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A COMPLETE SEMIDEFINITE ALGORITHM FOR DETECTING

COPOSITIVE MATRICES AND TENSORS

JIAWANG NIE, ZI YANG, AND XINZHEN ZHANG

Abstract. A real symmetric matrix (resp., tensor) is said to be copositive if
the associated quadratic (resp., homogeneous) form is greater than or equal to

zero over the nonnegative orthant. The problem of detecting their copositivity
is NP-hard. This paper proposes a complete semidefinite relaxation algorithm
for detecting the copositivity of a matrix or tensor. If it is copositive, the
algorithm can get a certificate for the copositivity. If it is not, the algorithm
can get a point that refutes the copositivity. We show that the detection can
be done by solving a finite number of semidefinite relaxations, for all matrices
and tensors.

1. Introduction

1.1. Copositive matrices. A real symmetric matrix A ∈ R
n×n is said to be

copositive if
xTAx ≥ 0 ∀x ∈ R

n
+,

where R
n
+ is the nonnegative orthant (i.e., the set of nonnegative vectors). If

xTAx > 0 for all 0 6= x ∈ R
n
+, then A is said to be strictly copositive. The set

of all n × n copositive matrices is a cone in R
n×n, which is denoted as COPn.

Copositive matrices were introduced in [34]. They have broad applications, e.g., in
quadratic programming [8], dynamical systems and control theory [28, 33], graph
theory [12, 17], complementarity problems [21]. We refer to [5, 18] for surveys on
copositive optimization.

A basic problem in optimization is the detection of copositive matrices. Let Sn
+

be the cone of n × n real symmetric positive semidefinite (psd) matrices, and Nn
+

be the cone of n × n real symmetric matrices whose entries are all nonnegative.
Clearly, it holds that

(1.1) Sn
+ +Nn

+ ⊆ COPn.

For n ≤ 4, the above inclusion is an equality; for n ≥ 5, the equality does not
hold any more [13]. For instance, the Horn matrix [22] is copositive, but it is
not a sum of psd and nonnegative matrices. Checking membership of the cone
COPn is NP-hard [16]. As shown in [30], a matrix A is copositive if and only
if it does not have a principal submatrix that has a negative eigenvalue with a
positive eigenvector. To apply this testing, one needs to check eigenvalues for
all principal submatrices, which grows exponentially in the dimension. For the
case n = 5, when the diagonal entries are all ones, A is copositive if and only if
the polynomial ‖x‖2(

∑5
i,j=1 Aijx

2
i x

2
j ) is a sum of squares [15]. When off-diagonal

entries are nonpositive, A is copositive if and only if A is positive semidefinite [25].
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When a matrix is tridiagonal or acyclic, its copositivity can be detected in linear
time [4, 27]. For testing copositivity for general matrices, there exist methods based
on simplicial partition. We refer to [7, 45] and the references therein. Another
approach for testing copositivity is to use the difference of convexity [6, 19]. A
survey about existing results and open problems for copositive matrices can be
found in [3].

1.2. Copositive tensors. Matrices can be viewed as tensors of order 2. The
concept of copositivity can be naturally generalized to tensors, as in Qi [39]. A
tensor A is a multi-dimensional array

A := (Ai1...im),

with indices 1 ≤ i1, . . . , im ≤ n. The number m is the order. Such A is called an
n-dimensional tensor of order m. In some applications, we often have symmetric
tensors. The tensorA is symmetric ifAi1i2...im = Aj1j2...jm whenever (i1, i2, . . . , im)
is a permutation of (j1, j2, . . . , jm). We denote by Sm(Rn) the space of symmet-
ric tensors of order m over the vector space R

n. For A ∈ Sm(Rn), define the
homogeneous polynomial

(1.2) A(x) :=
∑

1≤i1,i2,··· ,im≤n

Ai1i2···imxi1xi2 · · ·xim .

Clearly, A(x) is a homogeneous polynomial (i.e., a form) of degreem in the variable
x := (x1, . . . , xn). If A(x) ≥ 0 for all x ∈ R

n, A is said to be positive semidefinite
(psd). If A(x) ≥ 0 for all x ∈ R

n
+, A is said to be copositive. Similarly, if A(x) >

0 for all 0 6= x ∈ R
n
+, A is said to be strictly copositive. Denote by COPm,n

the cone of all copositive tensors in Sm(Rn). Clearly, when the order m = 2,
positive semidefinite (resp., copositive) tensors are the same as positive semidefinite
(resp., copositive) matrices. Like the matrix case, copositive tensors also have wide
applications, e.g., in complementary problems [9, 43, 44], physics and hypergraphs
[10, 29]. We refer to [11, 39, 42, 43] for more applications and properties of copositive
tensors.

