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Abstract

A homomorphism from a graph G to a graph H is a function from the vertices of G to
the vertices of H that preserves edges. A homomorphism is surjective if it uses all of the
vertices of H and it is a compaction if it uses all of the vertices of H and all of the non-
loop edges of H . Hell and Nešetřil gave a complete characterisation of the complexity of
deciding whether there is a homomorphism from an input graph G to a fixed graph H . A
complete characterisation is not known for surjective homomorphisms or for compactions,
though there are many interesting results. Dyer and Greenhill gave a complete char-
acterisation of the complexity of counting homomorphisms from an input graph G to a
fixed graph H . In this paper, we give a complete characterisation of the complexity of
counting surjective homomorphisms from an input graph G to a fixed graph H and we
also give a complete characterisation of the complexity of counting compactions from an
input graph G to a fixed graph H . In an addendum we use our characterisations to point
out a dichotomy for the complexity of the respective approximate counting problems (in
the connected case).

1 Introduction

A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that
preserves edges. That is, the function maps every edge of G to an edge of H. Many structures
in graphs, such as proper colourings, independent sets, and generalisations of these, can be
represented as homomorphisms, so the study of graph homomorphisms has a long history in
combinatorics [2, 4, 20, 21, 24, 26].

Much of the work on this problem is algorithmic in nature. A very important early work
is Hell and Nešetřil’s paper [22], which gives a complete characterisation of the complexity of
the following decision problem, parameterised by a fixed graph H: “Given an input graph G,
determine whether there is a homomorphism from G to H.” Hell and Nešetřil showed that
this problem can be solved in polynomial time if H has a loop or is loop-free and bipartite.

∗To appear in SIDMA. A short version of this paper (without the proofs) appeared in the proceedings
of SODA 2018 [14]. The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement
no. 334828 and under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No 714532). Jacob Focke has received funding from the Engineering and Physical Sciences Research Council
(grant ref: EP/M508111/1). Stanislav Živný was supported by a Royal Society University Research Fellowship.
The paper reflects only the authors’ views and not the views of the ERC or the European Commission. The
European Union is not liable for any use that may be made of the information contained therein.
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They showed that it is NP-complete otherwise. An important generalisation of the homo-
morphism decision problem is the list-homomorphism decision problem. Here, in addition to
the graph G, the input specifies, for each vertex v of G, a list Sv of permissible vertices of H.
The problem is to determine whether there is a homomorphism from G to H that maps each
vertex v of G to a vertex in Sv. Feder, Hell and Huang [12] gave a complete characterisation
of the complexity of this problem. This problem can be solved in polynomial time if H is a
so-called bi-arc graph, and it is NP-complete otherwise.

More recent work has restricted attention to homomorphisms with certain properties. A
function from V (G) to V (H) is surjective if every element of V (H) is the image of at least
one element of V (G). So a homomorphism from G to H is surjective if every vertex of H is
“used” by the homomorphism. There is still no complete characterisation of the complexity of
determining whether there is a surjective homomorphism from an input graph G to a graphH,
despite an impressive collection of results [1, 17, 18, 19, 27]. A homomorphism from V (G)
to V (H) is a compaction if it uses every vertex of H and also every non-loop edge of H (so
it is surjective both on V (H) and on the non-loop edges in E(H)). Compactions have been
studied under the name “homomorphic image” [20, 24] and even under the name “surjective
homomorphism” [6, 26]. Once again, despite much work [1, 30, 31, 32, 33, 34], there is still
no characterisation of the complexity of determining whether there is a compaction from an
input graph G to a graph H.

Dyer and Greenhill [10] initiated the algorithmic study of counting homomorphisms. They
gave a complete characterisation of the graph homomorphism counting problem, parame-
terised by a fixed graph H: “Given an input graph G, determine how many homomorphisms
there are from G to H.” Dyer and Greenhill showed that this problem can be solved in poly-
nomial time if every component of H is a clique with all loops present or a biclique (complete
bipartite graph) with no loops present. Otherwise, the counting problem is #P-complete.
Dı́az, Serna and Thilikos [8] and Hell and Nešetřil [23] have shown that the same dichotomy
characterisation holds for the problem of counting list homomorphisms.

The main contribution of this paper is to give complete dichotomy characterisations for
the problems of counting compactions and surjective homomorphisms. Our main theorem,
Theorem 2, shows that the characterisation for compactions is different from the character-
isation for counting homomorphisms. If every component of H is (i) a star with no loops
present, (ii) a single vertex with a loop, or (iii) a single edge with two loops then counting
compactions to H is solvable in polynomial time. Otherwise, it is #P-complete. We also
obtain the same dichotomy for the problem of counting list compactions. Thus, even though
the decision problem is still open for compactions, our theorem gives a complete classification
of the complexity of the corresponding counting problem.

There is evidence that computational problems involving surjective homomorphisms are
more difficult than those involving (unrestricted) homomorphisms. For example, suppose
that H consists of a 3-vertex clique with no loops together with a single looped vertex. As [1]
noted, the problem of deciding whether there is a homomorphism from a loop-free input
graph G to H is trivial (the answer is yes, since all vertices of G may be mapped to the loop)
but the problem of determining whether there is a surjective homomorphism from a loop-free
input graph G to H is NP-complete. (To see this, recall the NP-hard problem of determining
whether a connected loop-free graph G′ that is not bipartite is 3-colourable. Given such a
graph G′, we may determine whether it is 3-colourable by letting G consist of the disjoint
union of G′ and a loop-free clique of size 4, and then checking whether there is a surjective
homomorphism from G to H.) There is also evidence that counting problems involving sur-
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jective homomorphisms are more difficult than those involving unrestricted homomorphisms.
In Section 4.3 we consider a uniform homomorphism-counting problem where all connected
components of G are cliques without loops and all connected components of H are cliques
with loops, but both G and H are part of the input. It turns out (Theorem 31) that in this
uniform case, counting homomorphisms is in FP but counting surjective homomorphisms is
#P-complete. Despite this evidence, we show (Theorem 3) that the problem of counting sur-
jective homomorphisms to a fixed graph H has the same complexity characterisation as the
problem of counting all homomorphisms to H: The problem is solvable in polynomial time
if every component of H is a clique with loops or a biclique without loops. Otherwise, it is
#P-complete. Once again, our dichotomy characterisation extends to the problem of counting
surjective list homomorphisms. Even though the decision problem is still open for surjective
homomorphisms, our theorem gives a complete complexity classification of the corresponding
counting problem.

In Section 1.2 we will introduce one more related counting problem — the problem of
counting retractions. Informally, if G is a graph containing an induced copy of H then a
retraction from G to H is a homomorphism from G to H that maps the induced copy to itself.
Retractions are well-studied in combinatorics, often from an algorithmic perspective [1, 11,
12, 13, 31, 33]. A complexity classification is not known for the decision problem (determining
whether there is a retraction from an input to H). Nevertheless, it is easy to give a complexity
characterisation for the corresponding counting problem (Corollary 7). This characterisation,
together with our main results, implies that a long-standing conjecture of Winkler about the
complexity of the decision problems for compactions and retractions is false in the counting
setting. See Section 1.2 for details.

Finally, in an addendum to this work, we address the relaxed versions of the counting
problems where the goal is to approximately count surjective homomorphisms, compactions
and retractions. We use our theorems to give a complexity dichotomy in the connected case
for all three of these problems.

1.1 Notation and Theorem Statements

In this paper graphs are undirected and may contain loops. A homomorphism from a graph G
to a graph H is a function h : V (G) → V (H) such that, for all {u, v} ∈ E(G), the image
{h(u), h(v)} is in E(H). We use N

(
G→ H

)
to denote the number of homomorphisms from G

to H. A homomorphism h is said to “use” a vertex v ∈ V (H) if there is a vertex u ∈ V (G)
such that h(u) = v. It is surjective if it uses every vertex of H. We use N sur

(
G→ H

)
to

denote the number of surjective homomorphisms from G to H. A homomorphism h is said
to use an edge {v1, v2} ∈ E(H) if there is an edge {u1, u2} ∈ E(G) such that h(u1) = v1 and
h(u2) = v2. It is a compaction if it uses every vertex of H and every non-loop edge of H.
We use N comp

(
G→ H

)
to denote the number of compactions from G to H. H is said to be

reflexive if every vertex has a loop. It is said to be irreflexive if no vertex has a loop. We
study the following computational problems1, which are parameterised by a graph H.

1The reason that the input graph G is restricted to be irreflexive in these problems, but that H is not
restricted, is that this is the convention in the literature. Since our results will be complexity classifications,
parameterised by H , we strengthen the results by avoiding restrictions on H . Different conventions are possible
regarding G, but hardness results are typically the most difficult part of the complexity classifications in this
area, so restricting G leads to technically-stronger results.
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Name: #Hom(H). Name: #Comp(H). Name: #SHom(H).
Input: Irreflexive graph G. Input: Irreflexive graph G. Input: Irreflexive graph G.
Output: N

(
G→ H

)
. Output: N comp

(
G→ H

)
. Output: N sur

(
G→ H

)
.

A list homomorphism generalises a homomorphism in the same way that a list colouring
of a graph generalises a (proper) colouring. Suppose that G is an irreflexive graph and
that H is a graph. Consider a collection of sets S = {Sv ⊆ V (H) : v ∈ V (G)} A list
homomorphism from (G,S) to H is a homomorphism h from G to H such that, for every
vertex v of G, h(v) ∈ Sv. The set Sv is referred to as a “list”, specifying the allowable targets
of vertex v. We use N

(
(G,S) → H

)
to denote the number of list homomorphisms from (G,S)

to H, N sur
(
(G,S) → H

)
to denote the number of surjective list homomorphisms from (G,S)

to H and N comp
(
(G,S) → H

)
to denote the number of list homomorphisms from (G,S) to H

that are compactions. We study the following additional computational problems, again
parameterised by a graph H.

Name: #LHom(H). Name: #LComp(H). Name: #LSHom(H).
Input: Irreflexive graph G Input: Irreflexive graph G Input: Irreflexive graph G
and a collection of lists and a collection of lists and a collection of lists
S = {Sv ⊆ V (H) : v ∈ V (G)}. S = {Sv ⊆ V (H) : v ∈ V (G)}. S = {Sv ⊆ V (H) : v ∈ V (G)}.
Output: N

(
(G,S) → H

)
. Output: N comp

(
(G,S) → H

)
. Output: N sur

(
(G,S) → H

)
.

In order to state our theorems, we define some classes of graphs. A graph H is a clique if,
for every pair (u, v) of distinct vertices, E(H) contains the edge {u, v}. (Like other graphs,
cliques may contain loops but not all loops need to be present.) H is a biclique if it is bipartite
(disregarding any loops) and there is a partition of V (H) into two disjoint sets U and V such
that, for every u ∈ U and v ∈ V , E(H) contains the edge {u, v}. A biclique is a star if |U | = 1
or |V | = 1 (or both). Note that a star may have only one vertex since, for example, we could
have |U | = 1 and |V | = 0. We sometimes use the notation Ka,b to denote an irreflexive
biclique whose vertices can be partitioned into U and V with |U | = a and |V | = b. The size
of a graph is the number of vertices that it has. We can now state the theorem of Dyer and
Greenhill [10], as extended to list homomorphisms by Dı́az, Serna and Thilikos [8] and Hell
and Nešetřil [23].

Theorem 1 (Dyer, Greenhill). Let H be a graph. If every connected component of H is a
reflexive clique or an irreflexive biclique, then #Hom(H) and #LHom(H) are in FP. Other-
wise, #Hom(H) and #LHom(H) are #P-complete.

We can also state the main results of this paper.

Theorem 2. Let H be a graph. If every connected component of H is an irreflexive star or
a reflexive clique of size at most 2 then #Comp(H) and #LComp(H) are in FP. Otherwise,
#Comp(H) and #LComp(H) are #P-complete.

Theorem 3. Let H be a graph. If every connected component of H is a reflexive clique or an
irreflexive biclique, then #SHom(H) and #LSHom(H) are in FP. Otherwise, #SHom(H)
and #LSHom(H) are #P-complete.

The tractability results in Theorem 2 follow from the fact that the number of compactions
from a graph G to a graph H can be expressed as a linear combination of the number of
homomorphisms from G to certain subgraphs of H, see Section 3.1. A proof sketch of the
intractability result in Theorem 2 is given at the beginning of Section 3.2. Theorem 3 is
simpler, see Section 4.
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1.2 Reductions and Retractions

In the context of two computational problems P1 and P2, we write P1 ≤ P2 if there exists
a polynomial-time Turing reduction from P1 to P2. If there exist such reductions in both
directions, we write P1 ≡ P2. Theorems 1, 2 and 3 imply the following observation.

