On the largest critical value of $T_{n}^{(k)}$

N. Naidenov, G. Nikolov, A. Shadrin

October 16, 2017

Abstract

We study the quantity $$
\tau_{n, k}:=\frac{\left|T_{n}^{(k)}\left(\omega_{n, k}\right)\right|}{T_{n}^{(k)}(1)},
$$

where T_{n} is the Chebyshev polynomial of degree n, and $\omega_{n, k}$ is the rightmost zero of $T_{n}^{(k+1)}$.
Since the absolute values of the local maxima of $T_{n}^{(k)}$ increase monotonically towards the end-points of $[-1,1]$, the value $\tau_{n, k}$ shows how small is the largest critical value of $T_{n}^{(k)}$ relative to its global maximum $T_{n}^{(k)}(1)$.

In this paper, we improve and extend earlier estimates by Erdős-Szegő, Eriksson and Nikolov in several directions.

Firstly, we show that the sequence $\left\{\tau_{n, k}\right\}_{n=k+2}^{\infty}$ is monotonically decreasing in n, hence derive several sharp estimates, in particular

$$
\tau_{n, k} \leq\left\{\begin{array}{lll}
\tau_{k+4, k} & =\frac{1}{2 k+1} \frac{3}{k+3}, & n \geq k+4 \\
\tau_{k+6, k} & =\frac{1}{2 k+1}\left(\frac{5}{k+5}\right)^{2} \beta_{k}, & n \geq k+6
\end{array}\right.
$$

where $\beta_{k}<\frac{2+\sqrt{10}}{5} \approx 1.032$.
We also obtain an upper bound which is uniform in n and k, and that implies in particular

$$
\tau_{n, k} \approx\left(\frac{2}{e}\right)^{k}, \quad n \geq k^{3 / 2} ; \quad \tau_{n, n-m} \approx\left(\frac{e m}{2}\right)^{m / 2} n^{-m / 2} ; \quad \tau_{n, n / 2} \approx\left(\frac{4}{\sqrt{27}}\right)^{n / 2}
$$

Finally, we derive the exact asymptotic formulae for the quantities

$$
\tau_{k}^{*}:=\lim _{n \rightarrow \infty} \tau_{n, k} \quad \text { and } \quad \tau_{m}^{* *}:=\lim _{n \rightarrow \infty} n^{m / 2} \tau_{n, n-m}
$$

which show that our upper bounds for $\tau_{n, k}$ and $\tau_{n, n-m}$ are asymptotically correct with respect to the exponential terms given above.

1 Introduction and statement of the results

We study the quantity

$$
\tau_{n, k}:=\frac{\left|T_{n}^{(k)}\left(\omega_{k}\right)\right|}{T_{n}^{(k)}(1)}
$$

where T_{n} is the Chebyshev polynomial of degree n, and ω_{k} is the rightmost zero of $T_{n}^{(k+1)}$.
Since the absolute values of the local maxima of $T_{n}^{(k)}$ increase monotonically towards the endpoints of $[-1,1]$, the value $\tau_{n, k}$ shows how small is the largest critical value of $T_{n}^{(k)}$ relative to its global maximum $T_{n}^{(k)}(1)$ (see Figure 1).

This value is useful in several applications which include some Markov-type inequalities [7], [14], [18], the Landau-Kolmogorov inequalities for intermediate derivatives [8], [18], where the

Figure 1: The last relative extremum $\tau_{n, k}$ (here, $k=1, n=6$).
estimates of $f^{(k)}$ on a subinterval slightly smaller than $[-1,1]$ are needed, and also in studying extreme zeros of ultraspherical polynomials.

Let us mention previous results. For the first derivative $(k=1)$, Erdős-Szegő [7] showed that $\tau_{3,1}=\frac{1}{3}, \tau_{4,1}=\frac{1}{3}\left(\frac{2}{3}\right)^{1 / 2}$ and proved that

$$
\begin{equation*}
\tau_{n, 1} \leq \frac{1}{4}, \quad n \geq 5 \tag{1.1}
\end{equation*}
$$

For arbitrary $k \geq 1$, Eriksson [8] and Nikolov [14] independently showed that

$$
\begin{equation*}
\tau_{n, k} \leq \frac{1}{2 k+1}, \quad n \geq k+2 \tag{1.2}
\end{equation*}
$$

with a better estimate when n is large relative to k,

$$
\begin{equation*}
\tau_{n, k} \leq \frac{1}{2 k+1} \frac{8}{2 k+7}, \quad n \gtrsim k^{3 / 2} \tag{1.3}
\end{equation*}
$$

(The exact condition in [8], [14] was $\omega_{n, k} \geq 1-\frac{8}{2 k+7}$ which implies the above inequality between n and k via the upper estimate $\omega_{n, k}<1-\frac{k^{2}}{n^{2}}$.)

In this paper, motivated by the applications mentioned above, we refine and extend inequalities (1.1-(1.3) in several directions.

1) Our first observation is a monotone behaviour of the value $\tau_{n, k}$ with respect to n.

Theorem 1.1 For a fixed $k \in \mathbb{N}$, the values $\tau_{n, k}$ decrease monotonically in n, i.e.,

$$
\begin{equation*}
\tau_{n+1, k}<\tau_{n, k}<\cdots<\tau_{k+3, k}<\tau_{k+2, k} \tag{1.4}
\end{equation*}
$$

In particular, for any fixed $k \in \mathbb{N}$ and any $m \geq 2$, we have

$$
\begin{equation*}
\tau_{n, k} \leq \tau_{k+m, k}, \quad n \geq k+m \tag{1.5}
\end{equation*}
$$

In fact, such a monotone decrease of the relative values of the local extrema takes place for the ultraspherical polynomials $P_{n}^{(\lambda)}$ with any parameter $\lambda>0$. This remarkable result is due to Szász [19] and, for reader's convenience and to keep the paper self-contained, we state it as Theorem 2.1 and give a short proof.
2) Our next result is several sharp estimates for $\tau_{n, k}$ which follow from (1.5). Namely, since $T_{k+m}^{(k)}$ is a symmetric polynomial of degree m, for small $m=2 . .6$ we compute the value of its largest extremum, hence $\tau_{k+m, k}$, explicitly and then use 1.5 .

Figure 2: The last relative extrema $\tau_{n, 1}, 3 \leq n \leq 6$.

Theorem 1.2 We have

$$
\tau_{n, k} \leq \begin{cases}\tau_{k+2, k}=\frac{1}{2 k+1}, & n \geq k+2 \tag{1.6}\\ \tau_{k+3, k}=\frac{1}{2 k+1}\left(\frac{2}{k+2}\right)^{1 / 2}, & n \geq k+3 \\ \tau_{k+4, k}=\frac{1}{2 k+1} \frac{3}{k+3}, & n \geq k+4\end{cases}
$$

These estimates contain earlier results 1.1 -1.2 as particular cases, and the last inequality in (1.6) improves 1.3 by the factor of $\frac{3}{4}$ and removes the unnecessary restrictions on n and k.

The next pair of estimates strengthens (1.6). It also shows that, although the nice pattern for $\tau_{k+m, k}$ in 1.6 is no longer true for $m \geq 5$, an approximate behaviour $\tau_{k+m, k} \approx\left(\frac{m}{k+m}\right)^{m / 2}$ is very much suggestive.

Theorem 1.3 We have

$$
\tau_{n, k} \leq \begin{cases}\tau_{k+5, k}=\frac{1}{2 k+1}\left(\frac{4}{k+4}\right)^{3 / 2} \alpha_{k}, & n \geq k+5 \tag{1.7}\\ \tau_{k+6, k}=\frac{1}{2 k+1}\left(\frac{5}{k+5}\right)^{2} \beta_{k}, \quad n \geq k+6\end{cases}
$$

where the values α_{k}, β_{k} increase monotonically to the following limits,

$$
\alpha_{k}<\alpha_{*}=\frac{\sqrt{3(3+\sqrt{6})}}{4}=1.0108 . ., \quad \beta_{k}<\beta_{*}=\frac{2+\sqrt{10}}{5}=1.0325 . .
$$

Let us note that, because of monotonicity of $\tau_{n, k}$, for any fixed moderate k and a moderate n_{0}, one can compute numerically the value $\tau_{n_{0}, k}$, thus getting for particular k the estimate

$$
\tau_{n, k} \leq \tau_{n_{0}, k}, \quad n \geq n_{0}
$$

which would be better than those in 1.6 and 1.7 .
3) An approximate behaviour $\tau_{k+m, k} \approx\left(\frac{m}{k+m}\right)^{m / 2}$ in $1.6-1.7$ suggests that when m is fixed and k grows, then $\tau_{n, n-m}=\tau_{k+m, k}$ is of a polynomial decay in n, i.e.,

$$
\tau_{n, n-m}=\mathcal{O}\left(n^{-m / 2}\right) \quad(n \rightarrow \infty)
$$

while when k is fixed and n grows, we have and exponential estimate in k,

$$
\tau_{n, k}=\mathcal{O}\left(e^{-\gamma k}\right) \quad(n \rightarrow \infty)
$$

We prove that such a behaviour is indeed the case by establishing first the upper bounds for $\tau_{n, k}$ which are uniform in n and k, and then considering different relations between n and k.