Detecting copositivity of symmetric tensors is also a mathematically challenging
question. This problem is also NP-hard, since it includes testing matrix copositivity
as a special case. If the off-diagonal entries of a symmetric tensor A are nonpositive,
then A is copositive if and only if A is positive semidefinite [39]. There also exists
a characterization of copositive tensors by the eigenpairs of its principal subtensors
[42]. Like the matrix case, the copositivity of a tensor can be tested by algorithms
based on simplicial partition. We refer to [10, 11] and the references therein.

1.3. Contributions. In the prior existing methods for detecting copositivity, most
of them can detect the copositivity if the matrix or tensor lies in the interior of the
copsitive cone COPn or COPm,n, or if it lies outside the copositive cone. If the
matrix or tensor lies on the boundary, then these methods typically have difficulty
in detecting the copositivity. If it is close to the boundary, they are often very
expensive for doing the detection.

In this paper, we propose a new algorithm for detecting copositivity. It is based
on Lasserre type semidefinite relaxations and optimality conditions of polynomial
optimization. To be precisely, we construct a hierarchy of semidefinite relaxations
for checking copositivity. The construction uses semidefinite relaxation techniques
that are developed in the recent work [38]. If a tensor/matrix A is copositive, we
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can get a certificate for the copositivity. If it is not copositive, we can compute
a point u ∈ R

n
+ such that A(u) < 0. Such a point u refutes the copositivity of

A. No matter a matrix is copositive or not, the testing of copositivity can be
done by the algorithm in finitely many steps. Even if the matrix or tensor lies
on the boundary of the copositive cone, the algorithm also terminates in finitely
many steps. In other words, for every matrix and tensor, its copositivity can be
detected by solving a finite number of semidefinite relaxations. This is why we
call it a complete semidefinte algorithm for detecting copositivity. To the best of
the authors’ knowledge, this is the first semidefinite relaxation algorithm that can
detect copositivity and that can terminate in finitely many steps for all matrices
and tensors.

The paper is organized as follows. Section 2 reviews some preliminaries in poly-
nomial optimization. Section 3 gives the complete semidefinite algorithm. Section 4
presents numerical experiments of the algorithm. Section 5 draws some conclusions
and makes discussions.

2. Preliminaries

The symbol N stands for the set of nonnegative integers, and R for the real field.
For x := (x1, . . . , xn) ∈ R

n and α := (α1, . . . , αn) ∈ N
n, denote

xα := xα1

1 · · ·xαn

n , |α| := α1 + · · ·+ αn.

For an integer m > 0, denote the set

N
n
m := {α ∈ N

n| |α| ≤ m}.

The symbol R[x] denotes the ring of polynomials in x with real coefficients, and
R[x]k denotes the space of polynomials in R[x] with degrees at most k. For a
symmetric matrix X , the inequality X � 0 means X is positive semidefinite. The
superscript T denotes the transpose of a matrix or vector. We use [x]m to denote
the column vector of all monomials in x and of degrees at most m (they are ordered
in the graded lexicographical ordering), i.e.,

[x]m := [1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1x

d−1
n , xmn ]T .

For a vector x, ‖x‖ denotes its Euclidean norm. In the space R
n, e denotes the

vector of all ones, while ei denotes the ith unit vector in the canonical basis. For a
real number t, ⌈t⌉ denotes the smallest integer not smaller than t.

The set RN
n
d is the space of all real vectors that are labeled by α ∈ N

n
d . That is,

every y ∈ R
N

n
d can be labeled as

y = (yα)α∈Nn
d
.

Such y is called a truncated multi-sequence (tms) of degree d [36]. For a polynomial
f ∈ R[x]r that is written as

f =
∑

|α|≤Nn
r

fαx
α,

with r ≤ d, we define the operation

(2.1) 〈f, y〉 =
∑

|α|≤Nn
r

fαyα.
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Note that 〈f, y〉 is linear in y for fixed f , and is linear in f for fixed y. For a
polynomial q ∈ R[x]2k and the integer t = ⌈k − deg(q)/2⌉, the outer product
q(x)[x]t[x]

T
t is a symmetric matrix of length

(

n+t
t

)

. It can be expanded as

q(x)[x]t[x]
T
t =

∑

α∈Nn
2k

xαQα,

for constant symmetric matrices Qα. For y ∈ R
N

n
2k , denote the symmetric matrix

(2.2) L(k)
q [y] :=

∑

α∈Nn
2k

yαQα.

It is called the kth localizing matrix of q and generated by y. For given q, L
(k)
q [y] is

linear in y. Clearly, if q(u) ≥ 0 and y = [u]2k, then

L(k)
q [y] = q(u)[u]t[u]

T
t � 0.

