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Abstract

The graph-related symmetries of a reaction network give rise to certain special equilibria (such
as complex balanced equilibria) in deterministic models of dynamics of the reaction network. Cor-
respondingly, in the stochastic setting, when modeled as a continuous-time Markov chain, these
symmetries give rise to certain special stationary measures. Previous work by Anderson, Craciun
and Kurtz identified stationary distributions of a complex balanced network; later Cappelletti and
Wiuf developed the notion of complex balancing for stochastic systems. We define and establish the
relations between reaction balanced measure, complex balanced measure, reaction vector balanced
measure, and cycle balanced measure and prove that with mild additional hypotheses, the former two
are stationary distributions. Furthermore, in spirit of earlier work by Joshi, we give sufficient condi-
tions under which detailed balance of the stationary distribution of Markov chain models implies the
existence of positive detailed balance equilibria for the related deterministic reaction network model.
Finally, we provide a complete map of the implications between balancing properties of deterministic
and corresponding stochastic reaction systems, such as complex balance, reaction balance, reaction
vector balance and cycle balance.

1 Introduction

Reaction networks are widely used mathematical models in biochemistry [3,10]. In these models, a finite
collection of chemical species interact according to a finite set of possible chemical transformations. An
example of a reaction network is given by

A+B
κ1

⇄
κ2

2C A
κ3

⇄
κ4

B (1.1)

In this case, A, B and C denote some distinct chemical species. Here, a molecule of A and a molecule of
B can be turned into two molecules of C, and two molecules of C can be turned back into one molecule
of A and one molecule of B. Additionally, a molecule of A can be turned reversibly into a molecule of
B. The numbers κi denote the mass action reaction rate constants – a larger value of a rate constant
is associated with a higher propensity of the corresponding reaction. A more formal introduction is
provided in Section 2.

In the setting of biochemistry, different modeling regimes are considered. Specifically, if the counts
of the molecules in the system of interest are low, then the evolution of these counts is modeled through
a continuous time Markov chain. If more molecules are present, then the dynamical variables describe
the concentrations of the different chemical species rather than their counts, and their time evolution is
described by a system of stochastic differential equations [18]. Finally, if the number of molecules is so
large that the random fluctuations in their counts can be safely ignored, then the time evolution of the
species concentrations is modeled via a system of ordinary differential equations (ODEs).

There is a rich history of relating the graphical properties of reaction networks with their dynamical
features, especially for the ODE model [6, 8, 9, 11, 14]. A theory that connects a graph to dynamics
is naturally appealing, since graphical properties are simple to check, while the consequences for the
dynamics are far-reaching. In this context, an important class of reaction network models is that of
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complex balanced systems, whose positive equilibria satisfy a graphical balance condition (see Section 3).
It is known that if a positive complex balanced equilibrium exists, then all equilibria of the system are
complex balanced and locally asymptotically stable. A special case of a complex balanced equilibrium
is that of a detailed balanced equilibrium, which is of particular importance in thermodynamics. A
generalization of complex balanced equilibria has recently been studied in [13].

As an example, we know from simply looking at the graphical properties of the chemical reaction
network (1.1), that the deterministic model has positive detailed balanced equilibria for any choice of
positive rate constants κ1, κ2, κ3 and κ4. We also know that the dynamics of the solution of the
corresponding ODE system can neither be chaotic nor have oscillations, and will eventually converge to
a locally stable positive equilibrium [11,14].

Another topic of interest concerns the connection between dynamical properties of a continuous time
Markov chain model and its corresponding ODE model. This study dates back to [17], where the ODE
model is proven to be the weak limit of the continuous time Markov chain model, when the counts of
the molecules is increased and properly rescaled. The interest in this topic is motivated by the desire to
infer properties of the continuous time Markov chain model from the theory that has been developed for
the deterministic model over the years. More recently, advances have been made in connecting complex
balanced equilibria of the ODE models with the stationary distribution of the corresponding Markov
chain model. Specifically, in [2] it is shown that if an ODE model equipped with mass action kinetics
has a positive complex balanced equilibrium, then the Markov chain model has a product form Poisson
stationary distribution (Theorem 5.1). In [1] it is further proven that such models are non-explosive.
In [15] it is proven that if an ODE model with mass action kinetics has a positive detailed balanced
equilibrium, then the stationary distributions of the corresponding Markov chain model are detailed
balanced, in the classical probabilistic sense [21]. Finally, in [7] it is shown that if an ODE model with
mass action kinetics is complex balanced, then the stochastic counterpart has a so called complex balanced
stationary distribution, and the converse holds as well. More properties of complex balanced stationary
distributions are then studied in [7], and a stochastic formulation of the Deficiency Zero Theorem is
given.

In this paper, in order to fully compare the graphical properties of stochastic and deterministic
models at equilibrium, we introduce reaction vector balanced states (see Definition 3.1), as the natural
deterministic counterpart of detailed balanced distributions for stochastic models (called reaction vector
balanced distributions here to make the connection more explicit). We study the properties of this new
type of equilibrium, and how it relates to more classical notions of graphical balance. Notably, unlike
for complex balanced or detailed balanced states, the existence of a reaction vector balanced state does
not imply existence or uniqueness of other equilibria within different positive compatibility classes (see
Remark 3.5).

We also extend the work of [7], by studying graphically balanced measures, and not only balanced
distributions. In particular, we define and establish the relations between reaction balanced measure,
complex balanced measure and reaction vector balanced measure (see Definition 4.1) and prove that
with mild additional hypotheses, the former two are stationary distributions (see Theorem 4.7) while
the same does not hold in general for the latter (see Remark 4.5). Further, in the spirit of [2, 7, 15],
we relate properties of the stationary measures of the Markov chain model with similar features of the
equilibria of the corresponding ODE model. We prove that a complete symmetry between the results
concerning graphical balancing equilibria and the results dealing with graphical balancing measures is
lacking: specifically, in the stochastic sense two forms of graphical balance, namely reaction vector
balance and complex balance, imply reaction balance (Theorem 4.8). The same does not hold for the
ODE model, as it is shown in Remark 3.3.

In the spirit of [15], we give sufficient conditions capable of “lifting” detailed balance of the Markov
chain model to detailed balance of the ODE model. Specifically, in Corollary 5.7 we prove that if the
Markov chain model has a detailed balanced distribution (here called ‘reaction vector balanced’) which is
complex balanced, then the associated ODE model admits a positive detailed balanced equilibrium (hence
all equilibria are detailed balanced and locally asymptotically stable due to classical results of [14]).