Theorem 1.4 For every $n, k \in \mathbb{N}$ with $n \geq k+2$, we have

$$
\begin{align*}
\tau_{n, k}^{2} & \leq \frac{1}{2}\left(1+\frac{k}{n}\right)\left(\frac{n}{k}\right)^{2 k}\binom{n+k}{n-k}^{-1} \tag{1.8}\\
& \leq c_{1}^{2} k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{\frac{1}{2}} \frac{(2 n)^{2 k}(n-k)^{n-k}}{(n+k)^{n+k}}, \quad c_{1}^{2}=\frac{e^{2}}{2 \sqrt{\pi}} \tag{1.9}
\end{align*}
$$

As a consequence of Theorem 1.4 we obtain the following statement.
Theorem 1.5 We have the following estimates:
(i) if $k \in \mathbb{N}$ is fixed and n grows, then

$$
\begin{equation*}
\tau_{n, k} \leq c_{1}\left(\frac{2}{e}\right)^{k} \frac{k^{1 / 4}}{\left(1-\frac{k^{2}}{n^{2}}\right)^{k / 2}} \tag{1.10}
\end{equation*}
$$

in particular

$$
\begin{equation*}
\tau_{n, k}<c_{2}\left(\frac{2}{e}\right)^{k} k^{1 / 4}, \quad n \geq k^{3 / 2} \tag{1.11}
\end{equation*}
$$

(ii) if $n-k=m \in \mathbb{N}$ is fixed and n grows, then

$$
\begin{equation*}
\tau_{n, n-m} \leq c_{3} m^{1 / 4}\left(\frac{m e}{2}\right)^{m / 2} n^{-m / 2} \tag{1.12}
\end{equation*}
$$

(iii) if $k=\lfloor\lambda n\rfloor \in \mathbb{N}$, where $\lambda \in(0,1)$, and n grows, then we have an exponential decay

$$
\tau_{n, \lambda n} \leq c_{4} n^{1 / 4} \rho_{\lambda}^{n / 2}, \quad \rho_{\lambda}<1
$$

in particular

$$
\tau_{n, n / 2}<c_{1} n^{1 / 4}\left(\frac{4}{\sqrt{27}}\right)^{n / 2}
$$

We can reformulate Theorem 1.5 in the form which shows, for a fixed k and growin n, the rate of decrease of the values $\tau_{n, k}$ in (1.4).

Corollary 1.6 We have

$$
\tau_{n, k} \lesssim\left\{\begin{array}{cl}
k^{-m / 2}, & n \geq k+m \tag{1.13}\\
\left(\frac{4}{\sqrt{27}}\right)^{k}, & n \geq 2 k \\
\left(\frac{2}{e}\right)^{k}, & n \geq k^{3 / 2}
\end{array}\right.
$$

Remark 1.7 Exponential estimate (1.11) becomes superior to the polynomial esimates 1.7) only when $k \geq 10$.
4) Finally, we establish the asymptotics of the values of $\lim _{n \rightarrow \infty} \tau_{n, k}$ and $\lim _{n \rightarrow \infty} \tau_{n, n-m}$ which shows that the upper bounds in 1.11 and 1.12 are asymptotically correct with respect to the exponential terms therein.

Theorem 1.8 We have

$$
\begin{align*}
\tau_{k}^{*}:=\lim _{n \rightarrow \infty} \tau_{n, k} & =C_{0}\left(\frac{2}{e}\right)^{k} e^{-a_{0} k^{1 / 3}} k^{-1 / 6}\left(1+\mathcal{O}\left(k^{-1 / 3}\right)\right) \tag{1.14}\\
\tau_{m}^{* *}:=\lim _{n \rightarrow \infty} n^{m / 2} \tau_{n, n-m} & =C_{1}\left(\frac{e m}{2}\right)^{m / 2} e^{-a_{1} m^{1 / 3}} m^{-1 / 6}\left(1+\mathcal{O}\left(m^{-1 / 3}\right)\right) \tag{1.15}
\end{align*}
$$

where the pairs of constants

$$
a_{0}=1.8557 \ldots, \quad C_{0}=1.1966 \ldots \quad \text { and } \quad a_{1}=2.3381 \ldots, \quad C_{1}=1.0660 \ldots
$$

can be explicitly represented in terms of the Airy function.

The rest of the paper is organised as follows. In Section 2, we present a proof of Theorem 1.1. which is deduced from a more general statement, Theorem 2.1, about monotonicity of the relative extrema of ultraspherical polynomials. In Section 3. we compute directly $\tau_{k+m, k}$ for small m, thus proving Theorems 1.21 .3 In Section 4, we adopt the majorant, originally introduced by Shaeffer and Duffin [16] for their alternative proof of the Markov inequality, and prove then Theorem 1.4 . Theorem 1.5 is proved in Section 5. The proof of Theorem 1.8 , which relies on some known asymptotic behaviour of orthogonal polynomials, is given in Section 6.

2 Monotonicity of the sequence $\left\{\tau_{n, k}\right\}_{n \geq k+2}$

Here, we prove that

$$
\mu_{i, n}^{(\lambda)}=\frac{P_{n}^{(\lambda)}\left(y_{i, n}^{(\lambda)}\right)}{P_{n}^{(\lambda)}(1)}
$$

the relative values of the ordered local extrema of the ultraspherical polynomials $P_{n}^{(\lambda)}$ with parameter λ decay monotonically with respect to n for any $\lambda>0$. This includes Theorem 1.1 as a particular case since $T_{n}^{(k)}$, the k-th derivative of the Chebyshev polynomials of degree n, coincide up to a factor with $P_{n-k}^{(\lambda)}$, where $\lambda=k$.

We start with recalling some known facts about the ultraspherical polynomials (for more details, see [20, Chapther 4.7]).

For $\lambda>-\frac{1}{2},\left\{P_{n}^{(\lambda)}\right\}_{n \in \mathbb{N}_{0}}$ stands for the sequence of ultraspherical polynomials, which are orthogonal on $[-1,1]$ with respect to the weight function $w_{\lambda}(x)=\left(1-x^{2}\right)^{\lambda-1 / 2}$, with the standard normalization

$$
P_{n}^{(\lambda)}(1)=\binom{n+2 \lambda-1}{n}, \quad \lambda \neq 0
$$

The Chebyshev polynomials of the first and the second kind and the Legendre polynomials are particular cases of ultraspherical polynomials, they correspond up to a factor to the values $\lambda=$ 0,1 and $\frac{1}{2}$, respectively. Moreover, due to the properties

$$
\begin{aligned}
T_{n}^{\prime}(x) & =n P_{n-1}^{(1)}(x) \\
\frac{d}{d x} P_{n}^{(\lambda)}(x) & =2 \lambda P_{n-1}^{(\lambda+1)}(x), \quad \lambda \neq 0
\end{aligned}
$$

the derivatives of the Chebyshev polynomials are ultraspherical polynomials, too,

$$
\begin{equation*}
T_{n}^{(k)}(x)=c_{n, \lambda} P_{n-k}^{(\lambda)}(x), \quad \lambda=k, \quad k=1, \ldots, n \tag{2.1}
\end{equation*}
$$

We will work with the re-normalised ultraspherical polynomials

$$
\begin{equation*}
p_{n}^{(\lambda)}(x):=P_{n}^{(\lambda)}(x) / P_{n}^{(\lambda)}(1) \tag{2.2}
\end{equation*}
$$

so that $p_{n}^{(\lambda)}(1)=1$. It is clear that the absolute values of the local extrema of $p_{n}^{(\lambda)}$ are equal to the relative values of the local extrema of $P_{n}^{(\lambda)}$ compared to $P_{n}^{(\lambda)}(1)$.

Theorem 1.1 is a consequence of the following general statement.
Theorem 2.1 Let $y_{1, n}^{(\lambda)}>y_{2, n}^{(\lambda)}>\cdots>y_{n-1, n}^{(\lambda)}$ be the zeros of the ultraspherical polynomial $p_{n-1}^{(\lambda+1)}$, i.e., the abscissae of the local extrema of $p_{n}^{(\lambda)}$, in the reverse order. Set $y_{n, n}^{(\lambda)}:=-1$, and denote

$$
\mu_{i, n}^{(\lambda)}:=\left|p_{n}^{(\lambda)}\left(y_{i, n}^{(\lambda)}\right)\right|, \quad i=1, \ldots, n
$$

1) If $\lambda>0$, then

$$
\begin{equation*}
\mu_{i, n+1}^{(\lambda)}<\mu_{i, n}^{(\lambda)} \quad \text { for } \quad i=1,2, \ldots, n \tag{2.3}
\end{equation*}
$$

2) If $-\frac{1}{2}<\lambda<0$, then inequalities (2.3) hold with the opposite sign.
3) (If $\lambda=0$, then $p_{n}^{(\lambda)}=T_{n}$ and we have equalities in 2.3. as all local extrema of T_{n} and T_{n+1} are of the absolute value 1.)