For instance, if n = k = 2 and q = 1− x1 − x1x2, then

L(2)
q [y] =





y00 − y10 − y11 y10 − y20 − y21 y01 − y11 − y12
y10 − y20 − y21 y20 − y30 − y31 y11 − y21 − y22
y01 − y11 − y12 y11 − y21 − y22 y02 − y12 − y13



 .

When q = 1 (the constant one polynomial), the localizing matrix L
(k)
1 [y] reduces

to a moment matrix, which we denote as

Mk[y] := L
(k)
1 [y].

For instance, when n = 2, k = 3, the matrix M3[y] is

M3[y] =

































y00 y10 y01 y20 y11 y02 y30 y21 y12 y03
y10 y20 y11 y30 y21 y12 y40 y31 y22 y13
y01 y11 y02 y21 y12 y03 y31 y22 y13 y04
y20 y30 y21 y40 y31 y22 y50 y41 y32 y23
y11 y21 y12 y31 y22 y13 y41 y32 y23 y14
y02 y12 y03 y22 y13 y04 y32 y23 y14 y05
y30 y40 y31 y50 y41 y32 y60 y51 y42 y33
y21 y31 y22 y41 y32 y23 y51 y42 y33 y24
y12 y22 y13 y32 y23 y14 y42 y33 y24 y15
y30 y13 y04 y23 y14 y05 y33 y24 y15 y06

































.

In the following, we review semidefinite relaxations of semi-algebraic sets. Con-
sider the semi-algebraic set

(2.3) S := {x ∈ R
n : g1(x) ≥ 0, . . . , gt(x) ≥ 0},

for polynomials g1, . . . , gt ∈ R[x]. Denote the degrees

(2.4) dj := ⌈deg(gj)/2⌉, d := max
j
dj .

For all k ≥ d and for all x ∈ S, we have

hj(x)
(

[x]k−dj

)(

[x]k−dj

)T
� 0, j = 1, . . . , t.

This implies that if y = [u]2k and u ∈ S, then

L(k)
gj

[y] � 0, j = 1, . . . , t.
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Clearly, [x]k[x]
T
k � 0 for all x ∈ R

n, so

Mk[y] � 0

for all y = [u]2k. So, S is always contained in the set

(2.5) Sk :=







x ∈ R
n

∣

∣

∣

∣

∣

∣

∃y ∈ R
N

n
2k , y0 = 1, Mk[y] � 0,

x = (ye1 , . . . , yen),

L
(k)
gj [y] � 0 (j = 0, 1, . . . , t)







,

for all k ≥ d. Each Sk is the projection of a set in R
N

n
2k that is defined by linear

matrix inequalities. It is a semidefinite relaxation of S, because S ⊆ Sk for all
k ≥ d. It holds the nested containment relation

(2.6) S ⊆ · · · ⊆ Sk+1 ⊆ Sk ⊆ · · · ⊆ Sd.

3. A complete semidefinite algorithm

We discuss how to detect copositivity of a given matrix or tensor. Since matrix
copositivity is a special case of tensor copositivity, we only discuss the detection of
copositive tensors.

For a symmetric tensor A ∈ Sm(Rn), let A(x) be the homogeneous polynomial
defined as in (1.2). Clearly, A is copositive if and only if A(x) ≥ 0 for all x belonging
to the standard simplex

∆ = {x ∈ R
n : eTx = 1, x ≥ 0}.

Consider the optimization problem

(3.1)

{

v∗ := min A(x)
s.t. eTx = 1, (x1, . . . , xn) ≥ 0.

Clearly, A is copositive if and only if the minimum value v∗ ≥ 0. Therefore,
testing the copositivity of A is the same as determining the sign of v∗. The (3.1)
is a polynomial optimization problem. A standard approach for solving it is to
apply classical Lasserre relaxations [31]. Since the feasible set is compact and
the archimedean condition holds, its asymptotic convergence is always guaranteed.
However, there are still some issues in computation:

• The convergence of classical Lasserre relaxations may be slow for some
tensors. Since the computational cost grows rapidly as the relaxation order
increases, people often want faster convergence in practice.

• For some tensors A, the sequence of classical Lasserre relaxations might fail
to have finite convergence. In other words, it may require to solve infinitely
many semidefinite relaxations, to detect copositivity. This is not ideal in
applications.

• Certifying convergence of Lasserre’s relaxations is a critical issue in detect-
ing copositivity. The flat extension or truncation condition is usually used
for the certifying [35]. However, it does not always hold, especially when
(3.1) has infinitely many minimizers. For such cases, certifying convergence
is mostly an open question.

In this section, we construct a new hierarchy of semidefinite relaxations that can
address the above issues.