Figure 1 presents a complete map of all connections between different kinds of balanced systems
(see Definitions 3.2 and 4.2), both in the deterministic and stochastic settings. The result that a mass
action system is deterministically complex balanced if and only if it is stochastically complex balanced
is owed to [7]. In [11, 14], it is shown that a deterministic complex balanced mass action system has a
positive equilibrium within each positive compatibility class while in [2] it is shown that the corresponding
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CB(D)

RB(D)

CyB(D)

RVB(D)

E(D)

CB(S)

RB(S)

CyB(S)

RVB(S)

E(S)

Figure 1: Notation key – RB: Reaction Balance, CB: Complex Balance, RVB: Reaction Vector Balance, CyB: Cycle
Balance. (D) denotes Deterministic reaction system and (S) denotes Stochastic reaction system. E(D): Deterministic
reaction system has a positive equilibrium within each positive compatibility class. E(S): Stochastic reaction system has a
stationary distribution within each irreducible component. An arrow represents implication. A solid black arrow represents
implication for arbitrary kinetics and a green arrow for mass action kinetics only. An arrow from an ellipse containing
multiple nodes indicates that both conditions must hold for the implication to hold. Absence of an arrow means that the
corresponding implication does not exist in general either for arbitrary kinetics or for mass action kinetics.

stochastic mass action system has a unique stationary distribution within each irreducible component.
The corresponding result that deterministic reaction balance in a mass action system implies a positive
equilibrium in each positive compatibility class follows easily from the above. In [9], it is shown that
under general kinetics, a deterministic complex balanced system which is cycle balanced is reaction
balanced. The other implications shown in the figure are either new results or generalizations of known
results. Specifically, we introduce reaction balance, reaction vector balance, and cycle balance in the
stochastic setting along with reaction vector balance in the deterministic setting. Furthermore, for some
of the results (indicated by a solid black arrow in the figure), we consider arbitrary kinetics with the
only restriction that the rate function be nonnegative-real valued. The positive orthant is not required
to be invariant, and therefore in such cases we prove results for balanced states outside of Rn

>0 or Zn
>0.

Finally, we emphasize that an absence of an arrow in Figure 1 means that in general the implication does
not exist. For instance, absence of a green arrow between RVB(D) and RVB(S) means that, even under
the assumption of mass action kinetics, RVB(D) does not imply RVB(S) and vice versa (see Remark
5.2). Figure 1 is given as a quick reference, more detailed results can be found throughout the paper. In
addition, a detailed summary of scheme of implications for the stochastic models is presented at the end
of Section 5.2.

The paper is organized as follows: in Section 2 the necessary definitions of reaction network theory
are given, In Section 3, equilibria of the ODE models with graphical balancing properties are discussed,
and known results are presented. In Section 4, invariant measures for the continuous time Markov chain
are dealt with: graphical balance in this framework is discussed, and new properties are stated together
with some known results. Sections 3 and 4 have a similar structure. In particular, in both sections
we first deal with graphical balance under arbitrary kinetics, then specialize to results for mass action
kinetics. In Section 5, connections between equilibria of the ODE model and stationary distributions of
the corresponding Markov chain model are proven, under the assumption of mass action kinetics.

2 Background

2.1 Notation

Let R, R≥0 and R>0 represent the reals, the nonnegative reals and the positive reals, respectively. Let
Z, Z≥0 and Z>0 represent the integers, the nonnegative integers and the positive integers, respectively.
For v ∈ R

n, ‖v‖1 = |v1 + . . . + vn|. For v, w ∈ R
n, v ≤ w (v < w) means that vi ≤ wi (vi < wi) for all

3



i ∈ {1, . . . , n}. For v, w ∈ R
n, we define

1{v≤w} =

{
1 , v ≤ w

0 , otherwise.

If v > 0 then v is said to be positive. If x ∈ R
n
≥0 and v ∈ Z

n
≥0, we define

xv =

n∏

i=1

xvi
i , and v! =

n∏

i=1

vi!,

with the conventions that 0! = 1 and 00 = 1.

2.2 Reaction networks

A reaction network is a triple G = (S, C,R), where S = {X1, X2, . . . , Xn} is a set of n species, C is a
set of m complexes, and R ⊆ C × C is a set of r reactions, such that (y, y) /∈ R for any y ∈ C. The
complexes are linear combinations of species over Z≥0, identified with vectors in Z

n
≥0 (which can be

therefore embedded in R
n). A reaction (y, y′) ∈ R is denoted by y → y′, and the vector y′ − y is the

corresponding reaction vector. We refer to y as the reactant complex of the reaction y → y′ and to y′

as the product complex. We require that every species has a nonzero coordinate in at least one complex
and that every complex is either a reactant complex or a product complex of at least one reaction. With
this convention, there are no “redundant” species or complexes and G is uniquely determined by R. In
(1.1), there are n = 3 species (A,B,C), m = 2 complexes (A+B, 2B), and r = 4 reactions.

For convenience, we allow for a set of reactions to be empty. In such a case, n = m = r = 0 and the
associated reaction network is called the empty network.

Suppose that G = (S, C,R) is a reaction network and R′ ⊆ R. Then F = (S|R′ , C|R′ ,R′) is said to
be a subnetwork of G. Since a reaction network is determined by its set of reactions, we will equivalently
say that R′ determines a subnetwork of R (or of G) without any loss of clarity.

A reaction network G = (S, C,R) can be determined by the directed graph with node set C and edge
set R in a natural manner. This graph is known as reaction graph and we will frequently refer to it in
the rest of the paper.

A reaction network G is weakly reversible if every reaction y → y′ ∈ R is contained in a closed directed
path of the reaction graph. Recall that a closed directed path is defined as a path y1 → y2 → · · · → yk in
the reaction graph such that k ≥ 2 and y1 = yk. Moreover, G is reversible if for any reaction y → y′ ∈ R,
y′ → y is in R. It is clear that each reversible reaction network is also weakly reversible, since every
reaction y → y′ is contained in the cycle y → y′ → y. As an example, the network in (1.1) is reversible,
and therefore weakly reversible. By definition, the empty network is reversible.

The stoichiometric subspace of G is the linear subspace of R
n generated by the reaction vectors,

namely
S = span(y′ − y|y → y′ ∈ R).

For v ∈ R
n, the sets (v + S) ∩ R

n
≥0 are called the stoichiometric compatibility classes of G.

2.3 Reaction systems

We will consider dynamics of a reaction network with n species both on R
n and Z

n. R
n is the usual

underlying state space for deterministic models involving ordinary differential equations, while the state
space is Zn for stochastic models involving continuous-time Markov chains. We do not consider stochastic
differential equations (ordinary differential equations with a noise term) in this paper, but in passing we
mention that this is an instance where a stochastic model has the underlying state space R

n (see for
example [18], and [4, 5, 19] for more recent developments on the subject).

Definition 2.1. Let G be a reaction network. Suppose that to each reaction y → y′ ∈ R there is associated
a nonnegative-valued rate function λy→y′ , whose domain is the state space (λy→y′ : R

n → R≥0 or
λy→y′ : Zn → R≥0). By kinetics on G, we mean the correspondence between reactions and rate functions.

Λ : (y → y′) 7→ λy→y′

The pair (G,Λ) will be referred to as a reaction system.
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The range of λy→y′ besides being nonnegative real-valued usually has some additional restrictions,
which prevent the trajectory from exiting the nonnegative orthant. However, we will not make these
restrictions because they are not necessary for the results in this article. In particular, the results stated in
this paper for arbitrary kinetics do not require the dynamical system (either stochastic or deterministic)
to be restricted to R

n
≥0.

