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Abstract. We derive a nonlinear 2-equation discrete-velocity model for traffic flow from a
continuous kinetic model. The model converges to scalar Lighthill-Whitham type equations in the
relaxation limit for all ranges of traffic data. Moreover, the model has an invariant domain appropri-
ate for traffic flow modeling. It shows some similarities with the Aw-Rascle traffic model. However,
the new model is simpler and yields, in case of a concave fundamental diagram, an example for a
totally linear degenerate hyperbolic relaxation model. We discuss the details of the hyperbolic main
part and consider boundary conditions for the limit equations derived from the relaxation model.
Moreover, we investigate the cluster dynamics of the model for vanishing braking distance and con-
sider a relaxation scheme build on the kinetic discrete velocity model. Finally, numerical results for
various situations are presented, illustrating the analytical results.
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1. Introduction. Starting with the work of Lighthill and Whitham [42], there
have been many approaches to a continuous modeling of traffic flow problems. Macro-
scopic models are usually based on scalar hyperbolic equations like the above cited
model or systems of hyperbolic equations with relaxation term, see [35] for a classical
equation. More recently, an improved traffic flow model using hyperbolic systems with
relaxation has been presented by Aw and Rascle [2]. For discussions and extensions
see, for example, [3, 8, 7, 18, 37]. On the other hand, kinetic equations have also been
widely used as a tool to model traffic flow problems, see [36, 34, 31, 19, 25]. In [24, 26]
non-local terms are introduced into the equations to guarantee information transport
against the flow direction. We refer to [5] for a recent mathematically oriented review
and further references. In a simplified context after discretizing the velocity space and
neglecting non-localities in the kinetic model, the resulting discrete velocity models
are hyperbolic systems with relaxation terms. These so called relaxation systems have
been widely used for example for numerical purposes, see [23].

However, a naive application of relaxation systems in the case of traffic flow leads
to similar problems as for the full kinetic equation. Either negative discrete velocities
are allowed, which is not meaningful from the traffic flow point of view, or some kind of
non-locality has to be introduced into the equations, see the next section for a detailed
discussion. For a non-local discrete velocity traffic model, we refer to [21]. From the
point of view of hyperbolic relaxation systems this is closely related to the so-called
subcharacteristic condition [15]. A further complication is given by the fact, that for
traffic flow modeling the state space is restricted to positive and bounded velocities
and densities. This leads to requirements on the invariant domains of the equations,
see again the next section for details. Considering discrete velocity relaxation models
in the usual form without explicit non-localities there is no way to achieve a correct
invariant domain with a linear hyperbolic part of the relaxation system.

In this paper we aim at deriving and investigating a discrete velocity model with
nonlinear hyperbolic part fulfilling the above requirements. In particular, we require
that the model has the correct invariant domains and fulfills the sub-characteristic
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condition and converges to a scalar Lighthill-Whitham type equation in the relaxation
limit. It will turn out that the resulting model has some similarities with the AW-
Rascle model, being a hyperbolic model of the so called Temple class and in a special,
but relevant, case being an example for a totally linear degenerate hyperbolic equation
with relaxation term.

The paper is organized in the following way. In section 2 we discuss classical
discrete velocity relaxation models and their drawbacks in the traffic flow case. More-
over, we discuss the relation to the Aw-Rascle model and its modifications. In section
3 we derive a new nonlinear discrete velocity kinetic model for traffic flow from a
continuous kinetic traffic equation. We consider the associated macroscopic equations
and the convergence to the Lighthill-Whitham equations. In the subsequent section
4 the macroscopic equations are discussed in detail including hyperbolicity, integral-
and shock curves and Riemann invariants of the homogeneous system. In section 5
we consider the derivation of boundary conditions for the limiting Lighthill-Whitham
type equations from the boundary conditions of the underlying kinetic problem based
on the analysis of the kinetic boundary layer. In section 6 we discuss a relaxation
method based on the nonlinear discrete velocity model. Section 7 discusses a con-
strained linear model derived from the kinetic model in the limit of small braking
distances. Finally, numerical results are presented in Section 8.

2. Notations and motivation. The most important tool in traffic flow mod-
eling is the fundamental diagram F (ρ), 0 ≤ ρ ≤ 1. We consider smooth functions
F with F (0) = F (1) = 0 and the following property. There is a 0 < ρ? < 1 such
that F ′(ρ) > 0 for 0 ≤ ρ < ρ? and F ′(ρ) < 0 for ρ? < ρ < 1. We use the notation
τ(ρ) for the value τ(ρ) 6= ρ such that F (τ(ρ)) = F (ρ), compare [16]. Here and in
the remainder of the paper we set the maximal density to 1 as well as the maximal
velocity.

Discrete velocity models have been investigated in many works, see [22] for a
review. To begin with, we consider a classical discrete velocity model for the dis-
tribution functions f1 and f2 associated to the two velocities −1 ≤ v1 ≤ v2 ≤ 1.
The equilibrium functions are 0 ≤ fe1 (ρ), fe2 (ρ) ≤ 1 where the density ρ is given by
ρ = f1 + f2 = fe1 + fe2 and the mean velocity by q = v1f1 + v2f2. Moreover, the
equilibrium flux is v1f

e
1 + v2f

e
2 = F (ρ). The equations are

∂tf1 + v1∂xf1 = −1

ε
(f1 − fe1 (ρ)) (2.1)

∂tf2 + v2∂xf2 = −1

ε
(f2 − fe2 (ρ)) . (2.2)

From the above we have

fe1 =
v2ρ− F (ρ)

v2 − v1
, fe2 =

F (ρ)− v1ρ
v2 − v1

and

f1 =
v2ρ− q
v2 − v1

, f2 =
q − v1ρ
v2 − v1

.

Equation (2.1) can be rewritten as

∂tρ+ ∂xq = 0

∂tq − v1v2∂xρ+ (v1 + v2)∂xq = −1

ε
(q − F (ρ)) .