Proof. We omit index λ, so set $p_{n}:=p_{n}^{(\lambda)}$, and we will use the next two identities which readily follow from [20, eqn.(4.7.28)]:

$$
\begin{aligned}
p_{n}(x) & =-\frac{1}{n+2 \lambda} x p_{n}^{\prime}(x)+\frac{1}{n+1} p_{n+1}^{\prime}(x), \\
p_{n+1}(x) & =-\frac{1}{n+2 \lambda} p_{n}^{\prime}(x)+\frac{1}{n+1} x p_{n+1}^{\prime}(x) .
\end{aligned}
$$

From those we deduce that

$$
\begin{equation*}
p_{n}(x)^{2}-p_{n+1}(x)^{2}=\left(1-x^{2}\right)\left[\frac{1}{(n+1)^{2}} p_{n+1}^{\prime}(x)^{2}-\frac{1}{(n+2 \lambda)^{2}} p_{n}^{\prime}(x)^{2}\right] \tag{2.4}
\end{equation*}
$$

and we rearrange his equality as follows,

$$
\begin{equation*}
f(x):=p_{n}(x)^{2}+\frac{1-x^{2}}{(n+2 \lambda)^{2}} p_{n}^{\prime}(x)^{2} \stackrel{2.4}{=} p_{n+1}(x)^{2}+\frac{1-x^{2}}{(n+1)^{2}} p_{n+1}^{\prime}(x)^{2} \tag{2.5}
\end{equation*}
$$

Clearly, f is a polynomial of degree $2 n$ which interpolates both p_{n}^{2} and p_{n+1}^{2} at the points of their local maxima in $[-1,1]$. Moreover, f^{\prime} vanishes at the zeros of both p_{n}^{\prime} and p_{n+1}^{\prime}, therefore, with some constant $c_{n}^{(\lambda)}$,

$$
\begin{equation*}
f^{\prime}(x)=c_{n}^{(\lambda)} p_{n}^{\prime}(x) p_{n+1}^{\prime}(x) \tag{2.6}
\end{equation*}
$$

Next, we determine the sign of $c_{n}^{(\lambda)}$. Let a_{n}, a_{n+1} be the leading coefficients of p_{n} and p_{n+1}, respectively, and note that, since $p_{n}(1)=p_{n+1}(1)=1$, we have $a_{n}, a_{n+1}>0$. Then, equating the leading coefficients of f^{\prime} in representations (2.5) and (2.6), respectively, we obtain

$$
2 n a_{n}^{2}\left(1-\frac{n^{2}}{(n+2 \lambda)^{2}}\right)=c_{n}^{(\lambda)} n(n+1) a_{n} a_{n+1}
$$

whence

$$
c_{n}^{(\lambda)}=\frac{1}{n+1} \frac{a_{n}}{a_{n+1}} \frac{4 \lambda(2 n+2 \lambda)}{(n+2 \lambda)^{2}} \Rightarrow \operatorname{sign} c_{n}^{(\lambda)}=\operatorname{sign} \lambda
$$

Thus, (2.6) becomes

$$
\begin{equation*}
f^{\prime}(x)=c \lambda p_{n}^{\prime}(x) p_{n+1}^{\prime}(x), \quad c=c_{n, \lambda}>0 \tag{2.7}
\end{equation*}
$$

Now we can prove Theorem 2.1. Let $\lambda>0$. Then from 2.7) and the interlacing of zeros of p_{n}^{\prime} and p_{n+1}^{\prime} we conclude that

$$
f^{\prime}(x)<0, \quad x \in\left(y_{i, n}^{(\lambda)}, y_{i, n+1}^{(\lambda)}\right), \quad i=1, \ldots, n
$$

i.e., f is monotonically decreasing on each interval $\left(y_{i, n}^{(\lambda)}, y_{i, n+1}^{(\lambda)}\right)$. From 2.5, we have

$$
\begin{aligned}
f\left(y_{i, n}^{(\lambda)}\right) & =p_{n}\left(y_{i, n}^{(\lambda)}\right)^{2}=\left|\mu_{i, n}^{(\lambda)}\right|^{2} \\
f\left(y_{i, n+1}^{(\lambda)}\right) & =p_{n+1}\left(y_{i, n+1}^{(\lambda)}\right)^{2}=\left|\mu_{i, n+1}^{(\lambda)}\right|^{2}
\end{aligned}
$$

therefore

$$
\left|\mu_{i, n+1}^{(\lambda)}\right|<\left|\mu_{i, n}^{(\lambda)}\right|, \quad i=1, \ldots, n .
$$

Clearly, if $\lambda<0$, then the sign is reversed.

Proof of Theorem 1.1. By (2.1) and (2.2), we have

$$
\frac{T_{n}^{(k)}(x)}{T_{n}^{(k)}(1)}=\frac{P_{n-k}^{(\lambda)}(x)}{P_{n-k}^{(\lambda)}(1)}=p_{n-k}^{(\lambda)}(x), \quad \lambda=k \geq 1
$$

Hence, $\tau_{n, k}=\mu_{1, n-k}^{(\lambda)}$, and then Theorem 2.1 yields

$$
\tau_{n, k}=\mu_{1, n-k}^{(\lambda)}>\mu_{1, n+1-k}^{(k)}=\tau_{n+1, k}
$$

Theorem 1.1 is proved.

3 Proof of Theorems 1.2-1.3

By Theorem 1.1, for any fixed m, the value $\tau_{k+m, k}$ gives an upper bound for all $\tau_{n, k}$, namely

$$
\tau_{n, k} \leq \tau_{k+m, k}, \quad n \geq k+m
$$

so here we determine the latter values directly for $m=2 . .6$.
We will need the expansion formula for the n-th Chebyshev polynomial,

$$
\begin{align*}
T_{n}(x)= & \frac{n}{2} \sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{i} \frac{(n-i-1)!}{i!(n-2 i)!}(2 x)^{n-2 i} \\
= & 2^{n-1} x^{n}-2^{n-3} n x^{n-2} \tag{3.1}\\
& +2^{n-6} n(n-3) x^{n-4}-\frac{1}{3} 2^{n-8} n(n-4)(n-5) x^{n-6}+\cdots \tag{3.2}
\end{align*}
$$

From this we compute expression for $T_{n}^{(n-6)}$ in 3.7 , and then differentiate it to find all further derivatives $T_{n}^{(n-m)}$ for $m=5 . .2$.

We will denote the point of the rightmost local extrema of $T_{n}^{(k)}$ by x_{*}, i.e., $x_{*}:=\omega_{n, k}$. Since $T_{n}^{(k+1)}\left(x_{*}\right)=0$ then, for the value of $T_{n}^{(k)}\left(x_{*}\right)$ we will also use simplifications arising from the formula

$$
T_{n}^{(k)}\left(x_{*}\right)=T_{n}^{(k)}\left(x_{*}\right)-c_{n, k} x_{*} T_{n}^{(k+1)}\left(x_{*}\right)
$$

where we choose the constant $c_{n, k}$ to cancel high degree monomials.

1) The case $k=n-2$ (or equivalently $n=k+2$). We have

$$
\begin{equation*}
T_{n}^{(n-2)}(x)=c^{-1}\left[2(n-1) x^{2}-1\right] \tag{3.3}
\end{equation*}
$$

whence $x_{*}=0$ and

$$
\tau_{n, n-2}=\frac{\left|T_{n}^{(n-2)}\left(x_{*}\right)\right|}{T_{n}^{(n-2)}(1)}=\frac{1}{2 n-3} \quad \Rightarrow \quad \tau_{k+2, k}=\frac{1}{2 k+1}
$$

2) The case $k=n-3$ (or equivalently $n=k+3$). We obtain

$$
\begin{equation*}
T_{n}^{(n-3)}(x)=c^{-1}\left[2(n-1) x^{3}-3 x\right] \tag{3.4}
\end{equation*}
$$

hence $c T_{n}^{(n-3)}(1)=2 n-5$. From 3.3, we find $x_{*}^{2}=\frac{1}{2(n-1)}$ and

$$
c T_{n}^{(n-3)}\left(x_{*}\right)=-2 x_{*}=-\frac{2}{\sqrt{2(n-1)}}
$$

Respectively,

$$
\tau_{n, n-3}=\frac{\left|T_{n}^{(n-3)}\left(x_{*}\right)\right|}{T_{n}^{(n-3)}(1)}=\frac{1}{2 n-5} \sqrt{\frac{2}{n-1}} \Rightarrow \tau_{k+3, k}=\frac{1}{2 k+1} \sqrt{\frac{2}{k+2}}
$$

3) The case $k=n-4$ (or equivalently $n=k+4$). We have

$$
\begin{equation*}
T_{n}^{(n-4)}(x)=c^{-1}\left[4(n-1)(n-2) x^{4}-12(n-2) x^{2}+3\right] . \tag{3.5}
\end{equation*}
$$

hence

$$
c T_{n}^{(n-4)}(1)=4 n^{2}-24 n+35=(2 n-5)(2 n-7) .
$$

From $\sqrt{3.4}$, we find $x_{*}^{2}=\frac{3}{2(n-1)}$ and

$$
c T_{n}^{(n-4)}\left(x_{*}\right)=-6(n-2) x_{*}^{2}+3=\frac{3}{n-1}[-3(n-2)+(n-1)]=-\frac{3(2 n-5)}{n-1} .
$$

Respectively,

$$
\tau_{n, n-4}=\frac{\left|T_{n}^{(n-4)}\left(x_{*}\right)\right|}{T_{n}^{(n-4)}(1)}=\frac{1}{2 n-7} \frac{3}{n-1} \quad \Rightarrow \quad \tau_{k+4, k}=\frac{1}{2 k+1} \frac{3}{k+3} .
$$