It is natural to think of the kinetic system (G,Λ) as a labelled graph, where G is the underlying graph
and the rate function λy→y′ labels each edge y → y′ ∈ R.

We further give the following definition:

Definition 2.2. Let (G,Λ) be a reaction system and let Γ be a subset of the state space, i.e. Γ ⊆ Z
n or

Γ ⊆ R
n. Then,

• a reaction y → y′ ∈ R is active in Γ if λy→y′(x) > 0 for some x ∈ Γ (if a reaction y → y′ ∈ R is
active in a singleton set Γ = {x}, we say that y → y′ ∈ R is active at x);

• the active subnetwork of (G,Λ) in Γ (denoted by GΓ) is the network determined by the set of
reactions in R that are active in Γ (if Γ = {x} is a singleton set, we will denote G{x} by Gx for
simplicity, and will refer to it as the active subnetwork at x);

• the set Γ is active if GΓ = G, that is if for every reaction y → y′ ∈ R there exists x ∈ Γ such that
λy→y′(x) > 0 (if Γ = {x} is a singleton set, we will simply say that x is active).

2.3.1 Deterministic/continuous dynamics

Let (G,Λ) be a deterministic reaction system. In the deterministic case, the evolution of the species
concentrations z(t) ∈ R

n is determined by the following system of ODEs

dz

dt
=

∑

y→y′∈R

(y′ − y)λy→y′(z)

The evolution of the deterministic reaction system is confined to translations of the stoichiometric sub-
space, that is for any t ≥ 0

z(t) ∈ (z(0) + S).

If, as usual, the dynamics are restricted to the positive orthant, in accordance with the chemistry
interpretation of the model, then the solution z(t) is confined to its stoichiometric compatibility class,

z(t) ∈ (z(0) + S) ∩ R
n
≥0 =: Pz(0),

where Pz denotes the compatibility class containing z ∈ R
n. We say that a compatibility class Pz is

positive if Pz ∩R
n
>0 is nonempty. c ∈ R

n is said to be an equilibrium of the deterministic reaction system
(G,Λ) if ∑

y→y′∈R

(y′ − y)λy→y′(c) = 0.

If c ∈ R
n
>0 (c ∈ R

n
≥0), we say that c is positive (nonnegative) and denote it by c > 0 (c ≥ 0).

2.3.2 Stochastic/discrete dynamics

Let (G,Λ) be a stochastic reaction system. In the discrete setting, the underlying state space is Z
n. A

vector x = (x1, . . . , xn) ∈ Z
n represents the population xi of each species i = 1, . . . , n. When a reaction

y → y′ that is active at x occurs, the population changes from x to x+ y′ − y.
We say that x′ ∈ Z

n is accessible from x ∈ Z
n, if either x′ = x or there is a sequence of states

(x = u0, u1, . . . , un = x′) such that for each consecutive pair of states (ui, ui+1) (0 ≤ i ≤ n− 1), there is
an active reaction y → y′ ∈ R at ui with y′ − y = ui+1 − ui. A non-empty set Γ ⊆ Z

n is an irreducible
component of (G,Λ) if for all x ∈ Γ and all u ∈ Z

n, u is accessible from x if and only if u ∈ Γ. According
to Definition 2.2, an irreducible component Γ is active if for all reactions y → y′ ∈ R there exists a state
x ∈ Γ such that y → y′ is active at x. Note that active irreducible components are called ‘positive’ in [7],
where they were first introduced.

5



Definition 2.3. Let (G,Λ) be a stochastic reaction system and let π be a measure on Z
n. π is said to

be a stationary measure of (G,Λ) if the following holds for all x ∈ Z
n:

π(x)
∑

y→y′∈R

λy→y′(x) =
∑

y→y′∈R

π(x + y − y′)λy→y′(x+ y − y′),

Definition 2.4. 1. π is said to be a σ-finite measure if π(x) < ∞ for all x ∈ Z
n. π is said to be a

finite measure if π (Zn) < ∞. π is said to be a distribution if π (Zn) = 1.

2. We define support of a measure π on Z
n, denoted by supp(π), to be the smallest set T such that

π(Zn \ T ) = 0.

3. If Ω ⊆ Z
n is such that supp(π) ∩ Ω 6= ∅, we say that π is non-null on Ω.

4. If Ω ⊆ Z
n is such that supp(π) is nonempty and is contained in Ω, then we say that π exists within

Ω.

We note here that if π is a non-null stationary measure of (G,Λ), then π must exist within the union
of all irreducible components of (G,Λ) (see for example [21]).

In the usual setting of chemical reaction networks, the dynamics of the Markov chain are restricted
to Z

n
≥0. In this case, only irreducible components contained in Z

n
≥0 are considered and the stationary

distributions exist within Z
n
≥0. However, these restrictions are not necessary for the results on arbitrary

kinetics that we present in this paper.

2.3.3 Mass action kinetics

An important choice of kinetics, both deterministic and stochastic, is mass action kinetics. The de-
terministic ODE mass action model has been shown to arise as a certain large population limit of the
stochastic mass action model [17]. For the purposes of this article, we will assume the two mass action
models as given without explicitly realizing one model as a limit of the other. We define the two models
below.

Definition 2.5. Consider a reaction network G = (S, C,R).

1. By deterministic mass action kinetics, we mean the correspondence KD : (y → y′) 7→ λy→y′ where

λy→y′(z) = 1{z≥0}κy→y′zy for some κy→y′ > 0 and for all z ∈ R
n

The pair (G,KD) is called a deterministic mass action system.

2. By stochastic mass action kinetics, we mean the correspondence KS : (y → y′) 7→ λy→y′ where

λy→y′(x) = κy→y′

x!

(x− y)!
1{x≥y} for some κy→y′ > 0 and for all x ∈ Z

n.

The pair (G,KS) is called a stochastic mass action system.

In both cases, the constants κy→y′ are referred to as rate constants.

We will often need to refer to a deterministic mass action system (G,KD) and its corresponding
stochastic mass action system (G,KS) within the same context. The correspondence is via the reaction
network G, which is the same, and by making the same choice of rate constants.

Remark 2.1. An equivalent formulation of the stochastic mass action rates restricted to Z
n
≥0 is the

following:

λy→y′(x) = κy→y′

x!

(x− y)!
1{x≥y} = κy→y′

n∏

i=1

xi(xi − 1) · · · (xi − yi + 1)

for all x ∈ Z
n
≥0. Note that no indicator function appears on the right-hand side of the equation. The

rates of stochastic mass action kinetics are multivariate polynomial functions, restricted to nonnegative
integer arguments. Moreover, the polynomials

∏n
i=1 xi(xi−1) · · · (xi−yi+1) for different y have different

leading terms xy (by ordering the terms first according to their degree, then according to lexicographic
order), and therefore are linearly independent on R.

6



3 Graph-related equilibria in deterministic reaction systems

In the deterministic setting, graph-related symmetries of a reaction network result in certain special
states, which we now define.

