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Abstract

We consider an advection-diffusion equation that is advection-domin-
ated and posed on a perforated domain. On the boundary of the perfo-
rations, we set either homogeneous Dirichlet or homogeneous Neumann
conditions. The purpose of this work is to investigate the behavior of
several variants of Multiscale Finite Element type methods, all of them
based upon local functions satisfying weak continuity conditions in the
Crouzeix-Raviart sense on the boundary of mesh elements. In the spirit
of our previous works [23, 24] introducing such multiscale basis functions,
and of [26] assessing their interest for advection-diffusion problems, we
present, study and compare various options in terms of choice of basis
elements, adjunction of bubble functions and stabilized formulations.

1 Introduction

We consider a regular bounded open set Ω Ă R
d, in dimension d ě 2, and its

subset Ωε Ĺ Ω, a domain perforated by holes of presumably small size ε ą 0.
We denote by Bε “ ΩzΩε the set of perforations (see Figure 1 below). Although
this is by no means a limitation of our computational approaches, Bε will often
be, in the sequel, and in particular for our theoretical results, a periodic array of
perforations, each of them of diameter of order ε and separated by a distance also
of order ε. On the perforated domain Ωε, we consider the advection-diffusion
equation

´α∆uε `pbε ¨ ∇uε “ f in Ωε,

where α ą 0, for a right-hand side f P L2pΩq and for an advection field pbε on
which we make a variety of assumptions. On the outer boundary BΩ, we impose
homogeneous Dirichlet boundary conditions. On the other hand, the equation is
supplied either with homogeneous Dirichlet or homogeneous Neumann boundary
conditions on the boundary of the perforations. More precisely, we concurrently
consider the two problems

"
´α∆uε `pbε ¨ ∇uε “ f in Ωε,

uε “ 0 on BΩε,
(1)
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and $
&
%

´α∆uε `pbε ¨ ∇uε “ f in Ωε,

α∇uε ¨ n “ 0 on BΩεzBΩ,
uε “ 0 on BΩε X BΩ.

(2)
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Perforations Bε

Boundary BBε of the perforations

Domain Ωε

Figure 1: The domain Ω contains perforations Bε, some of which may intersect
BΩ. The perforated domain is Ωε “ ΩzBε. The boundary of Ωε is the union of
BBε X Ωε (the part of the boundary of the perforations that is included in Ωε)
and of BΩ X Ωε.

We study a regime where advection dominates diffusion. In the absence of
perforations, it is well-known that numerical instabilities arise for classical Fi-
nite Element methods [32], and stabilization methods are in order. The case of
perforated domains deserves a specific attention, since the perforations are pre-
sumable many, and asymptotically infinitely many. It will be seen, and this is
not unexpected, that the choice of the boundary conditions on the perforations
drastically affects the nature of the flow, and therefore the conclusions regarding
which numerical approach performs satisfactorily or not. In short, homogeneous
Dirichlet boundary conditions on the perforations damp the effect of advection,
making the flow more stable than it would be in the absence of perforations,
while this is not the case for homogeneous Neumann boundary conditions. This
intuitive fact, which we will investigate thoroughly at the numerical level, is
particularly well exemplified, at the theoretical level, by the comparison of the
respective homogenization limits of the problems (1) and (2) when ε vanishes.

If pbε “ b
´ ¨
ε

¯
is an oscillatory advection field with b periodic, then the solu-

tion uε to (1) converges to zero as ε2. Once renormalized by a factor ε´2, uε

converges, in the limit ε Ñ 0, to the nontrivial solution of a problem where
the advection field b has disappeared. We recall below the classical statement,
Theorem 6, that formalizes this result. To reinstate advection in the (rescaled)
homogenization limit, which in the numerical practice formally means keeping

advection dominant in (1) for ε small, we therefore consider pbε “ 1

ε
b
´ ¨
ε

¯
(see

the theoretical result stated in Theorem 4) and then the problem is of practical
interest. In sharp contrast, for the Neumann problem (2) and the advection

field pbε “ b
´ ¨
ε

¯
, not only the solution uε stays of order 1, instead of ε2, but

it converges, in a suitable sense, to the solution of an homogenized equation
that does contain advection, as shown by the classical result we recall below in
Theorems 8 and 9.
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The numerical approaches we consider are variants of the Multiscale Finite
Element method (MsFEM). We recall that MsFEM (see e.g. [16]) encodes the
multiscale character of the problem to be solved in the finite element basis
functions by defining the latter as the solutions of independent local problems
involving a differential operator identical, or close to that of the original equa-
tion. The finite element basis functions are defined independently of the source
term and therefore are precomputed. A Galerkin approximation on the resulting
approximation space is then performed. The choice of the boundary conditions
imposed on the local problems is a critical issue. In [23], the first two authors
of the present article have introduced Crouzeix-Raviart type boundary condi-
tions for the local problems, in the case of the prototypical diffusion problem
´div paε ∇uεq “ f , for an highly oscillatory coefficient aε “ ap¨{εq. The ap-
proach has next been enriched with bubble functions to address the case of
the same diffusion equation posed in a perforated domain, see [24]. The main
advantage of this particular choice of Crouzeix-Raviart type boundary condi-
tions has been shown there to be the robustness of the approach with respect
to the location of the perforations. The approximation remains accurate, ir-
respective of the fact that the boundaries of the mesh elements intersect or
not the perforations, a sensitive issue for other types of boundary conditions.
We also refer to [29, 22] for a similar study for the Stokes equation. The next
step, performed in [26], has been to consider the advection diffusion equation

´div paε ∇uεq`pbε ¨∇uε “ f instead of a pure diffusion equation, and to assume
that the advection dominates diffusion to make the case strikingly different from
pure diffusion and more interesting practically. A question of specific interest
is whether or not the advection term must be introduced in the equation defin-
ing the local basis functions, and whether or not this brings more stability to
the approach. Two of our main conclusions in [26] were (i) that the multiscale
character of the problem is actually reduced when advection considerably dom-
inates diffusion and (ii) that, when the multiscale character is still important, a
stabilized version of the MsFEM using basis functions defined by the diffusion
operator only is one of the most effective and accurate approaches. The present
work elaborates on all those previous works for advection-dominated advection
diffusion equations in perforated domains.

Our article is articulated as follows. We make precise the various numerical
approaches we consider in Section 2. Some elements of theoretical analysis for
the problems (1) and (2) (assuming the perforations are periodic) are provided in
Section 3. In particular, we identify the homogenized limits for these two equa-
tions. We also state some rates of convergence towards the homogenized limit
in the case of (1). The detailed proofs of our theoretical results are postponed
until Appendix A. Our numerical tests, and our conclusions, are presented in
Section 4. We explore there periodic test-cases (in Sections 4.1 and 4.2) as well
as a non-periodic test-case (in Section 4.3). In short, these conclusions are the
following:

• for both problems (1) and (2), the method using a basis of functions built
upon the full advection-diffusion operator enriched with bubble functions
built likewise is the best possible approach whatsoever, and it does not
require any additional stabilization, even in the case of problem (2) for
which instabilities may arise for very large advection fields.
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• if one does not wish to include the transport field in the definition of
the basis functions, because this might be a difficulty either from the
implementation viewpoint or in the context of varying advection fields,
then

– for problem (1) (i.e. with homogeneous Dirichlet boundary conditions
on the perforations, where the flow and the numerical solutions are
both stable, even for considerably large advection fields), a possibility
is to use an approach enriched with bubble functions, with all basis
functions built upon the sole diffusion operator, and without any
stabilization. However, this latter approach is not robust in the limit
of large Péclet numbers (i.e. small values of α in (1)) or small values
of ε.

– for problem (2) (i.e. with homogeneous Neumann boundary condi-
tions on the perforations, where instabilities due to the dominating
advection arise), the best to do is to use a stabilized formulation
with basis functions built with the sole diffusive part of the operator,
with no enrichment by bubble functions. All other approaches are
significantly less efficient.

These conclusions will be substantiated and commented upon in the sequel.

2 Presentation of our numerical approaches

We introduce in this section the different variants of the MsFEM we will con-
sider. All the variants use the Crouzeix-Raviart boundary conditions (that we
have introduced in the previous works of ours [23, 24]) on the boundary of mesh
elements for the definition of the basis functions, including bubble functions.
However, for the sake of comparison, we incidentally compare these approaches
with approaches using other (e.g. linear) boundary conditions.

We will consider MsFEM approaches with Crouzeix-Raviart type conditions
that

• use basis functions defined with the full advection-diffusion operator (we
abbreviate this into Adv-MsFEM ), or only the diffusive part of that op-
erator (we abbreviate this into MsFEM, and sometimes standard MsFEM
to avoid any ambiguity);

• possibly enrich the approximation space spanned by these functions by
adding bubble functions, the latter being either defined with the full
advection-diffusion operator, or only the diffusive part of that operator;

• possibly have stabilized variational formulations, with various options for
the stabilization terms.

We have considered in our investigations all combinations of the above options,
but we will only report here on the most useful ones.

Our approaches share the following setting.

First of all, at the continuous level, we note that, extending by zero inside
the perforations Bε a function in H1

0 pΩεq, we can see this function as a function
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in H1
0 pΩq. In the case of Problem (2), the choice of an extension in H1

0 pΩq is
more delicate. One example of such an extension procedure can be found in [13,
p. 603].

For the discretization, we consider a uniform regular mesh TH of Ω, with
mesh size H . This mesh size is presumably much larger than what would be
in order for a classical FEM applied to a problem with small scale ε. Some
actual range of values will be made precise below. We denote by E in

H and Eext
H ,

respectively, the set of inner and outer edges/faces of the mesh TH (Eext
H is the

set of edges lying in BΩ).
For the study of Problem (1), we define the following infinite-dimensional

functional spaces:

WH “

$
&
%

u P L2pΩq such that u|K P H1pKq for all K P TH ,
ˆ

E

rruss “ 0 for all E P E in
H , u “ 0 in Bε Y BΩ

,
.
- , (3)

W 0
H “

"
u P WH such that

ˆ

E

u “ 0 for all E P E in
H

*
, (4)

and

W 0
H,bubble “

$
’&
’%

u P WH such that

ˆ

E

u “ 0 for all E P E in
H

and

ˆ

K

u “ 0 for all K P TH

,
/.
/-

. (5)

In the case of Neumann boundary conditions, we introduce the same functional
spaces WH , W 0

H and W 0
H,bubble as above, except that in their definitions, K

and E are respectively everywhere replaced by K X Ωε and E X Ωε, while the
homogeneous Dirichlet boundary condition is set only on the portion BΩε X BΩ
of the outer boundary.

The variational formulation of the Dirichlet problem (1) reads as follows:
find uε P H1

0 pΩεq such that, for any v P H1
0 pΩεq,

apuε, vq “ F pvq

with

apu, vq “
ˆ

Ωε

α∇u ¨ ∇v `
´
pbε ¨ ∇u

¯
v and F pvq “

ˆ

Ωε

f v. (6)

Since uε vanishes on BΩε, we can also consider the bilinear form

cpu, vq “
ˆ

Ωε

α∇u ¨ ∇v ` 1

2

´
pbε ¨ ∇u

¯
v ´ 1

2
div

´
pbεv

¯
u

“
ˆ

Ωε

α∇u ¨ ∇v ` 1

2

´
pbε ¨ ∇u

¯
v ´ 1

2

´
pbε ¨ ∇v

¯
u ´ 1

2
u v div pbε,

with a skew-symmetric formulation of the advection-term. For any u and v in
H1

0 pΩεq, we have apu, vq “ cpu, vq. The variational formulation of (1) can thus
be equivalently written: find uε P H1

0 pΩεq such that, for any v P H1
0 pΩεq,

cpuε, vq “ F pvq.

The finite dimensional approximation spaces (that we introduce below) are
not included in H1

0 pΩεq, since Crouzeix-Raviart boundary conditions allow for
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discontinuous functions. Our approximations of (1) are therefore not conformal
approximations. For the discrete variational formulations, we therefore intro-
duce the following three bilinear forms:

aHpu, vq “
ÿ

KPTH

ˆ

KXΩε

α∇u ¨ ∇v `
´
pbε ¨ ∇u

¯
v, (7)

adiff,Hpu, vq “
ÿ

KPTH

ˆ

KXΩε

α∇u ¨ ∇v, (8)

and

cHpu, vq

“
ÿ

KPTH

ˆ

KXΩε

α∇u ¨ ∇v ` 1

2

´
pbε ¨ ∇u

¯
v ´ 1

2

´
pbε ¨ ∇v

¯
u ´ 1

2
u v div pbε, (9)

which all involve broken integrals.
We easily observe that, on the broken space

 
v P L2pΩεq, v P H1pK X Ωεq for any K P TH , v “ 0 on BΩε

(
,

and under the (classical) assumption div pbε ď 0, we have

cHpv, vq ě α
ÿ

KPTH

}∇v}2L2pKXΩεq. (10)

Under mild additional constraints on the broken space (such as weak continuity
of functions across element edges), we will obtain that cH is coercive. This is
not the case for the bilinear form aH . For this reason, we will favor the bilinear
form cH over aH when considering the problem (1) (in that vein, see Remark 2
below).

We next turn to the Neumann problem (2), the variational formulation of
which reads as follows: find uε P V ε such that, for any v P V ε,

apuε, vq “ F pvq

with a and F defined by (6) and

V ε “
 
u P H1pΩεq such that u “ 0 on BΩε X BΩ

(
. (11)

For this problem, there is no reason to consider the bilinear form c, as in general
apu, vq ‰ cpu, vq for u and v in V ε. Only the bilinear forms aHpu, vq and
adiff,Hpu, vq will be considered in that case.

The finite dimensional approximation spaces we use (and which are in the
sequel generically denoted by VH with various additional subscripts or su-
perscripts) are spanned by functions Φε,E associated to the inner edges/faces
E P E in

H and bubble functions Ψε,K associated to each mesh element K P TH .
For the notation of these functions, we again use additional subscripts that de-
pend on the specific situation considered. The reader should bear in mind that,
in practice, only numerical approximations (on a fine mesh) of the functions
Φε,E and Ψε,K can be manipulated.
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2.1 MsFEM approaches using only the diffusion operator,

and their stabilized version

We successively consider the Dirichlet problem (1) (with the functional spaces
WH , W 0

H and W 0
H,bubble defined by (3), (4) and (5)) and the Neumann prob-

lem (2) (with the corresponding functional spaces WH , W 0
H and W 0

H,bubble).