Recently, as proposed in [38], there exist tight relaxations for solving polynomial
optimization, whose constructions are based on optimality conditions and Lagrange
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multiplier expressions. Assume u is an optimizer of (3.1). Then it satisfies the
following optimality conditions (the ∇ denotes the gradient):

(3.2)

{

∇A(u) = λ0e+
∑n

i=1 λiei,
λ1u1 = · · · = λnun = 0, λ1 ≥ 0, . . . , λn ≥ 0,

where λ0, λ1, . . . , λn are the Lagrange multipliers. By a simple algebraic computa-
tion (also see [38]), one can show that (note the identity xT∇A(x) = mA(x))

(3.3)

{

λ0 = uT∇A(u) = mA(u),

λi = ∂A(u)
∂xi

−mA(u) (i = 1, 2, . . . , n).

Because of the above expressions, we define new polynomials:

(3.4)

{

p0 := mA(x),

pi := ∂A(x)
∂xi

−mA(x) (i = 1, 2, . . . , n).

Since every optimizer u must satisfy (3.2) and the norm ‖u‖ ≤ 1, the optimization
problem (3.1) is equivalent to

(3.5)







min A(x)
s.t eTx− 1 = p1(x)x1 = · · · = pn(x)xn = 0,

1− ‖x‖2 ≥ 0, xi ≥ 0, pi(x) ≥ 0 (i = 1, . . . , n).

Then we apply Lasserre’s relaxations to solve (3.5). For the orders k = 1, 2, . . .,
solve the semidefinite relaxation problem

(3.6)



















vk := min 〈A(x), y〉

s.t L
(k)

eT x−1
[y] = 0, L

(k)
xipi [y] = 0 (i = 1, . . . , n),

L
(k)
1−‖x‖2 [y] � 0, L

(k)
xi [y] � 0, L

(k)
pi [y] � 0 (i = 1, . . . , n),

y0 = 1,Mk[y] � 0, y ∈ R
N

n
2k .

Note that v∗ is also the optimal value of (3.5). From the nested relation (2.6), the
feasible set of (3.5) is contained in the projection of that of (3.6), so the optimal
value vk of (3.6) satisfies

v1 ≤ v2 ≤ · · · ≤ v∗.

Clearly, if vk ≥ 0 for some k, then A is copositive. Combining the above, we can
get the following algorithm.

Algorithm 3.1. For a given tensor A ∈ Sm(Rn), let m0 := ⌈m/2⌉. We test its
copositivity by doing the following:

Step 0: Generate a generic vector ξ ∈ R
N

n
m . Let k := m0.

Step 1: Solve the semidefinite relaxation (3.6). If its optimal value vk ≥ 0, then A
is copositive and stop. If vk < 0, go to Step 2.

Step 2: Solve the following semidefinite program

(3.7)



















min 〈ξT [x]m, y〉

s.t L
(k)

eT x−1[y] = 0, L
(k)
xi [y] � 0, (i ∈ [n]),

L
(k)
1−‖x‖2 [y] � 0, L

(k)
vk−A(x)[y] � 0,

y0 = 1,Mk[y] � 0, y ∈ R
N

n
2k ,

for an optimizer ŷ if it is feasible. If it is infeasible, let k := k + 1 and go
to Step 1.

Step 3: Let u =
(

(ŷ)e1 , . . . , (ŷ)en
)

. If A(u) < 0, then A is not copositive and stop;
otherwise, let k := k + 1 and go to Step 1.
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In Step 2, the copositivity of A is justified by the relationship v∗ ≥ vk, for all
k ≥ m0. In Step 3, the point u must satisfy the constraint in (3.1). This is because

of the constraints L
(k)

eT x−1
[y] = 0 and L

(k)
xi [y] � 0. In the following, we show that

Algorithm 3.1 must terminate within finitely many iterations, for all tensors A. In
other words, the copositivity of every A can be detected correctly by solving finitely
many semidefinite relaxations. These properties are summarized as follows.

Theorem 3.2. For all symmetric tensors A ∈ Sm(Rn), Algorithm 3.1 has the
following properties:

(i) For all k ≥ m0, the semidefinite relaxation (3.6) is feasible and achieve its
optimal value vk; moreover, vk = v∗ for all k sufficiently large.

(ii) For all k ≥ m0, the semidefinite program (3.7) has an optimizer if it is
feasible.

(iii) If A is copositive, then Algorithm 3.1 must stop with vk ≥ 0, when k is
sufficiently large.

(iv) If A is not copositive, then, for almost all ξ ∈ R
N

n
m , Algorithm 3.1 must

stop with f(u) < 0 and u ∈ ∆, when k is sufficiently large.

Proof. (i) The feasible set of (3.1) is compact, so it must have a minimizer, say,
u∗. Then, u∗ satisfies (3.2), and hence u∗ is a feasible point for (3.5). So, the
feasible set of (3.5) is nonempty. This implies that the semidefinite relaxation (3.6)

is always feasible. By the constraint L
(k)
1−‖x‖2 [y] � 0, we can show that the feasible

set of (3.6) is compact, as follows. First, we can see that

1 = y0 ≥ y2e1 + · · ·+ y2en .