Definition 3.1. Consider a deterministic reaction system (G,Λ), let c ∈ R
n, and with a slight abuse of

notation define λy→y′ = 0 if y → y′ /∈ R. Then

(a) c is said to be a reaction balanced state of (G,Λ) (or detailed balanced state of (G,Λ)) if for every
pair of complexes y, y′ ∈ C,

λy→y′(c) = λy′→y(c) (3.1)

(b) c is said to be a complex balanced state of (G,Λ) if for every complex y ∈ C,
∑

y′∈C

λy→y′(c) =
∑

y′∈C

λy′→y(c) (3.2)

(c) c is said to be a reaction vector balanced state of (G,Λ) if for all ξ ∈ R
n,

∑

y→y′∈R : y′−y=ξ

λy→y′(c) =
∑

y→y′∈R : y′−y=−ξ

λy→y′(c) (3.3)

(d) c is said to be a cycle balanced state of (G,Λ) if for every sequence of distinct complexes (y1, . . . , yj) ⊆
C where j ≥ 3,

j∏

i=1

λyi→yi+1
(c) =

j∏

i=1

λyi+1→yi
(c) (3.4)

where by definition yj+1 := y1.

Part (a) of Definition 3.1 appears as ‘detailed balanced state’ in the chemical reaction network theory
literature. For the purposes of this paper, we refer to the concept as ‘reaction balanced state’ instead,
in order to avoid any potential confusion with the concept of detailed balance of Markov chain theory
literature.

Part (c) of Definition 3.1 does not appear in the literature on deterministic reaction networks to
the best of our knowledge. One reason may be that the existence of reaction vector balanced states
does not relate well with structural properties of the reaction graph (see Theorem 3.2) and does not
imply existence and uniqueness of other equilibria within different positive compatibility classes (see
Remark 3.5). However, we introduce reaction vector balanced state because it is a natural deterministic
counterpart of the concept of ‘detailed balanced measure’, a basic notion in stochastic theory. For the
purposes of this paper, we refer to detailed balanced measure as reaction vector balanced measure, which
makes the correspondence with the deterministic setting explicit, and avoids potential confusion with
detailed balance of deterministic chemical reaction networks.

Part (d) of Definition 3.1 appears as ‘formal balance’ in [9], which is an extension to general kinetics
of the cycle conditions appearing in [12] and [23], both of which in turn are extensions of Wegscheider’s
cycle conditions valid for monomolecular reactions.

Example 3.1. Consider the following deterministic reaction system (G,Λ).

2A

A+B

2B

λ1+

λ3−

λ2+

λ1−

λ3+

λ2−
(3.5)

For purposes of this example, λ∗ that is written on top of an arrow denotes the rate function (and not
the mass action rate constant) of the corresponding reaction. Let c be a vector of Rn.

7



(a) c is a reaction balanced state of (G,Λ) if the following hold:

(i) λ1+(c) = λ1−(c),

(ii) λ2+(c) = λ2−(c),

(iii) λ3+(c) = λ3−(c).

(b) c is a complex balanced state of (G,Λ) if the following hold:

(i) λ2+(c) + λ1−(c) = λ2−(c) + λ1+(c),

(ii) λ3+(c) + λ2−(c) = λ3−(c) + λ2+(c),

(iii) λ1+(c) + λ3−(c) = λ1−(c) + λ3+(c).

(c) c is a reaction vector balanced state of (G,Λ) if the following hold:

(i) λ1+(c) + λ2+(c) = λ1−(c) + λ2−(c),

(ii) λ3+(c) = λ3−(c).

(d) c is a cycle balanced state of (G,Λ) if the following holds:
λ1+(c)λ2+(c)λ3+(c) = λ1−(c)λ2−(c)λ3−(c).

We now define what it means for a deterministic reaction system to be ‘graphically balanced’, i.e.
as being one of complex balanced, reaction balanced, reaction vector balanced or cycle balanced. Recall
that c is said to be active if λy→y′(c) > 0 for all y → y′ ∈ R.

Definition 3.2. Let (G,Λ) be a deterministic reaction system. Suppose that (G,Λ) has at least one
active equilibrium and suppose that every active equilibrium is complex balanced (or reaction balanced,
or reaction vector balanced or cycle balanced, resp.). Then we say that (G,Λ) is a complex balanced (or
reaction balanced, or reaction vector balanced or cycle balanced, resp.) reaction system.

Remark 3.1. For a deterministic mass action system (G,KD), we have that (G,KD) is complex bal-
anced (or reaction balanced, or reaction vector balanced or cycle balanced, resp.) if there is at least one
positive equilibrium, and all positive equilibria are complex balanced (or reaction balanced, or reaction
vector balanced or cycle balanced, resp.). This follows from the fact that for deterministic mass action,
λy→y′(c) > 0 if and only if the entries of c relative to the species appearing in y are positive. Moreover,
if c is an equilibrium and λy→y′(c) > 0 for all y → y′ ∈ R, then necessarily all species appearing in a
product complex need to appear in a source complex as well (or at c they would not be at equilibrium).
Since we require that all species of G appear in at least one complex, it follows that an equilibrium c with
λy→y′(c) > 0 for all y → y′ ∈ R is necessarily positive.

3.1 Results for arbitrary kinetics

Theorem 3.1 (Balanced states are equilibria). Let (G,Λ) be a deterministic reaction system and let
c ∈ R

n. Suppose that any one of the following conditions holds:

(i) c is a reaction balanced state of (G,Λ).

(ii) c is a complex balanced state of (G,Λ).

(iii) c is a reaction vector balanced state of (G,Λ).

Then c is an equilibrium of (G,Λ).

Proof. By summing (3.1) over y′ ∈ C, we see that a reaction balanced state is a complex balanced state.
To see that a complex balanced state is an equilibrium, multiply both sides of (3.2) by y and then sum
over y ∈ C. If c is a reaction vector balanced state, multiply both sides of (3.3) by ξ and then sum over
the vectors ξ ∈ R

n such that at least one among ξ and −ξ is a reaction vector.

8



Remark 3.2. A cycle balanced state is not necessarily an equilibrium. In fact, for a deterministic mass
action system, either every state is cycle balanced or no positive state is cycle balanced: this can be shown
by proving that if a positive state c is cycle balanced, then necessarily all states must be cycle balanced.
Assume that c is positive and cycle balanced. From the form of deterministic mass action kinetics and
from (3.4), it follows that for every sequence of distinct complexes (y1, . . . , yj) ⊆ C where j ≥ 3,

c
∑j

i=1
yi

j∏

i=1

κyi→yi+1
= c

∑j

i=1
yi+1

j∏

i=1

κyi+1→yi
,

where yj+1 = y1 and κy→y′ is considered to be 0 if y → y′ /∈ R. Note that the powers of the positive
vector c on the two sides of the equation are the same, hence we have

j∏

i=1

κyi→yi+1
=

j∏

i=1

κyi+1→yi
.