(2.3)
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We remark first that the invariant region of the equations is given by the rectangle
0 ≤ f1, f2 ≤ 1, which gives 0 ≤ v2ρ − q ≤ v2 − v1 and 0 ≤ q − v1ρ ≤ v2 − v1. The
latter is rewritten as v2ρ− v2 − v1 ≤ q ≤ v2ρ and v1ρ ≤ q ≤ v1ρ+ v2 − v1.

However, for a reasonable discrete velocity traffic model the invariant region
should be given by the triangle 0 ≤ ρ ≤ 1 and 0 ≤ q ≤ ρ or in terms of f1, f2
by the region 0 ≤ f1 ≤ 1 and 0 ≤ f1 + f2 ≤ 1. We note that q ≤ ρ is a bound for the
maximal velocity. See the discussion in [2, 3, 8].

Having discussed this, we remark that the region 0 ≤ ρ ≤ 1, 0 ≤ q ≤ ρ is not
an invariant domain of the above equations. For the above discrete velocity model
there is no guarantee for positive q except for the case v1, v2 ≥ 0, but in this case
the bound ρ ≤ 1 is not satisfied. Indeed, we observe that for v1 = 0 and v2 = 1 the
triangle 0 ≤ ρ ≤ 1, 0 ≤ q ≤ ρ is contained in the invariant domain ρ− 1 ≤ q ≤ ρ and
0 ≤ q ≤ 1, but is still not an invariant domain itself.

Moreover, under the subcharacteristic condition v1 ≤ F ′(ρ) ≤ v2 we obtain con-
vergence of (2.1) to the conservation law

∂tρ+ ∂xF (ρ) = 0 .

Obviously, v1 ≥ 0 does not allow for situations where F ′(ρ) is negative. In partic-
ular, situations with traffic jams are not treated. We remark, that one cannot remedy
this by manipulating the right hand side as in [20], where an unstable relaxation
system has been used.

In the present paper we introduce a new discrete-velocity model for traffic flow
being on the one hand a reasonable model for traffic flow in the sense that with
v1, v2 ≥ 0 one obtains an invariant region given by 0 ≤ f1, f2 ≤ 1 and 0 ≤ f1 +f2 ≤ 1,
or equivalently 0 ≤ ρ ≤ 1, 0 ≤ q ≤ ρ, and being on the other hand a model which
converges as ε goes to 0 to the conservation law for all values of ρ.

We remark that the modified Aw-Rascle equations [8] fulfill the above require-
ments. The relaxation property has been investigated for example in [3, 37]. In
fact, as will be seen later, our new model shares some of the properties of the modi-
fied Aw-Rascle model. However, the Aw-Rascle model is not derived from a kinetic
discrete-velocity model. Moreover, the new model is different from a modeling point
of view. In the Rascle model acceleration and breaking influence the hyperbolic part
of the equations as well as the relaxation term. Our model uses only the non-locality
in the breaking term for a contribution to the hyperbolic part of the equations. All
other physical influences are summarized in the relaxation term. We refer to the orig-
inal work on kinetic traffic flow equations [36] for similar considerations. In this sense
the model is a minimal model using only those physical phenomena in the hyperbolic
part of the equations which are necessary to guarantee the subcharacteristic condition
and convergence to the scalar conservation law.

3. Discrete velocity traffic model. Our starting point is a kinetic equation
with continuous velocity space, compare [24, 25, 26] and see also [19, 34, 36, 31]. For
t ∈ R+, x ∈ R, v ∈ [0, 1] and the distribution function f = f(x, v, t) we consider the
equation

∂tf + v∂xf = JR(f) + JNL(f)

with a relaxation term JR relaxing to an equilibrium function f0(ρ)

JR(f) = −1

ε
(f − f0(ρ)) ,

3



with
∫
f0(v)dv = ρ and

∫
vf0(v)dv = F (ρ). Additionally we consider a term contain-

ing the non-local effects due to braking interactions JNL(f) given by

JNL(f) = JB(f,H)− JB(f, 0) ,

where the braking term JB(f,H) is given as in [9]. We obtain in a simplified case

JB(f,H) =
1

1− ρ

∫
v̂>v

(v̂ − v)f(x, v̂)f(x+H, v)dv̂

− 1

1− ρ

∫
v̂<v

(v − v̂)f(x, v)f(x+H, v̂)dv̂ .

Here, H is a measure for the look-ahead and the non-locality of the equations. The
underlying microscopic model contains a braking interaction, where the driver at x
with velocity v reacts to his predecessor at x + H with velocity v̂ if v̂ < v. The
new velocity resulting of this braking interaction is exactly the velocity of the leading
car. Moreover, the interaction strength is modulated by a factor 1

1−ρ to increase the
frequency of breaking interaction for dense traffic. This can be approximated by

JB(f,H) ∼ 1

1− ρ

∫
v̂>v

(v̂ − v)f(v̂)(f(v) +H∂xf(v))dv̂

− 1

1− ρ

∫
v̂<v

(v − v̂)f(v)(f(v̂) +H∂xf(v̂))dv̂

and thus

JNL ∼
H

1− ρ

∫
v̂>v

(v̂ − v)f(v̂)∂xf(v)dv̂ − H

1− ρ

∫
v̂<v

(v − v̂)f(v)∂xf(v̂)dv̂ .

For a two velocity model with the velocities 0 ≤ v1 < v2 ≤ 1 we obtain, setting
v = v1 and v = v2 respectively, the same relaxation term as in equation (2.1). The
non-local term yields for v = v1

JNL,1 =
H

1− ρ (v2 − v1)f2∂xf1

and for v = v2

JNL,2 = − H

1− ρ (v2 − v1)f2∂xf1 .

Alltogether, the two velocity discrete-velocity model is given by the following nonlinear
discrete velocity model

∂tf1 + v1∂xf1 −
H

1− ρ (v2 − v1)f2∂xf1 = −1

ε

(
f1 −

v2ρ− F (ρ)

v2 − v1

)
∂tf2 + v2∂xf2 +

H

1− ρ (v2 − v1)f2∂xf1 = −1

ε

(
f2 −

F (ρ)− v1ρ
v2 − v1

)
.