2.1.1 Dirichlet problem (1)

Variational formulations. The variational formulation of the standard Ms-
FEM approach with Crouzeix-Raviart type boundary conditions reads as

Find uH P VH such that, for any vH P VH , cHpuH , vHq “ F pvHq, (12)

with cH defined in (9) and the finite dimensional approximation space VH Ă WH

given by

VH “
 
u P WH such that adiff,Hpu, vq “ 0 for any v P W 0

H

(
. (13)

The variational formulation for the variant using bubble functions is

"
Find uH P VH,bubble such that,

for any vH P VH,bubble, cHpuH , vHq “ F pvHq, (14)

where the finite dimensional approximation space VH,bubble Ă WH is

VH,bubble “
 
u P WH such that adiff,Hpu, vq “ 0 for any v P W 0

H,bubble

(
. (15)

The stabilized version of (14) (or, mutatis mutandis, of (12)) that we use
reads as

"
Find uH P VH,bubble such that, for any vH P VH,bubble,

cHpuH , vHq ` astabpuH , vHq “ F pvHq ` FstabpvHq, (16)

where the stabilization terms are defined by

astabpuH , vHq “
ÿ

KPTH

´
τK

´
´α∆uH `pbε ¨ ∇uH

¯
,pbε ¨ ∇vH

¯
L2pKXΩεq

, (17)

FstabpvHq “
ÿ

KPTH

´
τKf,pbε ¨ ∇vH

¯
L2pKXΩεq

,

with τKpxq “ H

2
ˇ̌
ˇpbεpxq

ˇ̌
ˇ

»
–coth

¨
˝

ˇ̌
ˇpbεpxq

ˇ̌
ˇ H

2α

˛
‚´ 2αˇ̌

ˇpbεpxq
ˇ̌
ˇ H

fi
fl. In the case when

div pbε “ 0, the skew-symmetric part of the operator Lv “ ´α∆v ` pbε ¨ ∇v is
Lssv “ pbε ¨ ∇v and thus (17) corresponds to a SUPG stabilization.

Description of the basis functions. We now make precise the definition of
the basis functions (the well-posedness of the problems (18) and (19) below is

7



established in [24]). For any E P E in
H , we introduce the function Φ

ε,E
0 which is

such that, for all mesh elements K P TH ,

$
’’’’’’&
’’’’’’%

´ α∆Φ
ε,E
0 “ 0 in K X Ωε,

Φ
ε,E
0 “ 0 in K X Bε,

if E1 P E in
H X BK,

ˆ

E1

Φ
ε,E
0 “ δE,E1 and α∇Φ

ε,E
0 ¨ n “ λK,E1

on E1 X Ωε,

if E1 P Eext
H X BK, Φ

ε,E
0 “ 0 on E1 X Ωε,

(18)

where λK,E1

is constant. The function Φ
ε,E
0 is supported in the elements K for

which E Ă BK.
We also define, for K P TH , the bubble function Ψ

ε,K
0 , the support of which

is reduced to K X Ωε, as the solution to

$
’’’’’’&
’’’’’’%

´ α∆Ψ
ε,K
0 “ 1 in K X Ωε,

Ψ
ε,K
0 “ 0 in K X Bε,

if E1 P E in
H X BK,

ˆ

E1

Ψ
ε,K
0 “ 0 and α∇Ψ

ε,K
0 ¨ n “ µK,E1

on E1 X Ωε,

if E1 P E
ext
H X BK, Ψ

ε,K
0 “ 0 on E1 X Ωε,

(19)
where µK,E1

is constant.

Remark 1. In the very particular case when some E P E in

H satisfies E Ă Bε,

then we simply set Φ
ε,E
0 ” 0 (and likewise for Ψ

ε,K
0 if some K P TH satisfies

K Ă Bε). The same remark holds for the other approaches presented below.

We then have
VH “ Span

!
Φ

ε,E
0 , E P E

in
H

)

and
VH,bubble “ Span

!
Φ

ε,E
0 , Ψ

ε,K
0 , E P E

in
H , K P TH

)
. (20)

Details on the stabilized formulations. Given the above basis functions,
we can obtain a simpler expression of the term (17) by decomposing uH P
VH,bubble as

uH “
ÿ

EPE in

H

UE
H Φ

ε,E
0 `

ÿ

KPTH

UK
H Ψ

ε,K
0 .

Following the definition of the basis functions, we have

astabpuH , vHq “
ÿ

KPTH

´
τK

´
pbε ¨ ∇uH

¯
,pbε ¨ ∇vH

¯
L2pKXΩεq

`
ÿ

KPTH

UK
H

ˆ

KXΩε

τK

´
pbε ¨ ∇vH

¯
. (21)

In practice, we make use of a discrete approximation of the basis functions
on a fine mesh Kh, and (17) may not be defined in general. For example, if we
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use a P
1 approximation on a fine mesh Kh for the local problems, then ∇uH,h

may be discontinuous at the interfaces of Kh. As a consequence, we have that

´∆uH,h R L2pK X Ωεq

and the stabilization term (17) has no natural expression when we work with
the discretized approximation space pVH,bubbleqh rather than VH,bubble. There
are (at least) two options to circumvent the difficulty.

The first option is to use

rastabpuH,h, vH,hq “
ÿ

KPTH

ÿ

κĂKh

´
τK

´
´α∆uH,h `pbε ¨ ∇uH,h

¯
,pbε ¨ ∇vH,h

¯
L2pκq

(22)
rather than (17). This yields a strongly consistent stabilized method.

The second option, and this is the variant we adopt, is to use the stabiliza-
tion term (21) rather than (17). In contrast to (17), the quantity (21) is also
well defined on pVH,bubbleqh. We point out that this stabilization approach is
not strongly consistent. We however note that we have already used (for the
same reasons as here) this type of non-strongly consistent stabilization approach
in [26], where we were able to show the convergence of the approach (see [26,
Section 3.2]).

2.1.2 Neumann problem (2)

Variational formulations. The variational formulations for the Neumann
problem read as (12), (14) and (16), with cH replaced by aH defined in (7).

Basis functions and stabilized formulations. For problem (2), the sys-
tems (18) and (19) are respectively replaced by the following two systems (we
temporarily use the same notation for the Dirichlet and the Neumann problems):

$
’’’’’’&
’’’’’’%

´ α∆Φ
ε,E
0 “ 0 in K X Ωε,

α∇Φ
ε,E
0 ¨ n “ 0 in K X BBε,

if E1 P E in
H X BK,

ˆ

E1XΩε

Φ
ε,E
0 “ δE,E1 and α∇Φ

ε,E
0 ¨ n “ λK,E1

on E1 X Ωε,

if E1 P Eext
H X BK, Φ

ε,E
0 “ 0 on E1 X Ωε,

(23)
where λK,E1

is constant, and

$
’’’’’’&
’’’’’’%

´ α∆Ψ
ε,K
0 “ 1 in K X Ωε,

α∇Ψ
ε,K
0 ¨ n “ 0 in K X BBε,

if E1 P E in
H X BK,

ˆ

E1XΩε

Ψ
ε,K
0 “ 0 and α∇Ψ

ε,K
0 ¨ n “ µK,E1

on E1 X Ωε,

if E1 P Eext
H X BK, Ψ

ε,K
0 “ 0 on E1 X Ωε,

(24)
where µK,E1

is constant.

For (2), we again work with the stabilization term (21).
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2.2 MsFEM approaches using the full advection-diffusion

operator, and their stabilized version

In this variant, we use basis functions that depend on the advection field.

2.2.1 Dirichlet problem (1)

Variational formulations. When no bubble functions are used to enrich the
approximation space, the variational formulation, for the study of Problem (1),
reads as

Find uH P V adv
H such that, for any vH P V adv

H , cHpuH , vHq “ F pvHq, (25)

with cH defined by (9) and

V adv
H “

 
u P WH such that cHpu, vq “ 0 for any v P W 0

H

(
. (26)

Note that, in contrast to VH defined by (13), the space V adv
H is defined by

orthogonality using the bilinear form cH , and not adiff,H .
When using bubble functions, we consider the variational formulation

"
Find uH P V adv bubble

H such that,
for any vH P V adv bubble

H , cHpuH , vHq “ F pvHq, (27)

where

V adv bubble
H “

 
u P WH such that cHpu, vq “ 0 for any v P W 0

H,bubble

(
. (28)

The stabilized version of the formulation (27) reads as
"

Find uH P V adv bubble
H such that, for any vH P V adv bubble

H ,

cHpuH , vHq ` astabpuH , vHq “ F pvHq ` FstabpvHq, (29)

with again V adv bubble
H defined by (28). For the same reasons as those for which

we favor (21) over (22), we choose the stabilization defined by

astabpuH , vHq “
ÿ

KPTH

UK
H

ˆ

KXΩε

τK

´
pbε ¨ ∇vH

¯
. (30)

Note that, for the formulation (25), the stabilization is void as astabpuH , vHq “ 0

for any uH P V adv
H .

Description of the basis functions. Similarly as in Section 2.1.1, we now
make explicit a basis of functions for our approximation spaces. For any E P E in

H ,

the function Φ
ε,E
D is defined by

$
’’’’’’’’’’’&
’’’’’’’’’’’%

´ α∆Φ
ε,E
D `pbε ¨ ∇Φ

ε,E
D “ 0 in K X Ωε,

Φ
ε,E
D “ 0 in K X Bε,

if E1 P E
in
H X BK,

ˆ

E1

Φ
ε,E
D “ δE,E1

and

ˆ
α∇Φ

ε,E
D ´ 1

2
pbεΦε,E

D

˙
¨ n “ λK,E1

on E1 X Ωε,

if E1 P E
ext
H X BK, Φ

ε,E
D “ 0 on E1 X Ωε,

(31)
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while the bubble function Ψ
ε,K
D is the solution to

$
’’’’’’’’’’’&
’’’’’’’’’’’%

´ α∆Ψ
ε,K
D `pbε ¨ ∇Ψ

ε,K
D “ 1 in K X Ωε,

Ψ
ε,K
D “ 0 in K X Bε,

if E1 P E in
H X BK,

ˆ

E1

Ψ
ε,K
D “ 0

and

ˆ
α∇Ψ

ε,K
D ´ 1

2
pbεΨε,K

D

˙
¨ n “ µK,E1

on E1 X Ωε,

if E1 P Eext
H X BK, Ψ

ε,K
D “ 0 on E1 X Ωε,

(32)

where λK,E1

and µK,E1

are constant. The well-posedness of (31) and (32) is

established in Appendix C, under the assumption that div pbε ď 0.

In the case of the Dirichlet problem, we then have

V adv
H “ Span

!
Φ

ε,E
D , E P E in

H

)
(33)

and
V adv bubble
H “ Span

!
Φ

ε,E
D , Ψ

ε,K
D , E P E

in
H , K P TH

)
. (34)

The method obtained is similar to the approach of [15]. The difference lies in
the definition of the bubble functions since [15] use homogeneous Dirichlet con-
ditions on the boundary of elements whereas we impose here Crouzeix-Raviart
conditions. The work [15] shows the added value of bubble functions (which
are, we emphasize it, defined using the full advection-diffusion operator, as we
do here). It also explores numerically how non-periodicity of the location of the
perforations affects the quality of the numerical approach, an issue which we
ourselves also examine in the present article (see Section 4.3).

2.2.2 Neumann problem (2)

Variational formulations. The variational formulations for the Neumann
problem read as (25), (27) and (29), with cH replaced by aH both in the vari-
ational formulations and in the definitions (26) and (28) of the discretization
spaces, and taking into account the modification mentioned underneath (3) of
the functional spaces WH , W 0

H and W 0
H,bubble.

When no bubble functions are used to enrich the approximation space, the
variational formulation thus reads as

Find uH P V adv
H such that, for any vH P V adv

H , aHpuH , vHq “ F pvHq, (35)

where, instead of (26), the approximation space V adv
H reads as

V adv
H “

 
u P WH such that aHpu, vq “ 0 for any v P W 0

H

(
.

When using bubble functions, we use the variational formulation
"

Find uH P V adv bubble
H such that,

for any vH P V adv bubble
H , aHpuH , vHq “ F pvHq, (36)

where, instead of (28), the approximation space V adv bubble
H reads as

V adv bubble
H “

 
u P WH such that aHpu, vq “ 0 for all v P W 0

H,bubble

(
. (37)

11



The stabilized version of the formulation (36) reads as

"
Find uH P V adv bubble

H such that, for any vH P V adv bubble
H ,

aHpuH , vHq ` astabpuH , vHq “ F pvHq ` FstabpvHq, (38)

with again V adv bubble
H defined by (37) and astab given by (30). As in the Dirichlet

case, the stabilization is void for the formulation (35).

Remark 2. In principle, from a practical viewpoint, it is possible to work with
the bilinear form aH instead of cH when considering the Dirichlet problem (1).
This variant is briefly examined in Section 4.1.4, where it is shown that it poorly
performs.

Description of the basis functions. Similarly as in Section 2.1.2, we now
make explicit a basis of functions for our approximation spaces. For any E P E in

H ,

the basis function Φ
ε,E
N is defined by

$
’’’’’’’’’’’&
’’’’’’’’’’’%

´ α∆Φ
ε,E
N `pbε ¨ ∇Φ

ε,E
N “ 0 in K X Ωε,

´
α∇Φ

ε,E
N

¯
¨ n “ 0 in K X BBε,

if E1 P E
in
H X BK,

ˆ

E1XΩε

Φ
ε,E
N “ δE,E1

and
´
α∇Φ

ε,E
N

¯
¨ n “ λK,E1

on E1 X Ωε,

if E1 P E
ext
H X BK, Φ

ε,E
N “ 0 on E1 X Ωε,

(39)

while the bubble function Ψ
ε,K
N is the solution to

$
’’’’’’’’’’’&
’’’’’’’’’’’%

´ α∆Ψ
ε,K
N `pbε ¨ ∇Ψ

ε,K
N “ 1 in K X Ωε,

´
α∇Ψ

ε,K
N

¯
¨ n “ 0 in K X BBε,

if E1 P E in
H X BK,

ˆ

E1XΩε

Ψ
ε,K
N “ 0

and
´
α∇Ψ

ε,K
N

¯
¨ n “ µK,E1

on E1 X Ωε,

if E1 P Eext
H X BK, Ψ

ε,K
N “ 0 on E1 X Ωε,

(40)

where λK,E1

and µK,E1

are constant.

In the case of the Neumann problem, we then have, instead of (33) and (34),

V adv
H “ Span

!
Φ

ε,E
N , E P E in

H

)

and
V adv bubble
H “ Span

!
Φ

ε,E
N , Ψ

ε,K
N , E P E in

H , K P TH

)
.

Remark 3 (A mixed approach and its stabilized version). In the current section
and in the previous one, we have considered basis functions that are all built
using the same operator: either the full operator (in the current Section 2.2), or
only the diffusion term (in Section 2.1), for both Φε,E and Ψε,K . The question

12



arises to build separately functions Φε,E associated to edges and bubble functions
Ψε,K associated to elements using two different operators for each category. We
do not detail here the construction of such a mixed approach, which is an easy
adaptation of the constructions described above.