The cases 1)-3) prove estimates (1.6, hence Theorem 1.2
4) The case $k=n-5$ (or equivalently $n=k+5$). We have

$$
\begin{equation*}
T_{n}^{(n-5)}(x)=c^{-1}\left[4(n-1)(n-2) x^{5}-20(n-2) x^{3}+15 x\right] \tag{3.6}
\end{equation*}
$$

hence

$$
c T_{n}^{(n-5)}(1)=4 n^{2}-32 n+63=(2 n-9)(2 n-7)
$$

From (3.5), we find

$$
\begin{aligned}
x_{*}^{2} & =\frac{3(n-2)+\sqrt{9(n-2)^{2}-3(n-1)(n-2)}}{2(n-1)(n-2)} \\
& =\frac{1}{n-1} \frac{3+\sqrt{6-t}}{2}, \quad t:=t_{k}=\frac{3}{n-2}=\frac{3}{k+3} .
\end{aligned}
$$

and

$$
c T_{n}^{(n-5)}\left(x_{*}\right)=-4 x_{*}\left[2(n-2) x_{*}^{2}-3\right] .
$$

After simplifications we obtain

$$
\tau_{n, n-5}=\frac{\left|T_{n}^{(n-5)}\left(x_{*}\right)\right|}{T_{n}^{(n-5)}(1)}=\frac{1}{2 n-9} \frac{8}{(n-1)^{3 / 2}} \alpha_{k} \quad \Rightarrow \quad \tau_{k+5, k}=\frac{1}{2 k+1} \frac{4^{3 / 2}}{(k+4)^{3 / 2}} \alpha_{k}
$$

where

$$
\alpha_{k}:=\frac{1}{2 \sqrt{2}} \frac{\sqrt{3+\sqrt{6-t}}}{2-t}(\sqrt{6-t}-t)=\frac{1}{2 \sqrt{2}} \frac{(y+3)^{3 / 2}}{y+2}=: f(y), \quad y:=\sqrt{6-t}
$$

The function f is increasing for $y>0$, hence

$$
t_{k}>t_{k+1} \Rightarrow y_{k}<y_{k+1} \quad \Rightarrow \quad \alpha_{k}<\alpha_{k+1}<\alpha_{*}
$$

where

$$
\alpha_{*}=\lim _{t \rightarrow 0} \alpha_{k}=\frac{1}{2 \sqrt{2}} \frac{\sqrt{3+\sqrt{6}}}{2} \sqrt{6}=\frac{\sqrt{3(3+\sqrt{6})}}{4} .
$$

5) The case $k=n-6$ (or equivalently $n=k+6$). From (3.2), we have

$$
\begin{equation*}
T_{n}^{(n-6)}(x)=c^{-1}\left[8(n-1)(n-2)(n-3) x^{6}-60(n-2)(n-3) x^{4}+90(n-3) x^{2}-15\right], \tag{3.7}
\end{equation*}
$$

hence

$$
c T_{n}^{(n-6)}(1)=8 n^{3}-108 n^{2}+478 n-693=(2 n-11)(2 n-9)(2 n-7) .
$$

From (3.6), we find

$$
\begin{aligned}
x_{*}^{2} & =\frac{5(n-2)+\sqrt{25(n-2)^{2}-15(n-1)(n-2)}}{2(n-1)(n-2)} \\
& =\frac{1}{n-1} \frac{5+\sqrt{10-3 t}}{2}, \quad t:=t_{k}=\frac{5}{n-2}=\frac{5}{k+4}
\end{aligned}
$$

and

$$
c T_{n}^{(n-6)}\left(x_{*}\right)=-4(2 n-7) x_{*}^{2}\left[2(n-2) x_{*}^{2}-5\right] .
$$

After simplifications, we obtain

$$
\tau_{n, n-6}=\frac{\left|T_{n}^{(n-6)}\left(x_{*}\right)\right|}{T_{n}^{(n-6)}(1)}=\frac{1}{2 n-11} \frac{5^{2}}{(n-1)^{2}} \beta_{k} \quad \Rightarrow \quad \tau_{k+6, k}=\frac{1}{2 k+1} \frac{5^{2}}{(k+5)^{2}} \beta_{k},
$$

where

$$
\beta_{k}:=\frac{2}{5^{2}} \frac{5+\sqrt{10-3 t}}{2-t}(\sqrt{10-3 t}-t)=\frac{2}{5^{2}} \frac{(y+5)^{2}}{y+2}=: g(y), \quad y:=\sqrt{10-3 t} .
$$

The function g is increasing for $y>1$, hence

$$
t_{k}>t_{k+1} \Rightarrow y_{k}<y_{k+1} \quad \Rightarrow \quad \beta_{k}<\beta_{k+1}<\beta_{*}
$$

where

$$
\beta_{*}=\lim _{t \rightarrow 0} \beta_{k}=\frac{2}{5^{2}} \frac{5+\sqrt{10}}{2} \sqrt{10}=\frac{2+\sqrt{10}}{5} .
$$

The cases 4)-5) prove estimates (1.7), hence Theorem 1.3

4 Estimates based on the Duffin-Shaeffer majorant

In this section, we prove Theorem 1.4 Our proof is based on the upper bound $\tau_{n, k}<\delta_{n, k}$ which uses the so-called Duffin-Schaeffer majorant.
Definition 4.1 With T_{n} the Chebyshev polynomial of degree n, and $S_{n}(x):=\frac{1}{n} \sqrt{1-x^{2}} T_{n}^{\prime}(x)$, we define the Duffin-Schaeffer majorant $D_{n, k}(\cdot)$ as

$$
\begin{equation*}
D_{n, k}(x):=\left\{\left[T_{n}^{(k)}(x)\right]^{2}+\left[S_{n}^{(k)}(x)\right]^{2}\right\}^{1 / 2}, \quad x \in(-1,1) . \tag{4.1}
\end{equation*}
$$

This majorant was introduced by Shaeffer-Duffin [16] who proved that, if p is a polynomial of degree not exceeding n, then

$$
\begin{equation*}
\|p\| \leq 1 \quad \Rightarrow \quad\left|p^{(k)}(x)\right| \leq D_{k, n}(x), \quad x \in(-1,1) . \tag{4.2}
\end{equation*}
$$

which may be viewed as a generalization of the pointwise Bernstein inequality $\left|p^{\prime}(x)\right| \leq \frac{n}{\sqrt{1-x^{2}}}\|p\|$ to higher derivatives.

Lemma 4.2 The majorant $D_{n, k}$ has the following properties.

1. We have

$$
\begin{equation*}
\left|T_{n}^{(k)}(x)\right| \leq D_{n, k}(x) \quad \text { for all } x \in(-1,1) \tag{4.3}
\end{equation*}
$$

2. $D_{n, k}(x)=\left|T_{n}^{(k)}(x)\right|$ at zeros of $S_{n}^{(k)}$, in particular,

$$
\begin{equation*}
D_{n, k}(0)=\left|T_{n}^{(k)}(0)\right| \quad \text { if } n-k \text { is even. } \tag{4.4}
\end{equation*}
$$

3. The majorant $D_{n, k}(\cdot)$ is a strictly increasing function on $[0,1]$.
4. We have the explicit formulae $\frac{1}{n^{2}}\left[D_{n, 1}(x)\right]^{2}=\frac{1}{1-x^{2}}$ and

$$
\begin{equation*}
\frac{1}{n^{2}}\left[D_{n, k}(x)\right]^{2}=\sum_{m=0}^{k-1} \frac{b_{m, n}}{\left(1-x^{2}\right)^{k+m}}, \quad k \geq 2 \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
b_{m, n} & =c_{m, k}\left(n^{2}-(m+1)^{2}\right) \cdots\left(n^{2}-(k-1)^{2}\right) \tag{4.6}\\
c_{m, k} & := \begin{cases}1, & m=0 \\
\binom{k-1+m}{2 m}(2 m-1)!!^{2}, & m \geq 1\end{cases} \tag{4.7}
\end{align*}
$$

Proof. Claim 1 and the first half of Claim 2 follow directly from Definition 4.1. Equality (4.4) is due to the fact that T_{n} and S_{n} are of different parity, so if $n-k$ is even, then $T_{n}^{(k)}$ is an even function and $S_{n}^{(k)}$ is an odd one, hence $S_{n}^{(k)}(0)=0$. The third property was proved by Schaeffer-Duffin [16], and it also follows easily from the formulas 4.5-4.6] which were established by Shadrin [17].