Using f1 = v2ρ−q
v2−v1 and f2 = q−v1ρ

v2−v1 gives the macroscopic equations for density ρ and
mean flux q

∂tρ+ ∂xq = 0

∂tq + ∂xP (ρ, q)− (v1 + v2)
H

1− ρ
q − v1ρ
v2 − v1

(v2∂xρ− ∂xq) = −1

ε
(q − F (ρ))

(3.1)
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with P (ρ, q) = (v1 + v2)q− v1v2ρ. In the following we consider the canonical choice of
the two velocities as v1 = 0, v2 = 1. Otherwise, situations with very low or very high
velocites could not be covered. With v1 = 0, v2 = 1 we get

f1 = ρ− q, f2 = q

and the discrete velocity model

∂tf1 −
H

1− ρf2∂xf1 = −1

ε
(f1 − ρ+ F (ρ))

∂tf2 + ∂xf2 +
H

1− ρf2∂xf1 = −1

ε
(f2 − F (ρ))

or the macroscopic equation

∂tρ+ ∂xq = 0

∂tq +
Hq

1− ρ∂xρ+ (1− Hq

1− ρ )∂xq = −1

ε
(q − F (ρ)) .

(3.2)

The details of the hyperbolic equation will be considered in the next section.
Concerning the convergence of the equations towards the scalar conservation law
∂tρ + ∂xF (ρ) = 0 as ε tends to 0 we have to assure the subcharacteristic condition.
The eigenvalues of the system are

λ1 = − Hq

1− ρ , λ2 = 1 .

Setting q = F (ρ) we get

λ1 = −HF (ρ)

1− ρ , λ2 = 1 .

The subcharacteristic condition gives

−HF (ρ)

1− ρ ≤ F
′(ρ) ≤ 1 for 0 ≤ ρ ≤ 1 .

Remark 1. In the classical Lighthill Whitham case with F (ρ) = ρ(1 − ρ) and
F ′(ρ) = 1− 2ρ this yields the condition

−Hρ ≤ 1− 2ρ ≤ 1 for 0 ≤ ρ ≤ 1 .

This is satisfied for all H ≥ 1.
Remark 2. In the case of a general traffic fundamental diagram F (ρ) the above

condition is on the one hand guaranteeing that F (ρ) ≤ ρ, which guarantees that the
equilibrium function lies in the invariant domain, see the next section. On the other
hand, the first inequality yields

F (ρ) ≥ F (ρ?)

(1− ρ?)H (1− ρ)H .

That means the value of H must be chosen according to the behaviour of the funda-
mental diagram at ρ = 1. In case of a concave flux function F it is sufficient to choose
H = 1.

Remark 3. The strength of the breaking interaction can be also changed by
changing the coefficient 1

(1−ρ) in front of the braking term into 1
(1−ρ)n , n > 1.
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4. The nonlinear macroscopic system. In this section we consider the macro-
scopic hyperbolic system in more detail. First, we consider the homogeneous system

∂tρ+ ∂xq = 0

∂tq +
Hq

1− ρ∂xρ+ (1− Hq

1− ρ )∂xq = 0 .
(4.1)

The eigenvalues of the system are

λ1 = −α = − Hq

1− ρ < λ2 = 1

with eigenvectors

r1 =

(
1
−α

)
, r2 =

(
1
1

)
. (4.2)

Moreover, for the characteristic families we obtain

∇λ1 · r1 =

(
− Hq

(1−ρ)2
− H

1−ρ

)
·
(

1

− Hq
1−ρ

)
=

Hq

(1− ρ)2
(H − 1)

and

∇λ2 · r2 = 0 . (4.3)

That means the r1-field is genuinely nonlinear for H 6= 1 and q 6= 0, the r2-field is
linearly degenerate. For H = 1 we have a (totally) linear degenerate system.

The integral curves of the system are determined considering the following ODE’s.
For the 1-field we have

ρ′ = 1 , q′ = − Hq

1− ρ .

This gives the integral curve q = qL
(1−ρ)H
(1−ρL)H

.

For the 2 field one obtains

ρ′ = 1 , q′ = 1 .

That means the 2-integral curves are straight lines q = ρ− ρR + qR with slope 1.
For H = 1 the dynamics are completely described by the integral curves. In case

H > 1 additionally the shock curves have to be investigated for the 1-field.
We rewrite the equations in conservative form. For general H, we choose the

variable

z =
Hq

(1− ρ)H
.

Note that for H = 1 we have z = −λ1 as expected. Then

∂tz =
H2q

(1− ρ)H+1
∂tρ+

H

(1− ρ)H
∂tq =

H

(1− ρ)H
∂tq −

H2q

(1− ρ)H+1
∂xq

=− H

(1− ρ)H

(
Hq

1− ρ∂xρ+ (1− Hq

1− ρ )∂xq +
1

ε
(q − F (ρ))

)
− H2q

(1− ρ)H+1
∂xq

=− H2q

(1− ρ)H+1
∂xρ+

(
− H

(1− ρ)H
+

H2q

(1− ρ)H+1
− H2q

(1− ρ)H+1

)
∂xq

− 1

ε

H (q − F (ρ))

(1− ρ)H
.
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We obtain

∂tz = − H2q

(1− ρ)H+1
∂xρ−

H

(1− ρ)H
∂xq −

1

ε

H (q − F (ρ))

(1− ρ)H

= −∂xz −
1

ε

H (q − F (ρ))

(1− ρ)H

and the conservative system

∂tρ+ ∂xq = 0

∂tz + ∂xz = −1

ε

H

(1− ρ)H
(q − F (ρ)) .

(4.4)

In closed form this is

∂tρ+
1

H
∂x(z(1− ρ)H) = 0

∂tz + ∂xz = −1

ε

(
z − HF (ρ)

(1− ρ)H

)
.