It follows that for any z ∈ R
n we have

1{z≥0}z
∑j

i=1
yi

j∏

i=1

κyi→yi+1
= 1{z≥0}z

∑j

i=1
yi+1

j∏

i=1

κyi+1→yi
,

which implies that z is cycle balanced.

The following is a generalization of well-known results (e.g. [14]). The generalization covers the new
type of balanced states described in this paper. Furthermore the results extend to the arbitrary kinetics
considered here and also to the possibility for the states to be outside of the positive orthant, Rn

>0.

Theorem 3.2 (Necessary conditions for existence of a balanced state). Let (G,Λ) be a deterministic
reaction system and let c ∈ R

n. Let Gc = (Sc, Cc,Rc) be the active subnetwork of (G,Λ) at c. Then, the
following holds:

(i) If c is a reaction balanced state of (G,Λ), then Gc is reversible.

(ii) If c is a complex balanced state of (G,Λ), then Gc is weakly reversible.

(iii) If c is a reaction vector balanced state of (G,Λ), then for every y → y′ ∈ Rc, there exists ỹ → ỹ′ ∈ Rc

with y + ỹ = y′ + ỹ′.

(iv) Let c be a cycle balanced state of (G,Λ). If for a sequence of distinct complexes (y1, . . . , yj) where

j ≥ 3,
∏j

i=1 λyi→yi+1
(c) > 0 with yj+1 = y1, then yi → yi+1 is a reversible reaction for all

i ∈ {1, . . . , j}.

Proof. The proof of parts (i), (iii) and (iv) follows immediately from Definition 3.1 by noticing that for
the balancing conditions to hold, if one side of the equations is nonzero, then so must be the other side.
In case Rc is empty, recall that the empty network is reversible.

The statement of part (ii) is a slight generalization of Theorem 2B of [14], where the result was first
proven under mild conditions on the kinetics. The proof of the original result of [14] is valid under the
more general setting of this paper as well. However, a shorter way to prove the theorem consists in a
trick similar to one used in [9].

By definition, the reactions of Rc are the reactions that are active at c. If Rc is empty, then Gc is
weakly reversible and the proof is completed. Otherwise, if c satisfies (3.2), then the network Gc endowed
with mass action kinetics with κy→y′ = λy→y′(c) for all y → y′ is complex balanced, a complex balanced
state being the vector whose entries are all 1. Hence, Gc is weakly reversible by Theorem 2B of [14].

It is well known that a positive reaction balanced state is complex balanced [14]. Moreover, it is
known that a strictly positive state c is complex balanced and cycle balanced if and only if c is reaction
balanced, under natural mild conditions on the kinetics [9]. Here we give a generalization of the result
that covers more general kinetics (according to the definition of this paper) and includes the notion of
reaction vector balance.

9



Theorem 3.3 (Relations between different balanced states). Let (G,Λ) be a deterministic reaction
system. Let c ∈ R

n.

(i) If c is reaction balanced then it is reaction vector balanced, complex balanced and cycle balanced.

(ii) If c is complex balanced and cycle balanced, then c is reaction balanced.

Proof. Let c be a reaction balanced state of (G,Λ). Then it follows, by summing (3.1) over y′ ∈ C that c
is a complex balanced state. Furthermore, by summing (3.1) over y → y′ ∈ R : y′ − y = ξ it follows that
c is a reaction vector balanced state. For every sequence (y1, . . . , yj), reaction balance of c implies that
λyi→yi+1

(c) = λyi+1→yi
(c). Cycle balance of c then follows from taking the product over i ∈ {1, . . . , j}

on both sides of the identity. For part (ii), if λy→y′(c) = 0 for all y → y′ ∈ R then clearly c is reaction
balanced. Otherwise, consider the active subnetwork at c, denoted by Gc = (Sc, Cc,Rc), and let nc be
the cardinality of Sc. Equip Gc with mass action kinetics, with κy→y′ = λy→y′(c) for all y → y′ ∈ Rc.
Then, the vector c̃ ∈ R

nc whose entries are all 1 is complex balanced and cycle balanced for Gc with this
choice of mass action kinetics. We can then conclude by [9, Theorem 1.1] that c̃ is reaction balanced.
This means that for any y → y′ ∈ Rc we have

λy→y′(c) = λy→y′(c)c̃y = λy′→y(c)c̃
y = λy′→y(c),

which concludes the proof.

Remark 3.3. In general, no one individual condition of the three: complex balance, reaction vector
balance, and cycle balance implies any of the remaining two, not even in the more restricting setting
of mass action kinetics. We check the remaining pairwise conditions below. Note that this is a novel
study since the concept of reaction vector balance is not present in the literature of deterministic reaction
networks, to the best of our knowledge.

1. (Complex balance & Reaction vector balance 6=⇒ Cycle balance) Consider the mass action system
(G,KD) shown below, where the chosen rate constants are written on top of the arrow of the
corresponding reaction:

3A 2A+B

3BA+ 2B

2

1 2

1

2

12

1

(3.6)

The state (1, 1) is complex balanced and reaction vector balanced. However, (1, 1) is neither reaction
balanced nor cycle balanced. In fact, all positive equilibria are of the form (s, s) for some s > 0
and each of these equilibria is both complex balanced and reaction vector balanced. This shows that
(G,KD) is complex balanced as well as reaction vector balanced (see Definition 3.2 and Remark
3.1) but (G,KD) is neither cycle balanced nor reaction balanced.

2. (Reaction vector balance & Cycle balance 6=⇒ Complex balance) Consider the reaction system in
(3.5), endowed with with mass action kinetics with the following rate constants:

2A

A+B

2B

1

1

2

2

1

1
(3.7)
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Then, (1, 1) is a positive equilibrium of the mass action system (G,KD) that is both reaction vector
balanced and cycle balanced, but is not complex balanced. Moreover, all equilibria are of the form
(s, s) for some s ≥ 0, and they are all reaction vector balanced and cycle balanced. It follows that
(G,KD) is reaction vector balanced and cycle balanced (see Definition 3.2 and Remark 3.1) but it
is not complex balanced.

3.2 Results for mass action kinetics

The following result on complex balancing is known [7, 11, 14] and we extend the result to reaction
balancing.

Theorem 3.4 (Existence and uniqueness of positive equilibria). Let (G,KD) be a deterministic mass ac-
tion system. If (G,KD) has a positive complex balanced (reaction balanced, resp.) state, then there exists
a unique positive equilibrium within every positive compatibility class of (G,KD), and every equilibrium
of (G,KD) is complex balanced (reaction balanced, resp.).

Proof. Suppose that (G,KD) has a positive complex balanced state. It is known that there exists a unique
positive equilibrium within every positive compatibility class of (G,KD), and every positive equilibrium
of (G,KD) is complex balanced [11,14], i.e. that (G,KD) is complex balanced. Furthermore, in Theorem
4 of [7], it is shown that if (G,KD) is complex balanced then all equilibria (not just the positive ones) of
(G,KD) are complex balanced.

