be derived similarly by following the above argument.
Therefore, we complete the proof of Theorem 1.1.

�

Remark 2.1. From the proof of Theorem 1.1 above, with one OST, we can
derive a lower bound for the size of the quench Γ, that is,

lim sup
τ→∞

τ1/2eτd(Γ,B)|I∂B(τ)| ≤ c0m(Γ)1/2,(2.17)

where c0 = Mm(S2)

4
√

2π

(α∨β)(de(x0,B)+2r)
d(Γ,B) with x0 ∈ Γ satisfies de(x,B) ≤ de(x0, B)

for all x ∈ Γ.
For example, we consider a simple setting of a quench on a unit disk. By

using (2.17), we have a lower bound for the radius of this quench spot. Let
the cavity D = {(x1, x2, 0) : x2

1 + x2
2 ≤ 1} and the quench Γ = {(x1, x2, 0) :

x2
1 + x2

2 ≤ r2
q} for some scalar 0 < rq < 1. Suppose that p = (a, b, c) with

c > 0 is the center of an OST, B = B(p, r), with 0 < r < c. In spherical
coordinates, we write p = (ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ) for ρ > 0, 0 ≤
θ ≤ 2π, 0 ≤ φ ≤ π. Thus we have

de(x0, B) ≤ |p+ (cos θ, sin θ, 0)| − r,
which implies that

c0 ≤ c̃0 :=
Mm(S2)

4
√

2π

(α ∨ β)(|p+ (cos θ, sin θ, 0)|+ r)

d(Γ, B)
.

Combining with (2.17), we deduce the range for the radius of the quench

1 > rq ≥ c̃−1
0 π−1/2 lim sup

τ→∞
τ1/2eτd(Γ,B)|I∂B(τ)|.

3. Conclusion

In this paper, we rigorously studied quench detection on the surface of a
SRF cavity bathed in the superfluid helium. We have established a math-
ematical formula for the shortest distance between an OST and a quench
by using the second sound wave that propagates in the superfluid helium.
The distance formula derived in this paper can be potentially applied to
different models for a quench and cavities with suitable adjustments. For
example, the crab cavity has complex geometry that makes a triangulation
process is difficult to locate a quench in practice. We would like to note
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that more information of a quench can be detected if the distance formula
is applied on more OSTs. In particular, to locate a point-like heat source
on the cavity in three dimensions which is the widely used model for quench
detection in laboratories, the quench point can be detected by utilizing at
least three OSTs with their corresponding distances derived by the formula
to the quench. For a nonsingular quench spot, its size and shape can be
determined by acquiring the distances from a few of OSTs to the quench.

For our further studies on quench detection, it is important and challeng-
ing to understand the effect of thermodynamics in cavity surface made of
niobium and the transition of heat propagation from the niobium to the
superfluid helium. In [19], it was observed that heat could first propagate
along the cavity surface and then later excite an entropy wave in the super-
fluid helium. In particular, in experiments since the speed of propagation
is faster in the niobium than in the superfluid helium, the measured travel
time at an OST is smaller. Consequently, the measured quench location is
found to be above the cavity surface. To study quench detection in this sit-
uation with coupled physics, it might be closely related to the coupling of a
heat equation with a wave equation, see for example [15, 23]. Furthermore,
it was observed in laboratories [19, 20], the size of quench could also depend
on the dynamics of the heat propagation on the cavity surface. This can
result in an overestimation of the measured wave velocity and hence would
lower the accuracy of quench detection.
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