(4.5)

The eigenvalues are written as λ1 = −z(1− ρ)H−1 and λ2 = 1. The eigenvectors
in conservative variables are

r1 =

(
1
0

)
, r2 =

(
1

zH
1−ρ + H

(1−ρ)H

)
.

The integral curves are in conservative form for the 1-field given by straight lines
z = zL = const. The integral curves for the 2-field are given by

z(ρ) = H
ρ− ρR

(1− ρ)H
+
zR(1− ρR)H

(1− ρ)H
. (4.6)

For the 1-field we have to consider additionally the 1-shock curves. The Rankine-
Hugoniot conditions give

1

H
z(1− ρ)H − 1

H
zL/R(1− ρL/R)H = s(ρ− ρL/R)

z − zL/R = s(z − zL/R) .
(4.7)

This yields either z = zL. That means also for the 1-field shocks and integral
curves coincide. The speed of the shock (living on the shock curve with ρ > ρL) is
computed from

zL(1− ρL)H − zR(1− ρR)H = sH(ρL − ρR)

zL = zR .
(4.8)

This gives

s =
zL
H

(1− ρL)H − (1− ρR)H

ρL − ρR
. (4.9)

The second solution of (4.7) is s = 1. This is the velocity of the 2-waves. The
2-shock curve must be the same as the two integral curve since the 2-field is linear
degenerate. Indeed,the 2-shock curve is given by
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z(1− ρ)H − zR(1− ρR)H = H(ρ− ρR)

or

z(ρ) = H
ρ− ρR

(1− ρ)H
+
zR(1− ρR)H

(1− ρ)H

as before the 2-integral curves. Figure 7.1 shows the integral curves in (ρ, q) and (ρ, z)
variables for H = 1.

(0, 0) (1, 0)

(1, 1)

ρ

q

1-curve

2-curve

(0, 0) (1, 0) ρ

z

2-curve

1-curve

Fig. 4.1. State space and Riemann invariants in (ρ, q) and (ρ, z) variables for H = 1.

(0, 0) (1, 0)

(1, 1)

ρ

q

(0, 0) (1, 0) ρ

z

Fig. 4.2. State space and Riemann invariants in (ρ, q) and (ρ, z) variables for H = 2.

Note that the 2-field is linear degenerate and the 1-field has in conservative vari-
ables straight lines as integrals curves. Such systems have been investigated in several
works, see, for example, [38]. Compare also the structure of the original Aw-Rascle
traffic system [2], which has the same property.

Moreover, as mentioned above, in the special case H = 1 the system is even
totally linear degenerate.
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The two Riemann invariants are easily determined: the 1-Riemann invariant is
f1 = ρ− q, the 2-Riemann invariant is Hq

(1−ρ)H .

Finally, we observe that the integral curves for the 2-field are the same for any
H. Thus, it is easy to see that the region 0 ≤ ρ ≤ 1, 0 ≤ q ≤ ρ is an invariant region
for the system for all H > 0. This means for u = q

ρ we have the invariant region
0 ≤ ρ ≤ 1, 0 ≤ u ≤ 1 as it should be for a reasonable traffic flow equation.

Remark 4. One might compare the above equations to the modified Aw-Rascle
equations [8]. The second equation of the Aw-Rascle model in conservative form for
the variable y = q + ρP (ρ) is given by

∂ty + ∂x
q

ρ
y = −1

ε
(q − F (ρ)) . (4.10)

This can be rewritten as

∂tq + α̃∂xρ+
q

ρ
(1− α̃)∂xq = −1

ε
(q − F (ρ)) . (4.11)

with α̃ = qP ′(ρ) − q2

ρ2 , which shows some similarities with the equations considered

here. We remark that the second eigenvalue of the Aw-Rascle system q
ρ − ρP ′(ρ), the

first one is q
ρ , does not have a fixed sign compared to the present model.

Remark 5. Linearized relaxation system. The linearization of the above equa-
tions is

∂tρ+ ∂xq = 0

∂tq + α∂xρ+ (1− α)∂xq = −1

ε
(q − F (ρ)) ,

(4.12)

where α ≥ 0.
The characteristic variables of the linearized system are

g1 = ρ− q = f1

g2 = αρ+ q = αf1 + (1 + α)f2 .

This yields

∂tg1 − α∂xg1 = −1

ε

(
−g2 − αg1

1 + α
+ F (ρ)

)
∂tg2 + ∂xg2 = −1

ε

(
g2 − αg1

1 + α
− F (ρ)

)
.

Thus, from the point of view of boundary conditions we have to specify αf1 + (1 +
α)f2 at the left boundary and f1 on the right boundary. We note that the linearized
equations face the same problems concerning their invariant domains as the naive
relaxation model mentioned in Section 2.

In the next step we investigate the boundary value problem for the nonlinear
kinetic system and consider the resulting boundary conditions for the limiting scalar
hyperbolic problem as ε goes to 0.

5. Boundary conditions for the macroscopic equations derived from
nonlinear kinetic equation. In this section we determine boundary conditions
for the scalar conservation law from the boundary value problem of the nonlinear
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kinetic relaxation system. The boundary conditions for the limit equation are obtained
from the kinetic boundary conditions considering a kinetic half-space problem at the
boundary. We refer to [6, 17, 4] for boundary layers of kinetic equations and to
[30, 32, 41, 29, 28, 40, 1] for investigations of boundary layers for hyperbolic relaxation
systems.

The general procedure is as follows: the half space problem is determined by
a rescaling x → x

ε of the spatial coordinate in the boundary layer. The boundary
condition for the layer problem is given by the original kinetic boundary condition.
The boundary condition for the limit equation is found from the asymptotic value of
the half-space problem at infinity.

In the following we investigate first the kinetic layer equations and their asymp-
totic states and then use the results to determine the boundary conditions for the
macroscopic problem.