Observation 4. Let H be a graph. Then

#Hom(H) ≡ #LHom(H) ≡ #SHom(H) ≡ #LSHom(H) ≤ #Comp(H) ≡ #LComp(H).

In order to see how Observation 4 contrasts with the situation concerning decision prob-
lems, it is useful to define decision versions of the computational problems that we study.
Thus, Hom(H) is the problem of determining whether N

(
G→ H

)
= 0, given an input G

of #Hom(H). The decision problems Comp(H), SHom(H) and LHom(H) are defined simi-
larly.

It is also useful to define the notion of a retraction. Suppose that H is a graph with
V (H) = {v1, . . . , vc} and that G is an irreflexive graph. We say that a tuple (u1, . . . , uc) of c
distinct vertices of G induces a copy of H if, for every 1 ≤ a < b ≤ c, {ua, ub} ∈ E(G) ⇐⇒
{va, vb} ∈ E(H). A retraction from (G;u1, . . . , uc) to H is a homomorphism h from G to H
such that, for all i ∈ [c], h(ui) = vi. We use N ret

(
(G;u1, . . . , uc) → H

)
to denote the number

of retractions from (G;u1, . . . , uc) to H. We briefly consider the retraction counting and
decision problems, which are parameterised by a graph H with V (H) = {v1, . . . , vc}.

2

Name: #Ret(H). Name: Ret(H).
Input: Irreflexive graph G and a tuple Input: Irreflexive graph G and a tuple
(u1, . . . , uc) of distinct vertices of G (u1, . . . , uc) of distinct vertices of G
that induces a copy of H. that induces a copy of H.
Output: N ret

(
(G;u1, . . . , uc) → H

)
. Output: Does N ret

(
(G;u1, . . . , uc) → H

)
= 0?

The following observation appears as Proposition 1 of [1]. The proposition is stated for
more general structures than graphs, but it applies equally to our setting.

Proposition 5 (Bodirsky et al.). Let H be a graph. Then

Hom(H) ≤ SHom(H) ≤ Comp(H) ≤ Ret(H) ≤ LHom(H).

We have already mentioned the fact (pointed out by Bodirsky et al.) that if H is an
irreflexive 3-vertex clique together with a single looped vertex, then Hom(H) is in P, but
SHom(H) is NP-complete. There are no known graphs H separating SHom(H), Comp(H)
and Ret(H). Moreover, Bodirsky et al. mention a conjecture [1, Conjecture 2], attributed
to Peter Winkler, that, for all graphs H, Comp(H) and Ret(H) are polynomially Turing
equivalent.

The following observation, together with our theorems, implies Corollary 8 (below), which
shows that the generalisation of Winkler’s conjecture to the counting setting is false unless
FP = #P, since #Comp(H) and #Ret(H) are not polynomially Turing equivalent for all H.

Observation 6. Let H be a graph. Then #Ret(H) ≤ #LHom(H) and #Hom(H) ≤ #Ret(H)

2Once again, some works would allow G to have loops, and would insist that loops are preserved in the
induced copy of H . We prefer to stick with the convention that G is irreflexive, but this does not make a
difference to the complexity classifications that we describe.
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Proof. Let V (H) = {v1, . . . , vc}. We first reduce #Ret(H) to #LHom(H). Consider an input
to #Ret(H) consisting of G and (u1, . . . , uc). For each a ∈ [c], let Sua be the set containing the
single vertex va. For each v ∈ V (G) \{u1, . . . , uc}, let Sv = V (H). Let S = {Sv : v ∈ V (G)}.
Then N ret

(
(G;u1, . . . , uc) → H

)
= N

(
(G,S) → H

)
.

We next reduce #Hom(H) to #Ret(H). Let E0 be the set of all non-loop edges ofH. Con-
sider an input G to #Hom(H). Suppose without loss of generality that V (G) is disjoint from
V (H) = {v1, . . . , vc}. LetG

′ be the graph with vertex set V (G)∪V (H) and edge set E(G)∪E0.
Then (v1, . . . , vc) induces a copy ofH in G′ andN

(
G→ H

)
= N ret

(
(G′; v1, . . . , vc) → H

)
.

Observation 6 immediately implies the following dichotomy characterisation for the prob-
lem of counting retractions.

Corollary 7. Let H be a graph. If every connected component of H is a reflexive clique or
an irreflexive biclique, then #Ret(H) is in FP. Otherwise, #Ret(H) is #P-complete.

Proof. The corollary follows immediately from Observation 6 and Theorem 1.

Corollary 8. Let H be a graph. Then

#Hom(H) ≡ #LHom(H) ≡ #SHom(H) ≡ #LSHom(H) ≡ #Ret(H) ≤ #Comp(H) ≡ #LComp(H).

Furthermore, there is a graph H for which #Comp(H) and #LComp(H) are #P-complete,
but #Hom(H), #LHom(H), #SHom(H), #LSHom(H) and #Ret(H) are in FP.

Proof. Theorems 1, 2, 3 and Corollary 7 give complexity classifications for all of the problems.
The reductions in the corollary follow from three easy observations.

• All problems in FP are trivially inter-reducible.

• All #P-complete problems are inter-reducible.

• All problems in FP are reducible to all #P-complete problems.

The separating graph H can be taken to be any reflexive clique of size at least 3 or any
irreflexive biclique that is not a star.

1.3 Related Work

This section was added after the announcement of our results (https://arxiv.org/abs/1706.08786v1),
in order to draw attention to some interesting subsequent work [7, 5].

Both our tractability results and our hardness results rely on the fact (see Theorem 17)
that the number of compactions from G to H can be expressed as a linear combination of the
number of homomorphisms from G to certain subgraphs J of H. A similar statement applies
to surjective homomorphisms.

As we note in the paper, these kinds of linear combinations have been noticed in related
contexts before, for example in [3, Lemma 4.2] and in [26]. We use the linear combination
of Theorem 17, together with interpolation, to prove hardness. Although it is standard to
restrict the input graph G to be irreflexive (and this restriction makes the results stronger)
the fact that G is required to be irreflexive causes severe difficulties.

In fact, Dell’s note about our paper [7] shows that, if you weaken the theorem statements
by allowing the input G to have loops, then a simpler interpolation based on a very recent
paper by Curticapean, Dell and Marx [6] can be used to make the proofs very elegant! The
exact same idea, written more generally, was also discovered by Chen [5].
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2 Preliminaries

It will often be technically convenient to restrict the problems that we study by requiring the
input graph G to be connected. In each case, we do this by adding a superscript “C” to the
name of the problem. For example, the problem #HomC(H) is defined as follows.

Name. #HomC(H).

Input. A connected irreflexive graph G.

Output. N
(
G→ H

)
.

It is well known and easy to see (See, e.g., [26, (5.28)]) that if G is an irreflexive graph with
components G1, . . . , Gt then N

(
G→ H

)
=
∏
i∈[t]N

(
Gi → H

)
. Similarly, given S = {Sv ⊆

V (H) : v ∈ V (G)} let Si = {Sv : v ∈ V (Gi)}. ThenN
(
(G,S) → H

)
=
∏
i∈[t]N

(
(Gi,Si) → H

)
.

Thus, Dyer and Greenhill’s theorem (Theorem 1) can be re-stated in the following convenient
form.

Theorem 9 (Dyer, Greenhill). Let H be a graph. If every connected component of H is
a reflexive clique or an irreflexive biclique, then #HomC(H), #Hom(H), #LHomC(H) and
#LHom(H) are all in FP. Otherwise, #HomC(H), #Hom(H), #LHomC(H) and #LHom(H)
are all #P-complete.

Finally, we introduce some frequently used notation. For every positive integer n, we
define [n] = {1, . . . , n}.

A subgraph H ′ of H is said to be loop-hereditary with respect to H if for every v ∈ V (H ′)
that is contained in a loop in E(H), v is also contained in a loop in E(H ′).

We indicate that two graphs G1 and G2 are isomorphic by writing G1
∼= G2.

Given sets S1 and S2, we write S1 ⊕ S2 for the disjoint union of S1 and S2. Given graphs
G1 and G2, we write G1 ⊕G2 for the graph (V (G1)⊕ V (G2), E(G1)⊕ E(G2)). If V is a set
of vertices then we write G1 ⊕ V as shorthand for the graph G1 ⊕ (V, ∅). Similarly, if M is a
matching (a set of disjoint edges) with vertex set V , then we write G1 ⊕M as shorthand for
the graph G1 ⊕ (V,M).

3 Counting Compactions

The section is divided into a short subsection on tractable cases and the main subsection on
hardness results which also contains the proof of the final dichotomy result, Theorem 2.

3.1 Tractability Results

The tractability result in Lemma 10 follows from the fact (see Theorem 17) that the number
of compactions from G to H can be expressed as a linear combination of the number of
homomorphisms from G to certain subgraphs J of H. While we need the full details of
our particular linear expansion to derive our hardness results, the following simpler version
suffices for tractability.

Lemma 10. Let H be a graph such that every connected component is an irreflexive star or
a reflexive clique of size at most 2. Then #Comp(H) and #LComp(H) are in FP.

7



Proof. First we deal with the case that H is the empty graph. Suppose that H is the empty
graph and let (G,S) be an instance of #LComp(H). IfG is empty thenN comp

(
(G,S) → H

)
=

1. Otherwise, N comp
(
(G,S) → H

)
= 0. Thus, if H is empty, then #LComp(H) is in FP.

Obviously, this also implies that #Comp(H) is in FP.
Let H be the set of all non-empty graphs in which every connected component is an

irreflexive star or a reflexive clique of size at most 2. We will show that for every H ∈ H,
#LComp(H) is in FP. To do this, we need the following notation. Given a graph H, letm(H)
denote the sum of |V (H)| and the number of non-loop edges of H. We will use induction on
m(H).

The base case is m(H) = 1. In this case, H has only one vertex w. If G is non-empty
and has w ∈ Sv for every vertex v ∈ V (G) then N comp

(
(G,S) → H

)
= 1. Otherwise,

N comp
(
(G,S) → H

)
= 0. So #LComp(H) is in FP.

For the inductive step, consider some H ∈ H with m(H) > 1. Let (G,S) be an instance of
#LComp(H). If G is empty then N comp

(
(G,S) → H

)
= 0, so suppose that G is non-empty.

For every subgraph H ′ of H let SH′ denote the set of lists SH′ = {Sv ∩V (H ′) : v ∈ V (G)}. It
is easy to see that N

(
(G,S) → H

)
=
∑

H′ N comp
(
(G,SH′) → H ′

)
, where the sum is over all

loop-hereditary subgraphs H ′ of H. This observation is well known and is implicit, e.g, in the
proof of a lemma of Borgs, Chayes, Kahn and Lovász [3, Lemma 4.2] (in a context without
lists or loops).

A subgraph H ′ of H is said to be a proper subgraph of H if either V (H ′) is a strict subset
of V (H) or E(H ′) is a strict subset of E(H) (or both). For every graph H, let Sub<(H)
denote the set of non-empty proper subgraphs of H that are loop-hereditary with respect
to H. Note that if H ∈ H and H ′ ∈ Sub<(H) then H ′ ∈ H and m(H ′) < m(H). We can
refine the summation as follows.

N
(
(G,S) → H

)
= N comp

(
(G,S) → H

)
+

∑

H′∈Sub<(H)

N comp
(
(G,SH′) → H ′

)
.

SinceH ∈ H, every component ofH is a reflexive clique or an irreflexive biclique, so Theorem 1
shows that the quantity N

(
(G,S) → H

)
on the left-hand side can be computed in polynomial

time. By induction, every term of the form N comp
(
(G,SH′) → H ′

)
can also be computed in

polynomial time. Subtracting this from the left-hand side, we obtain N comp
(
(G,S) → H

)
, as

desired.
Thus, we have proved that #LComp(H) is in FP. The problem #Comp(H) is a restriction

of #LComp(H), so it is also in FP.

3.2 Hardness Results

This is the key section of this work. In this section, we consider a graph H that has a
connected component that is not an irreflexive star or a reflexive clique of size at most 2. The
objective is to show that #Comp(H) and #LComp(H) are #P-hard (this is the hardness
content of Theorem 2).