So, 0 ≤ y2ei ≤ 1 since each y2ei ≥ 0 (because Mk[y] � 0). Second, for all 0 < |α| ≤

k − 1, the (α, α)th diagonal entry of L
(k)
1−‖x‖2 [y] is nonnegative, so

(3.8) y2α ≥ y2α+2e1 + · · ·+ y2α+2en .

By choosing α = e1, . . . , en, the same argument can show that 0 ≤ y2β ≤ 1 for all
|β| ≤ 2. By repeatedly applying (3.8), one can further get that 0 ≤ y2β ≤ 1 for
all |β| ≤ k. Third, note that the diagonal entries of Mk[y] are precisely y2β with
|β| ≤ k. Since Mk[y] � 0, all the entries of Mk[y] must be between −1 and 1. This
means that y is bounded, hence the feasible set of (3.6) is compact. Therefore, (3.6)
must achieve its optimal value vk. To prove vl = v∗ for all k sufficiently large, note
that (3.5) is the same as the optimization

(3.9)







min A(x)
s.t eTx− 1 = p1(x)x1 = · · · = pn(x)xn = 0,

xi ≥ 0, pi(x) ≥ 0, i = 1, . . . , n.

Its corresponding Lasserre’s relaxations are

(3.10)



















v′k := min 〈A(x), y〉

s.t L
(k)

eT x−1
[y] = 0, L

(k)
xipi [y] = 0 (1 ≤ i ≤ n),

L
(k)
xi [y] � 0, L

(k)
pi [y] � 0 (1 ≤ i ≤ n),

y0 = 1,Mk[y] � 0, y ∈ R
N

n
2k ,

for the orders k = 1, 2, . . .. The optimal value of (3.9) is also v∗. The feasible set
of (3.6) is contained in that of (3.10), so

(3.11) v′k ≤ vk ≤ v∗, k = m0,m0 + 1, . . . .
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Next, we show that the set of polynomials

F :=







(1 − eTx)φ+
n
∑

j=1

xj
(

∑

ℓ

s2j,ℓ
)

: φ ∈ R[x], sj,ℓ ∈ R[x]







is archimedean, i.e., there exists f ∈ F such that the inequality f(x) ≥ 0 defines a
compact set in R

n. This is true for f = 1− ‖x‖2, because of the identity

(3.12) 1− ‖x‖2 = (1 − eTx)(1 + ‖x‖2) +
n
∑

i=1

xi(1− xi)
2 +

∑

i6=j

x2i xj .

By Theorem 3.3 of [38], we know that v′k = v∗ when k is sufficiently large. Hence,
the relation (3.11) implies that vk = v∗ for all k sufficiently large.

(ii) The semidefinite program (3.7) also has the constraint L
(k)
1−‖x‖2 [y] � 0. By

the same argument as in (i), we know that the feasible set of (3.7) is compact. So,
it must have an optimizer if it is feasible.

(iii) Clearly, A is copositive if and only if v∗ ≥ 0. By the item (i), vk = v∗ for
all k big enough. Therefore, if A is copositive, we must have vk ≥ 0 for all k large
enough.

(iv) If A is not copositive, then v∗ < 0. By the item (i), there exists k1 ∈ N such
that vk = v∗ for all k ≥ k1. Hence, for all k ≥ k1, (3.7) is the same as

(3.13)



















min 〈ξT [x]m, y〉

s.t L
(k)
eT x−1[y] = 0, L

(k)
xi [y] � 0, (i ∈ [n]),

L
(k)
1−‖x‖2 [y] � 0, L

(k)
v∗−A(x)[y] � 0,

(y)0 = 1,Mk[y] � 0, y ∈ R
N

n
2k .

It is the kth Lasserr’s relaxation for the polynomial optimization

(3.14)

{

min ξT [x]m
s.t eTx− 1 = 0, x ≥ 0, v∗ −A(x) ≥ 0.

The feasible set of (3.14) is clearly compact. When ξ is generically chosen in R
N

n
m ,

(3.14) has a unique optimizer, say, u∗. Hence, for almost all ξ ∈ R
N

n
m , u∗ is the

unique optimizer. For notation convenience, denote by ŷk the optimizer of (3.7)
with the relaxation order k. Let uk =

(

(ŷk)e1 , . . . , (ŷ
k)en

)

. By Corollary 3.5 of [46]

or Theorem 3.3 of [35], the sequence {uk}∞k=m0
must converge to u∗, the unique

optimizer of (3.14). Since A(u∗) ≤ v∗ < 0, we must have A(uk) < 0 when k is

sufficiently large. Moreover, the constraints L
(k)
xi [y] � 0 imply that uk ≥ 0, and