For the sake of completeness, we have considered such mixed approaches in
some of the numerical tests reported on in Section 4. As will be seen there, we
have not found any cases where such a mixed approach was the one providing
the best results.

3 Elements of theoretical analysis

In this section 3, we consider periodic perforations. More precisely, let Y “
p0, 1qd be the unit square and O Ă Y be some smooth perforation (by simplicity,
we denote O a perforation, although O may be the union of several disconnected
sets). We scale O and Y by a factor ε and then periodically repeat this pattern
with periods ε in all directions. The set of perforations is therefore

Bε “ Ω X pYkPZd εBkq with Bk “ k ` O (41)

and the perforated domain is Ωε “ ΩzBε. We also introduce

P “ YkPZd

`
k ` Y zO

˘
. (42)

3.1 Homogenization results

For self-consistency and for the convenience of the reader, we include here some
results of homogenization for the problems (1) and (2) considered. These results
are useful to bear in mind the different scalings involved, and the asymptotic
behavior of the solutions uε we approximate in the various cases. The proofs of
these results are essentially contained in the literature, although some details
may vary (for some specific cases we had to consider, we were not able to explic-
itly find the relevant theoretical results in the literature with all the generality
we were after). For convenience, we include the proof of these results in the
Appendix A of this article. In any event, we do not claim any originality for
these results.

There is indeed a considerable body of literature for the homogenization of
diffusion and advection-diffusion problems set on perforated domains. The be-
havior obtained in the homogenization limit drastically depend on the bound-
ary conditions set on the boundaries of the perforations and on the density
and size of these perforations. For the diffusion problem itself, we wish to
cite [6, 9, 11, 12, 14, 27, 30], and more specifically [10, 12, 14, 24, 27, 30] for
the case of Dirichlet boundary conditions. The advection-diffusion equation is
studied in [5, 7, 8, 21, 31]. We also mention, for completeness, some of the
many studies of the (Navier) Stokes equation in this setting, such as [2, 4, 28].
A general reference on such topics is the textbook [20].

In the case of homogeneous Dirichlet boundary conditions, that is prob-
lem (1), two different results, depending on the choice of the advection field pbε,
may be established, using standard arguments of the literature. Both results
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have proofs readily adapted from the already classical proofs of the same esti-
mates for the pure diffusion operator (dating back to [27] and slightly extended
in [24, Appendix A.2]).

As we briefly mentioned in the introduction, the only interesting case is

when pbε “ 1

ε
b
´ ¨
ε

¯
. Then, Theorem 4 below holds. Its proof is postponed until

Appendix A.1. The advection field b does affect the homogenized behavior,
since the cell problem (44) defined below depends on b.

Theorem 4 (adapted from [27, 24]). We assume (41) and that O Ă Y . We also

assume that the right-hand side f belongs to L8pΩq X H2pΩq. Let pbε “ 1

ε
b
´ ¨
ε

¯

where b belongs to pW 1,ppY zOqqd for some p ą d, is Y -periodic and is such that
div b ď 0 in Y zO.

Then Problem (1) is well-posed and its solution uε satisfies
ˇ̌
ˇuε ´ ε2w

´ ¨
ε

¯
f
ˇ̌
ˇ
H1pΩεq

ď Cε3{2N pfq, (43)

for some C independent of ε and f , where w is the solution (actually in C1pY zOqq
of the cell problem

#
´ α∆w ` b ¨ ∇w “ 1 in P ,

w is Y -periodic, w “ 0 on BO,
(44)

where we recall that P is defined by (42). In the above bound, we have denoted
by |v|H1pΩεq “ }∇v}H1pΩεq and

N pfq “ }f}L8pΩq ` }∇f}L2pΩq ` }∆f}L2pΩq. (45)

We recall that the assumption

b P pW 1,ppY zOqqd and b is Y -periodic

means (here and throughout the article) that

b P
!
b P W

1,p
loc pPq, b is Y -periodic

)
,

where P is defined by (42).

Remark 5. We have not looked for the lowest possible regularity of b ensuring
that our theorem above holds. We have chosen to work with b P pW 1,ppY zOqqd
with p ą d for the sake of simplicity.

On the other hand, when pbε “ b
´ ¨
ε

¯
, Theorem 6 below describes the asymp-

totic behavior of the solution to (1), which does not depend at the dominant
order upon the advection field b.

Theorem 6 (adapted from [27, 24]). Under the same assumptions as those of

Theorem 4, except that here pbε “ b
´ ¨
ε

¯
, estimate (43) holds, where w is now

defined as the solution to the cell problem
#

´ α∆w “ 1 in P ,

w is Y -periodic, w “ 0 on BO,

instead of (44).
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We skip the proof of Theorem 6, that follows the same lines as the proof of
Theorem 4.

For Neumann boundary conditions, the situation is different, as briefly men-
tioned in the introduction. No rescaling of the solution, which stays of order
one, is necessary, and no enhancement of the advection field by a factor ε´1 is
required for the advection to affect the homogenized limit. In the case of the
diffusion problem, the problem was first solved in the case of isolated (meaning
that O Ă Y ) holes in [13]. The generalization to nonisolated holes was addressed
in [1, 6, 11]. The homogenization limit for the advection-diffusion equation (2),
in the periodic case, is the purpose of the following theorems. In Theorem 8,
we consider the case when

div b ď 0 in Y zO and b ¨ n ě 0 on BO. (46)

The proof of that theorem, which is postponed until Appendix A.2, is an easy
adaptation of the proof of [3, Theorem 2.9], that uses two-scale convergence and
addresses the case without advection on a periodically perforated domain.

Remark 7. Since b is periodic, the assumption (46) is equivalent to the as-
sumption

div b = 0 in Y zO and b ¨ n “ 0 on BO. (47)

Indeed, we check that

ˆ

Y zO

div b “
ˆ

BY

b ¨ n `
ˆ

BO

b ¨ n “
ˆ

BO

b ¨ n,

the last equality being a consequence of the periodicity of b.

Theorem 8 (adapted from Theorem 2.9 of [3]). We assume (41), that O Ă Y

and that Y zO is a connected open set of Rd. We also assume that, uniformly in
ε, we have

H1pΩεq ãÑ H1{2pBΩεq, (48)

i.e. there exists some C independent of ε such that

@v P H1pΩεq, }v}H1{2pBΩεq ď C}v}H1pΩεq.

Let pbε “ b
´ ¨
ε

¯
where b belongs to pW 1,ppY zOqqd for some p ą d, is Y -

periodic and satisfies (46) (i.e. (47)). We assume that f P L2pΩq.
Then Problem (2) is well-posed and its solution uε satisfies

lim
εÑ0

›››››u
ε ´ u‹ ´ ε

dÿ

i“1

wi

´ ¨
ε

¯
Bxi

u‹

›››››
H1pΩεq

“ 0,

where u‹ is the solution to the problem

$
’&
’%

´div pA‹
∇u‹q ` b‹ ¨ ∇u‹ “ |Y zO|

|Y | f in Ω,

u‹ “ 0 on BΩ,
(49)
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where the matrix A‹ and the vector b‹ are constant and given, for 1 ď i ď d, by

A‹ ei “ 1

|Y |

ˆ

Y zO

α
`
ei ` ∇wi

˘
, (50)

b‹ ¨ ei “ 1

|Y |

ˆ

Y zO

b ¨ pei ` ∇wiq, (51)

and where wi is the solution to the cell problem

#
´ ∆wi “ 0 in P ,

wi is Y -periodic, p∇wi ` eiq ¨ n “ 0 on BO.
(52)

As the perforations are smooth and O Ă Y , there exists a continuous em-
bedding from H1pY zOq to H1{2pBOq. The assumption (48) thus amounts to
a geometrical assumption on the perforations that intersect the boundary of Ω
(see Figure 2).

Figure 2: Left: a situation when (48) holds. Right: a situation when (48) does
not hold (the boundary BΩ is tangent to the boundary of some perforations,
including those shown in black; the domain Ωε is thus singular).

Note that, under the above assumptions, we have, when ε is sufficiently
small, that |BΩε X BΩ| ě c |BΩ| for some c ą 0 independent of ε.

We next address in Theorem 9 the case of a general advection field b. The
proof of that theorem is postponed until Appendix A.3, and is essentially per-
formed by showing that one can get back to a situation where (46), and thus (47),
holds.

Theorem 9. We make the same assumptions as for Theorem 8, except that
here b does not satisfy (46) or (47).

Then Problem (2) is well-posed and its solution uε satisfies

lim
εÑ0

›››››u
ε ´ u‹ ´ ε

dÿ

i“1

wi

´ ¨
ε

¯
Bxi

u‹

›››››
H1pΩεq

“ 0,

where u‹ is the solution to the problem (49) and wi is the solution to the cell
problem (52). In the homogenized problem (49), the matrix A‹ and the vector
b‹ are constant and given by (50) and (51).
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3.2 Error analysis for the Dirichlet problem

For the Dirichlet problem, we have announced at the end of the introduction
that the best numerical method among those that we have considered is the
Adv-MsFEM approach with advective bubble functions, the variational formu-
lation of which is (27) (see Section 4.1 below for the numerical results). The
error estimate of that approach is the purpose of the following theorem. It is
the extension of a similar result for the diffusion problem [24, Theorem 2.2]
establishing for that case the exact analogue estimate as (54) below. This is not
unexpected since, in both cases, the same differential operator is present in the
original equation and in the definition of all the basis functions. The proof of
Theorem 10 is postponed until Appendix B.2.

Theorem 10. We assume that d “ 2 and that the assumptions of Theorem 4
hold. We furthermore assume that div b P L8pY zOq. Let uε be the solution
to (1).

We assume that, for any mesh element K, we have K X Bε ‰ H, where Bε

defined by (41) is the set of perforations. We also assume (and this is a purely
technical assumption that does not matter for the numerical practice) that the
slopes of the edges of the mesh elements are rational numbers. More precisely,
we suppose that the equation defining any internal edge E of the mesh reads as

x2 “ pE

qE
x1 ` cE for some cE P R, pE P Z and qE P N

‹ that are coprime, with

|qE | ď C, (53)

for a constant C independent of the edge considered in the mesh and of the mesh
size H. Then, the Adv-MsFEM approximation uε

H , solution to (27), satisfies

}uε ´ uε
H}H1

H
pΩεq ď Cε

ˆ?
ε ` H `

c
ε

H

˙
}f}H2pΩq, (54)

for a constant C independent of ε, H and f , where we have used the notation

}v}H1

H
pΩεq “

d ÿ

KPTH

}v}2
H1pKXΩεq.

Note that the constant C in (54) a priori depends on α (in particular through
the dependency of the solution to (44) upon α).

The assumption that all the elements of the coarse mesh intersect the per-
forations is a mild assumption. Recall indeed that the size H of the elements is
expected to be much larger than the distance ε between perforations, and that
the perforations are periodically located.

Remark 11 (Relative error in the L2-norm). The proof of Theorem 10 actually
shows that

|uε ´ uε
H |H1

H
pΩεq ď Cε

ˆ?
ε ` H `

c
ε

H

˙
}f}H2pΩq.

Recalling that |uε|H1pΩεq is of the order of ε (see (43)), we observe that the
relative error (in norm | ¨ |H1

H
pΩεq) between uε and uε

H is of the order of
?
ε `

H `
a
ε{H, and thus small.
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Using the Poincaré inequality recalled in (58) below, we get that }uε}L2pΩεq ď
Cε|uε|H1pΩεq, and thus }uε}L2pΩεq is of the order of ε2. Likewise, using the
Poincaré inequality recalled in (90) below, we get that }uε´uε

H}L2pΩεq ď Cε|uε´
uε
H |H1

H
pΩεq, and thus }uε ´ uε

H}L2pΩεq is of the order of ε2p?
ε ` H `

a
ε{Hq.

The relative error in the L2-norm is hence also of the order of
?
ε`H `

a
ε{H,

and thus also small.

Although we suspect that a similar estimate to that of Theorem 10 above
can be established for the problem with Neumann boundary conditions (2), we
have not pursued in this direction.

4 Numerical results

This section presents our numerical results. They have all been performed with
FreeFem++ [19], on the following test case. We consider the two-dimensional
domain Ω “ p0, 1q2. Except for Section 4.3, its subdomain Ωε is a periodically
perforated domain defined by

Ωε “
!
x P Ω, χ

´x
ε

¯
“ 1

)
, (55)

where χ is the extension by Y -periodicity, for the periodicity cell Y “ p0, 1q2,
of the characteristic function 1Y zO, where O Ă Y defines a perforation.

For either of the problems considered ((1) or (2)), and for either of our ap-
proaches, based on the diffusion operator only or the full advection-diffusion
operator, we will investigate several issues. The first issue is how enriching the
approach with bubble functions affects the accuracy. Of course, this enrichment
comes at the price of increasing the number of degrees of freedom. We will
observe that the gain in accuracy is much higher than that obtained by, say, re-
ducing the size of the coarse mesh by a factor two. Other issues are the influence
of the Péclet number (measuring the relative amplitude of the advection with
respect to the diffusion) and that of the small scale ε defining both the size of
the perforations and their typical distance. Many of these issues are examined
upon considering a range of mesh sizes H for the coarse mesh. This range is
typically chosen as H varying from ε{10 to 10 ε. One must bear in mind that
capturing all the details of the oscillatory solutions uε using a standard FEM
approach would require choosing a mesh size in any event smaller, and in most
cases much smaller, than ε{10. At the other end, choosing H larger than 10 ε

would result in a prohibitively expensive offline cost. Thus the choice of our
typical range of values of H .

Beside comparing the various approaches considered, and assessing their
performance in function of the various parameters of the problem, we will also
specifically assess their robustness with respect to the location of the perfora-
tions. To this aim, we consider two locations for the perforation within the
periodicity cell Y “ p0, 1q2:

O “ O1 “ p0.25, 0.75q2

and
O “ O2 “ p0, 0.25q ˆ p0.25, 0.75q Y p0.75, 1q ˆ p0.25, 0.75q.

18



The shape of the perforations is the same (squares of size 0.5ε). The difference
lies in the relative position of the mesh with respect to the perforations (see
Figure 3). One set of perforations is obtained from the other by shifting the
perforations by 0.5 ε in the x direction. When O “ O1, the perforations do
not intersect the edges of the mesh elements (which are taken aligned with the
periodicity cells). In contrast, when O “ O2, many edges are intersected by
the perforations. In doing so, we have in mind, like in our previous work [24],
to use these two specific periodic geometries to emphasize which approaches
can easily carry over to the case of non-periodic perforations, where a typical
mesh may often intersect the perforations (we recall that such a non-periodic
case is addressed in Section 4.3). To some extent, the two periodic geometries
we consider respectively represent the best case scenario (when perforations
are all interior to mesh elements) and the worst case scenario (when “half” the
perforations intersect the boundaries of mesh elements).