5.1. Layer solution for nonlinear equations. Let the left boundary be lo-
cated at xL. Starting from equation (3.2) and rescaling space as x → x−xL

ε one
obtains the layer equations for the left boundary for x ∈ [0,∞) as

∂xq = 0

Hq

1− ρ∂xρ+ (1− Hq

1− ρ )∂xq = − (q − F (ρ))

or

q = C

∂xρ = (1− ρ)
F (ρ)− C
HC

.
(5.1)

For C < F (ρ?) the above problem has three fix points

ρ1 ≤ ρ? , ρ2 = τ(ρ1) ≥ ρ? , ρ3 = 1 .

ρ1 is instable, ρ2 is stable and ρ3 is again instable. The domain of attraction of
the stable fixpoint ρ2 is the interval (ρ1, 1).

For C = F (ρ?) we have ρ1 = ρ2 = ρ? and all solutions with initial values above
ρ? converge towards ρ?, all other solutions diverge.

Remark 6. In the Lighthill-Whitham case F (ρ) = ρ(1− ρ) we have

ρ1,2 =
1

2
(1∓

√
1− 4C)

with C < 1
4 . For C = 1

4 we have ρ1 = ρ2 = 1
2 .

More explicitly, the layer solution could be determined by solving equation (5.1).
This is in the Lighthill-Whitham case a so called Abel differential equation with con-
stant coefficients. It can be solved explicitly to obtain the detailed behavior of the
solution in the layer.

Remark 7. For the right boundary at xR a scaling x → xR−x
ε gives the layer

equations for x ∈ [0,∞) as

q = C

−∂xρ = (1− ρ)
F (ρ)− C
HC

.
(5.2)
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For C < F (ρ?) the above problem has again three fix points

ρ1 ≤ ρ? , ρ2 = τ(ρ1) ≥ ρ? , ρ3 = 1 .

In this case ρ1 is stable, ρ2 is instable and ρ3 is again stable. The domain of attraction
of the stable fixpoint ρ1 is (0, ρ2). The domain of attraction of the stable fixpoint ρ3
is (ρ2, 1).

For C = F (ρ?) we have ρ1 = ρ2 = ρ? and all solutions with initial values below
ρ? converge towards ρ?, all other solutions converge towards 1.

5.2. Macroscopic boundary conditions for the nonlinear kinetic equa-
tions. For the left boundary we prescribe for the kinetic equation the 2- Riemann

invariant g2(xL) = Hq(xL)
(1−ρ(xL))H

= Hf2(xL)
(1−f1(xL)−f2(xL))H

and for the right boundary the

1-Riemann invariant g1(xR) = f1(xR). The boundary conditions for the scalar prob-
lem are now derived from the kinetic ones by considering the layer equations with the
above boundary conditions at x = 0 and determining the asymptotic state ρK , i.e.
the solution at infinity of the layer equations. This state is then used as boundary
condition for the scalar equations. The inital value of the scalar equation is in the
following denoted by ρB .

5.2.1. Left boundary. Assume for the left boundary 0 ≤ g2(xL) to be known.
We distinguish three cases. An illustration of the different situations is given in Figure
5.2.

ρ

F (ρ)
F (ρ1)

ρ1 ρ∗

F (ρ∗)

1

Fig. 5.1. Fundamental diagram.

Case 1: ingoing flow. ρB < ρ? and 0 ≤ g2(xL) ≤ HF (ρ?)
(1−ρ?)H or ρB > ρ? and

g2(xL) ≤ HF (τ(ρB))
(1−τ(ρB))H

.

The layer solution is in this case the unstable solution

ρl(x) = ρ1(C) ≤ ρ? .
Here, 0 < C < F (ρ?) is determined from g2(xL) = HC

(1−ρ1(C))H
. First, we determine ρ1

from HF (ρ1)
(1−ρ1)H = g2(xL). This has a unique solution due to the assumption on g2(xL),

see Figure 5.1. Then, C is determined from ρ1. We have ρL(0) = ρ1 ≤ ρ? and

ρK = ρl(0) .

In the first case ρl(0) ≤ ρ? and in the second case ρl(0) ≤ τ(ρB). In both cases
one obtains a wave with positive speed starting at the boundary.

Case 2: transonic flow. ρB < ρ? and g2(xL) ≥ HF (ρ?)
(1−ρ?)H .

One chooses C as the maximal possible value C = F (ρ?). From g2(xL) =

HC
(1−ρl(0))H , which gives g2(xL) = HF (ρ?)

(1−ρl(0))H , we obtain ρl(0) = 1−
(
HF (ρ?)
g2(xL)

) 1
H

. This

yields ρl(0) ≥ ρ?. The layer solution is no longer constant in space. Moreover,
ρK = ρ?. In this case one obtains a rarefaction wave with ρ? at the boundary.
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Case 3: outgoing flow. ρB > ρ? and g2(xL) ≥ HF (τ(ρB))
(1−τ(ρB))H

.

Here,

ρl(∞) = ρ2(C) = ρB

yields C and g2(xL) = HC
(1−ρl(0))H = HF (ρ2)

(1−ρl(0))H = HF (ρB)
(1−ρl(0))H gives

ρl(0) = 1−
(
HF (ρB)

g2(xL)

) 1
H

≥ τ(ρB) .

Obviously ρK = ρB . There is no wave starting at the boundary and the layer does
not have a constant solution.

x = 0 x = ∞

ρ = ρ?

ρ ρ

ρB
ρl(0) ρl(x) ρK

x = 0 x = ∞

ρ ρ

ρB

ρl(0) ρl(x) ρK

x = 0 x = ∞

ρ = ρ?

ρ ρ

ρB

ρl(0)

ρl(x)

ρK

x = 0 x = ∞

ρ ρ

ρB

ρl(0)

ρl(x) ρK

Fig. 5.2. Boundary layer and Riemann problem solution for the different cases at the left
boundary. First row: case 1 a) and b). Second row case 2 and 3.

5.2.2. Right boundary. For the right boundary we prescribe the 1-Riemann
invariant g1(xR) = f1(xR) = ρ(xR)− q(xR).

Case 1: ingoing flow. ρB > ρ? and 1 ≥ g1(xR) ≥ ρ? − F (ρ?) or ρB < ρ? and
g1(xR) ≥ τ(ρB)− F (τ(ρB)).