L
(k)

eT x−1
[y] = 0 implies that eTuk = 1. Therefore, uk ∈ ∆. �

Remark 3.3. In Step 1 of Algorithm 3.1, we need to test whether or not vk ≥ 0.
When the absolute value of vk is big, this testing is very easy. However, if its
absolute value is very small, then testing the sign might be difficult. Note that
the semidefinite relaxation (3.6) is solved numerically, i.e., vk is accurate up to
a tiny round-off error. This difficulty is not because of theoretical properties of
Algorithm 3.1, but due to round-off errors, which occur in all numerical methods.
In practice, if vk is positive or close to zero (say, vk > −10−6), then it is reasonably
well to claim that A is copositive.
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4. Numerical Experiments

This section presents numerical experiments of applying Algorithm 3.1 to de-
tect matrix and tensor copositivity. The computation is implemented in MATLAB
R2016b, on a Lenovo Laptop with CPU@2.90GHz and RAM 16.0G. Algorithm 3.1
can be implemented by using the software Gloptipoly 3 [23], which calls the semi-
definite program solver SeDuMi [48]. For convenience of presentation, we only dis-
play 4 decimal digits. Consumed time in computation is reported in seconds (s).
Recall that vk is the optimal value of (3.6). We refer to Remark 3.3 for how to test
the sign condition vk ≥ 0.

First, we see some copositive matrices that is not a sum of psd and nonnegative
matrices.

Example 4.1. Consider the Horn matrix [22]

(4.1) H :=













1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1













.

It is known that H is copsoitive but is not a sum of psd and nonnegative matrices.
We apply Algorithm 3.1 to test its copositivity. The lower bounds vk are shown in
Table 1.

Table 1. Comp. results for the matrix in Example 4.1

k 1 2 3
vk −0.7889 −0.0472 −7.0× 10−8

time(s) 0.59 0.35 1.68

For k = 3, we can conclude the copositivity of H , up to a tiny round-off error.

Example 4.2. Consider the Hoffman-Pereira matrix

(4.2) P :=





















1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1
1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1

−1 1 0 0 1 −1 1





















.

Like the Horn matrix, P is also copositive but not a sum of psd and nonnegative
matrices [26]. The computational results by Algorithm 3.1 are shown in Table 2.

Table 2. Comp. results for the matrix in Example 4.2

k 1 2 3
vk −0.4503 −0.0250 −2.2× 10−7

time(s) 0.58 0.60 24.85



10 JIAWANG NIE, ZI YANG, AND XINZHEN ZHANG

The copositivity of P is detected when k = 3, up to a tiny round-off error.

Example 4.3. Consider the matrix B that is given as












1 − cosψ4 cos(ψ4 + ψ5) cos(ψ2 + ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ1 + ψ5) cos(ψ3 + ψ4)
cos(ψ4 + ψ5) − cosψ5 1 − cosψ1 cos(ψ1 + ψ2)
cos(ψ2 + ψ3) cos(ψ1 + ψ5) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3 + ψ4) cos(ψ1 + ψ2) − cosψ2 1













,

where each ψi ≥ 0 and
∑5

i=1 ψi < π. The matrix B gives an extreme ray of the
cone COPn but is not a sum of psd and nonnegative matrices [24]. For convenience,
we test its copositivity for the case

ψ1 = ψ2 = ψ3 = ψ4 = ψ5 = π/6.

By Algorithm 3.1, we get the computational results in Table 3.

Table 3. Comp. results for the matrix in Example 4.3

k 1 2 3
vk −0.2218 −0.0153 −1.2× 10−8

time(s) 0.61 0.32 1.11

The copositivity is detected for k = 3, up to a tiny round-off error.

Next, we see a matrix that is not copositive.

Example 4.4. Consider the following matrix

(4.3) A :=













1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 0.99













.

It is obtained from the Horn matrix, by subtracting 0.01 from the (5, 5)-entry. We
apply Algorithm 3.1 to test copositivity. It terminates at k = 3, with the point

u = (0.4474, 0.0000, 0.0000, 0.0513, 0.5012)

that refutes the copositivity, because uTAu ≈ −0.0025 < 0.

Example 4.5. We consider three tensors A ∈ S3(R3) whose polynomials A(x) are
respectively given as

(4.4)















Motzkin: A(x) := x21x2 + x1x
2
2 + x33 − 3x1x2x3,

Robinson: A(x) := x31 + x32 + x33 − x21x2 − x1x
2
2 − x21x3

−x1x23 − x22x3 − x2x
2
3 + 3x1x2x3,

Choi-Lam: A(x) := x21x2 + x22x3 + x23x1 − 3x1x2x3.

When each xi is replaced by x2i , the polynomials A(x) are respectively the Motzkin,
Robinson and Choi-Lam polynomials (they are all nonnegative but not sum of
squares [41]). Hence, these tensors are all copositive. We detect their copositivity
by Algorithm 3.1.