We start with a brief proof sketch. The easy case is when H contains a component that is
not a reflexive clique or an irreflexive biclique. In this case, Dyer and Greenhill’s Theorem 1
shows that #Hom(H) is #P-hard. We obtain the desired hardness by giving (in Theorem 13)
a polynomial-time Turing reduction from #Hom(H) to #Comp(H). The result is finished
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off with a trivial reduction from #Comp(H) to #LComp(H). The proof of Theorem 13
is not difficult — given an input G to #Hom(H), we add isolated vertices and edges to G
and recover the desired quantity N

(
G→ H

)
using an oracle for #Comp(H) and polynomial

interpolation. There are small technical issues related to size-1 components in H, and these
are dealt with in Lemma 11.

The more interesting case is when every component of H is a reflexive clique or an irreflex-
ive biclique, but some component is either a reflexive clique of size at least 3 or an irreflexive
biclique that is not a star. The first milestone is Lemma 23, which shows #P-hardness in the
special case where H is connected. We prove Lemma 23 in a slightly stronger setting where
the input graph G is connected. This allows us, in the remainder of the section, to generalise
the connected case to the case in which H is not connected.

The main difficulty, then, is Lemma 23. The goal is to show that #Comp(H) is #P-hard
when H is a reflexive clique of size at least 3 or an irreflexive biclique that is not a star. Our
main method for solving this problem is a technique (Theorem 17) that lets us compute the
number of compactions from a connected graph G to a connected graph H using a weighted
sum of homomorphism counts, say N

(
G→ J1

)
, . . . , N

(
G→ Jk

)
. An important feature is

that some of the weights might be negative.
Our basic approach will be to find a constituent Ji such that #HomC(Ji) is #P-hard

and to reduce #HomC(Ji) to the problem of computing the weighted sum. Of course, if
computing N

(
G→ J1

)
is #P-hard and computing N

(
G→ J2

)
is #P-hard, it does not follow

that computing a weighted sum of these is #P-hard.
In order to solve this problem, in Lemmas 19 and 20 we use an argument similar to

that of Lovász [25, Theorem 3.6] to prove the existence of input instances that help us to
distinguish between the problems #HomC(J1), . . . ,#HomC(Jk). Theorem 21 then provides
the desired reduction from a chosen #HomC(Ji) to the problem of computing the weighted
sum. Theorem 21 is proved by a more complicated interpolation construction, in which we
use the instances from Lemma 20 to modify the input.

Having sketched the proof at a high level, we are now ready to begin. We start by working
towards the proof of Theorem 13. The first step is to show that deleting size-1 components
from H does not add any complexity to #Comp(H).

Lemma 11. Let H be a graph that has exactly q size-1 components. Let H ′ be the graph
constructed from H by removing all size-1 components. Then #Comp(H ′) ≤ #Comp(H).

Proof. Let W = {w1, . . . , wq} be the vertices of H that are contained in size-1 components.
We can assume q ≥ 1, otherwise H ′ = H. Let G′ be an input to #Comp(H ′) and note that
G′ might contain isolated vertices. For any non-negative integer t, let Vt be a set of t isolated
vertices, distinct from the vertices of G′, and let Gt = G′⊕Vt. For all i ∈ {0, . . . , t}, we define
Si(G′) to be the number of homomorphisms σ from G′ to H with the following properties:

1. σ uses all non-loop edges of H ′.

2. |σ(V (G′)) ∩ {w1, . . . , wq}| = i,

where σ(V (G′)) is the image of V (G′) under the map σ. We define N i(Vt) as the number
of homomorphisms τ from Vt to H such that {w1, . . . , wi} ⊆ τ(V (Vt)). Intuitively, N i(Vt) is
the number of homomorphisms from Vt to H that use at least a set of i arbitrary but fixed
vertices of H, as the particular choice of vertices {w1, . . . , wi} is not important when counting
homomorphisms from a set of isolated vertices. For any compaction γ : V (Gt) → V (H), the
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restriction γ|V (G) has to use all non-loop edges in H ′. As H ′ does not have size-1 components,
this implies that all vertices other than w1, . . . , wq are used by γ|V (G). Say, additionally, that
γ uses q − i vertices from W , for some i ∈ {0, . . . , q}. Then, γ|Vt has to use the remaining i
vertices. Thus, for each fixed t ≥ 0, we obtain a linear equation:

N comp
(
Gt → H

)
︸ ︷︷ ︸

bt

=

q∑

i=0

Sq−i(G′)︸ ︷︷ ︸
xi

N i(Vt)︸ ︷︷ ︸
at,i

.

By choosing q+1 different values for the parameter t we obtain a system of linear equations.
Here, we choose t = 0, . . . , q. Then the system is of the form b = Ax for

b =



b0
...
bq


 A =



a0,0 . . . a0,q
...

. . .
...

aq,0 . . . aq,q


 and x =



x0
...
xq


.

Note, that the vector b can be computed using q + 1 #Comp(H) oracle calls. Further,

xq = S0(G′) = N comp
(
G′ → H ′

)
.

Thus, determining x is sufficient for computing the sought-for N comp
(
G′ → H ′

)
. It remains

to show that the matrix A is of full rank and is therefore invertible.
If t < i, we observe that at,i = 0 as we cannot use at least i vertices of H when we have

fewer than i vertices in the domain. For the diagonal elements with t ∈ {0, . . . , q} we have
that at,t = N t(Vt) = t! (note that 0! = 1). Hence,

A =




0! 0 · · · 0

∗ 1!
. . .

...
...

. . .
. . . 0

∗ · · · ∗ q!




is a triangular matrix with non-zero diagonal entries, which completes the proof.

Lemma 12. Let H be a graph without any size-1 components. Then #Hom(H) ≤ #Comp(H).

Proof. The proof is by interpolation and is somewhat similar to the proof of Lemma 11. Let
G be an input to #Hom(H). We design a graph Gt = G ⊕ It as an input to the problem
#Comp(H) by adding a set It of t disjoint new edges to the graph G.

We introduce some notation. Let E0(H) be the set of non-loop edges of H and let
r =

∣∣E0(H)
∣∣. Let Sk(G) be the number of homomorphisms σ from G to H that use exactly k

of the non-loop edges of H (additionally, σ might use any number of loops). Let {e1, . . . , ek}
be a set of k arbitrary but fixed non-loop edges from H. We define Nk(It) as the number
of homomorphisms τ from It to H such that {e1, . . . , ek} are amongst the edges used by
τ . Note that the particular choice of edges {e1, . . . , ek} is not important when counting
homomorphisms from an independent set of edges to H—Nk(It) only depends on the numbers
k and t.

We observe that, for each compaction γ : V (Gt) → V (H), the restriction γ|V (G) uses some
set F ⊆ E0(H) of non-loop edges and does not use any other non-loop edges of H. Suppose
that F has cardinality |F | = r − k for some k ∈ {0, . . . , r}. Then γ|V (It) uses at least the
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remaining k fixed non-loop edges of H. As H does not have any size-1 components, this
ensures at the same time that γ is surjective.

Therefore, we obtain the following linear equation for a fixed t ≥ 0:

N comp
(
Gt → H

)
︸ ︷︷ ︸

bt

=

r∑

k=0

Sr−k(G)︸ ︷︷ ︸
xk

Nk(It)︸ ︷︷ ︸
at,k

.

As in the proof of Lemma 11, we choose t = 0, . . . , r to obtain a system of linear equations
with

b =



b0
...
br


 A =



a0,0 . . . a0,r
...

. . .
...

ar,0 . . . ar,r


 and x =



x0
...
xr


.

We can compute b using a #Comp(H) oracle. Further,

r∑

k=0

xk =

r∑

k=0

Sr−k(G) =

r∑

k=0

Sk(G) = N
(
G→ H

)
.

Thus, determining x is sufficient for computing the sought-for number of homomorphisms
N
(
G→ H

)
.

Finally, we show that A is invertible. If t < k, we observe that at,k = Nk(It) = 0, as
clearly it is impossible to use more than t edges of H when there are only t edges in It.
Further, for the diagonal elements it holds that for t ∈ [r] we have at,t = N t(It) = 2tt! as
there are t! possibilities for assigning the edges in It to the fixed set of t edges of H and there
are 2t vertex mappings for each such assignment of edges, also N0(I0) = 1. Hence,

A =




1 0 · · · 0

∗ 211!
. . .

...
...

. . .
. . . 0

∗ · · · ∗ 2rr!




is a triangular matrix with non-zero diagonal entries and is therefore invertible.

Theorem 13. Let H be a graph. Then #Hom(H) ≤ #Comp(H).

Proof. Let H ′ be the graph constructed from H by removing all size-1 components. By
Lemma 11 we obtain #Comp(H ′) ≤ #Comp(H). Then Lemma 12 can be applied to the
graph H ′ and thus we obtain #Hom(H ′) ≤ #Comp(H ′) ≤ #Comp(H). Finally, it follows
from Theorem 1 that #Hom(H ′) ≡ #Hom(H), which gives #Hom(H) ≡ #Hom(H ′) ≤
#Comp(H ′) ≤ #Comp(H).

Theorem 13 shows that hardness results from Theorem 1 will carry over from #Hom(H)
to #Comp(H). We also know some cases where #Comp(H) is tractable from Lemma 10. The
complexity of #Comp(H) is still unresolved if every component of H is a reflexive clique or an
irreflexive biclique, but some reflexive clique has size greater than 2, or some irreflexive biclique
is not a star. This is the case described at length at the beginning of the section. Recall that
the first step is to specify a technique (Theorem 17) that lets us compute the number of
compactions from a connected graph G to a connected graph H using a weighted sum of
homomorphism counts, say N

(
G→ J1

)
, . . . , N

(
G→ Jk

)
. Towards this end, we introduce

some definitions which we will use repeatedly in the remainder of this section.
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Definition 14. A weighted graph set is a tuple (H, λ), whereH is a set of non-empty, pairwise
non-isomorphic, connected graphs and λ is a function λ : H → Z.

Definition 15. Let H be a connected graph. By Sub(H) we denote the set of non-empty,
loop-hereditary, connected subgraphs of H. Let SH be a set which contains exactly one
representative of each isomorphism class of the graphs in Sub(H). Finally, for H ′ ∈ SH , we
define µH(H

′) to be the number of graphs in Sub(H) that are isomorphic to H ′.

Note that for a connected graph H, we have µH(H) = 1.

Definition 16. For each non-empty connected graph H, we define a weight function λH
which assigns an integer weight to each non-empty connected graph J .

• If J is not isomorphic to any graph in SH , then λH(J) = 0.

• If J ∼= H, then λH(J) = 1.

• Finally, if J is isomorphic to some graph in SH but J ≇ H, we define λH(J) inductively
as follows.

λH(J) = −
∑

H′∈SH

s.t. H′≇H

µH(H
′)λH′(J).

Note that λH is well-defined as all graphs H ′ ∈ SH with H ′ ≇ H are smaller than H either in
the sense of having fewer vertices or in the sense of having the same number of vertices but
fewer edges.

The following theorem is the key to our approach for computing the number of compactions
from a connected graph G to a connected graph H using a weighted sum of homomorphism
counts. In the Appendix, we give an illustrative example where we verify the theorem for the
case H = K2,3 and we give the intuition behind the definitions. Here we go on to give the
formal statement and proof.

Theorem 17. Let H be a non-empty connected graph. Then for every non-empty, irreflexive
and connected graph G we have N comp

(
G→ H

)
=
∑

J∈SH
λH(J)N

(
G→ J

)
.

Proof. LetH1,H2, . . . be the set of non-empty connected graphs sorted by some fixed ordering
that ensures that if Hi is isomorphic to a subgraph of Hj, then i ≤ j. We verify the statement
of the theorem by induction over the graph index with respect to this ordering. Let G be
non-empty, irreflexive and connected.

For the base case, H1 is K1, which is the graph with one vertex and no edges. In this
case, SH1

= {K1} and λK1
(K1) = 1. Also

N comp
(
G→ K1

)
= N

(
G→ K1

)
.

So the theorem holds in this case.
Now assume that the statement holds for all graphs up to index i and consider the graph

Hi+1. For ease of notation we set H = Hi+1. We use the fact that every homomorphism
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from a connected graph G to Hi+1 is a compaction onto some non-empty, loop-hereditary
and connected subgraph of Hi+1 and vice versa. Thus, it holds that

N
(
G→ H

)
=

∑

H′∈SH

µH(H
′) ·N comp

(
G→ H ′

)

= N comp
(
G→ H

)
+

∑

H′∈SH

s.t. H′≇H

µH(H
′) ·N comp

(
G→ H ′

)
.