Let c be a positive reaction balanced state of (G,KD). By Theorem 3.3, c is cycle balanced and
complex balanced. By Remark 3.2, every state in R

n
≥0 is cycle balanced. By the result on complex

balance, there is a unique positive equilibrium within every positive compatibility class of (G,KD) and
every one of these positive equilibria is complex balanced. Since these equilibria are both complex
balanced and cycle balanced, by part (ii) of Theorem 3.3, these equilibria are reaction balanced. This
shows that (G,KD) is reaction balanced. Suppose now that c is a boundary equilibrium, i.e. c ∈ R

n
≥0\Rn

>0

of a reaction balanced system (G,KD). If no reaction is active at c, then c is clearly reaction balanced.
So we may assume that Gc is not the empty network. Then c is a complex balanced equilibrium of
Gc = (Sc, Cc,Rc) by the result on complex balance, in particular Gc is weakly reversible. Since G is cycle
balanced and Gc is a subnetwork of G, Gc is cycle balanced. This follows from the fact that cycles in Gc

are also cycles in G. Let c̃ denote the restriction of c to the species in Sc. Note that c̃ > 0 because Gc

is weakly reversible and active at c. Thus c̃ is a positive complex balanced equilibrium of Gc which is
cycle balanced. It follows that c̃ is a reaction balanced equilibrium of Gc, by part (ii) of Theorem 3.3.
Therefore, c is a reaction balanced equilibrium of G.

Note that uniqueness of positive equilibria within positive compatibility classes is not guaranteed for
complex balanced systems with arbitrary kinetics (see, for instance, [20]).

Remark 3.4. Since the positive compatibility classes of (G,KD) partition R
n
>0, Theorem 3.4 implies that

if a mass action system (G,KD) possesses a positive complex balanced (resp. reaction balanced) state,
then every positive equilibrium of (G,KD) is complex balanced (resp. reaction balanced). Therefore, a
mass action system (G,KD) with a positive complex balanced (resp. reaction balanced) state is complex
balanced (resp. reaction balanced). Moreover, due to Remarks 3.2 and 3.1, a mass action system (G,KD)
possessing a positive cycle balanced equilibrium is cycle balanced.

Remark 3.5. We introduced in this paper the concept of reaction vector balanced state, and it is nat-
ural to wonder whether for this kind of equilibium something similar to Theorem 3.4 holds. While a
reaction vector balanced state is an equilibrium, unfortunately there is no statement about uniqueness
corresponding to Theorem 3.4. To see this consider the following mass action system (G,KD).

0
6
⇄
11

A 2A
6
⇄
1
3A

(G,KD) has three distinct positive reaction vector balanced equilibria z = 1, z = 2, and z = 3 within
the same positive compatibility class. Furthermore, even when a positive reaction vector balanced state
exists, there may be positive compatibility classes which do not contain any positive equilibria. To see
this, consider the following mass action system.

B
1→ A A+B

1→ 2B (3.8)
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There exists a positive equilibrium (1, l−1) within every compatibility class with zA+zB = l > 1, and each
of these equilibria is reaction vector balanced. However, there is no positive equilibrium in the positive
compatibility classes with zA + zB = l ≤ 1.

4 Graph-related stationarity in stochastic reaction systems

In the stochastic setting, graph-related symmetries of a reaction network result in certain special mea-
sures, which we now define.

Definition 4.1. Consider a stochastic reaction system (G,Λ), let π be a measure defined on Z
n and with

a slight abuse of notation define λy→y′ = 0 if y → y′ /∈ R. Then

(a) π is said to be a reaction balanced measure if for every pair of complexes y, y′ ∈ C and every x ∈ Z
n

π(x)λy→y′ (x) = π(x + y′ − y)λy′→y(x+ y′ − y). (4.1)

(b) π is said to be a complex balanced measure if for every complex y ∈ C and every x ∈ Z
n

π(x)
∑

y′∈C

λy→y′(x) =
∑

y′∈C

π(x+ y′ − y)λy′→y(x+ y′ − y). (4.2)

(c) π is said to be a reaction vector balanced measure if for every every x ∈ Z
n and every ξ ∈ Z

n

π(x)
∑

y→y′∈R : y′−y=ξ

λy→y′(x) = π(x+ ξ)
∑

y→y′∈R : y′−y=−ξ

λy→y′(x+ ξ) (4.3)

(d) π is said to be a cycle balanced measure if for every every x ∈ Z
n and every sequence of distinct

complexes (y1, . . . , yj) ⊆ C where j ≥ 3,

j∏

i=1

π(x+ yi)λyi→yi+1
(x + yi) =

j∏

i=1

π(x + yi+1)λyi+1→yi
(x+ yi+1). (4.4)

The definition of a complex balanced distribution is owed to [7], here we extend the definition by
considering more general measures. Note that the terms involving π in (4.4) can be canceled if they
are positive, hence the property of cycle balance is more related to supp(π) rather than π itself. We
summarize the different types of balanced equilibria and balanced measures in Table 1.

Deterministic setting Stochastic setting Holds ∀
Reaction
balance

λy→y′(c) = λy′→y(c)
∗ π(x)λy→y′ (x) = π(x+ y′ − y)λy′→y(x + y′ − y) x, y, y′

Reaction
vector
balance

∑

y→y′∈R : y′−y=ξ

λy→y′(c) =
∑

y→y′∈R : y′−y=−ξ

λy→y′(c) π(x)
∑

y→y′∈R : y′−y=ξ

λy→y′(x) = π(x+ ξ)
∑

y→y′∈R : y′−y=−ξ

λy→y′(x+ ξ) † x, ξ

Complex
balance

∑

y′∈C

λy→y′(c) =
∑

y′∈C

λy′→y(c) π(x)
∑

y′∈C

λy→y′(x) =
∑

y′∈C

π(x + y′ − y)λy′→y(x+ y′ − y) x, y

Cycle
balance

j∏

i=1

λyi→yi+1
(c) =

j∏

i=1

λyi+1→yi
(c)

j∏

i=1

π(x+ yi)λyi→yi+1
(x+ yi) =

j∏

i=1

π(x+ yi+1)λyi+1→yi
(x+ yi+1)

x, (y1, . . . , yj) with
yi distinct and j ≥ 3

Stationary
measure

π(x)
∑

y→y′∈R

λy→y′(x) =
∑

y→y′∈R

π(x + y − y′)λy→y′(x+ y − y′) x

Equilibrium
∑

y→y′∈R

yλy→y′(c) =
∑

y→y′∈R

y′λy→y′(c)

Table 1: Summary of definitions of various balanced equilibria in deterministic setting and various balanced measures in
corresponding stochastic setting.

Note that part (a) of Definition 4.1 is the natural stochastic analog of part (a) of Definition 3.1,
which is usually called detailed balance in reaction network theory. However, we could not refer to part
(a) of Definition 4.1 as detailed balance, since “detailed balance measure” is a reserved name in general

∗Detailed Balance of Chemical Reaction Network Theory
†Detailed Balance of Markov Chain Theory
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Markov chain theory. In the case of reaction networks, the usual detailed balance of Markov chain theory
coincides with reaction vector balance defined in part (c) of Definition 4.1.