The computational results are shown in Table 4. For all these tensors, the
copositivity is confirmed for k = 3, up to tiny round-off errors.
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Table 4. Comp. results for the tensors in Example 4.5

A(x) Motzkin Robinson Choi-Lam
k vk time(s) vk time(s) vk time(s)
2 −0.0045 0.78 −0.0208 0.76 −0.0129 0.77
3 −4.3× 10−8 0.45 −4.9× 10−8 0.23 −2.1× 10−8 0.37

Example 4.6. Consider the tensor A ∈ S4(R4) that is given as

A1111 = 1, A1112 = 1, A1113 = 1, A1114 = 1, A1122 = 1, A1123 = 1, A1124 = 1,

A1133 = 1, A1134 = 1, A1144 = 1, A1222 = 1, A1223 = −3, A1224 = 1, A1233 = 1,

A1234 = −3, A1244 = 1, A1333 = 1, A1334 = 1, A1344 = 1, A1444 = 1, A2222 = 1,

A2223 = 1, A2224 = 1, A2233 = 1, A2234 = 1, A2244 = 1, A2333 = 1, A2334 = −3,

A2344 = 1, A2444 = 1, A3333 = 1, A3334 = 1, A3344 = 1, A3444 = 1, A4444 = 1.

One can verify that

A(x) = (x1 + x2 + x3 + x4)
4 − 16(x1x2 + x2x3 + x3x4)

2.

This tensor is copositive, because A(x) has the factorization
(

(x1 − x2 + x3 − x4)
2 + 4x1x4

)

·
(

(x1 + x2 + x3 + x4)
2 + 4(x1x2 + x2x3 + x3x4)

)

.

For k = 2, we get v2 ≈ −0.3862; it took about 0.8 second. For k = 3, we get
v3 ≈ −1.4× 10−7. It took about 0.6 second. The copositivity is detected at k = 3,
up to a round-off error.

Example 4.7. Copositive matrices have important applications in graph theory.
For a graph G, the maximum size of its complete subgraph is called the clique
number of G, denotes γ(G). Let A be the adjacency matrix of G and E be the
matrix of all ones. It can be shown that [12]

(4.5) γ(G) = min{λ : λ(E −A)− E is copositive}.

Therefore, we can determine the clique number of a graph by checking copositivity.
For instance, consider the graph G with the following adjacency matrix

(4.6) A =

























0 1 0 1 1 0 0 1
1 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0
1 0 0 1 0 1 1 1
0 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1
1 1 0 0 1 1 1 0

























.

One can check that its clique number γ(G) = 3, so the matrix B := 3(E −A)− E
is copositive. We apply Algorithm 3.1 to detect the copositivity. For k = 1,
v1 ≈ −1.7039; it took about 0.6 second. For k = 2, v2 ≈ −1.6×10−7; it took about
1.6 seconds. The copositivity is detected when k = 2.
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Example 4.8. Consider the tensor A ∈ S3(R5) given such that

A(:, :, 1) =













1 1 0 1 1
1 1 0 0 1
0 0 0 0 0
1 0 0 0 0
1 1 0 0 1













, A(:, :, 2) =













1 1 0 0 1
1 0 0 0 1
0 0 1 0 0
0 0 0 0 1
1 1 0 1 0













,

A(:, :, 3) =













0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 1 0













, A(:, :, 4) =













1 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 1 1 0 0













,

A(:, :, 5) =













1 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 1 1 0 0













.

The tensor A is clearly copositive, since its entries are nonnegative. We consider
the new tensor of the form

H = ρ(I +A)− E ,

with ρ a parameter. Here, E is the tensor of all ones, and I is the tensor such that
Iijk = 1 if i = j = k and Iijk = 0 otherwise. The copositivity of tensors like H
is important in estimating coclique numbers of hypergraphs [10]. For a range of
values of the parameter ρ, the computational results are shown in Table 5.

Table 5. Comp. results for the matrix in Example 4.8

ρ v2 time(s) copositivity
4.400 1.1× 10−2 0.15 yes
4.353 3.2× 10−4 0.15 yes
4.352 9.8× 10−5 0.18 yes
4.351 −1.3× 10−4 0.16 no
4.350 −3.6× 10−4 0.16 no
4.300 −1.1× 10−2 0.15 no

In all the computation, the order k = 2 is enough for detecting copositivity. Because
of the monotonicity of H in ρ, we can also conclude that H is copositive for ρ ≥ 4.4
and not copositive for ρ ≤ 4.3.