Here are few particular expressions for $D_{n, k}(\cdot)$.

$$
\begin{aligned}
\frac{1}{n^{2}}\left[D_{n, 1}(x)\right]^{2}= & \frac{1}{1-x^{2}}, \\
\frac{1}{n^{2}}\left[D_{n, 2}(x)\right]^{2}= & \frac{\left(n^{2}-1\right)}{\left(1-x^{2}\right)^{2}}+\frac{1}{\left(1-x^{2}\right)^{3}}, \\
\frac{1}{n^{2}}\left[D_{n, 3}(x)\right]^{2}= & \frac{\left(n^{2}-1\right)\left(n^{2}-4\right)}{\left(1-x^{2}\right)^{3}}+\frac{3\left(n^{2}-4\right)}{\left(1-x^{2}\right)^{4}}+\frac{9}{\left(1-x^{2}\right)^{5}}, \\
\frac{1}{n^{2}}\left[D_{n, 4}(x)\right]^{2}= & \frac{\left(n^{2}-1\right)\left(n^{2}-4\right)\left(n^{2}-9\right)}{\left(1-x^{2}\right)^{4}}+\frac{6\left(n^{2}-4\right)\left(n^{2}-9\right)}{\left(1-x^{2}\right)^{5}} \\
& +\frac{45\left(n^{2}-9\right)}{\left(1-x^{2}\right)^{6}}+\frac{225}{\left(1-x^{2}\right)^{7}} .
\end{aligned}
$$

Lemma 4.3 Let $\omega_{k}:=\omega_{n, k}$ be the rightmost zero of $T_{n}^{(k+1)}$. Then

$$
\begin{equation*}
\omega_{k}<x_{k}, \quad \text { where } \quad x_{k}^{2}:=1-\frac{k^{2}}{n^{2}} \tag{4.8}
\end{equation*}
$$

Proof. The claim can be deduced from numerous upper bounds for the extreme zeros of ultraspherical polynomials. For instance, in [14] Nikolov proved that $\omega_{k}^{2} \leq \frac{n^{2}-(k+2)^{2}}{n^{2}+\alpha_{n, k}}$, with some $\alpha_{n, k}>0$, hence

$$
\begin{equation*}
\omega_{k}^{2} \leq \frac{n^{2}-(k+2)^{2}}{n^{2}} \leq \frac{n^{2}-k^{2}}{n^{2}}=x_{k}^{2} \tag{4.9}
\end{equation*}
$$

From (4.3), monotonicity of $D_{n, k}(\cdot)$ and inequality (4.8), it follows immediately that

$$
\left|T_{n}^{(k)}\left(\omega_{k}\right)\right| \leq D_{n, k}\left(\omega_{k}\right)<D_{n, k}\left(x_{k}\right)
$$

hence the following statement.
Proposition 4.4 We have

$$
\tau_{n, k}<\delta_{n, k}, \quad \delta_{n, k}:=\frac{D_{n, k}\left(x_{k}\right)}{T_{n}^{(k)}(1)}
$$

We proceed with estimates of $\delta_{n, k}$, using the explicit expression 4.5 for $D_{n, k}(\cdot)$.
Lemma 4.5 We have

$$
\begin{equation*}
\tau_{n, k}^{2}<\delta_{n, k}^{2}=A_{n, k} B_{n, k} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{align*}
A_{n, k} & =\frac{(2 k-1)!!^{2}}{k^{2 k}} \sum_{m=0}^{k-1} \frac{c_{m, k}}{k^{2 m}} \frac{n^{2 m}}{\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-m^{2}\right)} \tag{4.11}\\
B_{n, k} & =\frac{n^{2 k}}{n^{2}\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-(k-1)^{2}\right)} \tag{4.12}
\end{align*}
$$

Proof. From (4.5) - 4.6), we obtain

$$
\begin{aligned}
{\left[\delta_{n, k}\right]^{2} } & =\frac{\left[D_{k, n}\left(x_{k}\right)\right]^{2}}{\left[T_{n}^{(k)}(1)\right]^{2}} \\
& =\frac{1}{\left[T_{n}^{(k)}(1)\right]^{2}} n^{2} \sum_{m=0}^{k-1} \frac{c_{m, k}}{\left(1-x_{k}^{2}\right)^{k+m}}\left(n^{2}-(m+1)^{2}\right) \cdots\left(n^{2}-(k-1)^{2}\right) \\
& =\frac{n^{2}\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-(k-1)^{2}\right)}{\left[T_{n}^{(k)}(1)\right]^{2}\left(1-x_{k}^{2}\right)^{k}} \sum_{m=0}^{k-1} \frac{c_{m, k}}{\left(1-x_{k}^{2}\right)^{m}} \frac{1}{\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-m^{2}\right)}
\end{aligned}
$$

and substitution

$$
\frac{1}{\left[T_{n}^{(k)}(1)\right]^{2}}=\frac{(2 k-1)!!^{2}}{\left[n^{2}\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-(k-1)^{2}\right)\right]^{2}}, \quad 1-x_{k}^{2}=\frac{k^{2}}{n^{2}}
$$

gives 4.10 - 4.12 after a rearrangement.
Remark 4.6 Whereas the value $\tau_{n, k}$ is defined only for $n \geq k+2$, the values of $A_{n, k}$ and $B_{n, k}$ in (4.11)-(4.12) are well-defined for $n \geq k$. We will use this fact in the next lemma where the values $A_{k, k}$ and $B_{k, k}$ will be considered.

Lemma 4.7 We have

$$
\begin{equation*}
\tau_{n, k}^{2}<\delta_{n, k}^{2}=A_{n, k} B_{n, k} \tag{4.13}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n, k} \leq \frac{1}{2} \frac{(2 k)!}{k^{2 k}}, \quad B_{n, k}=\frac{n+k}{n} \frac{n^{2 k}(n-k)!}{(n+k)!} \tag{4.14}
\end{equation*}
$$

Proof. Expression for $B_{n, k}$ in $\sqrt{4.14}$ is just a rearrangment of 4.12.
As to the inequality for $A_{n, k}$ in 4.14, it is clear from 4.11) that $A_{n, k}$ decreases when n grows, therefore

$$
A_{n, k} \leq A_{k, k}, \quad n \geq k
$$

With $n=k$, we have $x_{k}=1-\frac{k^{2}}{n^{2}}=0$, and also $D_{k, k}(0)=T_{k}^{(k)}(0)$ by 4.4 , therefore

$$
A_{k, k} B_{k, k}=\left[\delta_{k, k}\right]^{2}=\frac{\left[D_{k, k}(0)\right]^{2}}{\left[T_{k}^{(k)}(1)\right]^{2}} \stackrel{\sqrt[4.4]{-}}{\left[T_{k}^{(k)}(0)\right]^{2}} \frac{\left[T_{k}^{(k)}(1)\right]^{2}}{}=1
$$

hence, $A_{k, k}=1 / B_{k, k}$, and from formula (4.14), we find

$$
A_{k, k}=\frac{1}{B_{k, k}}=\frac{k}{2 k} \frac{(2 k)!}{k^{2 k}}
$$

hence the result.
Remark 4.8 If we consider the first estimate in 4.9, namely

$$
\omega_{k} \leq x_{k}^{\prime}, \quad \text { where } \quad x_{k}^{\prime 2}=1-\frac{(k+2)^{2}}{n^{2}}, \quad n \geq k+2
$$

then we obtain

$$
A_{n, k} \leq A_{k+2, k}^{\prime}=\gamma_{k}^{2} \frac{1}{2} \frac{(2 k)!}{k^{2 k}}, \quad \gamma_{k}^{2}=\frac{(k+2)}{(2 k+1)}\left(\frac{k}{k+2}\right)^{2 k}
$$

i.e., we can improve the estimate 4.14 (and all subsequent estimates) by the factor of γ_{k} (or γ_{k}^{2}). Note that

$$
\gamma_{k} \approx \frac{1}{\sqrt{2}} \frac{1}{e^{2}}
$$

Now, we prove Theorem 1.4 which is the following statement.
Theorem 4.9 For every $n, k \in \mathbb{N}$ with $n \geq k+2$, we have

$$
\begin{align*}
\tau_{n, k}^{2} & \leq \frac{1}{2}\left(1+\frac{k}{n}\right)\left(\frac{n}{k}\right)^{2 k}\binom{n+k}{n-k}^{-1} \tag{4.15}\\
& \leq c_{1}^{2} k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{\frac{1}{2}} \frac{(2 n)^{2 k}(n-k)^{n-k}}{(n+k)^{n+k}}, \quad c_{1}^{2}=\frac{e^{2}}{2 \sqrt{\pi}} \tag{4.16}
\end{align*}
$$

Proof. The first part is just the estimate 4.13,

$$
\tau_{n, k}^{2}<\delta_{n, k}^{2}=A_{n, k} B_{n, k}<\frac{1}{2} \frac{n+k}{n} \frac{n^{2 k}}{k^{2 k}} \frac{(n-k)!(2 k)!}{(n+k)!}
$$

To prove the second inequality we use the following version of Stirling's formula

$$
\begin{equation*}
\sqrt{2 \pi}\left(\frac{N}{e}\right)^{N} \sqrt{N}<N!<e\left(\frac{N}{e}\right)^{N} \sqrt{N} \tag{4.17}
\end{equation*}
$$

This gives

$$
\begin{aligned}
\frac{1}{2} \frac{n+k}{n} \frac{n^{2 k}}{k^{2 k}} \frac{(n-k)!(2 k)!}{(n+k)!} & \leq \frac{1}{2} \frac{n+k}{n} \frac{n^{2 k}}{k^{2 k}} \frac{e^{2}}{\sqrt{2 \pi}} \frac{\sqrt{n-k} \sqrt{2 k}}{\sqrt{n+k}} \frac{(n-k)^{n-k}(2 k)^{2 k}}{(n+k)^{n+k}} \\
& =\frac{e^{2}}{2 \sqrt{\pi}} \frac{n+k}{n} \frac{\sqrt{n-k} \sqrt{k}}{\sqrt{n+k}} \frac{(n-k)^{n-k}(2 n)^{2 k}}{(n+k)^{n+k}} \\
& =c_{1}^{2} k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{\frac{1}{2}} \frac{(n-k)^{n-k}(2 n)^{2 k}}{(n+k)^{n+k}}
\end{aligned}
$$

and that finishes the proof.