Figure 3: Representation of one coarse element in dimension 2 (of size H ˆ H)
containing 4 periodic cells (we assume on this figure that ε “ H{2). Perforations
are represented in grey. Left: the perforation O1 does not intersect the mesh
edges. Right: the perforation O2 intersects some mesh edges.

The advection field pbε we consider is proportional to the constant field b “
p1, 1qT . Depending on the situation considered, the proportionality constant is
either 1 or 1{ε, for reasons that have been made clear above.

The reference solution uref, and all the relative errors that will be defined
with respect to that reference solution, are computed on the fine mesh. The ref-
erence solution itself is computed using the standard P

1 Finite Element method
on this fine mesh. We measure the accuracy using, on domains ω Ă Ωε, the H1

broken norm

|u|H1

H
pωq “

˜
ÿ

KPTH

}∇u}2L2pKXωq

¸1{2

, (56)

and the relative errors

eH1pωqpuq “
|u ´ uref|H1

H
pωq

|uref|H1pωq
, (57)

in the whole domain (ω “ Ωε) and, possibly, separately inside and outside the
boundary layer when there is such a boundary layer close to some portion of
the boundary of the domain Ω (see Section 4.2).
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The results for Problem (1), where we impose homogeneous Dirichlet bound-
ary conditions on the perforations, are presented in Section 4.1, while Section 4.2
contains those for the Neumann problem (2). We next turn to a non-periodic
test-case in Section 4.3.

In all what follows, we choose fpx, yq “ sin
´π
2
x
¯
sin

´π
2
y
¯

as right-hand

side for the advection-diffusion equation considered (we have checked that our
results and conclusions do not sensitively depend on the choice of f).

4.1 Homogeneous Dirichlet boundary condition

This section is devoted to the comparison of our MsFEM variants for prob-
lem (1). In short, the conclusion of the numerical tests discussed below is the
following. By far, the best possible approach is the one using a basis of functions
built upon the full advection-diffusion operator enriched with bubble functions
built likewise (namely, the approach that we denote “Adv-MsFEM + adv Bub-
bles”), without requiring any additional stabilization. However, it may be the
case that one does not wish to include the tranport field in the definition of the
basis functions. One can then use an approach enriched with bubble functions,
with all basis functions built upon the sole diffusion operator, and without any
stabilization (namely, the “MsFEM + Bubbles” approach). However, the latter
approach is not robust in the limit of large Péclet numbers or small values of ε.

We now proceed with more details. Throughout the section, except in Sec-
tion 4.1.4, the Adv-MsFEM and its variants are defined by using the bilinear
form cH , as detailed in Section 2.2.1. In Section 4.1.4, we will compare these
variants with the variants defined by using the bilinear form aH (see Remark 2).

In Section 4.1.1, we study the added value of bubble functions. Sections 4.1.2
and 4.1.3 respectively explore the influence of the Péclet number and that of
the small scale ε.

4.1.1 Adding bubble functions

We fix ε “ 0.03 and α “ 0.25. The perforations are defined by the set O “ O1.
We have explicitly checked, alternately choosing O “ O2, that all our results
and conclusions in this section are qualitatively insensitive to the location of the
perforations (results not shown).

To start with, we consider the (standard) MsFEM approach. We observe
on Figure 4 that adding bubble functions significantly improves the accuracy,
and that the best option is that with advective bubble functions. The same
comparison holds for the Adv-MsFEM approach (see also Figure 4).

We next focus on Adv-MsFEM, possibly complemented (in view of the con-
clusions drawn from Fig. 4) by advective bubble functions. Only here in the
present article, we temporarily include in our comparison multiscale basis func-
tions built with boundary conditions other than Crouzeix-Raviart, namely ele-
ments with linear boundary conditions and elements using oversampling (specif-
ically with an oversampling ratio equal to 3, see [16] for the definition). In the
case of the Adv-MsFEM CR approach (with Crouzeix-Raviart boundary con-
ditions), the bubble functions are defined by (32), also with Crouzeix-Raviart
boundary conditions. In the case of the Adv-MsFEM lin approach (with affine
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Figure 4: [Dirichlet Problem (1)] Addition of bubble functions to MsFEM and
Adv-MsFEM (all basis functions satisfy CR boundary conditions).

boundary conditions on BK) and of the Adv-MsFEM OS approach (with over-
sampling), the bubble functions are defined using homogeneous Dirichlet bound-
ary conditions on BK, that is as the solution to

#
´ α∆Ψ

ε,K
D `pbε ¨ ∇Ψ

ε,K
D “ 1 in K X Ωε,

Ψ
ε,K
D “ 0 in K X Bε, Ψ

ε,K
D “ 0 on BK.

Figure 5 displays the relative H1 broken error of the different approaches. We
again observe that adding advective bubble functions significantly improves the
accuracy, and that Adv-MsFEM à la Crouzeix-Raviart with advective bubble
functions is the best of all the approaches considered.

4.1.2 Influence of the Péclet number

We now study the influence of a large advection, quantified by the Péclet num-
ber, on the accuracy of our approaches. We fix ε “ 0.03125 and the mesh size
H “ 1{16. We choose O “ O1, the configuration where the perforations do not
intersect the coarse mesh. In order to vary the Péclet number, we let the diffu-
sion parameter take the values α “ 2k, for the integers k “ ´5 through 2. When
α decreases, Problem (1) increasingly becomes advection-dominated. Given the
results of our previous section, we only consider MsFEM and Adv-MsFEM with
advective bubble functions (as well as the stabilized formulations of these two
approaches), all basis functions satisfying Crouzeix-Raviart boundary condi-
tions. Figure 6 shows that the latter approach (with or without stabilization)
stays accurate when α decreases while the error blows up to a hundred percent
for the former approach (with and without stabilization).
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Figure 5: [Dirichlet Problem (1)] Addition of bubble functions to Adv-MsFEM
and influence of the boundary conditions.
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Figure 6: [Dirichlet Problem (1)] Sensitivity to the Péclet number (all basis
functions satisfy CR boundary conditions).

We have checked that our conclusions are not modified when considering
shifted perforations O “ O2, many of which now intersect the edges of mesh
elements (results not shown).
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4.1.3 Influence of the small scale ε

We fix α “ 1{16, H “ 1{16, and, in order to evaluate the influence of the small
scale ε, let ε take the values ε “ 2´k for k “ 3, . . . , 8. Since we know from the
previous observations that stabilization does not bring any added value, we only
consider our approaches without stabilization. In Figure 7, we observe that the
most accurate method is the Adv-MsFEM with advective bubble functions.
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Figure 7: [Dirichlet Problem (1)] Sensitivity to the small scale ε (all basis func-
tions satisfy CR boundary conditions).

The results are shown for O “ O1, in which case the perforations do not
intersect the coarse mesh. We have also checked that the exact same conclusion
holds for O “ O2 (results not shown).

4.1.4 Comparison of two variants of Adv-MsFEM

In the previous sections, we have always used the formulation (27)–(28) (with
the bilinear form cH defined by (9)) for the definition of Adv-MsFEM. As briefly
mentioned in the introduction and in Remark 2, a formulation such as (36)–(37)
(which we introduce and use for the Neumann problem) can also be considered
for the present Dirichlet case (up to, evidently, an adequate modification of the
variational spaces). The difference between the two approaches is the use of the
bilinear form aH instead of cH in the definition of the local and global problems,
which in particular implies different boundary conditions prescribed on the inner
edges/faces of the mesh elements for the basis functions (see Section 2.2).

We first compare the two methods as in Section 4.1.2, that is for varying
Péclet numbers (i.e. varying α). We first fix O “ O1, and next fix O “ O2.
In both cases, we have observed (results not shown) that the behavior of the
methods (27) and (36) when α decreases is similar.
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We then consider again the setting of Section 4.1.3. We start with O “ O2.
In Figure 8, both methods yields a reasonable accuracy for small values of ε. We
now set O “ O1, all the other parameters being unchanged. We see in Figure 9
that the method (36) is much less accurate than the method (27) for small
values of ε. This provides a practical motivation (in addition to the theoretical
motivation outlined above) to use the method (27).
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Adv-MsFEM + adv Bubbles: variant (36)

Figure 8: [Dirichlet Problem (1)] Comparison of the Adv-MsFEM variants when
O “ O2 (all basis functions satisfy CR boundary conditions).

4.2 Homogeneous Neumann boundary condition

This section presents our numerical tests and conclusions for problem (2), in the
same vein as Section 4.1 above presented those for problem (1). As announced
in the introduction, the method of preference is again here a classical, non-
stabilized approach using a basis of functions built upon the full advection-
diffusion operator enriched with bubble functions built likewise (namely, the
“Adv-MsFEM + adv Bubbles” approach). As in Section 4.1, if, for some reason,
one does not wish to include the tranport field in the definition of the basis
functions, then there is an alternate possibility. The best to do is to use a
stabilized formulation with basis functions built with the sole diffusive part of
the operator (that is, the “Stab-MsFEM” approach). All other approaches turn
out to be significantly less efficient.

We proceed similarly to Section 4.1. Sections 4.2.1 and 4.2.2 respectively
investigate the influence of the Péclet number and of the small scale ε. In
Section 4.2.3, we study the effect of adding bubble functions.

We consider the Neumann problem (2) for a constant advection field pbε,
namely pbε “ p1, 1qT . As expressed by Theorem 9, the homogenized problem is
an advection-dominated problem posed in Ω. In contrast to the situation with
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Figure 9: [Dirichlet Problem (1)] Comparison of the Adv-MsFEM variants when
O “ O1 (all basis functions satisfy CR boundary conditions).

homogeneous Dirichlet boundary conditions, the flow is not slowed down by the
boundary conditions set on the boundary of perforations. It however has to
comply with the Dirichlet boundary conditions on the outer boundary of the
domain Ω. Given the orientation of pbε, a boundary layer is expected close to

the upper right corner of Ω. We denote by Ωlayer “
´

p0, 1q ˆ p1 ´ δlayer, 1q
¯

Y
´

p1 ´ δlayer, 1q ˆ p0, 1q
¯

this expected boundary layer, of approximate width

δlayer “ 1

Pe
logpPeq, with Pe “

›››pbε
›››
L8pΩεq

{p2αq.

We first consider methods without bubble functions, and only consider the
addition of bubble functions in Section 4.2.3.

4.2.1 Influence of the Péclet number

As already mentioned, one consequence of the Neumann conditions (as opposed
to the homogeneous Dirichlet conditions) set on the boundary of the perfora-
tions is that the flow is not slowed down around the perforations. Thus, when
advection dominates diffusion, the effect of advection is all the more acute. Since
advection is more extreme, it is therefore important to primarily investigate how
the approaches perform on Problem (2) when advection increasingly dominates
diffusion (a study we presented in Section 4.1.2 for the Dirichlet problem). In
practice, we perform our tests fixing ε “ 0.03125, H “ 1{16 and varying α “ 2k,
for integers k “ ´9 to ´2.

It is well known that all discretization methods poorly perform within the
boundary layer in the advection dominated regime. The only exceptions are
methods specifically tailored to the boundary layer and we do not wish to go in
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that direction. We have checked that all our approaches essentially fail in the
boundary layer, the error for some of them even blowing up to more than a hun-
dred percent. Therefore, in order to discriminate between the approaches, we
only consider the region outside the boundary layer (we have also adopted such
a strategy in [26]). Figure 10 shows the relative error (57) (for ω “ ΩεzΩlayer

in (56)) calculated there, in the configuration where the perforations do not
intersect the coarse mesh, i.e. when O “ O1. We observe that Adv-MsFEM
performs well. As is the case for MsFEM, provided it is stabilized. Figure 11
shows the results of the same tests for O “ O2. It confirms the same con-
clusions, qualitatively, and therefore the flexibility of our approaches all based
upon Crouzeix-Raviart type boundary conditions.
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Figure 10: [Neumann Problem (2)] Sensitivity to the Péclet number: error out-
side the boundary layer when O “ O1 (all basis functions satisfy CR boundary
conditions).

4.2.2 Influence of the small scale ε

We fix α “ 1{256, H “ 1{16 and we vary ε “ 2´k, k “ 5, . . . , 8. We only
show here the results when the perforations do not intersect the coarse mesh,
i.e. when O “ O1. The results for O “ O2 are similar (results not shown).

Figures 12 and 13 both show that the relative error, respectively throughout
the domain and outside the boundary layer, is essentially insensitive to the small
scale ε. The comparison of the actual size of the error in each of the two figures
shows that the error within the boundary layer significantly dominates that
outside the layer and is often prohibitively large, as is usually the case in the
advection-dominated regime and as was mentioned in the previous section. In
both figures, we observe that MsFEM is outperformed. Overall, Adv-MsFEM
performs the best, but Stab-MsFEM is the most accurate method outside the
boundary layer.
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Figure 11: [Neumann Problem (2)] Sensitivity to the Péclet number: error out-
side the boundary layer when O “ O2 (all basis functions satisfy CR boundary
conditions).
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Figure 12: [Neumann Problem (2)] Sensitivity to the small scale ε: error in the
whole domain (all basis functions satisfy CR boundary conditions).

4.2.3 Adding bubble functions

In this section, we study the added value of bubble functions for Adv-MsFEM
and, given the conclusions of the previous sections that show the inaccuracy of
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Figure 13: [Neumann Problem (2)] Sensitivity to the small scale ε: error outside
the boundary layer (all basis functions satisfy CR boundary conditions).

MsFEM itself, for the stabilized variant Stab-MsFEM.

Adv-MsFEM with advective bubble functions We consider the test
cases of Section 4.2.1. Figure 14 displays the relative H1 broken error of our dif-
ferent approaches outside the boundary layer, when O “ O1. The case O “ O2

is shown on Figure 15. We observe that the Adv-MsFEM with advective bubble
functions outperforms the Adv-MsFEM and the Stab-MsFEM (without bubble
functions). It in fact also gives reasonable results in the whole domain (results
not shown).

We next turn to the test cases of Section 4.2.2. In Figure 16, we observe,
for O “ O1, that the Adv-MsFEM with advective bubble functions yields a
reasonable accuracy. Choosing next O “ O2, we see on Figure 17 the relative
H1 broken error of the Adv-MsFEM with advective bubble functions inside and
outside the boundary layer. Comparing Figures 16 and 17, we infer that:

• inside the boundary layer, the Adv-MsFEM with advective bubble func-
tions is sensitive to the location of the perforations with respect to the
coarse mesh;

• outside the boundary layer, the Adv-MsFEM with advective bubble func-
tions is robust to the location of the perforations with respect to the coarse
mesh.