5. Conclusions and discussions

This paper gives a complete semidefinite algorithm for detecting copositive of
matrices and tensors. If the matrix or tensor A is copositive, we can get a certificate
for that, i.e., a nonnegative lower bound for the optimal value v∗ of (3.1). If it is
not copositive, we can get a point that refutes the copositivity, i.e., a point u ∈ ∆
such that A(u) < 0. For all A, the copositivity can be detected by solving a finite
number of semidefinite relaxations. This property is shown in Theorem 3.2.
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Completely positive tensors and matrices. A symmetric tensor A ∈ Sm(Rn)
is completely positive if there exists vectors u1, . . . , ur ∈ R

n
+ such that

A = (u1)
⊗m + · · ·+ (ur)

⊗m.

When the orderm = 2, this gives the definition of completely positive matrices. We
denote by CPn the cone of n-by-n completely positive matrices, and CPm,n the cone
of completely positive tensors in Sm(Rn). The cone CPn is dual to COPn and CPm,n

is dual to COPm,n, under the standard Frobenius norm product. The problem of
checking whether or not a matrix is completely positive is NP-hard [16]. This is
also true for detecting completely positive tensors. We refer to [4, 14, 36, 47] for
recent work on completely positive matrices, and refer to [20, 32, 40] for completely
positive tensors. A survey can be found in [2, 3].

Copositive programming. A basic linear copositive optimization problem is

(5.1)







min trace(CX)
s.t. trace(AiX) = bi (i = 1, . . . , ℓ),

X ∈ COPn,

where A1, . . . , Aℓ, C are given n-by-n symmetric matrices and b1, . . . , bℓ are given
reals. The dual optimization problem of (5.1) is

(5.2)

{

max
∑ℓ

i=1 biyi
s.t. C −

∑ℓ

i=1 yiAi ∈ CPn.

When there is no objective in (5.1) (resp., (5.2)), it is reduced to a feasibility
problem about copositive (resp., completely positive) under linear constraints. We
refer to [5, 18] for surveys in the area. The linear conic optimization about the
copositive (or completely positive) cone is a special case of linear optimization with
moment (or nonnegative polynomial) conic constraints, which was discussed in [37].

Comparison with classical Lasserre relaxations. A symmetric tensor (or ma-
trix) A is copositive if and only if the optimal value v∗ of (3.1) is greater than or
equal to zero. Note that (3.1) is a polynomial optimization problem. The classical
Lasserre’s hierarchy of semidefinite relaxations [31] can be applied to solve it. For
a relaxation order k, the Lasserre relaxation for solving (3.1) is

(5.3)



















min 〈A(x), y〉

s.t L
(k)

eT x−1
[y] = 0, L

(k)
1−x′x[y] � 0

L
(k)
xi [y] � 0 (1 ≤ i ≤ n),

y0 = 1,Mk[y] � 0, y ∈ R
N

n
2k .

Let νk be the optimal value of (5.3). Since the feasible set is compact and the
archimedean condition holds, one can also show that νk → v∗ as k → ∞. However,
compared with the relaxation (3.6) used by Algorithm 3.1, (5.3) is weaker. This is
because the feasible set of (3.6) is contained in that of (5.3). So, νk ≤ vk ≤ v∗ for all
relaxation orders k. Here, we give an example of comparing the lower bounds νk, vk.
Consider the tensor in Example 4.6. The computational results are compared in
Table 6. The optimal value v∗ = 0. For k = 2, vk = νk; but for k = 3, 4, 5, vk ≫ νk.
Indeed, Algorithm 3.1 terminates at k = 3, and the coposivity is detected. As a
comparison, the convergence of νk to v∗ is slower.
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Table 6. A comparision of relaxations (3.6) and (5.3) for the
tensor in Example 4.6.

k
relaxation (3.6) relaxation (5.3)

time vk time νk
2 0.8306 −0.3862 0.2274 −0.3862
3 0.5528 −1.4× 10−7 0.4428 −0.0010
4 1.5565 −3.0× 10−7 1.8834 −0.0002
5 8.0350 −3.7× 10−7 10.8022 −0.0001

Comparison with other algorithms based on simplicial partition. There
also exists algorithms for detecting copositivity based on simplitical partition, such
as the work [7, 11, 45]. Typically, when a matrix or tensor lies in the interior of
the copositive cone, the copositivity can be detected by this type of algorithms.
However, if it lies on the boundary of copositive cone, these algorithms usually
have difficulty in the detection. For instance, when these methods are applied for
the Hoffman-Pereira matrix in Example 4.2 and the Motzkin tensor in Example 4.5,
they cannot detect the copositivity after 10000 iterations. However, in the contrast,
our Algorithm 3.1 can detect the copositivity for them in 2 or 3 iterations. An
advantage of our method is that Algorithm 3.1 can determine whether or not a
matrix/tensor is copositive within finitely many iterations, no matter it lies in the
interior, exterior or boundary of the copositive cone. This property is proved in
Theorem 3.2.
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