5 Proof of Theorem 1.5

We rewrite inequality 4.16 in a more convenient form

$$
\begin{equation*}
\tau_{n, k} \leq c_{1}^{2} k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{\frac{1}{2}}\left(\frac{2 n}{n+k}\right)^{n+k}\left(\frac{n-k}{2 n}\right)^{n-k}, \quad c_{1}^{2}=\frac{e}{2 \sqrt{\pi}} \tag{5.1}
\end{equation*}
$$

We will prove each part of Theorem 1.5 as a separate lemma.
Lemma 5.1 If $k \in \mathbb{N}$ is fixed and n grows, then

$$
\begin{equation*}
\tau_{n, k} \leq c_{1}\left(\frac{2}{e}\right)^{k} \frac{k^{1 / 4}}{\left(1-\frac{k^{2}}{n^{2}}\right)^{k / 4}} \tag{5.2}
\end{equation*}
$$

in particular

$$
\begin{equation*}
\tau_{n, k}<c_{2}\left(\frac{2}{e}\right)^{k} k^{1 / 4}, \quad n \geq k^{3 / 2} \tag{5.3}
\end{equation*}
$$

Proof. We write (5.1) in the form

$$
\tau_{n, k}^{2} \leq c_{1}^{2} L_{1} L_{2},
$$

where

$$
\begin{equation*}
L_{1}:=k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{1 / 2}<k^{1 / 2} \tag{5.4}
\end{equation*}
$$

and

$$
L_{2}:=\left(\frac{2 n}{n+k}\right)^{n+k}\left(\frac{n-k}{2 n}\right)^{n-k}=2^{2 k} \frac{\left(1-\frac{k}{n}\right)^{n-k}}{\left(1+\frac{k}{n}\right)^{n+k}} .
$$

We use then the inequalities $\left(1-\frac{1}{x}\right)^{x-1 / 2}<\frac{1}{e}$ and $\left(1+\frac{1}{x}\right)^{x+1 / 2}>e$, where $x>1$, to derive

$$
\begin{aligned}
& \left(1-\frac{k}{n}\right)^{n-k}=\left(1-\frac{k}{n}\right)^{\left(\frac{n}{k}-\frac{1}{2}\right) k}\left(1-\frac{k}{n}\right)^{-k / 2}<\frac{1}{e^{k}}\left(1-\frac{k}{n}\right)^{-k / 2} \\
& \left(1+\frac{k}{n}\right)^{n+k}=\left(1+\frac{k}{n}\right)^{\left(\frac{n}{k}+\frac{1}{2}\right) k}\left(1+\frac{k}{n}\right)^{k / 2}>e^{k}\left(1+\frac{k}{n}\right)^{k / 2}
\end{aligned}
$$

Therefore

$$
L_{2}<2^{2 k} \frac{1}{e^{2 k}} \frac{1}{\left(1-\frac{k^{2}}{n^{2}}\right)^{k / 2}}
$$

and that combined with (5.4) proves (5.2).
If $n \geq k^{3 / 2}$ and $k \geq 2$, then $\left(1-\frac{k^{2}}{n^{2}}\right)^{k / 4}>\left(1-\frac{1}{k}\right)^{k / 4}>2^{-1 / 2}$, so 5.3 is valid with $c_{2}=2^{1 / 2} c_{1}$. If $k=1$, then $n \geq 3$, and $\left(1-\frac{k^{2}}{n^{2}}\right)^{k / 4}>2^{-1 / 2}$ as well, and that proves 5.3 as well.
Lemma 5.2 If $n-k=m$ is fixed and n grows, then

$$
\begin{equation*}
\tau_{n, n-m} \leq c_{3} m^{1 / 4}\left(\frac{m e}{2}\right)^{m / 2} n^{-m / 2} \tag{5.5}
\end{equation*}
$$

Proof. We consiser the inequality 5.1

$$
\tau_{n, k}^{2} \leq c_{1}^{2} k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{1 / 2}\left(\frac{2 n}{n+k}\right)^{n+k}\left(\frac{n-k}{2 n}\right)^{n-k}
$$

and then estimate the factors using substution $n-k=m$ where appropriate. We have

$$
\begin{aligned}
k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{1 / 2} & =(n-k)^{1 / 2}\left(\frac{k(n+k)}{n^{2}}\right)^{1 / 2} \leq 2^{1 / 2} m^{1 / 2} \\
\left(\frac{2 n}{n+k}\right)^{n+k} & =\left(1+\frac{n-k}{n+k}\right)^{n+k}=\left(1+\frac{m}{n+k}\right)^{n+k}<e^{m} \\
\left(\frac{n-k}{2 n}\right)^{n-k} & =\left(\frac{m}{2 n}\right)^{m}
\end{aligned}
$$

Thus, (5.5) follows with $c_{3}=2^{1 / 4} c_{1}$.

Lemma 5.3 If $k=\lfloor\lambda n\rfloor$, where $\lambda \in(0,1)$, then as n grows, we have an exponential decay

$$
\begin{equation*}
\tau_{n, k} \leq c_{4} n^{1 / 4} \rho_{\lambda}^{n / 2}, \quad \rho_{\lambda}<1 \tag{5.6}
\end{equation*}
$$

in particular

$$
\tau_{n, n / 2}<c_{1} n^{1 / 4}\left(\frac{4}{\sqrt{27}}\right)^{n / 2}
$$

Proof. With $k=\lfloor\lambda n\rfloor$, set $\lambda^{\prime}:=\frac{k}{n}$, and note that

$$
\begin{equation*}
\lambda n-1 \leq k \leq \lambda n \quad \Rightarrow \quad \lambda-\frac{1}{n} \leq \lambda^{\prime} \leq \lambda \tag{5.7}
\end{equation*}
$$

Substitution $k=\lambda^{\prime} n$ in (5.1) gives

$$
\begin{aligned}
\tau_{n, k}^{2} & \leq c_{1}^{2} k^{\frac{1}{2}}\left(1-\frac{k^{2}}{n^{2}}\right)^{1 / 2}\left(\frac{2 n}{n+k}\right)^{n+k}\left(\frac{n-k}{2 n}\right)^{n-k} \\
& <c_{1}^{2} n^{1 / 2} \rho_{\lambda^{\prime}}^{n}
\end{aligned}
$$

where

$$
\rho_{\lambda^{\prime}}=\left(\frac{2}{1+\lambda^{\prime}}\right)^{1+\lambda^{\prime}}\left(\frac{1-\lambda^{\prime}}{2}\right)^{1-\lambda^{\prime}}<1, \quad \lambda^{\prime} \in(0,1)
$$

On using that $g(x):=\ln \rho_{x}$ satisfies $g^{\prime}(x)>-1$ for $x \in(0,1)$, we derive from 5.7) that

$$
\rho_{\lambda^{\prime}}<e^{1 / n} \rho_{\lambda},
$$

and that proves 5.6 with $c_{4}=e^{1 / 2 n} c_{1}$. If $\lambda=\frac{1}{2}$ we obtain $\rho_{1 / 2}=2\left(\frac{1}{2}\right)^{1 / 2} /\left(\frac{3}{2}\right)^{3 / 2}=\frac{4}{\sqrt{27}}$.

6 The asymptotic formulas

In this section, we derive the asympotic formulas $1.14-(1.15)$ of Theorem 1.8

1) We start with the asymptotic formula for

$$
\tau_{k}^{*}:=\lim _{n \rightarrow \infty} \tau_{n, k}
$$

For $\alpha, \beta>-1$, we denote by $\left\{P_{m}^{(\alpha, \beta)}\right\}$ the sequence of Jacobi polynomials which are orthogonal with respect to the weight $w_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta}$, with the standard normalization

$$
\begin{equation*}
P_{m}^{(\alpha, \beta)}(1)=\binom{m+\alpha}{m} \tag{6.1}
\end{equation*}
$$

Note that derivatives of the Chebyshev polynomials are related to Jacobi polynomials in the following way,

$$
\begin{equation*}
T_{n}^{(k)}=c_{n, k} P_{m}^{(\nu, \nu)}, \quad m=n-k, \quad \nu=k-\frac{1}{2} \tag{6.2}
\end{equation*}
$$

We will use the asymptotic property of Jacobi polynomials which is described in terms of Bessel functions (see [20, sect. 8.1]), namely the following equality from [21]

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{-\alpha} P_{m}^{(\alpha, \beta)}\left(y_{m, r}\right)=\left(\frac{j_{\alpha+1, r}}{2}\right)^{-\alpha} J_{\alpha}\left(j_{\alpha+1, r}\right) \tag{6.3}
\end{equation*}
$$

where $y_{m, r}$ is the point of the r-th local extremum of $P_{m}^{(\alpha, \beta)}$ counted in decreasing order and $j_{\nu, r}$ is the r-th positive zero of the Bessel function J_{ν}.