The layer solution is

ρr(x) = ρ2(C) ≥ ρ?.

Here, 0 < C < F (ρ?) is determined from g1(xR) = ρ2(C)−C. We determine ρ2 from
ρ2 − F (ρ2) = g1(xR). This has a unique solution due to the assumption on g1(xR).
Then, C is determined from ρ2. Moreover, ρr(0) = ρ2 ≥ ρ? and

ρK = ρr(0) .

In the first case ρr(0) ≥ ρ? and in the second case ρr(0) ≥ τ(ρB).
Case 2: transonic flow. ρB > ρ? and g1(xR) ≤ ρ? − F (ρ?).
In this case we have C = F (ρ?). From g1(xR) = ρr(0) − C = ρr(0) − F (ρ?) we

obtain ρr(0) = g1(xR) + F (ρ?). This yields ρr(0) ≤ ρ?. Moreover, ρK = ρ?.
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Case 3: outgoing flow. ρB < ρ? and g1(xR) ≤ τ(ρB)− F (τ(ρB)).
Then,

ρ(∞) = ρ1(C) = ρB .

This yields C and g1(xR) = ρr(0)− C = ρr(0)− F (ρ1) = ρr(0)− F (ρB) gives

ρr(0) = g1(xR) + F (ρB) ≤ τ(ρB) .

We have ρK = ρB .

5.3. Boundary conditions for the Lighthill Whitham case. First, the left
boundary is considered:

Case 1: ingoing flow. ρB < 1
2 and 0 ≤ g2(xL) ≤ H2H−2 or ρB > 1

2 and g2(xL) ≤
H(ρB)1−H(1− ρB)

The layer solution is

ρl(x) = ρ1 =
1

2
(1−

√
1− 4C) .

This gives C = ρ1 − ρ21 ≤ 1
4 . Here, ρ1 is determined from g2(xL) = Hρ1

((1−ρ1)H−1 , which

has a unique solution due to the assumptions on g2(xL). We note that for H = 1

we have ρ1 = g2(xL), for H = 2 we have ρ1 = g2(xL)
2+g2(xL) and for H = 3 we have

ρ1 = 1
2g2(xL) (2g2(xL)−

√
12g2(xL) + 9 + 3). This gives

ρK = ρl(0) = ρ1 .

Case 2: transonic flow. ρB < 1
2 and g2(xL) ≥ H2H−2.

From C = 1
4 and g2(xL) = HC

(1−ρl(0))H = H
4(1−ρl(0))H we obtain ρl(0) = 1 −(

H
4g2(xL)

) 1
H ≥ 1

2 . As before ρK = 1
2 .

Case 3: outgoing flow. ρB > 1
2 and g2(xL) ≥ H(ρB)1−H(1− ρB).

The layer solution is

ρl(∞) =
1

2
(1 +

√
1− 4C) = ρB .

This gives C = ρB − ρ2B and g2(xL) = HC
(1−ρl(0))H =

H(ρB−ρ2B)
(1−ρl(0))H gives

ρl(0) = 1−
(
H(ρB − ρ2B)

g2(xL)

) 1
H

≥ 1− ρB .

Again ρK = ρB .
At the right boundary we have
Case 1: ingoing flow. ρB > 1

2 and 1 ≥ g1(xR) ≥ 1
4 or ρB < 1

2 and g1(xR) ≥
(1− ρB)2.

the layer solution is

ρr(x) =
1

2
(1 +

√
1− 4C) .

0 < C < 1
4 is determined from g1(xR) = 1

2 (1 +
√

1− 4C)− C. This gives

C = ρr(0)− (ρr(0))2 =
√
g1(xR)− g1(xR) ≤ 1

4

due to the assumption on g1(xR). Moreover, g1(xR) = (ρr(0))2 and

ρK = ρr(0) .
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Case 2: transonic flow. ρB > 1
2 and g1(xR) ≤ 1

4 .
From C = 1

4 and g1(xR) = ρr(0)− 1
4 we obtain ρr(0) = g1(xR)+ 1

4 ≤ 1
2 . Moreover,

ρK = 1
2 .

Case 3: outgoing flow. ρB < 1
2 and g1(xR) ≤ (1− ρB)2.

We have

ρr(∞) =
1

2
(1−

√
1− 4C) = ρB .

This gives C = ρB − ρ2B and with g1(xR) = ρr(0)− C one obtains

ρr(0) = g1(xR) + ρB − ρ2B ≤ 1− ρB .

As before ρK = ρB .

6. Relaxation schemes. The considerations in the previous sections can be
also used to design a relaxation method based on the nonlinear relaxation system 4.4.
For simplicity we consider the special case H = 1, where the system is totally linear
degenerate. We refer to [10, 11, 12] for relaxation schemes starting from nonlinear
totally linear degenerate relaxation systems.

Before describing the scheme, we note that a relaxation method based on the linear
relaxation system (2.1) has different drawbacks. First, choosing v1, v2 according to the
subcharacteristic condition v1 ≤ F ′(ρ) ≤ v2, which means choosing in general v1 < 0,
yields a convergent scheme. However, for ε > 0 positivity of q and the restrictions on
ρ and q are not guaranteed, see the discussion on the invariant domains in section 2.
Only for ε = 0, i.e. for the relaxed scheme , we obtain a reasonable scheme, which is
in this case simply a Lax-Friedrichs type scheme.

On the contrary, choosing v1 ≥ 0 the scheme would preserve the positivity of ρ.
However, the scheme would not work for negative wave speeds or ρ > ρ? due to the
violation of the subcharacteristic condition. Moreover, the restriction ρ ≤ 1 is not
preserved. We note again that the solution proposed in [20] is not working properly
since the underlying relaxation system is unstable in the sense of ordinary differential
equations for negative wave speeds or ρ > ρ?.