Thus, we can rearrange and use the induction hypothesis to obtain

N comp
(
G→ H

)
= N

(
G→ H

)
−

∑

H′∈SH

s.t. H′≇H

µH(H
′) ·N comp

(
G→ H ′

)

= N
(
G→ H

)
−

∑

H′∈SH

s.t. H′≇H

µH(H
′) ·

∑

J∈SH′

λH′(J)N
(
G→ J

)
.

Then we change the order of summation and use that λH′(J) = 0 if J is not isomorphic to
any graph in SH′ to collect all coefficients that belong to a particular term N

(
G→ J

)
. We

obtain

N comp
(
G→ H

)
= N

(
G→ H

)
−

∑

J∈SH

s.t. J≇H

( ∑

H′∈SH

s.t. H′≇H

µH(H
′)λH′(J)

)
N
(
G→ J

)

=
∑

J∈SH

λH(J)N
(
G→ J

)
.

We remark that Theorem 17 can be generalised to graphsH andG with multiple connected
components by looking at all subgraphs ofH, rather than just at the connected ones. However,
within this work, the version for connected graphs suffices.

Let (H, λ) be a weighted graph set. The following parameterised problem is not natural
in its own right, but it helps us to analyse the complexity of #CompC(H):

Name. #GraphSetHomC((H, λ)).

Input. An irreflexive, connected graph G.

Output. ZH,λ(G) =

{
0 if G is empty∑

J∈H λ(J)N
(
G→ J

)
otherwise.

Corollary 18. Let H be a non-empty connected graph. Then

#CompC(H) ≡ #GraphSetHomC((SH , λH)).

Proof. The corollary follows directly from Theorem 17.
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Corollary 18 gives us the desired connection between weighted graph sets and compactions.
We will use this later in the proof of Lemma 23 to establish the #P-hardness of #CompC(H)
when H is either a reflexive clique of size at least 3 or an irreflexive biclique that is not a star.

Our next goal is to prove Theorem 21, which states that, for certain weighted graph sets
(H, λ), determining ZH,λ(G) is at least as hard as computing N

(
G→ J

)
for some graph J

from the set H with λ(J) 6= 0. To this end, we first introduce two lemmas that help us to
distinguish between different graphs J in the interpolation that we will later use to prove
Theorem 21.

For the following lemmas, we introduce some new notation. For a graph G with distin-
guished vertex v ∈ V (G) and a graph H with distinguished vertex w ∈ V (H), the quantity
N
(
(G, v) → (H,w)

)
denotes the number of homomorphisms h from G to H with h(v) = w.

Analogously, N inj
(
(G, v) → (H,w)

)
denotes the number of injective homomorphisms h from

G to H with h(v) = w. If there exists an isomorphism from G to H that maps v onto w,
we write (G, v) ∼= (H,w), otherwise we write (G, v) ≇ (H,w). In the following lemma, we
show that for two such target entities (H1, w1) and (H2, w2) that are non-isomorphic, there
exists an input which separates them. To this end, we use an argument very similar to that
presented in [16, Lemma 3.6] and in the textbook by Hell and Nešetřil [24, Theorem 2.11],
which goes back to the works of Lovász [25, Theorem 3.6].

Lemma 19. Let H1 and H2 be connected graphs with distinguished vertices w1 ∈ V (H1) and
w2 ∈ V (H2) such that (H1, w1) ≇ (H2, w2). Suppose that one of the following cases holds:

Case 1. H1 and H2 are reflexive graphs.

Case 2. H1 and H2 are irreflexive bipartite graphs, each of which contains at least one edge.

Then

i) There exists a connected irreflexive graph G with distinguished vertex v ∈ V (G) for
which N

(
(G, v) → (H1, w1)

)
6= N

(
(G, v) → (H2, w2)

)
.

ii) In Case 2 we can assume that G contains at least one edge and is bipartite.

Proof. In order to shorten the proof, we define some notation that depends on which case
holds. In Case 1, we say that a tuple (G, v) consisting of a graph G with distinguished vertex
v is relevant if G is connected and reflexive. In Case 2, we say that it is relevant if G is
connected, irreflexive and bipartite and contains at least one edge. We start with a claim
that applies in either case.

Claim: There exists a relevant (G, v) such that

N
(
(G, v) → (H1, w1)

)
6= N

(
(G, v) → (H2, w2)

)
.

Proof of the claim: To prove the claim, assume for a contradiction that for all relevant
(G, v) we have

N
(
(G, v) → (H1, w1)

)
= N

(
(G, v) → (H2, w2)

)
. (1)

The contradiction will follow from the following subclaim:

Subclaim: For every relevant (G, v), N inj
(
(G, v) → (H1, w1)

)
= N inj

(
(G, v) → (H2, w2)

)
.

14



v1

v4

v3

v2

v5

G

v1

v4

v3

v2

v5

θ

{v2}

{v1, v3}

{v4, v5}

G|θ

Figure 1: Graph G and the corresponding quotient graph G|θ for θ = {{v2}, {v1, v3}, {v4, v5}}.

Proof of the subclaim: The proof of the subclaim is by induction on the number of
vertices of G. For the base case of the induction we treat the two cases separately.

In Case 1, the base case of the induction is |V (G)| = 1. The relevant (G, v) is the graph
consisting of the single (looped) vertex v. For every reflexive graph H and vertex w ∈ V (H)
we have that N

(
(G, v) → (H,w)

)
= N inj

(
(G, v) → (H,w)

)
. Therefore, (1) implies that the

subclaim is true for this (G, v).
In Case 2, the base case of the induction is |V (G)| = 2. (There are no relevant (G, v) with

|V (G)| < 2 since G has to contain an edge.) Consider a relevant (H,w). Since H is irreflexive
and the two vertices of G are connected by an edge (so cannot be mapped by a homomorphism
to the same vertex of H) we have N

(
(G, v) → (H,w)

)
= N inj

(
(G, v) → (H,w)

)
. Once again,

(1) implies that the subclaim is true for this (G, v).
For the inductive step, suppose that the subclaim holds for all relevant (G, v) in which G

has up to k − 1 vertices. Consider a relevant (G, v) with |V (G)| = k. Let Θ be the set of
partitions of V (G) — that is, each θ ∈ Θ is a set {U1, . . . , Uj} for some integer j such that the

elements of θ are non-empty and pairwise disjoint subsets of V (G) with
⋃j
i=1 Ui = V (G). For

θ ∈ Θ with θ = {U1, . . . , Uj}, by G|θ we denote the corresponding quotient graph, i.e. let G|θ
be the graph with vertices {U1, . . . , Uj} that has an edge {Ui, Ui′} if and only if there exist
v ∈ Ui and u ∈ Ui′ with {v, u} ∈ E(G). Therefore, G|θ might have loops but no multi-edges,
see Figure 1. Let vθ denote the vertex of G|θ which corresponds to the equivalence class of
θ that contains the distinguished vertex v. Finally, let τ denote the partition of V (G) into
singletons. Then for every relevant (H,w) it holds that

N
(
(G, v) → (H,w)

)
=
∑

θ∈Θ

N inj
(
(G|θ, vθ) → (H,w)

)

= N inj
(
(G|τ , vτ ) → (H,w)

)
+

∑

θ∈Θ\{τ}

N inj
(
(G|θ , vθ) → (H,w)

)

= N inj
(
(G, v) → (H,w)

)
+

∑

θ∈Θ\{τ}

N inj
(
(G|θ, vθ) → (H,w)

)
, (2)

where the third equality follows as G|τ = G.
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Now we show that only relevant tuples (G|θ, vθ) actually contribute to the sum in (2).
First, note that since G is connected, so is G|θ.

In Case 1, every quotient graph G|θ is reflexive. Therefore, for every θ ∈ Θ \ {τ}, the
tuple (G|θ, vθ) is relevant.

In Case 2, H is an irreflexive bipartite graph with at least one edge. Therefore, we have
N inj

(
(G|θ, vθ) → (H,w)

)
> 0 only if G|θ is an irreflexive bipartite graph and also, θ is a

proper vertex-colouring of G, i.e. every part of θ is an independent set. For such a partition
θ, G|θ has at least one edge if G does. We have now shown that only relevant tuples (G|θ, vθ)
contribute to the sum in (2).

Therefore, let Γ be the set of all partitions θ of V (G) such that (G|θ, vθ) is relevant. Then,
we can rephrase (2) as follows.

N
(
(G, v) → (H,w)

)
= N inj

(
(G, v) → (H,w)

)
+

∑

θ∈Γ\{τ}

N inj
(
(G|θ, vθ) → (H,w)

)
. (3)

To prove the subclaim, we can set (H,w) in (3) to be (H1, w1). Similarly, we can set it to
be (H2, w2). Then, we can use the induction hypothesis, the subclaim, on all tuples (G|θ, vθ)
in the sum as all these tuples are relevant and the partitions θ ∈ Γ \ {τ} have strictly fewer
than k parts. Applying (1), we obtain

N inj
(
(G, v) → (H1, w1)

)
= N inj

(
(G, v) → (H2, w2)

)
,

which completes the induction and the proof of the subclaim. (End of the proof of the
subclaim.)

We show next how to use the subclaim to derive a contradiction. In particular, in the
subclaim we can set (G, v) to be either (H1, w1) or (H2, w2). This implies (H1, w1) ∼= (H2, w2),
which gives the desired contradiction. Thus, we have shown contrary to (1) that there exists
a relevant (G, v) with

N
(
(G, v) → (H1, w1)

)
6= N

(
(G, v) → (H2, w2)

)

and therefore we have proved the claim. (End of the proof of the claim.)

In Case 2, the claim is identical to the statement of the lemma. However, in Case 1 a
relevant tuple (G, v) contains a reflexive graph G, whereas for the statement of the lemma, G
has to be irreflexive. This is easily fixed as we can set G0 to be the graph constructed from
G by removing all loops. Using the fact that H1 and H2 are reflexive, we obtain for i = 1
and i = 2 that

N
(
(G0, v) → (Hi, wi)

)
= N

(
(G, v) → (Hi, wi)

)
.

Hence, the choice (G0, v) has all the desired properties.

In the following lemma, we generalise the pairwise property from Lemma 19. The result
and the proof are adapted versions of [15, Lemma 6]. For ease of notation let

([k]
2

)
denote the

set of all pairs {i, j} with i, j ∈ [k] and i 6= j.

Lemma 20. Let H1, . . . ,Hk be connected graphs with distinguished vertices w1, . . . , wk where
wi ∈ V (Hi) for all i ∈ [k] and, for every pair {i, j} ∈

(
[k]
2

)
, we have (Hi, wi) ≇ (Hj , wj).

Suppose that one of the following cases holds:
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Case 1. ∀i ∈ [k], Hi is a reflexive graph.

Case 2. ∀i ∈ [k], Hi is an irreflexive bipartite graph that contains at least one edge.

Then

i) There exists a connected irreflexive graph G with a distinguished vertex v ∈ V (G) such
that, for every {i, j} ∈

([k]
2

)
, it holds that N

(
(G, v) → (Hi, wi)

)
6= N

(
(G, v) → (Hj , wj)

)
.

ii) In Case 2 we can assume that G contains at least one edge and is bipartite.

Proof. Again, we use the notion of relevant tuples but slightly modify the definition from the
one given in the proof of Lemma 19. A tuple (G, v) is called relevant if G is a connected
irreflexive graph and, in Case 2, if additionally G contains at least one edge and is bipartite.
We show that there exists a relevant (G, v) such that for every {i, j} ∈

(
[k]
2

)
we have

N
(
(G, v) → (Hi, wi)

)
6= N

(
(G, v) → (Hj , wj)

)
.

We use induction on k, which is the number of graphs H1, . . . ,Hk. The base case for
k = 2 is covered by Lemma 19. Now let us assume that the statement holds for k− 1 and the
inductive step is for k. By the inductive hypothesis there exists a relevant (G, v) such that
without loss of generality (possibly by renaming the graphs H1, . . . ,Hk)

N
(
(G, v) → (H2, w2)

)
> · · · > N

(
(G, v) → (Hk, wk)

)
.

Let i∗ ∈ [k] \ {1} be an index with

N
(
(G, v) → (H1, w1)

)
= N

(
(G, v) → (Hi∗ , wi∗)

)
.

If no such index exists, we can simply choose the graph G which then fulfils the statement of
the lemma. Using the base case, there exists a relevant (G′, v′) such that

N
(
(G′, v′) → (H1, w1)

)
> N

(
(G′, v′) → (Hi∗ , wi∗)

)
,

possibly renaming (H1, w1) and (Hi∗ , wi∗). Let i ∈ [k].
First, we show that for all i ∈ [k] we have N

(
(G′, v′) → (Hi, wi)

)
≥ 1. This is clearly true

for Case 1, where wi has a loop. In this case, we can always map all vertices of G′ to the
single vertex wi.