Note that if x is an absorbing state, meaning that λy→y′(x) = 0 for all y → y′ ∈ R, then any
measure with support on {x} is reaction balanced, reaction vector balanced, complex balanced and cycle
balanced. Indeed, both sides of the equations in Definition 4.1 are zero.

We now define what it means for a stochastic reaction system to be graphically balanced, in the sense
that the system is complex balanced, reaction balanced, reaction vector balanced or cycle balanced.

Definition 4.2. Let (G,Λ) be a stochastic reaction system. Suppose that (G,Λ) has at least one stationary
distribution within an active irreducible component and every stationary distribution of (G,Λ) within an
active irreducible component is complex balanced (or reaction balanced, or reaction vector balanced, or
cycle balanced, resp.). Then we say that (G,Λ) is a complex balanced (or reaction balanced, or reaction
vector balanced, or cycle balanced, resp.) reaction system.

4.1 Results for arbitrary kinetics

Theorem 4.1 (Balanced measures are stationary). Let (G,Λ) be a stochastic reaction system. Suppose
that π is a measure that satisfies at least one of the following:

(i) π is a reaction balanced measure of (G,Λ).

(ii) π is a complex balanced measure of (G,Λ).

(iii) π is a reaction vector balanced measure of (G,Λ).

Then π is a stationary measure of (G,Λ).

Proof. To see that a reaction balanced measure is stationary, sum (4.1) over y → y′ ∈ R. We get that
a complex balanced measure is stationary by summing (4.2) over y ∈ C. To see that a reaction vector
balanced measure is stationary, sum (4.3) over all reaction vectors ξ.

There is no result corresponding to the following in the deterministic setting. We say that a reaction
system (G,Λ) is non-explosive if for every initial distribution, the resulting stochastic process is not
explosive (in the sense of [21]).

Proposition 4.2. Let (G,Λ) be a stochastic reaction system with at least one active irreducible compo-
nent. If there exists a cycle balanced stationary distribution π with supp(π) = Z

n, then (G,Λ) is cycle
balanced. Moreover, if (G,Λ) is non-explosive and if there exists a complex balanced (or reaction balanced,
or reaction vector balanced, resp.) distribution π with supp(π) = Z

n, then (G,Λ) is complex balanced (or
reaction balanced, or reaction vector balanced, resp.).

Proof. If π is cycle balanced and supp(π) = Z
n, we can cancel π on the two sides of (4.4) and we have

that for every x ∈ Z
n and for every sequence of distinct complexes (y1, . . . , yj) ⊆ C of G where j ≥ 3

j∏

i=1

λyi→yi+1
(x+ yi) =

j∏

i=1

λyi+1→yi
(x+ yi+1),

where as usual yj+1 := y1 and λy→y′ = 0 if y → y′ /∈ R. Necessarily, every σ-finite measure (whether or
not it is a stationary distribution) must be cycle balanced. Finally, if (G,Λ) is non-explosive, then within
every irreducible component the only stationary distribution is proportional to π [21]. The conclusion
follows by noting that equations (4.1), (4.2) and (4.3) still hold after multiplication by a constant.

Remark 4.1. The above proposition may also be stated by only assuming that supp(π) is the union of
irreducible components, and at least one active irreducible component exists. Moreover, if the dynamics
are restricted to Z

n
≥0 and all states outside the nonnegative orthant are considered absorbing (as for

stochastic mass action kinetics), then the result can be even restricted to supp(π) ⊆ Z
n
≥0. It is worth

noting here that complex balanced (and therefore reaction balanced) stochastic mass action systems are
necessarily non-explosive [1].
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The following result is analogous to Theorem 3.3 for graphically balanced states. The proof of part
(ii) is similar to the one for the the deterministic setting presented in [16].

Theorem 4.3 (Relations between different balanced measures). Let (G,Λ) be a stochastic reaction
system.

(i) A reaction balanced measure of (G,Λ) is reaction vector balanced, complex balanced and cycle bal-
anced.

(ii) If π is a complex balanced and cycle balanced measure of (G,Λ), then π is reaction balanced.

Proof. Suppose that π is a reaction balanced measure of (G,Λ). Then, summing (4.1) over y′ ∈ C gives
(4.2), and summing (4.1) over the reaction vectors gives (4.3). For every sequence (y1, . . . , yj), reaction
balance of π implies that π(x+ yi)λyi→yi+1

(x+ yi) = π(x+ yi+1)λyi+1→yi
(x+ yi+1). Cycle balance of π

then follows from taking the product over i ∈ {1, . . . , j} on both sides of the identity.
To prove part (ii), suppose that π is a complex balanced but not reaction balanced measure of (G,Λ).

We will show that π is not cycle balanced. We use the convention that if y → y′ /∈ R, then λy→y′(x) = 0
for all x ∈ Z

n. Define the flux at x ∈ Z
n from the complex y′ ∈ C to the complex y ∈ C to be

ρy,y′(x) := π(x+ y′ − y)λy′→y(x+ y′ − y)− π(x)λy→y′ (x).

Since π is not reaction balanced, there exists an x ∈ Z
n and a pair of complexes y1, y2 ∈ C such that

ρy1,y2
(x) 6= 0. Clearly, ρy1,y2

(x) > 0 if and only if ρy2,y1
(x + y2 − y1) < 0. So we assume without loss

of generality that there exists an x ∈ Z
n and a pair of complexes y1, y2 ∈ C such that ρy1,y2

(x) > 0.
Since π is complex balanced (but not reaction balanced), there exists a complex y3(6= y1) ∈ C such that
ρy2,y3

(x + y2 − y1) > 0. Continuing this argument, there exists a sequence of complexes (y1, y2, y3, . . .)
such that ρyi,yi+1

(x + yi − y1) > 0 for all i ≥ 1. However, since there are only finitely many complexes
in a reaction network, eventually we get a nontrivial cycle, i.e. a state x ∈ Z

n and a sequence of distinct
complexes {y1, y2, . . . , yj} ⊆ C such that ρyi,yi+1

(x+yi−y1) > 0 where i ∈ {1, . . . , j} and yj+1 = y1. This
implies that for i ∈ {1, . . . , j}, π(x+yi+1−y1)λyi+1→yi

(x+yi+1−y1) > π(x+yi−y1)λyi→yi+1
(x+yi−y1).

Taking product over i ∈ {1, . . . , j}, we get that ∏j
i=1 π(x+yi+1−y1)λyi+1→yi

(x+yi+1−y1) >
∏j

i=1 π(x+
yi − y1)λyi→yi+1

(x + yi − y1), which implies that π is not cycle balanced, thus completing the proof of
the claim.