Our nonlinear relaxation scheme is given by the following considerations. Split
the system (4.4) into an advection and a relaxation part. The advection part is solved
with the Godunov method. In the totally linear degenerate case H = 1 this is easily
computed as

ρ
n+1/2
i = ρni −

∆t

∆x

(
qni

1− ρni+1 + qni+1

1− ρni + qni
− qnn−1

1− ρni + qni
1− ρni−1 + qni−1

)
z
n+1/2
i = zni −

∆t

∆x

(
zni − zni−1

)
.

The relaxation part is in the simplest case treated by the implicit Euler method

ρn+1
i = ρ

n+1/2
i

zn+1
i = z

n+1/2
i − ∆t

ε

(
zn+1
i − F (ρn+1

i )

(1− ρn+1
i )

)
.

Solving the relaxation ODE for ε = 0 we obtain qni = F (ρni ). Thus the relaxed scheme
reads

ρn+1
i = ρni −

∆t

∆x

(
F (ρni )

1− ρni+1 + F (ρni+1)

1− ρni + F (ρni )
− f(ρnn−1)

1− ρni + F (ρni )

1− ρni−1 + f(ρni−1)

)
.
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Note that this is neither the Godunov scheme for the limit-equation nor the Lax-
Friedrichs scheme. The accuracy of the above scheme is intermediate between these
two scheme, see the numerical investigation in the next section. Simple computations
show that the scheme is consistent. It is monotone if f(ρ) + (1− ρ) f ′(ρ) ≥ 0, which
is the subcharacteristic condition. Higher order relaxation methods could be derived
as well with the usual procedures.

Remark 8. If the kinetic equations with H > 1 are used for the relaxation
method, a nonlinear equation of order H has to be solved to find the intermediate
state for the Godunov scheme. In special cases this could be done explicitly. In the
general case, one has to solve the algebraic equation numerically.

7. A constrained model for H going to 0 and cluster dynamics. In this
section we consider the limit H → 0 and the case without relaxation term. In this case
the influence of the braking term is concentrated at the maximal density. This leads
to a cluster dynamic. We refer to [7, 8] for a similar investigation for the modified
Aw-Rascle model.

Letting H go to 0 in (3.2) one obtains for ρ < 1 the following simple linear
equation

∂tρ+ ∂xq = 0

∂tq + ∂xq = 0 .
(7.1)

This equation would have the invariant domain q ≤ ρ ≤ q + 1 and 0 ≤ q ≤ 1.
That means the density could exceed its maximal value ρ = 1. However, due to the
singularity in the breaking term at ρ = 1 the state space of the limit equation is again
restricted to 0 ≤ ρ ≤ 1 and 0 ≤ q ≤ ρ as will be discussed in the following. To find
the dynamics for H = 0 one has to consider the solution of the Riemann problems for
the original system with H > 0 and let H go to 0, compare [7, 8] for such a discussion
for the modified Aw-Rascle equation.

First, we remind the reader, that the shock speed s for the 1-wave is given by the
following expression, compare equation (4.9):

s =
qL

(1− ρL)H
(1− ρL)H − (1− ρR)H

ρL − ρR
. (7.2)

We consider now a situation with 1 − qL ≤ ρR ≤ 1 and 0 < qR < ρR + qL − 1.
Outside of this region in state space, the solution of the Riemann problem is directly
described by the solution of the linear formal limit equation (7.1) with waves with
speed 0 and 1 and intermediate states given by (ρM , qM ) = (ρR + qL − qR, qL).

In case the initial values of the Riemann problem are restricted by 1−qL ≤ ρR ≤ 1
and 0 < qR < ρR + qL − 1, the linear equation would yield a solution with ρ > 1. In
this case we consider instead the Riemann problem for the system with H > 0 and
investigate its behaviour as H goes to 0.

That leads to the following. The solution of the Riemann problem is given by a 1-
shock curve combined with a 2-contact discontinuity. The intermediate state ρM , qM
is given by the intersection of these two curves which gives

ρM + qR − ρR = qL
(1− ρM )H

(1− ρL)H
. (7.3)
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We do not have to solve that explicitly, just remark that

1

qL

(
(ρM + qR − ρR)(1− ρL)H

)
= (1− ρM )H . (7.4)

Using this in the shock speed equation (7.2) with ρR = ρM we obtain

s =
qL

(1− ρL)H
(1− ρL)H − (1− ρM )H

ρL − ρM

=
qL

(1− ρL)H

(1− ρL)H − 1
qL

(
(ρM + qR − ρR)(1− ρL)H

)
ρL − ρM

(7.5)

and finally

s =
qL − ρM − qR + ρR

ρL − ρM
. (7.6)

Considering (7.3) we remark, that ρM converges to 1 as H → 0. The shockspeed is
then for H → 0 (and ρM → 1 ) given by

s =
1− qL + qR − ρR

1− ρL
. (7.7)

Since the initial values (ρL, qL) and (ρR, qR) under consideration are restricted by
1− qL ≤ ρR ≤ 1 and 0 ≤ qR ≤ ρR + qL − 1 we obtain s ≤ 0.

In conclusion, the solution of the constrained model for H = 0 is given by the
solution of the linear model as long as the resulting intermediate states are in 0 ≤ ρ ≤
1, 0 ≤ q ≤ ρ that means for ρR − qR < 1− qL. In this case we have waves with speed
0 and 1 and intermediate states given by (ρM , qM ) = (ρR + qL− qR, qL). In the other
cases with ρR − qR > 1− qL, we have a solution with an intermediate state given by
(ρM , qM ) = (1, 1 + qR − ρR). The solution is a combination of a shock solution with
speed s = 1−qL+qR−ρR

1−ρL < 0 and a contact discontinuity with speed s = 1.

We refer again to [8, 7] for similar investigations for the modified Aw-Rascle model
and for further references on constrained models.

Remark 9. The cases are distinguished by determining whether ρR−qR < 1−qL
or ρR − qR > 1− qL. With f1 = ρ− q, the number of stopped vehicles, this condition
could be interpreted as follows: the number of stopped cars on the right is smaller
(respectively larger) than the number of stopped cars on the left for a left state with
maximal density and a flux equal to qL.