In Case 2, as Hi is connected and contains at least one edge, there is some w ∈ V (Hi)
such that {w,wi} ∈ E(Hi). Since (G′, v′) is relevant, G′ is connected and bipartite and has
at least one edge. Let {A,B} be a partition of V (G′) such that v′ ∈ A and A and B are
independent sets of G. There is a homomorphism h from G′ to Hi with h(v′) = wi which
maps all vertices in A to wi and all vertices in B to w.

Therefore, in both cases we have shown that for all i ∈ [k] we haveN
(
(G′, v′) → (Hi, wi)

)
≥

1.
For a yet to be determined number t we construct a graph G∗ from (G, v) and (G′, v′) by

taking the graph G′ and t copies of G and identifying the vertex v′ with the t copies of v and
call the resulting vertex v∗, cf. Figure 2. Note that from the fact that (G, v) and (G′, v′) are
relevant, it is straightforward to show that (G∗, v∗) is relevant as well. Then, for any graph
H and w ∈ V (H) it holds that

N
(
(G∗, v∗) → (H,w)

)
= N

(
(G′, v′) → (H,w)

)
·N
(
(G, v) → (H,w)

)t
.
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G′ v∗ = v′ = v

1

2

t

G

G

G

Figure 2: (G∗, v∗).

The goal is to choose t sufficiently large to achieve

N
(
(G∗, v∗) → (H2, w2)

)
> . . . > N

(
(G∗, v∗) → (Hi∗−1, wi∗−1)

)

> N
(
(G∗, v∗) → (H1, w1)

)

> N
(
(G∗, v∗) → (Hi∗ , wi∗)

)
> · · · > N

(
(G∗, v∗) → (Hk, wk)

)
.

Accordingly, we define a permutation σ of the indices {1, . . . , k} that inserts index 1 between
position i∗ − 1 and i∗. The domain of σ corresponds to the new indices to which we assign
the former indices. To avoid confusion, we give the function table in Table 1

i 1 · · · i∗ − 2 i∗ − 1 i∗ · · · k

σ(i) 2 · · · i∗ − 1 1 i∗ · · · k

Table 1: Function table of σ.

Formally,

σ(i) =





i+ 1 if i ≤ i∗ − 2

1 if i = i∗ − 1

i otherwise.

Let M = N
(
(G, v) → (H2, w2)

)
. As N

(
(G′, v′) → (Hj , wj)

)
≥ 1 for all j ∈ [k], it is well-

defined to set

C = max
j∈[k]\{i∗−1}

N
(
(G′, v′) → (Hσ(j+1), wσ(j+1))

)

N
(
(G′, v′) → (Hσ(j), wσ(j))

)

and t = ⌈CM⌉. Let G∗ be as defined above. For ease of notation, for j ∈ [k − 1], we set

ξ(j) =
N
(
(G∗, v∗) → (Hσ(j), wσ(j)

)

N
(
(G∗, v∗) → (Hσ(j+1), wσ(j+1)

) .

We want to show ξ(j) > 1 for all j ∈ [k − 1] to complete the proof.
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For j = i∗ − 1 we obtain

ξ(j) =
N
(
(G∗, v∗) → (Hσ(i∗−1), wσ(i∗−1))

)

N
(
(G∗, v∗) → (Hσ(i∗), wσ(i∗))

)

=
N
(
(G∗, v∗) → (H1, w1)

)

N
(
(G∗, v∗) → (Hi∗ , wi∗)

)

=
N
(
(G′, v′) → (H1, w1)

)

N
(
(G′, v′) → (Hi∗ , wi∗)

) > 1.

For j ∈ [k − 1] \ {i∗ − 1} we have

ξ(j) =
N
(
(G∗, v∗) → (Hσ(j), wσ(j))

)

N
(
(G∗, v∗) → (Hσ(j+1), wσ(j+1))

)

=
N
(
(G′, v′) → (Hσ(j), wσ(j))

)
·N
(
(G, v) → (Hσ(j), wσ(j))

)t

N
(
(G′, v′) → (Hσ(j+1), wσ(j+1))

)
·N
(
(G, v) → (Hσ(j+1), wσ(j+1))

)t

≥
1

C

(
N
(
(G, v) → (Hσ(j), wσ(j))

)

N
(
(G, v) → (Hσ(j+1), wσ(j+1))

)
)t
.

Since N
(
(G, v) → (Hσ(j), wσ(j))

)
≥ 1+N

(
(G, v) → (Hσ(j+1), wσ(j+1))

)
for j ∈ [k−1]\{i∗−1}

we have

ξ(j) ≥
1

C

(
1 +

1

N
(
(G, v) → (Hσ(j+1), wσ(j+1))

)
)t
.

Using (1 + x)t ≥ 1 + tx > tx for t ≥ 1, x ≥ 0 we obtain

ξ(j) >
t

C ·N
(
(G, v) → (Hσ(j+1), wσ(j+1))

) .

Finally, we use that for all j ∈ [k − 1] \ {i∗ − 1} we have

N
(
(G, v) → (H2, w2)

)
> N

(
(G, v) → (Hσ(j+1), wσ(j+1))

)

and conclude

ξ(j) >
t

C ·N
(
(G, v) → (H2, w2)

) ≥
t

CM
≥ 1.

Thus, we have shown ξ(j) > 1 as required, which completes the proof.

In the following theorem, we use the separating instances that we obtain from Lemma 20
for interpolation-based reductions to #GraphSetHomC((H, λ)).

Theorem 21. Let (H, λ) be a weighted graph set for which one of two cases holds:

Case 1. All graphs in H are reflexive.

Case 2. All graphs in H are irreflexive and bipartite.

Then, for all H ∈ H with λ(H) 6= 0, it holds that #HomC(H) ≤ #GraphSetHomC((H, λ)).
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Proof. If, in Case 2, H contains a graph without edges, i.e. a single-vertex graph K1, let
(H′, λ′) be a weighted graph set constructed from (H, λ) by removing the K1 and its corre-
sponding weight λ(K1). As #Hom(K1) is in FP we have

#GraphSetHomC((H′, λ′)) ≤ #GraphSetHomC((H, λ))

and
#HomC(K1) ≤ #GraphSetHomC((H, λ)).

Therefore, for the remainder of this proof, we assume that every graph in H contains at least
one edge. Let H 6=0 = {H1, . . . ,Hk} be the set of graphs in H that are assigned non-zero
weights by λ. Note that all graphs in H 6=0 are pairwise non-isomorphic, connected and non-
empty by definition of a weighted graph set. Thus, for every pair {i, j} ∈

([k]
2

)
and every

wi ∈ V (Hi), wj ∈ V (Hj) we have (Hi, wi) ≇ (Hj, wj).
Now, for each graph Hi we collect the vertices which are in the same orbit of the auto-

morphism group of Hi. Formally, for each i ∈ [k] and w ∈ V (Hi), let [w] be the orbit of w,
i.e. the set of vertices w′ such that (Hi, w

′) ∼= (Hi, w). Let W be a set which contains exactly
one representative from each such orbit. Further, for each i ∈ [k] set Wi =W ∩V (Hi). Then,
for each w,w′ ∈Wi with w

′ 6= w, we have (Hi, w) ≇ (Hi, w
′).

Let k′ =
∑k

i=1|Wi| and let (H ′
1, w

′
1), . . . , (H

′
k′ , w

′
k′) be an enumeration of {(Hi, wi) : i ∈

[k], wi ∈Wi}. Then we can apply Lemma 20 to (H ′
1, w

′
1), . . . , (H

′
k′ , w

′
k′) to obtain a connected

irreflexive graph J with distinguished u ∈ V (J) such that for every i, j ∈ [k] and for all
wi ∈Wi, wj ∈Wj we have N

(
(J, u) → (Hi, wi)

)
6= N

(
(J, u) → (Hj, wj)

)
.

Let i ∈ [k] and suppose that Hi ∈ H and λ(Hi) 6= 0. Let G be a non-empty graph
which is an input to the problem #HomC(Hi). Let v be an arbitrary vertex of G. We
use the same construction as in Figure 2 to design a graph Gt as input to the problem
#GraphSetHomC((H, λ)) by taking t copies of J as well as the graph G and identifying the
t copies of vertex u with the vertex v ∈ V (G). As both G and J are connected, Gt is as well.
Then, using an oracle for #GraphSetHomC((H, λ)), we can compute ZH,λ(Gt) with

ZH,λ(Gt) =
∑

H∈H

λ(H)N
(
Gt → H

)

=
∑

i∈[k]

λ(Hi)N
(
Gt → Hi

)

=
∑

i∈[k]

λ(Hi)
∑

w∈V (Hi)

N
(
(G, v) → (Hi, w)

)
·N
(
(J, u) → (Hi, w)

)t
(4)

Now we collect the terms which belong to vertices in the same orbit. To this end, for w ∈W
and i ∈ [k] such that w ∈ V (Hi), we define λw = |[w]| · λ(Hi), Nw(G) = N

(
(G, v) → (Hi, w)

)

and Nw(J) = N
(
(J, u) → (Hi, w)

)
. Let W = {w0, . . . , wr}. Then, continuing from Equa-

tion (4):

ZH,λ(Gt) =
∑

i∈[k]

λ(Hi)
∑

w∈V (Hi)

N
(
(G, v) → (Hi, w)

)
·N
(
(J, u) → (Hi, w)

)t

=
∑

w∈W

λwNw(G)Nw(J)
t.
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By choosing r + 1 different values for the parameter t — here it is sufficient to choose
t = 0, . . . , r — we obtain a system of linear equations b = Ax as follows:

b =



ZH,λ(G0)

...
ZH,λ(Gr)


 A =



λw0

Nw0
(J)0 . . . λwrNwr(J)

0

...
. . .

...
λw0

Nw0
(J)r . . . λwrNwr(J)

r


 and x =



Nw0

(G)
...

Nwr(G)




The vector b can be computed using r + 1 #GraphSetHomC((H, λ)) oracle calls. Then

N
(
G→ Hi

)
=
∑

w∈Wi

|[w]|Nw(G).

Thus, determining x is sufficient for computing the sought-for N
(
G→ Hi

)
. It remains to

show that the matrix A ∈ Z(r+1)×(r+1) is of full rank and therefore invertible. This can
be easily seen by dividing each column by its first entry. The division is well-defined as for
t ∈ {0 . . . , r} we have λwt 6= 0 by definition of H 6=0. The columns of the resulting matrix
are pairwise different by the choice of (J, u) and as a consequence the resulting matrix is a
Vandermonde matrix and therefore invertible.

Next, we give a short technical lemma which follows from Definition 16 and is used in
Lemma 23 to show that Theorem 21 gives hardness results for #CompC(H).

Lemma 22. Let H be a connected graph with at least one non-loop edge. Let H− be the
graph obtained from H by deleting exactly one non-loop edge (but keeping all vertices). If H−

is connected, then λH(H
−) 6= 0.

Proof. As H− is non-empty and connected, it is a valid input to λH and from the definition
of λH (Definition 16) we obtain

λH(H
−) = −

∑

H′∈SH

s.t. H′≇H

µH(H
′)λH′(H−).

Consider a graph H ′ ∈ SH with H ′ ≇ H and H ′ ≇ H−. H ′ is a non-empty loop-hereditary
connected subgraph of H and not isomorphic to H or H−. Note that H− is not isomorphic
to any graph in SH′ which gives λH′(H−) = 0. Furthermore, µH(H

−) ≥ 1. Thus, we proceed

λH(H
−) = −µH(H

−)λH−(H−)

≤ −1.

We now have most of the tools at hand to classify the complexity of #Comp(H). Tractabil-
ity results come from Lemma 10. If H has a component that is not a reflexive clique or an
irreflexive biclique then hardness will be lifted from Dyer and Greenhill’s Theorem 1 via Theo-
rem 13. The most difficult case is when all components of H are reflexive cliques or irreflexive
bicliques, but some component is not an irreflexive star or a reflexive clique of size at most 2.

If H is connected then hardness will come from the following lemma, whose proof builds
on the weighted graph set technology (Corollary 18) using Theorem 21 and Lemma 22 (using
the stronger hardness result of Dyer and Greenhill, Theorem 9).

The remainder of the section generalises the connected case to the case in which H is not
connected.
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Lemma 23. If H is a reflexive clique of size at least 3 then #CompC(H) is #P-hard. If H
is an irreflexive biclique that is not a star then #CompC(H) is #P-hard.