Lemma 6.1 We have

$$
\begin{equation*}
\tau_{k}^{*}=\Gamma(\nu+1)\left(\frac{j_{\nu+1,1}}{2}\right)^{-\nu}\left|J_{\nu}\left(j_{\nu+1,1}\right)\right|, \quad \nu=k-\frac{1}{2} \tag{6.4}
\end{equation*}
$$

Proof. By $\sqrt{6.1}$ - $-(6.2)$, since $\omega_{n, k}=y_{m, 1}$, we have

$$
\tau_{k}^{*}=\lim _{m \rightarrow \infty} \frac{\left|P_{m}^{(\nu, \nu)}\left(y_{m, 1}\right)\right|}{P_{m}^{(\nu, \nu)}(1)}=\frac{\lim _{m \rightarrow \infty} m^{-\nu}\left|P_{m}^{(\nu, \nu)}\left(y_{m, 1}\right)\right|}{\lim _{m \rightarrow \infty} m^{-\nu}\binom{m+\nu}{m}}=\frac{L_{1}}{L_{2}} .
$$

By (6.3),

$$
L_{1}=\left(\frac{j_{\nu+1,1}}{2}\right)^{-\nu}\left|J_{\nu}\left(j_{\nu+1,1}\right)\right|,
$$

while for the denominator we use

$$
\binom{m+\nu}{m}=\frac{\Gamma(m+\nu+1)}{\Gamma(m+1) \Gamma(\nu+1)}, \quad \lim _{m \rightarrow \infty} m^{-\nu} \frac{\Gamma(m+\nu+1)}{\Gamma(m+1)}=1,
$$

to obtain

$$
L_{2}=1 / \Gamma(\nu+1)
$$

and that proves the lemma.
Lemma 6.2 ([12]) The first positive zero $j_{\nu, 1}$ of the Bessel function J_{ν} obeys the following asymptotic expansion

$$
\begin{equation*}
j_{\nu, 1}=\nu+a \nu^{1 / 3}+\mathcal{O}\left(\nu^{-1 / 3}\right), \quad a=-i_{1} / 2^{1 / 3}=1.8557 \ldots \tag{6.5}
\end{equation*}
$$

where i_{1} is the first negative zero of the Airy function $\operatorname{Ai}(x)$.
Lemma 6.3 We have

$$
\begin{equation*}
J_{\nu}\left(j_{\nu+1,1}\right)=-\left(\frac{2}{\nu}\right)^{2 / 3} \mathrm{Ai}^{\prime}\left(i_{1}\right)+\mathcal{O}\left(\nu^{-1}\right) \tag{6.6}
\end{equation*}
$$

Proof. We will need the asymptotic behavior of $J_{\nu}(\nu x)$ for large (fixed) ν and $x \geq 1$ (that is, around the first positive zero $j_{\nu, 1}$), which is given by the following formula (see [15, Chapter 11] or [12]),

$$
\begin{equation*}
J_{\nu}(\nu x)=\frac{\phi(z)}{\nu^{1 / 3}}\left[\operatorname{Ai}\left(\nu^{2 / 3} z\right)\left(1+\mathcal{O}\left(\nu^{-2}\right)\right)+\frac{\operatorname{Ai}^{\prime}\left(\nu^{2 / 3} z\right)}{\nu^{4 / 3}}\left(B_{0}(z)+\mathcal{O}\left(\nu^{-2}\right)\right)\right], \tag{6.7}
\end{equation*}
$$

where $0<B_{0}(z) \leq B_{0}(0)$ for $z \leq 0$ and

$$
z=-\left(\frac{3}{2} \sqrt{x^{2}-1}-\frac{3}{2} \sec ^{-1}(x)\right)^{2 / 3}, \quad \phi(z)=\left(\frac{4 z}{1-x^{2}}\right)^{1 / 4}, \quad x \geq 1
$$

Let $x=1+\delta$, where $\delta=\mathcal{O}\left(\nu^{-2 / 3}\right)$ and $\delta>0$. Then

$$
\sec ^{-1}(x)=\arccos \left(\frac{1}{1+\delta}\right)=\sqrt{2 \delta}\left(1-\frac{5 \delta}{12}+\mathcal{O}\left(\delta^{2}\right)\right)
$$

whence we obtain for z and $\phi(z)$

$$
z=-2^{1 / 3} \delta(1+\mathcal{O}(\delta)), \quad \phi(z)=2^{1 / 3}+\mathcal{O}(\delta) .
$$

Substitution of these quantities in (6.7) yields

$$
\begin{equation*}
J_{\nu}(\nu(1+\delta))=\left(\frac{2}{\nu}\right)^{1 / 3}\left(\mathrm{Ai}\left(-\nu^{2 / 3} 2^{1 / 3} \delta\right)+\mathcal{O}\left(\nu^{-2 / 3}\right)\right)+\mathcal{O}\left(\nu^{-1}\right) \tag{6.8}
\end{equation*}
$$

From (6.5, we have

$$
\begin{aligned}
j_{\nu+1,1} & =\nu+1-\frac{i_{1}}{2^{1 / 3}}(\nu+1)^{1 / 3}+\mathcal{O}\left(\nu^{-1 / 3}\right) \\
& =\nu\left(1+\delta_{0}\right), \quad \delta_{0}=-\frac{i_{1}}{2^{1 / 3}} \nu^{-2 / 3}+\nu^{-1}+\mathcal{O}\left(\nu^{-4 / 3}\right)
\end{aligned}
$$

so putting this into (6.8), we conclude

$$
\begin{aligned}
J_{\nu}\left(j_{\nu+1,1}\right) & =\left(\frac{2}{\nu}\right)^{1 / 3}\left(\operatorname{Ai}\left(i_{1}-\left(\frac{2}{\nu}\right)^{1 / 3}+\mathcal{O}\left(\nu^{-2 / 3}\right)\right)+\mathcal{O}\left(\nu^{-2 / 3}\right)\right) \\
& =\left(\frac{2}{\nu}\right)^{2 / 3} \operatorname{Ai}^{\prime}\left(i_{1}\right)+\mathcal{O}\left(\nu^{-1}\right)
\end{aligned}
$$

and that proves the lemma.
Proof of Theorem 1.8, part 1.14. With the substitution $\nu=k-\frac{1}{2}$, we obtain

$$
\begin{aligned}
\left|J_{k-\frac{1}{2}}\left(j_{k+\frac{1}{2}, 1}\right)\right| & \stackrel{6.6}{=}\left(\frac{2}{k}\right)^{2 / 3}\left(\left|\operatorname{Ai}^{\prime}\left(i_{1}\right)\right|+\mathcal{O}\left(k^{-1 / 3}\right)\right) \\
j_{k+\frac{1}{2}, 1} & \stackrel{6.5}{=} k+\frac{1}{2}+a k^{1 / 3}+\mathcal{O}\left(k^{-1 / 3}\right) \\
\left(\frac{j_{k+\frac{1}{2}, 1}}{2}\right)^{-\left(k-\frac{1}{2}\right)} & =\left(\frac{2}{k}\right)^{k-1 / 2} e^{-1 / 2} e^{-a k^{1 / 3}}\left(1+\mathcal{O}\left(k^{-1 / 3}\right)\right) \\
\Gamma\left(k+\frac{1}{2}\right) & =\frac{(2 k)!}{4^{k} k!} \sqrt{\pi}=\left(\frac{k}{e}\right)^{k} \sqrt{2 \pi}\left(1+\mathcal{O}\left(k^{-1}\right)\right)
\end{aligned}
$$

and formula 6.4 gives

$$
\tau_{k}^{*}=C_{0}\left(\frac{2}{e}\right)^{k} e^{-a_{0} k^{1 / 3}} k^{-1 / 6}\left(1+\mathcal{O}\left(k^{-1 / 3}\right)\right)
$$

where

$$
C_{0}=4^{1 / 3} \sqrt{\frac{\pi}{e}}\left|\operatorname{Ai}^{\prime}\left(i_{1}\right)\right|, \quad a_{0}=-i_{1} / 2^{1 / 3}
$$

and that proves the first part of Theorem 1.8
2) Next, we will prove the asymptotic formula for

$$
\tau_{m}^{* *}:=\lim _{n \rightarrow \infty} n^{m / 2} \tau_{n, n-m}
$$

Note that, with $m=n-k$ fixed, and provided that the limit exists, we have

$$
\tau_{m}^{* *}:=\lim _{k \rightarrow \infty}(k+m)^{m / 2} \tau_{k+m, k}=\lim _{k \rightarrow \infty} k^{m / 2} \tau_{k+m, k}
$$

We will use the relation

$$
T_{k+m}^{(k)}=c_{m, k} P_{m}^{(\lambda)}, \quad \lambda=k
$$

and the asymptotic properties of the ultraspherical polynomials $P_{m}^{(\lambda)}$ expressed in terms of the Hermite polynomials H_{m} (see [20, eq. (5.6.3)])

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \lambda^{-m / 2} P_{m}^{(\lambda)}\left(\frac{x}{\sqrt{\lambda}}\right)=\frac{H_{m}(x)}{m!} \tag{6.9}
\end{equation*}
$$

Lemma 6.4 We have

$$
\tau_{m}^{* *}=2^{-m}\left|H_{m}\left(x_{m}^{\prime}\right)\right|
$$

where x_{m}^{\prime} is the point of the rightmost extremum of H_{m}.