Stab-MsFEM with bubble functions We consider the test cases of Sec-
tion 4.2.1 in the case O “ O1. Figure 18 shows the error outside the boundary

28



10´2 10´1

10´2

10´1

α

H
1

re
la

ti
v
e

er
ro

r
o
u
ts

id
e

th
e

b
o
u
n
d
a
ry

la
y
er

Adv-MsFEM + adv Bubbles
Adv-MsFEM

Stab (MsFEM)

Figure 14: [Neumann Problem (2)] Adding bubble functions: error outside the
boundary layer when O “ O1 (all basis functions satisfy CR boundary condi-
tions).

10´2 10´1

10´1.5

10´1

α

H
1

re
la

ti
v
e

er
ro

r
o
u
ts

id
e

th
e

b
o
u
n
d
a
ry

la
y
er

Adv-MsFEM + adv Bubbles
Adv-MsFEM

Stab (MsFEM)

Figure 15: [Neumann Problem (2)] Adding bubble functions: error outside the
boundary layer when O “ O2 (all basis functions satisfy CR boundary condi-
tions).

layer. We observe that adding bubble functions (either computed with the dif-
fusive part of the operator or the full advection-diffusion operator) does not
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Figure 16: [Neumann Problem (2)] Sensitivity to the small scale ε: Adv-MsFEM
with advective bubble functions (all basis functions satisfy CR boundary con-
ditions; O “ O1).
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Figure 17: [Neumann Problem (2)] Sensitivity to the small scale ε: Adv-MsFEM
with advective bubble functions (all basis functions satisfy CR boundary con-
ditions; O “ O2).

improve the accuracy of Stab-MsFEM (it may even degrade it). The results for
O “ O2 are similar (results not shown).
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Figure 18: [Neumann Problem (2)] Adding bubbles to Stab-MsFEM: error out-
side the boundary layer (all basis functions satisfy CR boundary conditions;
O “ O1).

4.3 A non-periodic case

A major motivation for using MsFEM approaches is to address non-periodic
cases, for which homogenization theory does not provide any explicit approxi-
mation strategy. In this section, we assess the performance of our approaches
on the non-periodic geometry Ωε

np depicted in Figure 19 (we again assume ho-
mogeneous Neumann boundary conditions on the perforations).

With the aim to investigate the robustness of our approaches with respect
to the geometry of the perforations, we compare the results obtained in this
non-periodic case with those obtained for a periodically perforated domain Ωε

p

defined by (55) with ε “ 0.03125, Y “ p0, 1q2 and O “ rO1 where r ą 0 is such
that |Ωε

p| “ |Ωε
np|: the size of the small scale and the amount of perforations is

thus identical for the two problems.
We perform a test similar to the one described in Section 4.2.1, where we

study the influence of the Péclet number. We recall that we fix ε “ 0.03125,
H “ 1{16 and we vary α “ 2k, for integers k “ ´9 to ´2. Figure 20 dis-
plays the relative H1 broken error outside the boundary layer of our most accu-
rate approaches, namely the Adv-MsFEM with advective bubble functions and
the Stab-MsFEM. We observe that the Stab-MsFEM is insensitive to the non-
periodicity of the geometry. The Adv-MsFEM with advective bubble functions
is more sensitive to the non-periodicity of the geometry but still outperforms
the Stab-MsFEM in both cases.
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Figure 19: Non-periodic geometry. Let Mε be the set of perforations obtained by
periodically perforating the domain Ω “ p0, 1q2 by the motif O2 (we again denote
Y “ p0, 1q2 the periodic cell and set ε “ 0.03125). Each of these perforations is
next removed with a probability 1{2, independently of all the other ones.
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Figure 20: [Neumann Problem (2)] Sensitivity of the approaches to the non-
periodicity of the geometry (all basis functions satisfy CR boundary conditions).
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A Homogenization results

We include here the proof of the homogenization limit for some of the problems
we consider.

A.1 Homogeneous Dirichlet boundary condition

We prove here Theorem 4. The proof of Theorem 6 follows the same pattern
and we therefore omit it. A key ingredient in the proof below is the following
Poincaré inequality (see [24, Appendix A.1]): there exists C ą 0 independent
of ε such that

@φ P H1
0 pΩεq, }φ}L2pΩεq ď Cε}∇φ}L2pΩεq “ Cε|φ|H1pΩεq, (58)

where we recall the notation |v|H1pΩεq “ }∇v}L2pΩεq for any v P H1pΩεq.

Proof of Theorem 4. We adapt the proof of [24, Appendix A.2], where we con-
sidered a purely diffusive problem. We first prove that Problem (44) is well-
posed. Consider

V “
 
w P H1

locpPq, w is Y -periodic, w “ 0 on BO
(
,

where P is defined by (42). The variational formulation of (44) reads as: find
w P V such that

@v P V, apw, vq “
ˆ

Y zO

v

with

apw, vq “
ˆ

Y zO

α∇w ¨ ∇v `
ˆ

Y zO

pb ¨ ∇wq v.

The bilinear form a is well-defined on V ˆ V . Recall indeed that

b P pW 1,ppY zOqqd Ă pC0pY zOqqd (59)

since p ą d. Furthermore, a is coercive on V . Indeed, for any v P V , we compute
that

apv, vq “
ˆ

Y zO

α|∇v|2 `
ˆ

Y zO

pb ¨ ∇vq v

“
ˆ

Y zO

α|∇v|2 `
ˆ

Y zO

b ¨ ∇
ˆ
v2

2

˙

“
ˆ

Y zO

α|∇v|2 ´
ˆ

Y zO

pdiv bq
ˆ
v2

2

˙
,

where we have used the periodicity of v and b and the fact that v “ 0 on BO in the
integration by part. Note that the regularity of b (namely here div b P LppY zOq
with p ą d) and Sobolev embeddings ensures that the last term in the above
equality is well-defined.

Using now that div b ď 0 in Y zO and a Poincaré inequality for functions in
V , we get that, for any v P V ,

apv, vq ě α}∇v}2
L2pY zOq

ě C}v}2
H1pY zOq

,
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and thus the coercivity of a on V . The solution w of (44) is thus well defined.
Since the perforations are isolated, we can consider the cell problem on a

smooth bounded open domain Y `zO such that Y Ă Y ` and Y ` X O‹ “ O,
where O‹ is the domain obtained by Y -periodicity from O. Using standard
elliptic regularity results (see e.g. [18]) and the fact that b P pL8pY zOqqd, we
get that w P W 2,qpY zOq for any finite q. This implies that

w P C1pY zOq. (60)

Using similar arguments, we observe that (1) is well-posed for any f P L2pΩq.
We now prove (43). Let ηε be a regular function, vanishing in the neighbor-

hood of the boundary of Ω, such that 0 ď ηε ď 1 on Ω, and which is equal to 1
on tx P Ω, dist px, BΩq ą εu (see Figure 1). Since the domain Ω is regular, we
can construct ηε such that it satisfies

}ηε}L8pΩq ď 1, }1 ´ ηε}L2pΩq ď C
?
ε,

}∇ηε}L8pΩq ď C

ε
, }∇ηε}L2pΩq ď C?

ε
, }∇2ηε}L2pΩq ď C

ε3{2
,

where C ą 0 is a constant independent of ε. We define φε “ uε ´ ε2w
´ ¨
ε

¯
f ηε

and compute

∇φε “ ∇uε ´ ε∇w
´ ¨
ε

¯
fηε ´ ε2w

´ ¨
ε

¯
∇pfηεq,

∆φε “ ∆uε ´ ∆w
´ ¨
ε

¯
fηε ´ 2ε∇w

´ ¨
ε

¯
¨ ∇pfηεq ´ ε2w

´ ¨
ε

¯
∆pfηεq.

Recalling that pbε “ 1

ε
b
´ ¨
ε

¯
, we get

´ α∆φε `pbε ¨ ∇φε

“ f ` α∆w
´ ¨
ε

¯
fηε ` 2εα∇w

´ ¨
ε

¯
¨ ∇pfηεq

` 1

ε
b
´ ¨
ε

¯
¨
´

´ ε∇w
´ ¨
ε

¯
fηε ´ ε2w

´ ¨
ε

¯
∇pfηεq

¯
` ε2αw

´ ¨
ε

¯
∆pfηεq

“ f `
´
α∆w

´ ¨
ε

¯
´ b

´ ¨
ε

¯
¨ ∇w

´ ¨
ε

¯¯
fηε ` 2εα∇w

´ ¨
ε

¯
¨ ∇pfηεq

´ εw
´ ¨
ε

¯
b
´ ¨
ε

¯
¨ ∇pfηεq ` ε2αw

´ ¨
ε

¯
∆pfηεq

“ fp1 ´ ηεq ` ε
´
2α∇w

´ ¨
ε

¯
´ w

´ ¨
ε

¯
b
´ ¨
ε

¯¯
¨ ∇pfηεq ` ε2αw

´ ¨
ε

¯
∆pfηεq.

We infer from the above that
›››´α∆φε `pbε ¨ ∇φε

›››
L2pΩεq

ď }f}L8pΩq}1 ´ ηε}L2pΩq

` ε}2α∇w ´ w b}L8pY zOq

´
}f}L8pΩq}∇ηε}L2pΩq ` }∇f}L2pΩq}ηε}L8pΩq

¯

` ε2α}w}L8pY zOq

´
}f}L8pΩq}∆ηε}L2pΩq ` 2}∇f}L2pΩq}∇ηε}L8pΩq ` }∆f}L2pΩq}ηε}L8pΩq

¯

ď C
?
ε
´

}f}L8pΩq ` }∇f}L2pΩq ` }∆f}L2pΩq

¯
,

34



where C is independent of ε and f , and where we have used that w P W 1,8pY zOq
(see (60)) and b P pL8pY zOqqd (see (59)).

Noticing that φε vanishes on the boundary of Ωε and that div b ď 0 on Y zO,
we obtain
ˆ

Ωε

α|∇φε|2 ď
ˆ

Ωε

´
´α∆φε `pbε ¨ ∇φε

¯
φε ď C

?
ε }φε}L2pΩεqN pfq. (61)

Combining (61) and the Poincaré inequality (58) we recalled above, we get

|φε|H1pΩεq ď Cε3{2N pfq. (62)

To estimate
ˇ̌
ˇuε ´ ε2w

´ ¨
ε

¯
f
ˇ̌
ˇ
H1pΩεq

, we use the triangle inequality and write

ˇ̌
ˇuε ´ ε2w

´ ¨
ε

¯
f
ˇ̌
ˇ
H1pΩεq

ď |φε|H1pΩεq ` ε2
ˇ̌
ˇw

´ ¨
ε

¯
fp1 ´ ηεq

ˇ̌
ˇ
H1pΩεq

. (63)

We are thus left with bounding the quantity ε2
ˇ̌
ˇw

´ ¨
ε

¯
fp1 ´ ηεq

ˇ̌
ˇ
H1pΩεq

. To this

aim, we compute

ε2∇
”
w
´ ¨
ε

¯
fp1 ´ ηεq

ı
“ ε∇w

´ ¨
ε

¯
fp1´ ηεq ` ε2w

´ ¨
ε

¯
∇f ´ ε2w

´ ¨
ε

¯
∇pfηεq.

We then have

ε2
ˇ̌
ˇw

´ ¨
ε

¯
fp1 ´ ηεq

ˇ̌
ˇ
H1pΩεq

ď ε
›››∇w

´ ¨
ε

¯
fp1 ´ ηεq

›››
L2pΩεq

` ε2
›››w

´ ¨
ε

¯
∇f

›››
L2pΩεq

` ε2
›››w

´ ¨
ε

¯
∇pfηεq

›››
L2pΩεq

ď Cε3{2
N pfq, (64)

where we again used (60). We infer from (63), (62) and (64) that

ˇ̌
ˇuε ´ ε2w

´ ¨
ε

¯
f
ˇ̌
ˇ
H1pΩεq

ď Cε3{2N pfq.

This concludes the proof of Theorem 4.

A.2 Homogeneous Neumann boundary condition and as-

suming (46)

We prove Theorem 8 using two-scale convergence, as in [3, Theorem 2.9]. The
problem considered in [3, Theorem 2.9] is a diffusion problem with a zero-order
term, while the problem we consider here is an advection-diffusion problem
without zero-order term. Although the problems are different, the arguments of
the proof are essentially similar. We thus only detail the steps in the argument
different from those in [3, Theorem 2.9].

As a preliminary step, before we are in position to prove Theorem 8, we
establish the following Poincaré inequality. We recall (see (11)) that

V ε “
 
u P H1pΩεq such that u “ 0 on BΩε X BΩ

(
. (65)
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Lemma 12. We assume (41) and (48) (uniformly in ε), that O Ă Y and that
Y zO is a connected open set of Rd.

Then there exists C independent of ε such that

@u P V ε, }u}L2pΩεq ď C}∇u}L2pΩεq. (66)

Proof of Lemma 12. The result is intuitively clear. Since there is no boundary
conditions on the perforations for functions in V ε, these perforations can be
ignored and the Poincaré inequality is that of the domain Ω. The proof indeed
consists in extending u P H1pΩεq into v P H1pΩq and applying the Poincaré
inequality to the latter. We provide the detailed proof of (66), which falls in
two steps, for consistency.

Step 1. For any u P V ε, we show here how to build a suitable extension v

of u in the perforations Bε. We recall that, in view of (41), we have Bε “
Ω X pYkPZdpεO ` εkqq.

Let u P H1pY zOq. We claim that there exists v P H1pY q with v “ u in Y zO
and

}∇v}L2pY q ď C}∇u}L2pY zOq (67)

for some C independent of u and v.

Consider indeed the function u ´ c, where c “ 1

|Y zO|

ˆ

Y zO

u. This function

admits a trace on BO which belongs to H1{2pBOq. By surjectivity of the trace,
there exists w P H1pOq with w “ u ´ c on BO and }w}H1pOq ď Csurj}u ´
c}H1{2pBOq. We then define v P L2pY q by v “ u in Y zO and v “ w ` c in O. By

construction of w, we have that v P H1pY q. Furthermore, we compute

}∇v}2L2pY q “ }∇v}2
L2pY zOq

` }∇v}2L2pOq

“ }∇u}2
L2pY zOq

` }∇w}2L2pOq

ď }∇u}2
L2pY zOq

` }w}2H1pOq

ď }∇u}2
L2pY zOq

` C2
surj}u ´ c}2

H1{2pBOq.

Using the trace inequality and the Poincaré-Wirtinger inequality in Y zO, we
deduce from the above that

}∇v}2L2pY q ď }∇u}2
L2pY zOq

` C2
surjC

2
trace}u ´ c}2

H1pY zOq

ď }∇u}2
L2pY zOq

` C2
surjC

2
traceC

2
PW}∇u}2

L2pY zOq
,

which concludes the proof of (67).