Proof. Suppose that H is a reflexive clique of size at least 3 or an irreflexive biclique that
is not a star. Recall the definitions of SH , λH and weighted graph sets (Definitions 14, 15
and 16). Note that (SH , λH) is a weighted graph set. Let H− be a graph obtained from H
by deleting a non-loop edge. Note that H− is connected and it is not a reflexive clique or
an irreflexive biclique. Thus Theorem 9 states that #HomC(H−) is #P-complete. We will
complete the proof of the Lemma by showing #HomC(H−) ≤ #CompC(H).

If H is a reflexive graph then the definition of SH ensures that all graphs in SH are reflex-
ive. If H is an irreflexive bipartite graph, then the definition ensures that all graphs in SH
are irreflexive and bipartite. Since H− is connected and therefore λH(H

−) 6= 0 by Lemma 22,
we can apply Theorem 21 to the weighted graph set (SH , λH) with H− ∈ SH to obtain
#HomC(H−) ≤ #GraphSetHomC((SH , λH)). By Corollary 18, #GraphSetHomC((SH , λH)) ≡
#CompC(H). The lemma follows.

We use the following two definitions in Lemmas 26 and 27 and in the proof of Theorem 2.

Definition 24. Let H be a graph. Suppose that every connected component that has more
than j vertices is an irreflexive star. Suppose further that some connected component has j
vertices and is not an irreflexive star. Let A(H) be the set of reflexive components of H with
j vertices and let B(H) be the set of irreflexive non-star components of H with j vertices.

Definition 25. Let L(H) denote the set of loops of a graph H. We define the graph H0 =
(V (H), E(H) \ L(H)).

Lemma 26. Let H be a graph in which every component is a reflexive clique or an irreflexive
biclique. If J ∈ A(H) then #CompC(J) ≤ #Comp(H).

Proof. Let H be a graph in which every component is a reflexive clique or an irreflexive
biclique. Let A(H) = {A1, . . . , Ak}. It follows from the definition of A(H) that all elements
of A(H) are reflexive cliques of some size j (the same j for all graphs in A(H)).

If j ≤ 2, the statement of the lemma is trivially true, since Lemma 10 shows that
#Comp(Ai) is in FP, so the restricted problem #CompC(Ai) is also in FP.

Now assume j ≥ 3. Suppose without loss of generality that J = A1. Let G be a (con-
nected) input to #CompC(J). For all i ∈ [k], let H \Ai be the graph constructed from H by
deleting the connected component Ai. Using Definition 25 we define the (irreflexive) graph
G′ = (H \ J ⊕ G)0 as an input to #Comp(H). Intuitively, to form G′ from H we replace
the connected component J with the graph G, then we delete all loops. We will prove the
following claim.

Claim: Let h : V (G′) → V (H) be a compaction from G′ to H. Then the restriction
h|V (G) is a compaction from G onto an element of A(H).

Proof of the claim: As h is a homomorphism, it maps each connected component of G′

to a connected component of H. As, furthermore, h is a compaction and G′ and H have
the same number of connected components, it follows that there exist connected components
C1, . . . , Ck of G′ such that for i ∈ [k], h|V (Ci) is a compaction from Ci onto Ai. To prove the
claim, we show that G is an element of C = {C1, . . . , Ck}. In order to use all vertices of a
graph in A(H), i.e. a reflexive size-j clique, a graph in C has to have at least j vertices itself.
Therefore and by the construction of G′, an element of C can only be one of the following:
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• a clique with j vertices,

• a biclique with j vertices,

• a star with at least j vertices

• or the copy of G.

Since j ≥ 3, it is easy to see that there is no compaction from a star onto a clique with j
vertices. In order to compact onto a reflexive clique of size j, an element of C also has to have
at least j(j−1)/2 edges. Thus, C does not contain any bicliques. Finally, there are only k−1
connected components in G′ that are j-vertex cliques other than (possibly) G. Therefore, G
has to be an element of C, which proves the claim. (End of the proof of the claim.)

Using the notation from Definition 25, the claim implies

N comp
(
G′ → H

)
=

k∑

i=1

N comp
(
G→ Ai

)
·N comp

(
(H \ Ai)

0 → H \Ai
)
. (5)

We can simplify the expression (5) using the fact that all elements of A(H) are reflexive size-j
cliques:

N comp
(
G′ → H

)
= k ·N comp

(
G→ J

)
·N comp

(
(H \ J)0 → H \ J

)
.

As N comp
(
(H \ J)0 → H \ J

)
does not depend on G, it can be computed in constant time.

Thus, using a single #Comp(H) oracle call we can compute N comp
(
G→ J

)
in polynomial

time as required.

Lemma 27. Let H be a graph in which every component is a reflexive clique or an irreflexive
biclique. If A(H) is empty but B(H) is non-empty, then there exists a component J ∈ B(H)
such that #CompC(J) ≤ #Comp(H).

Proof. The proof is similar to that of Lemma 26. For completeness, we give the details. By
Definition 24 the elements of B(H) are of the form Ka,b with a+ b = j for some fixed j. As
stars are excluded from B(H), we have a, b ≥ 2. Let Bmax(H) denote the set of graphs with
the maximum number of edges in B(H). The elements of Bmax(H) are pairwise isomorphic
since the number of edges of a Ka,b is a · b = a(j − a) and this function is strictly increasing
for a ≤ j/2. For concreteness, fix a and b so that each J ∈ Bmax(H) is isomorphic to Ka,b.
Let Bmax(H) = {B1, . . . , Bk}. Take J = B1.

For all i ∈ [k], let H \ Bi be the graph constructed from H by deleting the connected
component Bi. Let G

′ = (H \J⊕G)0 be an input to #Comp(H). We will prove the following
claim.

Claim: Let h : V (G′) → V (H) be a compaction from G′ to H. Then the restriction
h|V (G) is a compaction from G onto an element of Bmax(H).

Proof of the claim: As h is a homomorphism, it maps each connected component of G′

to a connected component of H. As, furthermore, h is a compaction and G′ and H have
the same number of connected components, it follows that there exist connected components
C1, . . . , Ck of G′ such that for i ∈ [k], h|V (Ci) is a compaction from Ci onto Bi. To prove
the claim, we show that G is an element of C = {C1, . . . , Ck}. In order to compact onto a
graph in Bmax(H), a graph in C has to have at least j vertices and a · b edges itself. By the
construction of G′ and the fact that A(H) is empty, a connected component in G′ with at
least j vertices and a · b edges can only be one of the following:
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• a biclique Ka,b,

• a star with at least j vertices and at least a · b edges

• or the copy of G.

Since a, b ≥ 2, it is easy to see that there is no compaction from a star onto a Ka,b. Finally,
there are only k − 1 connected components in G′ that are bicliques of the form Ka,b other
than (possibly) G. Therefore, G has to be an element of C, which proves the claim. (End of
the proof of the claim.)

Using the notation from Definition 25, the claim implies

N comp
(
G′ → H

)
=

k∑

i=1

N comp
(
G→ Bi

)
·N comp

(
(H \Bi)

0 → H \Bi
)
. (6)

We can simplify the expression (6) using the fact that all elements of Bmax(H) are of the form
Ka,b:

N comp
(
G′ → H

)
= k ·N comp

(
G→ J

)
·N comp

(
(H \ J)0 → H \ J

)
.

As N comp
(
(H \ J)0 → H \ J

)
does not depend on G, it can be computed in constant time.

Thus, using a single #Comp(H) oracle call we can compute N comp
(
G→ J

)
in polynomial

time as required.

Finally, we prove the main theorem of this section, which we restate at this point.

Theorem 2. Let H be a graph. If every connected component of H is an irreflexive star or
a reflexive clique of size at most 2 then #Comp(H) and #LComp(H) are in FP. Otherwise,
#Comp(H) and #LComp(H) are #P-complete.

Proof. The membership of #Comp(H) in #P is straightforward. We distinguish between a
number of cases depending on the graph H.

Case 1: Suppose that every connected component of H is an irreflexive star or a reflexive
clique of size at most 2. Then #LComp(H) is in FP by Lemma 10.

Case 2: Suppose that H contains a component that is not a reflexive clique or an irreflexive
biclique. Then the hardness of #Hom(H) (from Theorem 1) together with the reduction
#Hom(H) ≤ #Comp(H) (from Theorem 13) implies that #Comp(H) is #P-hard. The
hardness of #LComp(H) follows from the trivial reduction from #Comp(H) to #LComp(H).

Case 3: Suppose that the components of H are reflexive cliques or irreflexive bicliques
and that H contains at least one component that is not an irreflexive star or a reflexive clique
of size at most 2. Every graph J ∈ A(H) ∪ B(H) is a reflexive clique of size at least 3 or an
irreflexive biclique that is not a star. By Lemma 23, #CompC(J) is #P-complete. Finally, as
A(H)∪B(H) is non-empty, we can use either Lemma 26 or Lemma 27 to obtain the existence
of J ∈ A(H) ∪ B(H) with #CompC(J) ≤ #Comp(H). This implies that #Comp(H) is
#P-hard. As in Case 2, the hardness of #LComp(H) follows from the trivial reduction from
#Comp(H) to #LComp(H).
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4 Counting Surjective Homomorphisms

The proof of Theorem 3 is divided into two sections. The first of these deals with tractable
cases and the second deals with hardness results and also contains the proof of the final
theorem. Taken together, Theorem 3 and Dyer and Greenhill’s Theorem 1 show that the
problem of counting surjective homomorphisms to a fixed graph H has the same complexity
characterisation as the problem of counting all homomorphisms to H.

Section 4.3 shows that this equivalence disappears in the uniform case, where H is part
of the input, rather than being a fixed parameter of the problem. Specifically, Theorem 31
demonstrates a setting in which counting surjective homomorphisms is more difficult than
counting all homomorphisms (assuming FP 6= #P).

4.1 Tractability Results

Theorem 28. Let H be a graph. Then #LSHom(H) ≤ #LHom(H).

Proof. Let H be fixed and |V (H)| = q. Let (G,S) be an input instance of #LSHom(H). Let
(v1, . . . , vn) be the vertices of G in an arbitrary but fixed order. With respect to this ordering
and with respect to a homomorphism from G to H, let us denote by vi1 the first vertex of
G which is assigned the first new vertex of H (vi1 = v1), vi2 the first vertex of G which is
assigned the second new vertex of H and so on. Every surjective homomorphism from G to
H contains exactly one subsequence v = (vi1 , . . . , viq ) and every homomorphism containing
such a subsequence is surjective. The number of subsequences is bounded from above by

(
n
q

)
.

Let σ : v → V (H) be an assignment of the vertices of H to the vertices in v. There are q! such
assignments. We call ψ = (v, σ) a configuration of G and Ψ(G) the set of all configurations
for the given G. For every such configuration ψ we create a #LHom(H) instance (G,Sψ)

with Sψ = {Sψvi ⊆ V (H) : i ∈ [n]} and

Sψvi =

{
Svi ∩ {σ(vij )}, if i = ij for j ∈ [q]

Svi ∩ {σ(vi1), . . . , σ(vij )}, for ij < i < ij+1.

Intuitively, we use lists to “pin” the vertices in v to the vertices assigned by σ and to prohibit
the remainder of the vertices of G from being mapped to new vertices of H. Then

N sur
(
(G,S) → H

)
=

∑

ψ∈Ψ(G)

N
(
(G,Sψ) → H

)

We can compute N sur
(
(G,S) → H

)
by making a #LHom(H) oracle call for every instance

(G,Sψ) and adding the results. The number of oracle calls |Ψ(G)| is bounded from above by
the polynomial q!

(
n
q

)
≤ nq.

Corollary 29. Let H be a graph. If every connected component of H is a reflexive clique or
an irreflexive biclique then #LSHom(H) is in FP.

Proof. The statement follows directly from Theorem 28 using Dyer and Greenhill’s dichotomy
from Theorem 1.
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4.2 Hardness Results

The following result and proof are very similar to that of Theorem 13 and Lemma 12, respec-
tively. For completeness, we repeat the proof in detail.

Theorem 30. Let H be a graph. Then #Hom(H) ≤ #SHom(H).

Proof. Let |V (H)| = q and G be an input to #Hom(H). We design a graph Gt = G ⊕Wt

as an input to the problem #SHom(H) by adding a set Wt of t new isolated vertices to the
graph G.