Proof. With $\omega_{k+m, k}$ and x_{m}^{\prime} being the points of the rightmost local extrema of $T_{k+m}^{(k)}=c_{m, k} P_{m}^{(k)}$ and H_{m}, respectively, it follows from $\sqrt[6.9]{ }$ that, for a fixed m, we have

$$
\tau_{k+m, k}=\frac{\left|P_{m}^{(k)}\left(\omega_{k+m, k}\right)\right|}{P_{m}^{(k)}(1)} \sim \frac{k^{m / 2}\left|H_{m}\left(x_{m}^{\prime}\right)\right|}{m!\binom{m+2 k-1}{m}} \sim 2^{-m} k^{-m / 2}\left|H_{m}\left(x_{m}^{\prime}\right)\right|, \quad k \rightarrow \infty
$$

and this implies

$$
\tau_{m}^{* *}=\lim _{k \rightarrow \infty} k^{m / 2} \tau_{k+m, k}=2^{-m}\left|H_{m}\left(x_{m}^{\prime}\right)\right|
$$

Lemma is proved.
Proof of Theorem 1.8 , part 1.15 . For approximation of $H_{m}\left(x_{m}^{\prime}\right)$ we will use the formula of Plancherel - Rotach ([20, Theorem 8.22.9]). Actually, we need only the third part of this theorem, concerning the approximation of H_{m} around its turning point, where the behaviour of the polynomial changes from oscillatory to monotonically increasing. It states that if

$$
\begin{equation*}
x=(2 m+1)^{\frac{1}{2}}-2^{-\frac{1}{2}} 3^{-\frac{1}{3}} m^{-\frac{1}{6}} t, \quad t \in \mathbb{C} \tag{6.10}
\end{equation*}
$$

then

$$
\begin{equation*}
e^{-x^{2} / 2} H_{m}(x)=3^{\frac{1}{3}} \pi^{-\frac{3}{4}} 2^{\frac{m}{2}+\frac{1}{4}}(m!)^{\frac{1}{2}} m^{-\frac{1}{12}}\left\{A(t)+O\left(m^{-\frac{2}{3}}\right)\right\} \tag{6.11}
\end{equation*}
$$

where $A(z)=3^{-\frac{1}{3}} \pi \mathrm{Ai}\left(-3^{-\frac{1}{3}} z\right)$ is the normalized Airy function. Moreover, the asymptotic formula (6.11) holds uniformly when $t \in \mathbb{C}$ is bounded.

Let x_{m} be the largest zero of H_{m}, then ([20, eq. (6.32.5)])

$$
x_{m}=(2 m+1)^{\frac{1}{2}}-2^{-\frac{1}{2}} 3^{-\frac{1}{3}} m^{-\frac{1}{6}} i_{1}^{*}+\mathcal{O}\left(m^{-5 / 6}\right), \quad m \geq 1
$$

where $i_{1}^{*}=-3^{1 / 3} i_{1}$ is the first zero of $A(z)$. Since $H_{m}^{\prime}(x)=2 m H_{m-1}(x)$, we have for $m \geq 2$

$$
\begin{aligned}
x_{m}^{\prime} & =x_{m-1}=(2 m-1)^{\frac{1}{2}}-2^{-\frac{1}{2}} 3^{-\frac{1}{3}} m^{-\frac{1}{6}} i_{1}^{*}+\mathcal{O}\left(m^{-5 / 6}\right) \\
& =x_{m}-(2 m)^{-\frac{1}{2}}+\mathcal{O}\left(m^{-5 / 6}\right)
\end{aligned}
$$

and we can put x_{m}^{\prime} in the form 6.10 , with $t=t_{m}^{\prime}$ where

$$
t_{m}^{\prime}=i_{1}^{*}+3^{\frac{1}{3}} m^{-\frac{1}{3}}+O\left(m^{-2 / 3}\right)
$$

Then formula 6.11 gives

$$
\begin{aligned}
H_{m}\left(x_{m}^{\prime}\right) & =e^{\frac{1}{2}\left(x_{m}^{\prime}\right)^{2}} 3^{\frac{1}{3}} \pi^{-\frac{3}{4}} 2^{\frac{m}{2}+\frac{1}{4}}(m!)^{\frac{1}{2}} m^{-\frac{1}{12}}\left\{A\left(t_{m}^{\prime}\right)+\mathcal{O}\left(m^{-\frac{2}{3}}\right)\right\} \\
& =-(2 e m)^{\frac{m}{2}} e^{-\left|i_{1}\right| m^{1 / 3}} m^{-1 / 6} \sqrt{2 \pi / e} \operatorname{Ai}^{\prime}\left(i_{1}\right)\left(1+\mathcal{O}\left(m^{-1 / 3}\right)\right)
\end{aligned}
$$

Finally, we obtain

$$
\tau_{m}^{* *}=2^{-m}\left|H_{m}\left(x_{m}^{\prime}\right)\right|=\left(\frac{e m}{2}\right)^{m / 2} e^{-a_{1} m^{1 / 3}} m^{-1 / 6}\left(1+\mathcal{O}\left(m^{-1 / 3}\right)\right)
$$

where

$$
C_{1}=\sqrt{\frac{2 \pi}{e}} \operatorname{Ai}^{\prime}\left(i_{1}\right), \quad a_{1}=\left|i_{1}\right|
$$

Theorem 1.8 is proved.

7 Remarks

1. As was mentioned in introduction, Theorem 2.1 is due to Szász [19]. The statement of Theorem 2.1] appears in [1, pp. 304-305] along with a proof of the Legendre case $(\lambda=1 / 2)$. The proof of this case originally was given by Szegő, who confirmed a conjecture made by J. Todd. Our proof follows the same approach. An alternative proof of Theorem 1.1 can be obtained using some results of Bojanov and Naidenov in [2].
2. To obtain better approximation of $\tau_{n, k}$ one needs more precise asymptotic formulae for ultraspherical and Hermite polynomials and bounds for their extreme zeros. In this connection we refer to [3, 4, 5, 6, 9, 11, 22].

Acknowledgements. The first two authors are supported by the University of Sofia Research Fund under Contract 80-10-11/2017. The second author acknowledges the support by the Bulgarian National Research Fund through Contract DN 02/14. The third author is supported by a Research Grant from Pembroke College, Cambridge.

References

[1] G. E. Andrews, R. Askey and R. Roy, "Special Functions", Cambridge University Press, 2002.
[2] B. Bojanov and N. Naidenov, On oscillating polynomials, J. Approx. Theory 162 (2010), 1766-1878.
[3] K. Driver and K. Jordann, Bounds for extreme zeros of some classical orthogonal polynomials, J. Approx. Theory 164 (2012), 1200-1204.
[4] A. ELbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, J. Comp. Appl. Math. 133 (2001), 65-83.
[5] A. Elbert and A. Laforgia, Upper bounds for the zeros of ultraspherical polynomials, J. Approx. Theory 61 (1990), 88-97.
[6] A. Elbert and A. LAFORGIA, Asymptotic formulas for ultraspherical polynomials $P_{n}^{(\lambda)}(x)$ and their zeros for large values of λ, Proc. Amer. Math. Soc. 114 (1992), 371-377.
[7] P. ERdŐs AND G. SzEGŐ, On a problem of I. Schur, Ann. Math. 43 (1942), no. 2, 451-470.
[8] B.-O. ERIKSSON, Some best constants in the Landau inequality on a finite interval, J. Approx. Theory 94 (1998), no. 3, 420-454.
[9] L. Gatteschi, Asymptotics and bounds for the zeros of Laguerre polynomials, a survey, J. Comp. Appl. Math. 144 (2002), 7-27.
[10] C. Giordano and A. Laforgia, Elementary approximations for zeros of Bessel functions, J. Comp. Appl. Math. 9 (1983), 221-228.
[11] I. KRASIKOV, Sharp Inequalities for Hermite Polynomials, in: "Constructive Theory of Functions, Varna 2005" (B. Bojanov, Ed.), pp. 176-182, Prof. Marin Drinov Academic Publishing House, Sofia, 2006.
[12] T. LaNG AND R. WONG, "Best possible" upper bounds for the first two positive zeros of the Bessel function $J_{\nu}(x)$: The infinite case, J. Comp. Appl. Math. 71 (1996), 311-329.
[13] L. Lorch and R. Uberti, "Best possible" upper bounds for the first positive zeros of the Bessel function - the finite part, J. Comp. Appl. Math. 75 (1996), 249-258.
[14] G. Nikolov, Inequalities of Duffin-Schaeffer type. II, East J. Approx. 11 (2005), no. 2, 147-168.
[15] F. W. J. OlVER, "Asymptotics and special functions", Academic Press, New York, 1974.
[16] A. C. Schaeffer and R. J. Duffin, On some inequalities of S. Bernstein and W. Markoff for derivatives of polynomials, Bull. Amer. Math. Soc. 44 (1938), no. 4, 289-297.
[17] A. SHADRIN, Twelve proofs of the Markov inequality, in "Approximation theory: a volume dedicated to Borislav Bojanov", pp. 233-298, Prof. M. Drinov Acad. Publ. House, Sofia, 2004.
[18] A. Shadrin, The Landau-Kolmogorov inequality revisited, Discrete Contin. Dyn. Syst. 34 (2014), no. 3, 1183-1210.
[19] O. SzÁSZ, On the relative extrema of ultraspherical polynomials, Boll. Un. Mat. Ital. 5 (1950), no. 3, 125127.
[20] G. SzEGŐ, "Orthogonal Polynomials", Amer. Math. Soc. Colloq. Publ., v. 23, Providence, RI, 1975.
[21] M. T. VACCA, Determinazione asimtotica per $n \rightarrow \infty$ degli estremi relativi dell' n-esimo polinomio di Jacobi, Boll. Un. Mat. Ital. 8 (1953), no. 3, 277-280.
[22] R. WONG AND J.-M. ZHANG, Asymptotic monotonicity of the relative extrema of Jacobi polynomials, Canad. J. Math. 46.(1994), no. 6, 1318-1337.

Nikola Naidenov, Geno Nikolov
Department of Mathematics and Informatics
Sofia University "St. Kliment Ohridski
5 James Bourchier Blvd.
1164 Sofia
BULGARIA
E-mails:
nikola@fmi.uni-sofia.bg
geno@fmi.uni-sofia.bg

Alexei SHADRIN

Department of Applied Mathematics
and Theoretical Physics (DAMTP)
Cambridge University
Wilberforce Road
Cambridge CB3 0WA
UNITED KINGDOM
E-mail: a.shadrin@damtp.cam.ac.uk