By scaling, we next deduce from (67) that there exists C independent of ε
such that, for any u P H1pεpY zOqq, there exists v P H1pεY q with v “ u in
εpY zOq and

}∇v}L2pεY q ď C}∇u}L2pεpY zOqq.

Consider now u P V ε, defined in Ωε. We extend u in Ω as follows:

• For each perforation such that εO ` εk is included in Ω, we extend u in
εO ` εk as above.
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• For each perforation εO ` εk that intersects the boundary BΩ, we extend
u in ΩX pεO` εkq by a function that is equal to u on BpεO ` εkq XΩ and
that vanishes on BΩ. To build this extension, we use the assumption (48),
the fact that u “ 0 on BΩX BΩε along with the same arguments as above.

Doing so, we thus construct v P H1
0 pΩq such that v “ u on Ωε and

}∇v}L2pΩq ď C}∇u}L2pΩεq (68)

where C is independent of ε, u and v.

Step 2. Let u P V ε and let v P H1
0 pΩq be the extension built in Step 1. Using

the Poincaré inequality in H1
0 pΩq and (68), we write that

}u}L2pΩεq ď }v}L2pΩq ď C}∇v}L2pΩq ď C}∇u}L2pΩεq.

This concludes the proof of Lemma 12.

Proof of Theorem 8. We recall that the variational form of (2) reads as

Find uε P V ε such that, for any v P V ε, aεpuε, vq “
ˆ

Ωε

f v, (69)

where V ε is defined by (65) and the bilinear form aε is defined (see (6); we now
make explicit the dependency of the bilinear form with respect to ε) by

aεpu, vq “
ˆ

Ωε

α∇u ¨ ∇v `
ˆ

Ωε

´
pbε ¨ ∇u

¯
v. (70)

The proof of the theorem falls in 3 steps.

Step 1: well-posedness and a priori estimates. In view of the regularity
of b (see (59)), the bilinear form aε is well-defined on V ε ˆ V ε. In view of (46)
and (66), aε is coercive on V ε, uniformly with respect to ε. Indeed, for any
u P V ε, we have

aεpu, uq “
ˆ

Ωε

α|∇u|2 ` 1

2

ˆ

BΩε

´
pbε ¨ n

¯
u2 ´ 1

2

ˆ

Ωε

´
divpbε

¯
u2

ě α}∇u}2L2pΩεq

ě C}u}2H1pΩεq, (71)

successively using that div b ď 0 in Y zO, b ¨ n ě 0 on BO, u “ 0 on BΩε X BΩ
and the Poincaré inequality shown in Lemma 12. The bilinear form (70) is thus
coercive, uniformly with respect to ε. This of course implies that Problem (2)
is well-posed, and also that uε is uniformly bounded in H1pΩεq.

Let ruε P L2pΩq be the extension by zero of the solution uε to (2), and let

likewise r∇uε P pL2pΩqqd be the extension by zero of ∇uε. We thus have that ruε

(resp. r∇uε) is uniformly bounded in L2pΩq (resp. pL2pΩqqd) with respect to ε.

Step 2: homogenized limit. Because of the above bounds, we know that
there exists u0 P L2pΩˆY q (resp. ξ0 P pL2pΩˆY qqd) such that the sequence ruε

(resp. r∇uε) two-scale converges, up to the extraction of a subsequence, to u0
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(resp. ξ0). Following the proof of [3, Theorem 2.9], we obtain that there exists
u‹ P H1

0 pΩq and u1 P L2
`
Ω, H1

perpY zOq{R
˘

such that

u0px, yq “ u‹pxq1Y zOpyq and ξ0px, yq “ 1Y zOpyq p∇u‹pxq`∇yu1px, yqq. (72)

To identify the equation satisfied by u‹ and u1, we consider, following [3], the
test function

φεpxq “ φpxq ` εφ1

´
x,

x

ε

¯
,

where φ P C8
c pΩq and φ1 P C8

c pΩ; C8
perpY qq, the gradient of which reads

∇φεpxq “ ∇φpxq ` ∇yφ1

´
x,

x

ε

¯
` ε∇φ1

´
x,

x

ε

¯
.

Choosing v ” φε in the variational formulation (69) of (2), we obtain

α

ˆ

Ω

r∇uε ¨ ∇φε `
ˆ

Ω

b
´ ¨
ε

¯
¨ r∇uεφε “

ˆ

Ωε

f φε “
ˆ

Ω

1P

´ ¨
ε

¯
f φε, (73)

where we recall that P is defined by (42).

We check that the function ∇φpxq`∇yφ1px, yq is an admissible test function
in the sense of the two-scale convergence (indeed, it belongs to L2pΩ, C0

perpY qq,
and such functions are admissible in view of [3, Lemma 1.3 and Definition
1.4]). Likewise, in view of (59), we see that b pyq φpxq is also an admissible test
function. Passing to the limit ε Ñ 0 in (73) and using (72), we thus obtain

α

ˆ

ΩˆY

1Y zO p∇u‹ ` ∇yu1q ¨ p∇φ ` ∇yφ1q `
ˆ

ΩˆY

1Y zO p∇u‹ ` ∇yu1q ¨ b φ

“
ˆ

ΩˆY

1Y zO f φ.

By a density argument, we have that this variational formulation holds for any
pφ, φ1q P H1

0 pΩq ˆ L2pΩ;H1
perpY qq. We thus have

@φ1 P H1
perpY q,

ˆ

Y zO

p∇u‹ ` ∇yu1q ¨ ∇yφ1 “ 0 (74)

and

@φ P H1
0 pΩq, α

ˆ

ΩˆpY zOq

p∇u‹ ` ∇yu1q ¨ ∇φ

`
ˆ

ΩˆpY zOq

p∇u‹ ` ∇yu1q ¨ b φ “ |Y zO|
ˆ

Ω

f φ. (75)

Let wi, 1 ď i ď d, be the corrector, solution to (52). We deduce from (74) that

u1px, yq “ u1pxq `
dÿ

i“1

wipyq Bxi
u‹pxq

where u1 only depends on x. Inserting this expression in (75), we get that u‹

satisfies

@φ P H1
0 pΩq,

ˆ

Ω

A‹∇u‹ ¨ ∇φ ` pb‹ ¨ ∇u‹qφ “ |Y zO|
|Y |

ˆ

Ω

f φ,
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where A‹ (resp. b‹) is defined by (50) (resp. (51)). This is exactly the variational
formulation of (49).

Since u‹ is uniquely determined (note indeed that b‹ is constant, hence
divergence-free) and ∇yu1 is as well uniquely determined, we infer that the

whole sequence ruε (resp. r∇uε) two-scale converges to u0 P L2pΩ ˆ Y q (resp. to
ξ0 P pL2pΩ ˆ Y qqd).

Step 3: H1 convergence. Let uε,1 “ u‹ ` ε

dÿ

i“1

wi

´ ¨
ε

¯
Bxi

u‹ and ξ1px, yq “

dÿ

i“1

pei `∇wipyqq Bxi
u‹pxq, so that ∇uε,1 “ ξ1

´
¨, ¨
ε

¯
` ε ξ2

´
¨, ¨
ε

¯
with ξ2px, yq “

dÿ

i“1

wipyq Bxi
∇u‹pxq. We note that ξ0px, yq “ 1Y zOpyq ξ1px, yq.

We note that uε,1 does not vanish on BΩ. This is a usual difficulty in ho-
mogenization, which is standardly addressed by introducing a truncation func-
tion ηε as in the proof of Theorem 4 (see Appendix A.1), and considering

gε,1 “ u‹ ` εηε
dÿ

i“1

wi

´ ¨
ε

¯
Bxi

u‹ P V ε. Under sufficient regularity assump-

tions on O, we have wi P W 1,8pY zOq. Furthermore, since f P L2pΩq and Ω is
smooth, we have u‹ P H2pΩq. We thus have

lim
εÑ0

}uε,1 ´ gε,1}H1pΩεq “ 0. (76)

We are now left with estimating }uε ´ gε,1}H1pΩεq. Using (71), we write

C}uε ´ gε,1}2H1pΩεq ď aεpuε ´ gε,1, uε ´ gε,1q

“
ˆ

Ωε

fpuε ´ gε,1q ` aεpgε,1, gε,1q ´ aεpgε,1, uεq

“
ˆ

Ωε

fpuε ´ uε,1q ` aεpuε,1, uε,1q ´ aεpuε,1, uεq ` Rε, (77)

where
lim
εÑ0

Rε “ 0 (78)

as a consequence of (76).
We successively pass to the limit in the three terms of (77). For the first

one, we write

ˆ

Ωε

f uε “
ˆ

Ω

f ruε, thus

lim
εÑ0

ˆ

Ωε

f uε “
ˆ

ΩˆY

f u0 “
ˇ̌
Y zO

ˇ̌ˆ

Ω

f u‹, (79)

while

ˆ

Ωε

f uε,1 “
ˆ

Ω

1P

´ ¨
ε

¯
f uε,1, hence

lim
εÑ0

ˆ

Ωε

f uε,1 “
ˆ

ΩˆY

1Y zO f u‹ “
ˇ̌
Y zO

ˇ̌ ˆ

Ω

f u‹. (80)
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For the second term of (77), we write

aεpuε,1, uε,1q

“
ˆ

Ωε

α∇uε,1 ¨ ∇uε,1 `
ˆ

Ωε

”
b
´ ¨
ε

¯
¨ ∇uε,1

ı
uε,1

“
ˆ

Ωε

αξ1

´
¨, ¨
ε

¯
¨ ξ1

´
¨, ¨
ε

¯
` 2ε

ˆ

Ωε

αξ1

´
¨, ¨
ε

¯
¨ ξ2

´
¨, ¨
ε

¯
` ε2

ˆ

Ωε

αξ2

´
¨, ¨
ε

¯
¨ ξ2

´
¨, ¨
ε

¯

`
ˆ

Ωε

”
b
´ ¨
ε

¯
¨ ξ1

´
¨, ¨
ε

¯ı
uε,1 ` ε

ˆ

Ωε

”
b
´ ¨
ε

¯
¨ ξ2

´
¨, ¨
ε

¯ı
uε,1

“
ˆ

Ω

αξ0

´
¨, ¨
ε

¯
¨ ξ0

´
¨, ¨
ε

¯
` 2ε

ˆ

Ωε

αξ1

´
¨, ¨
ε

¯
¨ ξ2

´
¨, ¨
ε

¯
` ε2

ˆ

Ωε

αξ2

´
¨, ¨
ε

¯
¨ ξ2

´
¨, ¨
ε

¯

`
ˆ

Ω

”
b
´ ¨
ε

¯
¨ ξ0

´
¨, ¨
ε

¯ı
uε,1 ` ε

ˆ

Ωε

”
b
´ ¨
ε

¯
¨ ξ2

´
¨, ¨
ε

¯ı
uε,1.

Passing to the limit ε Ñ 0, we get that

lim
εÑ0

aεpuε,1, uε,1q

“
ˆ

ΩˆY

αξ0px, yq ¨ ξ0px, yq `
ˆ

ΩˆY

rbpyq ¨ ξ0px, yqs u‹pxq. (81)

For the third term of (77), we write

aεpuε,1, uεq

“
ˆ

Ωε

α∇uε,1 ¨ ∇uε `
ˆ

Ωε

”
b
´ ¨
ε

¯
¨ ∇uε,1

ı
uε

“
ˆ

Ω

αξ1

´
¨, ¨
ε

¯
¨ r∇uε ` ε

ˆ

Ω

αξ2

´
¨, ¨
ε

¯
¨ r∇uε

`
ˆ

Ω

”
b
´ ¨
ε

¯
¨ ξ1

´
¨, ¨
ε

¯ı
ruε ` ε

ˆ

Ω

”
b
´ ¨
ε

¯
¨ ξ2

´
¨, ¨
ε

¯ı
ruε.

Passing to the limit ε Ñ 0 and using the two-scale limits of ruε and r∇uε, we get
that

lim
εÑ0

aεpuε,1, uεq

“
ˆ

ΩˆY

αξ1px, yq ¨ ξ0px, yq `
ˆ

ΩˆY

rbpyq ¨ ξ1px, yqs u0pxq

“
ˆ

ΩˆY

αξ0px, yq ¨ ξ0px, yq `
ˆ

ΩˆY

rbpyq ¨ ξ0px, yqs u‹pxq. (82)

Collecting (77), (78), (79), (80), (81) and (82), we deduce that

lim
εÑ0

}uε ´ gε,1}H1pΩεq “ 0.

Collecting this result with (76), we deduce the claimed H1 convergence. This
concludes the proof of Theorem 8.
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A.3 Homogeneous Neumann boundary condition, the gen-

eral drift case

We now prove Theorem 9, by essentially showing that we can reduce the case
of a general drift to the case considered in Theorem 8. The proof of Theorem 9
is based on the following decomposition result.

Lemma 13. Let Y “ p0, 1qd be the unit square and O Ă Y be some smooth
perforation. We assume that O Ă Y and that Y zO is a connected open set of
R

d.
Consider a vector-valued function bper P pL2

locpPqqd which is Y -periodic (we
recall that P is defined by (42)). There exists φper P H1

locpPq and Bper P
pL2

locpPqqd, which are both Y -periodic, such that

bper “ ∇φper ` Bper in P , div Bper “ 0 in P, Bper ¨ n “ 0 on BO.

(83)

Proof. Consider the space V “
#
φ P H1

locpPq, φ is Y -periodic,

ˆ

Y zO

φ “ 0

+

and the problem: find φper P V such that

@v P V,

ˆ

Y zO

∇φper ¨ ∇v “
ˆ

Y zO

bper ¨ ∇v. (84)

The bilinear form on the left-hand side of (84) is coercive on V thanks to the
Poincaré-Wirtinger inequality (note that Y zO is connected). The problem (84)
is thus well-posed. Setting Bper “ bper ´ ∇φper, we observe that div Bper “ 0

in Y zO and Bper ¨ n “ 0 on BO. Using the periodicity of bper, we furthermore
deduce that div Bper “ 0 in P .

Proof of Theorem 9. The well-posedness of (2) can be established using the inf-
sup theory, with arguments similar to those used in [25] (the proof is actually

simple in the case when
›››pbε

›››
L8pΩεq

is small, or when pbε is irrotational).

To study the homogenized limit of (2), we start by using Lemma 13 and
write b “ ∇φper ` Bper. By construction, we have ∆φper “ div b in P and

∇φper ¨ n “ b ¨ n on BO. The W 1,p regularity of b implies that φper P W
2,p
loc pPq,

which implies that Bper P pW 1,p
loc pPqqd. Of course, we also have that φper P

L8
locpPq.