We introduce some additional notation. Let Sk(G) be the number of homomorphisms σ
from G to H that use exactly k of the vertices of H. Let {w1, . . . , wk} be a set of k arbitrary
but fixed vertices from H. We define Nk(Wt) as the number of homomorphisms τ from Wt

to H such that {w1, . . . , wk} are amongst the vertices used by τ . The particular choice of
vertices {w1, . . . , wk} is not important when counting homomorphisms from a set of isolated
vertices—Nk(Wt) only depends on the numbers k and t.

We observe that, for each surjective homomorphism γ : V (Gt) → V (H), the restriction
γ|V (G) uses a subset V ′ ⊆ V (H) of vertices and does not use any vertices outside of V ′.
Suppose that V ′ has cardinality |V ′| = q− k for some k ∈ {0, . . . , q}. Then γ|Wt uses at least
the remaining k fixed vertices of H.

Therefore, we obtain the following linear equation for a fixed t ≥ 0:

N sur
(
Gt → H

)
︸ ︷︷ ︸

bt

=

q∑

k=0

Sq−k(G)︸ ︷︷ ︸
xk

Nk(Wt)︸ ︷︷ ︸
at,k

.

By choosing q+1 different values for the parameter t we obtain a system of linear equations.
Here, we choose t = 0, . . . , q. Then the system is of the form b = Ax for

b =



b0
...
bq


 A =



a0,0 . . . a0,q
...

. . .
...

aq,0 . . . aq,q


 and x =



x0
...
xq


.

Note, that the vector b can be computed using q + 1 #SHom(H) oracle calls. Further,

q∑

k=0

xk =

q∑

k=0

Sq−k(G) =

q∑

k=0

Sk(G) = N
(
G→ H

)
.

Thus, determining x is sufficient for computing the sought-for N
(
G→ H

)
. It remains to

show that the matrix A is of full rank and is therefore invertible.
For t < k, clearly at,k = Nk(Wt) = 0. Further, for the diagonal elements we have

at,t = N t(Wt) = t! for t ∈ {0, . . . , q}. Hence,

A =




1 0 · · · 0

∗ 1!
. . .

...
...

. . .
. . . 0

∗ · · · ∗ q!




is a triangular matrix with non-zero diagonal entries, which completes the proof.
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Theorem 3. Let H be a graph. If every connected component of H is a reflexive clique or an
irreflexive biclique, then #SHom(H) and #LSHom(H) are in FP. Otherwise, #SHom(H)
and #LSHom(H) are #P-complete.

Proof. The easiness result follows from Corollary 29 using the trivial reduction #SHom(H) ≤
#LSHom(H). The hardness result follows from the same trivial reduction, along with Theo-
rem 30 and the dichotomy for #Hom(H) from Theorem 1.

4.3 The Uniform Case

We have seen from Theorems 1 and 3 that the problem of counting homomorphisms to a fixed
graphH has the same complexity as the problem of counting surjective homomorphisms to H.

Nevertheless, there are scenarios in which counting problems involving surjective homo-
morphisms are more difficult than those involving unrestricted homomorphisms. To illustrate
this point, we consider the following uniform homomorphism-counting problems. Motivated
by terminology from constraint satisfaction, we use “uniform” to indicate that the target
graph H is part of the input, rather than being a fixed parameter.

Name: Uniform#HomToCliques. Name: Uniform#SHomToCliques.
Input: Irreflexive graph G Input: Irreflexive graph G
whose components are cliques whose components are cliques
and reflexive graph H and reflexive graph H
whose components are cliques. whose components are cliques.
Output: N

(
G→ H

)
. Output: N sur

(
G→ H

)
.

The main result of this section is the following theorem.

Theorem 31. Uniform#HomToCliques is in FP but Uniform#SHomToCliques is #P-complete.

In order to prove Theorem 31, we define a counting variant of the subset sum problem.
Given a set of integers A = {a1, . . . , an} and an integer b let S(A, b), be the number of subsets
A′ ⊆ A such that the sum of the elements in A′ is equal to b. The counting problem is stated
as follows.

Name. #SubsetSum.

Input. A set of positive integers A = {a1, . . . , an} and a positive integer b.

Output. S(A, b).

It is well known that #SubsetSum is #P-complete (see for instance the textbook by Pa-
padimitriou [29, Theorems 9.9, 9.10 and 18.1]). Thus, Theorem 31 follows immediately from
Lemmas 32 and 33.

Lemma 32. Uniform#HomToCliques is in FP.

Proof. Let G and H be an input instance of Uniform#HomToCliques. Let k be the number of
connected components of G and let a1, . . . , ak be the number of vertices of these components,
respectively. Let H have q connected components with b1, . . . , bq vertices, respectively. Then,
as all components are cliques and H is reflexive,

N
(
G→ H

)
=

k∏

i=1

q∑

j=1

baij .
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Thus, it is easy to compute N
(
G→ H

)
.

Lemma 33. #SubsetSum ≤ Uniform#SHomToCliques.

Proof. Let A = {a1, . . . , ak}, b be an input instance of #SubsetSum. We define N =∑k
i=1 ai. Now, we design a polynomial time algorithm to determine S(A, b) using an ora-

cle for Uniform#SHomToCliques. If N < b, we have S(A, b) = 0. Now assume N ≥ b. We
create an input of Uniform#SHomToCliques as follows. We set G to be an irreflexive graph
with a connected component Gi for each i ∈ [k], where Gi is a clique with ai vertices. Fur-
thermore, we set H to be a reflexive graph with two connected components H1 and H2. Let
H1 be a clique with b vertices and let H2 be a clique with N − b vertices. By

{
n
k

}
we denote

the Stirling number of the second kind, i.e. the number of partitions of a set of n elements
into k non-empty subsets. By definition, we have

{
n
k

}
= 0 if n < k.

Let h : V (G) → V (H) be a homomorphism from G to H and let b′ be the number of
vertices of G that are mapped to the connected component H1. Note that h has to map each
connected component of G to a connected component of H. By the construction of G, this
implies that there exists a subset A′ ⊆ A such that the sum of elements in A′ is equal to
b′. Furthermore, as all connected components of G and H are cliques and H is reflexive, the
number of surjective homomorphisms from G to H that assign exactly b′ fixed vertices to H1

is equal to the number of surjective mappings from [b′] to [b], which is b!
{
b′

b

}
. Therefore, we

can express N sur
(
G→ H

)
as follows.

N sur
(
G→ H

)
=

N∑

b′=0

S(A, b′) · b!

{
b′

b

}
· (N − b)!

{
N − b′

N − b

}
, (7)

where the factor (N − b)!
{
N−b′

N−b

}
corresponds to the number surjective mappings from the

remaining N − b′ fixed vertices of G to the component H2. Finally, we use the fact that the
summands in (7) are non-zero only if b′ ≥ b and N − b′ ≥ N − b, which implies b′ = b. Thus,

N sur
(
G→ H

)
= S(A, b) · b!

{
b

b

}
· (N − b)!

{
N − b

N − b

}

= b!(N − b)! · S(A, b).

5 Addendum: A Dichotomy for Approximately Counting Ho-

momorphisms with Surjectivity Constraints

The following standard definitions are taken from [28, Definitions 11.1, 11.2, Exercise 11.3].
A randomised algorithm gives an (ǫ, δ)-approximation for the value V if the output X of the
algorithm satisfies Pr(|X − V | ≤ ǫV ) ≥ 1− δ. A fully polynomial randomised approximation
scheme (FPRAS) for a problem V is a randomised algorithm which, given an input x and a
parameter ǫ ∈ (0, 1), outputs an (ǫ, 1/4)-approximation to V (x) in time that is polynomial
in 1/ǫ and the size of the input x. The concept of an approximation-preserving reduction
(AP-reduction) between counting problems was introduced by Dyer, Goldberg, Greenhill and
Jerrum [9]. We will not need the detailed definition here, but the definition has the property
that if there is an AP-reduction from problem A to problem B (written as A ≤AP B) then this
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reduction, together with an FPRAS for B, yields an FPRAS for A. The problem #BIS, which
is the problem of counting the independent sets of a bipartite graph, comes up frequently in
approximate counting because it is complete with respect to AP-reductions in an intermediate
complexity class. It is not believed to have an FPRAS. Galanis, Goldberg and Jerrum [15]
gave a dichotomy for the problem of approximately counting homomorphisms in the connected
case, in terms of #BIS.

Theorem 34 ([15]). Let H be a connected graph. If H is a reflexive clique or an irreflexive
biclique, then there is an FPRAS for #Hom(H). Otherwise, #BIS ≤AP #Hom(H).

In this addendum we give a similar dichotomy for approximately counting homomor-
phisms with surjectivity constraints3. The tractability part of the following theorem follows
from Theorem 3, Corollary 7 and from Lemma 36 below. The #BIS-hardness follows from
Theorem 34 and from the reductions in Lemmas 37, 38 and 39.

Theorem 35. Let H be a connected graph. If H is a reflexive clique or an irreflexive biclique,
then there is an FPRAS for #SHom(H), #Ret(H) and #Comp(H). Otherwise, each of these
problems is #BIS-hard under approximation-preserving reductions.

Lemma 36. Let H be a reflexive clique or an irreflexive biclique. Then there is an FPRAS
for #Comp(H).

Proof. Let H be a reflexive clique or an irreflexive biclique with q vertices and p edges. Our
goal is give an FPRAS for #Comp(H).

First, we show that we can assume without loss of generality that every input G to
#Comp(H) has no isolated vertices. To see this, suppose instead that G is of the form G′⊕ I
where I is the set of isolated vertices in G. As H is connected, we have N comp

(
G→ H

)
=

q|I|N comp
(
G′ → H

)
. Thus, an estimate of the number of compactions from G′ to H will

immediately enable us to approximately count compactions from G to H.
From now on we restrict attention to inputs G which have no isolated vertices. We use

H(G,H) to denote the set of homomorphisms from G to H.
Case 1. H is a reflexive clique.

Let G be a size-n input to #Comp(H). Then N
(
G→ H

)
= qn. If there is a compaction

from G to H then there is a set U ⊆ V (G) with |U | ≤ 2p and a compaction σ from G[U ]
to H. Each assignment of the (at most n−2p) vertices in V (G)\U extends σ to a compaction
from G to H. Thus, we have N comp

(
G→ H

)
≥ qn−2p = N

(
G→ H

)
/q2p. Using this lower

bound, it is straightforward to apply the naive Monte Carlo method (cf. [28, Theorem 11.1]).
Hence Algorithm 1 with c = q2p and H = H(G,H) gives an (ǫ, δ)-approximation for the
number of compactions in H.

If there are no compactions in H then the algorithm answers 0. Otherwise, the number
of compactions in H is at least |H|/c, so the algorithm gives an (ǫ, δ)-approximation.

When the algorithm is run with δ = 1/4, the running time is at most a polynomial in n
and 1/ǫ because m is at most a polynomial in 1/ǫ and the basic tasks (choosing a sample
from H, determining whether a sample is a compaction, and computing |H| = qn) can all be
done in poly(n) time. Thus, the algorithm gives an FPRAS for #Comp(H).
Case 2. H is an irreflexive biclique.

3When H is not connected, the complexity of approximate counting is open even for counting homomor-
phisms. Hence we do not address this case here.
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Algorithm 1 If the number of compactions in H is at least |H|/c then by [28, Theorem 11.1]
this algorithm gives an (ǫ, δ)-approximation for the number of compactions in H.

Input: Irreflexive graph G, ǫ ∈ (0, 1) and δ ∈ (0, 1).
m =

⌈
c3 ln(2/δ)/ǫ2

⌉
.

Choose m samples independently and uniformly at random from H.
Let X1, . . . ,Xm be the corresponding indicator random variables, where Xi takes value 1
if the ith sample is a compaction and 0 otherwise.

Y =
|H|

m

m∑

i=1

Xi.

Output: Y

Let the bipartition of V (H) be (LH , RH) where ℓH = |LH | ≤ |RH | = rH . We can assume
that ℓH ≥ 1, otherwise counting compactions to H is trivial.

Without loss generality, we can assume that inputs G to #Comp(H) are bipartite (as well
as having no isolated vertices). (If G is not bipartite, then N comp

(
G→ H

)
= 0.)

Suppose that G is an input to #Comp(H). Let C1, . . . , Cκ be the connected components of
G. For each i ∈ [κ], let (Li, Ri) be a fixed bipartition of Ci such that 1 ≤ ℓi = |Li| ≤ |Ri| = ri.

Then N
(
G→ H

)
=
∏κ
i=1

(
ℓℓiHrH

ri + ℓH
rirH

ℓi

)
≤ 2

∏κ
i=1 ℓH

ℓirH
ri .