Remark 10. If ρR = 1, then the intermediate state is (ρM , qM ) = (1, qR) and
the resulting shock speed is s = qR−qL

1−ρL < 0.

8. Numerical results. In this section we discuss four topics. First, the solution
of Riemann problems for the kinetic problem with different H and different ε are
discussed. Second we investigate the boundary value problem and compare kinetic
and limit equations with boundary conditions from Section 5. Third, we present an
investigation of the relaxation scheme for the Lightill-Whitham problem. Last, the
constrained equations for H = 0 are investigated and compared to the solutions for
small H.

If not otherwise stated we use the relaxation scheme for the kinetic equations,
i.e. the Godunov scheme for the advection part in conservative form and the implicit
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(0, 0) (1, 0)

(1, 1)

ρ

q

2-curve

1-curve

(ρL, qL)

(ρR, qR)

(ρM , qM )

(0, 0) (1, 0)

(1, 1)

ρ

q

(ρL, qL)

(ρR, qR) (ρM , qM )

Fig. 7.1. State space and Riemann problem for (ρ, q) variables for H small (H = 0.1) and
H = 0. Situation with ρR − qR > 1− qL.

Euler method for the right hand side. For H = 1 the formulas stated in the last
section are used. For the other cases the resulting algebraic equations of order H are
solved using Bisection method.

The solutions of the limit equation are given as exact solutions. The number of
cells is 1000 and if not specified differently we use for the kinetic problem H = 1 and
ε = 0.1. The CFL condition is chosen with a CFL number 1.

8.1. Numerical solution of Riemann problems for the kinetic equation
with different H and different ε. We consider two different Riemann Problems,
first ρL = 0.99 and ρR = 0 with q ≡ 0 and second ρL = 0.3 and ρR = 0.99 with
q ≡ 0. In the first example the LWR-solution is a rarefaction wave, in the second case
it is a shock wave. Note that, if for the second example the left and right states in
the kinetic equation are in equilibrium, then, the speed of the left going shock wave
coincides for any ε with the shock speed in the LWR model: from the first equation
of the Rankine-Hugoniot condition (4.7) we obtain for the left going wave

s =
qR − qL
ρR − ρL

.

If q is as in the LWR model also s is identical. Figure 8.1 shows the two examples for
different values of ε. Figure 8.2 shows the two examples for different values of H.

8.2. Comparison of BVP for kinetic and macroscopic equation. We con-
sider H = 1. Figure 8.3 shows the solution of a boundary value problem with layers
at both boundaries. In the left picture we have a situation with outgoing flow at the
left boundary, ρB > 1

2 and g2(xL = 0) is chosen such that ρ(0) ≥ 1−ρB . At the right
boundary we have again outgoing flow with ρB < 1

2 and g1(xR = 1) is chosen such
that ρ(1) ≤ 1− ρB .

In the right picture the inner states are ρ(x) = 0.2 for x < 0.5 and ρ(x) = 0.9
for x ≥ 0.5. At the left boundary there is a transsonic flow with g2(0) = 0.75 and
with g1(1) = 0.8 we have an ingoing flow at the right boundary. The figure shows the
transonic layer developed at the left boundary.
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Fig. 8.1. Numerical solutions for different ε at t = 0.4.
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Fig. 8.2. Numerical solutions for different H at t = 0.4.
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Fig. 8.3. Layer solutions for different ε.

8.3. Comparison of numerical schemes. Figure 8.3 shows a comparison of
the Lax-Friedrichs, the Godunov and the relaxed scheme (using H = 1) from Section
6. Two Riemann problems, a rarefaction wave and a shock wave for the Lighthill-
Whitham equations are investigated. The figure shows that, comparing the two cen-
tral schemes, the relaxed scheme is more accurate than the Lax-Friedrichs scheme.

8.4. Cluster dynamic for the constrained equations with H = 0. In this
section we investigate the limit as H → 0 numerically and compare the solutions
to the constrained limit equation for H = 0 given by the solution of the Riemann
problem discussed in Section 7. We consider the two cases ρR − qR > 1 − qL and

18



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

ρ

Exact Lax-Friedrichs Relaxed Godunov

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

x

ρ

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

x

ρ

0.3 0.35 0.4 0.45 0.5
0.25

0.3

0.35

0.4

0.45

0.5

x

ρ

Fig. 8.4. Comparison of Lax-Friedrichs, Godunov and relaxed scheme. The left column shows
the solution on the full domain. The right column shows zooms at the points of non-smoothness of
the solution.

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

x

ρ

H = 0 H = 1 H = 0.5 H = 0.1

0 0.2 0.4 0.6 0.8 1

0.7

0.72

0.74

0.76

0.78

0.8

x

ρ

Fig. 8.5. Solution for different values of H > 0 and for H = 0. On the left: ρR − qR > 1− qL.
On the right: ρR − qR < 1− qL.

ρR − qR < 1− qL with solutions given by the solution of the linear problem (7.1) and
solutions given by the discussion in Figure 7.1.We consider for case 1

ρL = 0.7 , qL = 0.7 , ρR = 0.7 , qR = 0.2

and for case 2 the same values, except qL = 0.3. In both cases a convergence towards
the limit solution can be observed.

9. Conclusions. The paper presents a new nonlinear discrete velocity model for
traffic flow having the correct relaxation limit and having the correct invariant do-
main for traffic flow modeling. Compared to classical kinetic discrete velocity models
it avoids the problems connected with the positivity of the velocities and the sub-
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characteristic condition. In contrast, the hyperbolic part is nonlinear, but relatively
simple, being a totally linear degenerate hyperbolic problem with a simple structure
of the integral curves. We have discussed relations to the Aw-Rascle model. More-
over, we have discussed boundary conditions for the limit equations derived from the
relaxation model,we have investigated the cluster dynamics of the model for vanish-
ing braking distance and we have suggested a relaxation scheme build on the kinetic
discrete velocity model. Numerical results illustrate the behaviour of the solutions for
various situations.
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