Introduce now σεpxq “ exp
´

´ ε

α
φperpx{εq

¯
. A simple calculation shows

that (2) can be written as

$
’&
’%

´α div pσε∇uεq ` σε Bper

´ ¨
ε

¯
¨ ∇uε “ σε f in Ωε,

α σε∇uε ¨ n “ 0 on BΩεzBΩ,
uε “ 0 on BΩε X BΩ.

(85)

Since φper P L8pY zOq, we deduce that

lim
εÑ0

}σε ´ 1}L8pΩεq “ 0. (86)
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We are thus led to introduce the following problem:

$
’&
’%

´α∆vε ` Bper

´ ¨
ε

¯
¨ ∇vε “ f in Ωε,

α∇vε ¨ n “ 0 on BΩεzBΩ,
vε “ 0 on BΩε X BΩ,

(87)

which is well-posed in view of (83). We claim that

lim
εÑ0

}uε ´ vε}H1pΩεq “ 0. (88)

Indeed, we see that

´ α∆pvε ´ uεq ` Bper

´ ¨
ε

¯
¨ ∇pvε ´ uεq

“ fp1 ´ σεq ` pσε ´ 1qBper

´ ¨
ε

¯
¨ ∇uε ´ α div ppσε ´ 1q∇uεq in Ωε.

Multiplying by vε ´ uε, integrating by part and using (83) and the fact that
Bper P pL8pY zOqqd, we deduce that

α}∇pvε ´ uεq}2L2pΩεq

ď }σε ´ 1}L8pΩεq }vε ´ uε}L2pΩεq

´
}f}L2pΩεq ` }Bper}L8pY zOq }∇uε}L2pΩεq

¯

` α }σε ´ 1}L8pΩεq }∇pvε ´ uεq}L2pΩεq}∇uε}L2pΩεq.

For ε sufficiently small, we deduce from (66) and (86) that

}vε ´ uε}H1pΩεq ď C }σε ´ 1}L8pΩεq

`
1 ` }∇vε}L2pΩεq

˘
.

A simple a-priori estimation in the coercive problem (87) shows that vε is
bounded in H1pΩεq uniformly in ε. The limit (86) thus implies (88).

We now identify the homogenized limit of (87). We observe that the advec-
tion field in that equation satisfies all the assumptions made in Theorem 8. In
particular, it is divergence-free. Using Theorem 8, we thus deduce that

lim
εÑ0

›››››v
ε ´

˜
u‹ ` ε

dÿ

i“1

wi

´ ¨
ε

¯
Bxi

u‹

¸›››››
H1pΩεq

“ 0, (89)

where u‹ is the solution to the problem

$
’&
’%

´div pA‹∇u‹q ` b‹ ¨ ∇u‹ “ |Y zO|
|Y | f in Ω,

u‹ “ 0 on BΩ,

where the matrix A‹ and the vector b‹ are constant and given, for 1 ď i ď d, by

A‹ ei “ 1

|Y |

ˆ

Y zO

α
`
ei ` ∇wi

˘
,

b‹ ¨ ei “ 1

|Y |

ˆ

Y zO

Bper ¨ pei ` ∇wiq,
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and where wi is the solution to the cell problem (52). We eventually observe
that

b‹ ¨ ei “ 1

|Y |

ˆ

Y zO

b ¨ pei ` ∇wiq ´ 1

|Y |

ˆ

Y zO

∇φper ¨ pei ` ∇wiq.

The second term of the right-hand side vanishes. Indeed, we compute

ˆ

Y zO

∇φper ¨ pei ` ∇wiq

“
ˆ

BY

φper pei `∇wiq ¨n`
ˆ

BO

φper pei `∇wiq ¨n´
ˆ

Y zO

φper div pei `∇wiq.

In the above right-hand side, the first term vanishes using the periodicity of φper

and wi, while the last two terms vanish in view of the corrector equation (52).
We thus obtain that, for 1 ď i ď d,

b‹ ¨ ei “ 1

|Y |

ˆ

Y zO

b ¨ pei ` ∇wiq.

Collecting (88) and (89) yields the claimed convergence result. This concludes
the proof of Theorem 9.

B Proof of the error estimate (54)

B.1 Some preliminary material

Before being in position to present the proof of Theorem 10, which follows that
of [24, Theorem 2.2], we need some preliminary results.

We recall (see (58)) that

@u P H1
0 pΩεq, }u}L2pΩεq ď Cε|u|H1pΩεq,

where C is a constant independent of ε. In view of [22, Lemma 4.5], and under
the assumption that all coarse elements intersect the perforations, we also have

@u P XH,Bε , }u}L2pΩεq ď C ε |u|H1

H
pΩεq, (90)

where C is a constant independent of ε, where |u|2H1

H
pΩεq “

ÿ

KPTH

}∇u}2L2pKXΩεq

and

XH,Bε “
 
u P L2pΩq such that u|K P H1pKq for any K P TH and u “ 0 in Bε

(
.

The proof of (90) is actually performed element per element.

We now recall three lemmas, borrowed from [24, Section 3]. The first lemma
is a trace inequality. For any domain ω Ă R

d, it is classical to define the space

H1{2pωq “
"
u P L2pωq,

ˆ

ω

ˆ

ω

|upxq ´ upyq|2
|x ´ y|d`1

dxdy ă `8
*
,
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and the norm

}u}H1{2pωq “
´

}u}2L2pωq ` |u|2H1{2pωq

¯1{2

where

|u|H1{2pωq “
ˆ
ˆ

ω

ˆ

ω

|upxq ´ upyq|2
|x ´ y|d`1

dxdy

˙1{2

.

Lemma 14 (Lemma 3.2 of [24]). There exists C (depending on the regularity
of the mesh) such that, for any K P TH and any edge E Ă BK, we have

@v P H1pKq, }v}2L2pEq ď C
´
H´1}v}2L2pKq ` H}∇v}2L2pKq

¯
. (91)

Under the additional assumption that

ˆ

E

v “ 0, we have

}v}2L2pEq ď CH}∇v}2L2pKq (92)

and
}v}2H1{2pEq ď Cp1 ` Hq}∇v}2L2pKq.

Lemma 15 (Corollary 3.3 of [24]). Consider an edge E P E in

H , and let KE Ă TH

denote all the triangles sharing this edge. There exists C (depending only on
the regularity of the mesh) such that

@v P WH , } rrvss }2L2pEq ď CH
ÿ

KPKE

}∇v}2L2pKq (93)

and
@v P WH , } rrvss }2

H1{2pEq ď Cp1 ` Hq
ÿ

KPKE

}∇v}2L2pKq, (94)

where we recall that WH is defined by (3).

Lemma 16 (Lemma 3.4 of [24]). Let g P L8pRq be a q-periodic function with
zero mean. Let f P W 1,1p0, Hq Ă C0p0, Hq be a function defined on the interval
r0, Hs that vanishes at least at one point of r0, Hs. Then, for any ε ą 0,

ˇ̌
ˇ̌
ˇ

ˆ H

0

g
´x
ε

¯
fpxqdx

ˇ̌
ˇ̌
ˇ ď 2 ε q }g}L8pRq }f 1}L1p0,Hq.

B.2 Proof of Theorem 10

To simplify notation, we denote by u, instead of uε, the solution to (1), and uH ,
instead of uε

H , its approximation, solution to (27).
We first note that (27) is well-posed in view of the Lax-Milgram lemma and

the estimates (10) and (90).
Let ΠHf be the L2-orthogonal projection of f on the space of piecewise

constant functions. We recall that we have the following estimate: there exists
C independent of H and f such that

}f ´ ΠHf}L2pΩq ď CH}∇f}L2pΩq. (95)
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We define

vHpxq “
ÿ

KPTH

ΠHf Ψ
ε,K
D pxq `

ÿ

EPE in

H

ˆ
ˆ

E

u

˙
Φ

ε,E
D pxq,

where Φ
ε,E
D and Ψ

ε,K
D are respectively solutions to (31) and (32). We see

from (34) that vH P V adv bubble
H . We next decompose the exact solution into

u “ vH ` φ.

Notice that vH satisfies

ˆ

E

vH “
ˆ

E

u, hence

ˆ

E

φ “ 0, for all E P E in
H ,

ˆ
α∇vH ´ 1

2
pbε vH

˙
¨ n “ λE , for all E P E in

H , (96)

´ α∆vH `pbε ¨ ∇vH “ ΠHf on K X Ωε, for all K P TH ,

where λE is a constant (possibly different on each side of E).

In what follows, we make use of the notation g|εpxq “ g
´x
ε

¯
for any function

g. The constant C denotes a constant independent of ε, H and f , that may
vary from one line to another. We begin by estimating φ.

Step 1: Estimation of φ “ u ´ vH : Using the approximation of u given in
the homogenization result (43) and denoting rφ “ ε2w|εf ´ vH , we have

cHpφ, φq “ cHpu ´ ε2w|εf, φq ` cHpε2w|εf ´ vH , φq
“ cHpu ´ ε2w|εf, φq

`
ÿ

KPTH

ˆ

KXΩε

´
´α∆rφ `pbε ¨ ∇rφ

¯
φ `
ˆ

BpKXΩεq

ˆ
α∇rφ ´ 1

2
pbεrφ

˙
¨ nφ

“ cHpu ´ ε2w|εf, φq

`
ÿ

KPTH

ˆ

KXΩε

´
´α∆rφ `pbε ¨ ∇rφ

¯
φ `
ˆ

pBKqXΩε

ˆ
α∇rφ ´ 1

2
pbεrφ

˙
¨ nφ

“ cHpu ´ ε2w|εf, φq `
ÿ

KPTH

ˆ

KXΩε

´
´α∆rφ `pbε ¨ ∇rφ

¯
φ

` ε2
ÿ

KPTH

ˆ

pBKqXΩε

ˆ
α∇pw|εfq ´ 1

2
pbεpw|εfq

˙
¨ nφ, (97)

where we used the fact that φ “ 0 on BΩε in the third line and (96) in the last
line. Using (9) and next that div b ď 0, we write that

cHpφ, φq “
ÿ

KPTH

ˆ

KXΩε

α|∇φ|2 ´ 1

2

´
div pbε

¯
φ2 ě α|φ|2H1

H
pΩεq. (98)
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Combining (97) and (98), we get

α|φ|2H1

H
pΩεq ď cHpu ´ ε2w|εf, φq `

ÿ

KPTH

ˆ

KXΩε

´
´α∆rφ `pbε ¨ ∇rφ

¯
φ

` ε2
ÿ

EPE in

H

ˆ

EXΩε

ˆ
α∇pw|εfq ´ 1

2
pbεpw|εfq

˙
¨ n rrφss. (99)

We successively bound the three terms of the right-hand side of (99). Roughly
speaking:

• the first term is small because of the homogenization result (43);

• the second term is small because, at the leading order term in ε, ´α∆rφ`
pbε ¨ ∇rφ » f ´ ΠHf , which is small due to (95);

• estimating the third term is more involved, and uses the fact that w is a
periodic function. We are thus in position to apply our Lemma 16.

Step 1a The first term of the right-hand side of (99) is estimated as follows.
Denoting ru “ u ´ ε2w|εf , we write

cHpru, φq “
ÿ

KPTH

ˆ

KXΩε

α∇ru ¨ ∇φ ` 1

2

´
pbε ¨ ∇ru

¯
φ ´ 1

2

´
pbε ¨ ∇φ

¯
ru

´
ÿ

KPTH

ˆ

KXΩε

1

2
ruφdiv pbε,

thus

|cHpru, φq| ď α|ru|H1pΩεq|φ|H1

H
pΩεq

` ε´1}b}L8pY zOq

´
|ru|H1pΩεq}φ}L2pΩεq ` |φ|H1

H
pΩεq}ru}L2pΩεq

¯

` ε´2}div b}L8pY zOq}ru}L2pΩεq}φ}L2pΩεq

ď C |ru|H1pΩεq |φ|H1

H
pΩεq

ď Cε3{2
N pfq |φ|H1

H
pΩεq, (100)

where C is independent of ε, H and f . We have used (90) and the assumption
div b P L8pY zOq in the third line, and (43) in the last line.

Step 1b We now turn to the second term of the right-hand side of (99). Using
the corrector equation (44), we get

´α∆
`
ε2w|εf

˘
`pbε ¨∇

`
ε2w|εf

˘
“ f`εp´2α∇w`b wq|ε ¨∇f´ε2αw|ε∆f. (101)
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Using (96), we deduce that
ˇ̌
ˇ̌
ˇ
ÿ

KPTH

ˆ

KXΩε

´
´α∆rφ `pbε ¨ ∇rφ

¯
φ

ˇ̌
ˇ̌
ˇ

ď
´

}f ´ ΠHf}L2pΩq ` 2εα}∇w}L8pY zOq}∇f}L2pΩq

` ε2α}w}L8pY zOq}∆f}L2pΩq ` ε}b}L8pY zOq}w}L8pY zOq}∇f}L2pΩq

¯
}φ}L2pΩεq

ď Cε
´
H}∇f}L2pΩq ` εN pfq

¯
|φ|H1

H
pΩεq,

where C is independent of ε, H and f , and where N pfq is defined by (45). In
the last line, we have used (90), (95) and (60). We infer that

ˇ̌
ˇ̌
ˇ
ÿ

KPTH

ˆ

KXΩε

´
´∆rφ `pbε ¨ ∇rφ

¯
φ

ˇ̌
ˇ̌
ˇ ď CεpH ` εqN pfq |φ|H1

H
pΩεq (102)

for some C independent of ε, H and f .