Let Ω be the set of functions ω : [κ] → {LH , RH}. Given ω ∈ Ω, we say that a homomor-
phism from G to H obeys ω if, for each i ∈ [κ], the vertices of Li are assigned to vertices in
ω(i).
Case 2a. κ ≥ p.

Let ω be the function in Ω that maps every i ∈ [κ] to LH . Since G has no isolated vertices,
each of C1, . . . , Cκ has at least 2 vertices, so there is a compaction from G to H which obeys ω.

As in Case 1, there is a set U ⊆ V (G) of size at most 2p such that there is a compaction
σ from G[U ] to H that obeys the restriction of σ to U . Every assignment of the vertices in
V (G) \ U that obeys ω yields an ω-obeying compaction from G to H. Since rH ≥ ℓH , we
obtain the lower bound

N comp
(
G→ H

)
≥

1

(rH)
2p

κ∏

i=1

ℓH
ℓirH

ri ≥
N
(
G→ H

)

2(rH)
2p .

By the same arguments as in Case 1, Algorithm 1 with c = 2(rH)
2p and H = H(G,H) gives

an (ǫ, δ)-approximation for the number of compactions in H. When the algorithm is run with
δ = 1/4, the running time is at most a polynomial in |V (G)| and 1/ǫ, so it can be used in an
FPRAS for inputs G with κ ≥ p.
Case 2b. κ < p.

For each ω ∈ Ω, let Hω(G,H) be the set of homomorphisms obeying ω, and let Nω(G →
H) and N comp

ω (G → H) be the number of homomorphisms and compactions obeying ω,
respectively. Given a compaction that obeys ω we obtain a lower bound as before:

N comp
ω (G→ H) ≥

1

(rH)
2p

κ∏

i=1

|ω(i)|ℓi(|V (H)| − |ω(i)|)ri =
Nω(G→ H)

(rH)
2p .

Now Algorithm 1 with c = (rH)
2p and H = Hω(G,H) gives an (ǫ, δ)-approximation for the

number of compactions in Hω(G,H). Taking δ = 1/(4 · 2κ) and summing over the 2κ < 2p

30



functions ω ∈ Ω, we obtain an (ǫ, 1/4)-approximation for the number of compactions in
H(G,H). The running time of each call to Algorithm 1 is at most a polynomial in |V (G)|
and 1/ǫ. Thus, putting the cases together, we get an FPRAS for #Comp(H).

Lemma 37. Let H be a graph. Then #Hom(H) ≤AP #SHom(H).

Proof. Let q = |V (H)|. Given any positive integer t, let st,q denote the number of surjective
functions from [t] to [q]. Clearly, st,q ≥ qt− 2q(q − 1)t, since the range of every non-surjective
function from [t] to [q] is a proper subset of [q], and there are most 2q of these. Also, the
number of functions from [t] onto this subset is at most (q − 1)t.

Given any n-vertex input G to the problem #Hom(H), let

t = ⌈log(5qn2q)/ log(q/(q − 1)⌉.

Clearly, t = O(n), and t can be computed in time poly(n). Note that

(
q

q − 1

)t
≥ 5qn2q ≥ 4qn2q + 2q. (8)

Let Gt be the graph constructed from G by adding a set It of t isolated vertices that are
distinct from the vertices in V (G). We claim that

st,qN
(
G→ H

)
≤ N sur

(
Gt → H

)
≤ st,qN

(
G→ H

)
+ (qt − st,q)q

n.

To see this, note that any homomorphism from G to H, together with a surjective homomor-
phism from the It to V (H), constitutes a surjective homomorphism from Gt to H. Any other
surjective homomorphism from Gt to H consists of a non-surjective homomorphism from It
to H (and there are qt − st,q of these) together with some homomorphism from G to H (and
there are at most qn of these). Dividing through by st,q and applying our lower bound for
st,q and then inequality (8), we have

N
(
G→ H

)
≤
N sur

(
Gt → H

)

st,q
≤ N

(
G→ H

)
+

(
qt − st,q
st,q

)
qn

≤ N
(
G→ H

)
+

2q(q − 1)tqn

qt − 2q(q − 1)t

= N
(
G→ H

)
+

qn

qt

2q(q−1)t
− 1

≤ N
(
G→ H

)
+

1

4
. (9)

Given Equation (9), the proof of [9, Theorem 3] shows that to approximate N
(
G→ H

)
with

accuracy ε, we need only use the oracle to obtain an approximation Ŝ for N sur
(
Gt → H

)
with

accuracy ǫ/21. We can then return the floor of Ŝ/st,q. The only remaining issue is how to
compute st,q. However, it is easy to do this in time poly(t) = poly(n) since st,q =

{
t
q

}
q! =

∑q
j=0 (−1)q−j

(
q
j

)
jt, where

{
t
q

}
is a Stirling number of the second kind.

Lemma 38. Let H be a connected graph. Then #Hom(H) ≤AP #Comp(H).
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Proof. If not explicitly defined otherwise, we use the same notation and observations as in the
proof of Lemma 37. In addition let p be the number of non-loop edges in H and ct,p = 2tst,p.
If G is an input to #Hom(H) of size n, Gt is the graph constructed from G by adding a set of t
isolated edges distinct from the edges in G. IfH is a graph of size 1 the statement of the lemma
clearly holds. If otherwise H is a connected graph of size at least 2, every homomorphism
that uses all non-loop edges of H is also surjective and therefore a compaction. Thus, we
obtain

ct,pN
(
G→ H

)
≤ N comp

(
Gt → H

)
≤ ct,pN

(
G→ H

)
+ (2tpt − ct,p)q

n.

Dividing through by ct,p gives

N
(
G→ H

)
≤
N comp

(
Gt → H

)

ct,p
≤ N

(
G→ H

)
+

(
pt − st,p
st,p

)
qn.

If we choose t = ⌈log(5qn2p)/ log(p/(p − 1)⌉ the remainder of this proof is analogous to that
of Lemma 37.

Lemma 39. Let H be a graph. Then #Hom(H) ≤AP #Ret(H).

Proof. Let q = |V (H)| and G be an input to #Hom(H). Further, let H ′ be a copy of H and
(u1, . . . , uq) be the vertices of H ′ ordered in such a way that they induce a copy of H. Then
N
(
G→ H

)
= N ret

(
(G⊕H ′;u1, . . . , uq) → H

)
.
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Appendix: Decomposition of Ncomp
(
G → K2,3

)

In this appendix, we work through a long example to illustrate some of the definitions and
ideas from Section 3.2. We do this by verifying the statement of Theorem 17 for the special
case where H = K2,3.

Of course, the theorem is already proved in the earlier sections of this paper, but we work
through this example in order to help the reader gain familiarity with the definitions. For
H = K2,3 and a non-empty, irreflexive and connected graph G we want to prove

N comp
(
G→ H

)
=
∑

J∈SH

λH(J)N
(
G→ J

)
. (10)

First, we set SH = {H1, . . . ,H10}, cf. Figure 3, as defined in Definition 15.

H ∼= H1 H2 H3 H4 H5

H6 H7 H8 H9 H10

Figure 3: SH = {H1, . . . ,H10}

Next, we recall the definitions of µH and λH from Definitions 15 and 16. For J ∈ SH ,
µH(J) is the number of non-empty connected subgraphs of H that are isomorphic to J . Also,
λH(J) = 1 if J ∼= H. If otherwise J is isomorphic to some graph in SH but J ≇ H, we have

λH(J) = −
∑

H′∈SH

s.t. H′≇H

µH(H
′)λH′(J). (11)

In order to verify (10), we have to determine λH(J) for all J ∈ SH . As λH(J) is defined
inductively by (11), we first determine λH′(J) for all H ′ ∈ SH with H ′ ≇ H.

We start with the graph H10 and determine λH10
. Clearly, H10 has only one connected

subgraph and we can choose SH10
= {H10}. Recall that λH10

(J) = 0 for all graphs J that are
not isomorphic to any graph in SH10

, i.e. not isomorphic to H10 in this case. By definition
we have

µH10
(H10) = 1 as well as λH10

(H10) = 1, see Table 2.
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This conforms with our intuition as for the single vertex graph H10, it clearly holds that

N comp
(
G→ H10

)
= N

(
G→ H10

)
. (12)

Thus, we have now verified (10) for H = H10.
Using this information, we consider the graph H9 next and determine µH9

and λH9
for

SH9
= {H9,H10}, see Table 3. H9 contains two connected subgraphs that are isomorphic to

H10, therefore µH9
(H10) = 2. Then, from (11) we obtain

λH9
(H10) = −

∑

H′∈{H10}

µH9
(H ′)λH′(H10) = −2.

Plugging this into (10) for H = H9, we get

N comp
(
G→ H9

)
=
∑

J∈SH9

λH9
(J)N

(
G→ J

)

= N
(
G→ H9

)
− 2N

(
G→ H10

)
. (13)

Now let us verify this expression. Recall that G is connected. The central idea behind our
approach is that every homomorphism from G to H9 is a compaction onto some connected
subgraph H ′ of H9. Furthermore, µH9

(H ′) tells us how many such subgraphs there are that
are isomorphic to H ′. Thus,

N
(
G→ H9

)
= µH9

(H9) ·N
comp

(
G→ H9

)
+ µH9

(H10) ·N
comp

(
G→ H10

)

= N comp
(
G→ H9

)
+ 2N comp

(
G→ H10

)
.

Rearranging and using the fact that we already know N comp
(
G→ H10

)
= N

(
G→ H10

)

from (12):

N comp
(
G→ H9

)
= N

(
G→ H9

)
− 2N comp

(
G→ H10

)

= N
(
G→ H9

)
− 2N

(
G→ H10

)
.

Thus, we have now proved (13) which in turn proves (10) for H = H9.
Using (12) and (13) we can now go on to find (see Table 4) that

N comp
(
G→ H8

)
= N

(
G→ H8

)
− 2N

(
G→ H9

)
+N

(
G→ H10

)

and so on.
This gives the intuition behind the formal definitions of µH and λH . For completeness,

we give the values for all graphs H1 through H10 in Tables 2 through 11. From Table 11 we
can conclude that for H = K2,3 the statement of Theorem 17 gives

N comp
(
G→ K2,3

)
= N

(
G→ K2,3

)
− 6N

(
G→ H2

)
+ 6N

(
G→ H3

)

+ 3N
(
G→ H4

)
+ 6N

(
G→ H5

)
− 2N

(
G→ H6

)

− 12N
(
G→ H7

)
+ 3N

(
G→ H8

)
.
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H ′ H10

µH10
(H ′) 1

λH10
(H ′) 1

Table 2: Decomposition of H10

H ′ H9 H10

µH9
(H ′) 1 2

λH9
(H ′) 1 −2

Table 3: Decomposition of H9

H ′ H8 H9 H10

µH8
(H ′) 1 2 3

λH8
(H ′) 1 −2 1

Table 4: Decomposition of H8

H ′ H7 H8 H9 H10

µH7
(H ′) 1 2 3 4

λH7
(H ′) 1 −2 1 0

Table 5: Decomposition of H7
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H ′ H6 H8 H9 H10

µH6
(H ′) 1 3 3 4

λH6
(H ′) 1 −3 3 −1

Table 6: Decomposition of H6

H ′ H5 H6 H7 H8 H9

µH5
(H ′) 1 1 2 4 4

λH5
(H ′) 1 −1 −2 3 −1

H ′ H10

µH5
(H ′) 5

λH5
(H ′) 0

Table 7: Decomposition of H5

H ′ H4 H7 H8 H9 H10

µH4
(H ′) 1 4 4 4 4

λH4
(H ′) 1 −4 4 0 0

Table 8: Decomposition of H4
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H ′ H3 H7 H8 H9 H10

µH3
(H ′) 1 2 3 4 5

λH3
(H ′) 1 −2 1 0 0

Table 9: Decomposition of H3

H ′ H2 H3 H4 H5 H6

µH2
(H ′) 1 2 1 2 1

λH2
(H ′) 1 −2 −1 −2 1

H ′ H7 H8 H9 H10

µH2
(H ′) 6 6 5 5

λH2
(H ′) 6 −3 0 0

Table 10: Decomposition of H2
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H ′ H1 H2 H3 H4 H5

µH1
(H ′) 1 6 6 3 6

λH1
(H ′) 1 −6 6 3 6

H ′ H6 H7 H8 H9 H10

µH1
(H ′) 2 12 9 6 5

λH1
(H ′) −2 −12 3 0 0

Table 11: Decomposition of H1 = K2,3
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