Step 1c We now consider the third term of the right-hand side of (99). In view
of the assumptions on the mesh, we first observe that, for any edge E P E in

H , the

function x P E Ñ n ¨
ˆ
α∇w ´ 1

2
b w

˙´x
ε

¯
is periodic with period ε qE , for some

qE P N
‹ satisfying |qE | ď C for some constant C independent of the mesh edges

and of H . We denote

Cˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

the average of that function

over one period, and decompose the third term of the right-hand side of (99) as
follows:

ε2
ÿ

EPE in

H

ˆ

EXΩε

ˆ
α∇pw|εfq ´ 1

2
pbεpw|εfq

˙
¨ n rrφss

“ ε
ÿ

EPE in

H

ˆ

EXΩε

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss

` ε
ÿ

EPE in

H

Cˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

ˆ

EXΩε

f rrφss

` ε2α
ÿ

EPE in

H

ˆ

EXΩε

`
w|ε∇f ¨ n

˘
rrφss. (103)

For some formulas below, we extend the function φ “ u ´ vH by 0 inside the
perforations Bε, so that we can understand φ either as a function in H1

0 pΩq or
in H1

0 pΩεq.
We consider the first term of the right-hand side of (103), which we evaluate

essentially using the fact that it contains a periodic oscillatory function of zero
mean. We claim that

ˇ̌
ˇ̌
ˇ

ˆ

EXΩε

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss

ˇ̌
ˇ̌
ˇ

ď C
?
ε }f}H1pEq} rrφss }H1{2pEq, (104)
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where C is a constant independent of the edge E, ε and H . Indeed, we first
note that φ vanishes on E X Bε, hence

ˆ

EXΩε

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss

“
ˆ

E

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss. (105)

Second, using the regularity (60) of w, we have that

ˇ̌
ˇ̌
ˇ

ˆ

E

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss

ˇ̌
ˇ̌
ˇ

ď C}f}L2pEq } rrφss }L2pEq. (106)

Third, suppose momentarily that rrφss P H1pEq Ă C0pEq. We infer from the

fact that

ˆ

E

rrφss “ 0 that rrφss, and hence f rrφss, vanishes at least at one point

on E. In addition, the function

ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

is periodic on E (with a period ε qE uniformly bounded with respect to E P E in
H )

and of zero mean. We are then in position to apply Lemma 16, which yields,
using (60),

ˇ̌
ˇ̌
ˇ

ˆ

E

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss

ˇ̌
ˇ̌
ˇ

ď 4εqE

››››α∇w ´ 1

2
b w

››››
L8pY zOq

}∇Epf rrφssq}L1pEq

ď Cε}f}H1pEq} rrφss }H1pEq (107)

where, for any function g, we have denoted ∇Eg “ tE ¨ ∇g where tE is a unit
tangential vector to the edge E. By interpolation between (106) and (107), and
using (105), we infer (104), with a constant C (independent of the edge) which
is independent from ε and H by scaling arguments (see [23] for details).

We deduce from (104) that the first term of the right-hand side of (103)
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satisfies
ˇ̌
ˇ̌
ˇ̌ε

ÿ

EPE in

H

ˆ

EXΩε

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss

ˇ̌
ˇ̌
ˇ̌

ď Cε3{2
ÿ

EPE in

H

}f}H1pEq} rrφss }H1{2pEq

ď Cε3{2

¨
˝ ÿ

EPE in

H

}f}2H1pEq

˛
‚
1{2¨

˝ ÿ

EPE in

H

} rrφss }2
H1{2pEq

˛
‚
1{2

ď Cε3{2

¨
˝ ÿ

EPE in

H
, KPKE

1

H
}f}2H1pKq ` H}∇f}2H1pKq

˛
‚
1{2

ˆ

¨
˝ ÿ

EPE in

H

ÿ

KPKE

}∇φ}2L2pKq

˛
‚
1{2

where we have used (91) of Lemma 14 and (94) of Lemma 15 (we recall that
KE denotes the set of triangles sharing the edge E). We therefore obtain that
the first term of the right-hand side of (103) satisfies

ˇ̌
ˇ̌
ˇ̌ε

ÿ

EPE in

H

ˆ

EXΩε

˜ˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n ´
Cˆ

α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

¸
f rrφss

ˇ̌
ˇ̌
ˇ̌

ď Cε3{2

ˆ
1

H
}f}2H1pΩq ` H}∇f}2H1pΩq

˙1{2

|φ|H1

H
pΩεq

ď Cε

ˆc
ε

H
}f}H1pΩq `

?
εH }∇f}H1pΩq

˙
|φ|H1

H
pΩεq. (108)

The second term of the right-hand side of (103) has no oscillatory character.
This is why it is estimated using standard arguments for Crouzeix-Raviart finite

elements (using that

ˆ

EXΩε

rrφss “ 0), and the regularity of w. Introducing, for

each edge E, the constant cE “ |E|´1

ˆ

E

f , we bound the second term of the
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right-hand side of (103) by
ˇ̌
ˇ̌
ˇ̌ε

ÿ

EPE in

H

Cˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

ˆ

EXΩε

f rrφss

ˇ̌
ˇ̌
ˇ̌

“

ˇ̌
ˇ̌
ˇ̌ε

ÿ

EPE in

H

Cˆ
α∇w ´ 1

2
b w

˙

|ε

¨ n
G

E

ˆ

EXΩε

pf ´ cEq rrφss

ˇ̌
ˇ̌
ˇ̌

ď Cε
ÿ

EPE in

H

} rrφss }L2pEq }f ´ cE}L2pEq

ď Cε

¨
˝ ÿ

EPE in

H

} rrφss }2L2pEq

˛
‚
1{2¨

˝ ÿ

EPE in

H

}f ´ cE}2L2pEq

˛
‚
1{2

ď Cε

¨
˝ ÿ

EPE in

H

ÿ

KPKE

H}∇φ}2L2pKq

˛
‚
1{2¨

˝ ÿ

EPE in

H
, KPKE

H}∇pf ´ cEq}2L2pKq

˛
‚
1{2

ď CεH |φ|H1

H
pΩεq}∇f}L2pΩq, (109)

where we have used (60), (93) of Lemma 15 and (92) of Lemma 14.
We are now left with the third term of the right-hand side of (103). This term

has a prefactor ε2 and all we have to prove is that the term itself is bounded.
Using again (60), (93) of Lemma 15 and (91) of Lemma 14, we obtain

ˇ̌
ˇ̌
ˇ̌ε

2α
ÿ

EPE in

H

ˆ

EXΩε

`
w|ε∇f ¨ n

˘
rrφss

ˇ̌
ˇ̌
ˇ̌

ď Cε2

¨
˝ ÿ

EPE in

H

} rrφss }2L2pEq

˛
‚
1{2 ¨

˝ ÿ

EPE in

H

}∇f}2L2pEq

˛
‚
1{2

ď Cε2

˜
H

ÿ

KPTH

}∇φ}2L2pKq

¸1{2˜
1

H

ÿ

KPTH

}∇f}2H1pKq

¸1{2

ď Cε2 |φ|H1

H
pΩεq }∇f}H1pΩq. (110)

Collecting (103), (108), (109) and (110), we infer that the third term of the
right-hand side of (99) satisfies

ˇ̌
ˇ̌
ˇ̌ε

2
ÿ

EPE in

H

ˆ

EXΩε

ˆ
α∇pw|εfq ´ 1

2
pbεpw|εfq

˙
¨ n rrφss

ˇ̌
ˇ̌
ˇ̌ (111)

ď Cε

ˆc
ε

H
}f}H1pΩq `

´
ε `

?
εH

¯
}∇f}H1pΩq ` H}∇f}L2pΩq

˙
|φ|H1

H
pΩεq.

Conclusion of Step 1 Combining (99), (100), (102) and (111), we infer that

|φ|2H1

H
pΩεq ď Cε

ˆc
ε

H
` H `

?
ε

˙`
}f}L8pΩq ` }∇f}H1pΩq

˘
|φ|H1

H
pΩεq (112)

for some C independent of ε, H and f . This ends the first step of the proof.
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Step 2: Estimation of uH ´ vH : Denoting φH “ uH ´ vH , we see that

α|φH |2H1

H
pΩεq ď cHpφH , φHq “ cHpuH ´ u, φHq ` cHpu ´ vH , φHq, (113)

where we recall that cH is defined by (9). The second term is estimated writing
that

|cHpu ´ vH , φHq|
“ |cHpφ, φHq|

ď α|φ|H1

H
pΩεq|φH |H1

H
pΩεq `

}b}L8pY zOq

2ε

´
|φ|H1

H
pΩεq}φH}L2pΩεq ` }φ}L2pΩεq|φH |H1

H
pΩεq

¯

`
}div b}L8pY zOq

2ε2
}φ}L2pΩεq}φH}L2pΩεq

ď C|φ|H1

H
pΩεq|φH |H1

H
pΩεq,

where we have used (90) in the last line. Using (112), we deduce that

|cHpu ´ vH , φHq|

ď Cε

ˆc
ε

H
` H `

?
ε

˙`
}f}L8pΩq ` }∇f}H1pΩq

˘
|φH |H1

H
pΩεq (114)

for some constant C independent of ε, H and f .
We now consider the first term of the right-hand side of (113). Since φH P

V adv bubble
H , we deduce from the discrete variational formulation (27) that

cHpuH ´ u, φHq “
ˆ

Ωε

fφH ` cHpε2w|εf ´ u, φHq ´ cHpε2w|εf, φHq

“
ˆ

Ωε

fφH ` cHpε2w|εf ´ u, φHq

´
ÿ

KPTH

ˆ

KXΩε

´
´α∆

`
ε2w|εf

˘
`pbε ¨ ∇

`
ε2w|εf

˘¯
φH

`
ÿ

KPTH

ˆ

BpKXΩεq

φH n ¨
´
α∇pε2w|εfq ´ 1

2
pbεpε2w|εfq

¯
.

(115)

Since φH “ 0 on BΩε, we can take the integral in the last term of (115) on
BK X Ωε. Inserting (101), we obtain from (115) that

cHpuH ´ u, φHq “ cHpε2w|εf ´ u, φHq

´
ÿ

KPTH

ˆ

KXΩε

´
εp´2α∇w ` b wq|ε ¨ ∇f ´ ε2αw|ε∆f

¯
φH

`
ÿ

KPTH

ˆ

BKXΩε

φH n ¨
´
α∇pε2w|εfq ´ 1

2
pbεpε2w|εfq

¯
. (116)

We now successively bound the three terms of the right-hand side of (116).
Following the arguments of Step 1a, we obtain that

ˇ̌
cHpε2w|εf ´ u, φHq

ˇ̌
ď Cε3{2N pfq |φH |H1

H
pΩεq. (117)
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For the second term of the right-hand side of (116), we use the fact that the first
factor is bounded (using the regularity (60) of w) and that the second factor
satisfies a Poincaré inequality (see (90)). We thus obtain

ˇ̌
ˇ̌
ˇ
ÿ

KPTH

ˆ

KXΩε

`
εp´2α∇w ` b wq|ε ¨ ∇f ´ ε2αw|ε∆f

˘
φH

ˇ̌
ˇ̌
ˇ

ď Cε
ÿ

KPTH

´
}∇f}L2pKXΩεq ` ε}∆f}L2pKXΩεq

¯
}φH}L2pKXΩεq

ď Cε}∇f}H1pΩq }φH}L2pΩεq

ď Cε2}∇f}H1pΩq |φH |H1

H
pΩεq. (118)

Following the arguments of Step 1c, we get, similarly to (111), that
ˇ̌
ˇ̌
ˇ
ÿ

KPTH

ˆ

BpKXΩεq

φH n ¨
´
α∇pε2wεfq ´ 1

2
pbεpε2w|εfq

¯ˇ̌ˇ̌
ˇ (119)

ď Cε

ˆc
ε

H
}f}H1pΩq ` pε `

?
εHq }∇f}H1pΩq ` H}∇f}L2pΩq

˙
|φH |H1

H
pΩεq.

Combining (116), (117), (118) and (119), we obtain that

|cHpuH ´ u, φHq| ď Cε

ˆc
ε

H
` H `

?
ε

˙`
}f}L8pΩq ` }∇f}H1pΩq

˘
|φH |H1

H
pΩεq.

Collecting this estimate with (113) and (114), we get

|φH |2H1

H
pΩεq ď Cε

ˆc
ε

H
` H `

?
ε

˙`
}f}L8pΩq ` }∇f}H1pΩq

˘
|φH |H1

H
pΩεq.

(120)

Conclusion We deduce from (112) and (120) that

|u ´ uH |H1

H
pΩεq ď Cε

ˆc
ε

H
` H `

?
ε

˙`
}f}L8pΩq ` }∇f}H1pΩq

˘
.

In view of (90) and since the injection H2pΩq Ă C0pΩq is continuous in dimen-
sion d “ 2, the above bound yields the desired estimate (54). This concludes
the proof of Theorem 10.

C Proof of the well-posedness of (31) and (32)

Consider an element K P TH , and let nK be the number of inner edges of that
element. We denote VK “ tu P H1pKq, u “ 0 in K XBε and u “ 0 on Eext

H u.
The variational formulation of (31) (resp. (32)) is of the following form:

Find
´
uH ,

“
λE

‰
EPE in

H

¯
P VK ˆ R

nK such that

@vH P VK , cKpuH , vHq ´
ÿ

EPE in

H

λE

ˆ

E

vH “ F pvHq, (121)

for all E P E in
H , for all µE P R, µE

ˆ

E

uH “ ℓEpµEq,
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where

cKpuH , vHq “
ˆ

KXΩε

α∇uH ¨∇vH`1

2

´
pbε ¨ ∇uH

¯
vH´1

2

´
pbε ¨ ∇vH

¯
uH´1

2
uH vH div pbε

is the element-wise bilinear form corresponding to cH defined by (9). The linear

form F in (121) reads F pvHq “
ˆ

KXΩε

g vH with g ” 0 in the case of (31) (resp.

g ” 1 in the case of (32)). The linear form ℓE vanishes in the case of (32), and
ℓEpµEq “ δE,E1 µE in the case of (31), where E1 is a fixed edge.

We write (121) in the following saddle-point form: find puH , rλEsEPE in

H

q P
VK ˆ R

nK such that

@vH P VK , cKpuH , vHq ` cE
`
vH , pλEqE

˘
“ F pvHq,

for all E P E in
H , for all µE P R, cE

`
uH , pµEqE

˘
“ ´ℓEpµEq,

where

cE
`
vH , pµEqE

˘
“ ´

ÿ

EPE in

H

µE

ˆ

E

vH .

We observe that the bilinear form cK is coercive on VK as soon as K intersects
the perforations. Indeed, for any uH P VK , we have

cKpuH , uHq “
ˆ

KXΩε

α|∇uH |2´1

2

´
div pbε

¯
u2
H ě α

ˆ

KXΩε

|∇uH |2 ě C}uH}2H1pKXΩεq,

where we used that div pbε ď 0 and a Poincaré inequality on K X Ωε. To show
that (121) is well-posed, we are going to apply [17, Theorem 2.34, p100], and
we are thus left with showing that the bilinear form cE satisfies the inf-sup
condition

inf
pµEqEPRnK

sup
vHPVK

cE
`
vH , pµEqE

˘

}pµEqE} }vH}H1pKXΩεq
ě γ ą 0. (122)

To show (122), we proceed as follows. Take some pµEqE P R
nK and intro-

duce vH “ ´
ÿ

EPE in

H

µE Φ
ε,E
0 , where Φ

ε,E
0 is the solution to (18). We then have

}vH}H1pKXΩεq ď CIS

››pµEqE
›› and

cE
`
vH , pµEqE

˘
“

ÿ

EPE in

H

pµEq2 ě 1

CIS

}vH}H1pKXΩεq

››pµEqE
›› .

This implies (122) and thus concludes the proof.
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