Remark 4.2. As in the deterministic setting (see Remark 3.3), reaction vector balance and cycle balance
do not imply complex balance for a stochastic reaction system. To see this, consider the mass action
system (G,KS) depicted below:

0
1/2

⇄
1

A , 2A
1

⇄
3
3A

Cycle balance is trivially satisfied, since there are no cycles involving three or more non-repeating com-
plexes. The resulting stochastic process is a birth and death process with a unique stationary distribution
within Z≥0, which is reaction vector balanced [21]. The negative states, if considered, are all absorbing
states. Hence, (G,KS) is cycle balanced and reaction vector balanced. We only need to check that for
(G,KS), the stationary distribution within Z≥0 is not reaction balanced. In fact, the only measure on
Z≥0 balancing the first pair of reversible reactions is π(n) = (1/2)n/n!, which does not balance the second
pair of reversible reactions. This shows that (G,KS) is not reaction balanced.

Surprisingly enough, and in contrast to deterministic mass action systems, in the setting of stochastic
mass action systems, complex balance and reaction vector balance imply reaction balance (see Theorem
4.8).

The following result extends part of [7, Theorem 18] by only requiring measures in the hypotheses
instead of distributions, and also extends to reaction balance and reaction vector balance as well. More-
over, the definition of kinetics we have in this paper is more general than that commonly used in the
context of stochastic reaction networks. Furthermore, in [7], it is assumed that λy→y′(x) > 0 if and only
if x ≥ y, which we do not require here.

Theorem 4.4 (Necessary conditions for existence of a balanced measure). Let (G,Λ) be a stochastic
reaction system and let π be a measure within an irreducible component Γ of (G,Λ). Let GΓ = (SΓ, CΓ,RΓ)
be the active subnetwork of (G,Λ) in Γ.
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(i) If π is a reaction balanced measure of (G,Λ), then GΓ is reversible.

(ii) If π is a complex balanced measure of (G,Λ), then GΓ is weakly reversible.

(iii) If π is a reaction vector balanced measure of (G,Λ), then for every y → y′ ∈ RΓ, there exists
ỹ → ỹ′ ∈ RΓ with y + ỹ = y′ + ỹ′.

Proof. If π is either reaction balanced, complex balanced or reaction vector balanced, then by Theorem
4.1, π is a stationary measure. It follows from the standard theory of Markov chains that π is positive
on every state of Γ. Consider y → y′ ∈ RΓ, and let x ∈ Γ be such that λy→y′(x) > 0. If π is reaction
balanced, then from (4.1), it follows that λy′→y(x + y′ − y) > 0, so that y′ → y ∈ RΓ. If π is reaction
vector balanced, then from (4.3), it follows that there is a ỹ → ỹ′ ∈ RΓ such that ỹ − ỹ′ = y′ − y.
Finally, if π is complex balanced, we consider the continuous time Markov chain with state space CΓ and
transition rate from complex y′ to y′′ to be q(y′, y′′) := λy′→y′′(x− y+ y′), where as usual the expression
is 0 if y′ → y′′ /∈ RΓ. Since π is complex balanced, ν(y′′) := π(x− y+ y′′) is a stationary distribution for
the contructed Markov chain. Since ν(y) = π(x) > 0, y must be recurrent, which implies that y → y′ is
necessarily contained in a closed directed path y → y′ → · · · → y, which concludes the proof.

4.2 Results for mass action kinetics

The main result in this section is the stochastic analog of the classical Horn, Jackson and Feinberg theory
for deterministic mass action reaction systems. We start with a consequence of [7, Corollary 19]. The
original result [7, Corollary 19] is restated in Section 5 of this paper as Theorem 5.3.

Theorem 4.5. Let (G,KS) be a stochastic mass action system. If (G,KS) possesses a complex balanced
distribution within some active irreducible component of (G,KS), then there exists a unique stationary
distribution within every irreducible component of (G,KS), and every stationary distribution of (G,KS)
is complex balanced.

In the following result, we extend Theorem 4.5 by only requiring the hypothesis of a complex balanced
measure instead of a complex balanced distribution. Moreover, we also consider reaction balanced
measures, in analogy with the deterministic statement in Theorem 3.4.

Theorem 4.6 (Existence and uniqueness of stationary distribution). Let (G,KS) be a stochastic mass
action system. If (G,KS) possesses a σ-finite complex balanced (reaction balanced, resp.) measure within
some active irreducible component of (G,KS), then there exists a unique stationary distribution within
every irreducible component of (G,KS), and every stationary distribution of (G,KS) is complex balanced
(reaction balanced, resp.).

Theorem 4.6 will be proved after stating and proving Proposition 4.7.

Remark 4.3. Theorem 4.6 implies that a stochastic mass action system which possesses a σ-finite, com-
plex balanced (reaction balanced, resp.) measure within some active irreducible component is a complex
balanced (reaction balanced, resp.) reaction system.

Remark 4.4. In general, a statement analogous to Theorem 4.6 does not hold when reaction balance or
complex balance is replaced by reaction vector balance.

1. Consider the mass action system

0
1

⇄
1
A , A+B

1/2→ 2A+B

The active irreducible components are given by xB = l where l ∈ Z≥0. Within every such compo-
nent, the associated process is a birth and death process with a unique stationary measure (up to
multiplication by contants). Moreover, the process is positive recurrent only for l = 1 [21]. It fol-
lows that a reaction vector balanced stationary distribution within an active irreducible component
exists, but no stationary distribution exists for l ≥ 2.
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2. Even in cases where a stationary distribution exists within every irreducible component, the sta-
tionary distribution may be reaction vector balanced in some irreducible components and not in
others. Consider

0 A 3A

2A 4A

2A+ B 4A+ B

1

2

1

4

1

12

2
3

1

4

The irreducible components correspond to xB = l with l ∈ Z≥0 is a nonnegative integer. It can
be checked that a stationary distribution exists within every irreducible component. The reactions
corresponding to the edges in red have reaction vector ±(1, 0) while the reactions corresponding to
the edges in black have reaction vector ±(2, 0). We denote by ql(i, j) the transition rate from the
state (i, l) to (j, l). We have

ql(i, i+ 1) = i+ 1 ql(i, i+ 2) = (i + 1)(i+ 2)
ql(i, i− 1) = i(2i− 1) ql(i, i− 2) = i(i− 1)[4i2l+ 2i(6− 10l) + 24l− 21]

and ql(i, j) = 0 otherwise. If a reaction vector balanced measure π exists within an irreducible
component, then it must be a stationary measure for the subnetwork determined by the red reactions.
The only possibility is that

π(i, l) = Ml

i−1∏

j=0

1

2j + 1
,

where Ml is a normalization constant depending on the irreducible component xB = l. It can be
checked that π is a stationary measure only for l = 1. It follows that the stationary distribution
within xB = 1 is reaction vector balanced, and the stationary distributions within other irreducible
components are not.

Proposition 4.7 (Existence of stationary distribution). Let (G,KS) be a stochastic mass action system
and let π be a σ-finite complex balanced measure within an irreducible component of (G,KS). Then π is
a finite measure (and so is a stationary distribution, up to a normalization constant).

Proof. Let µ be a σ-finite complex balanced measure within the irreducible component Γ of the mass
action system (G,KS). By Theorem 4.1, µ is a stationary measure, and therefore from standard theory
of continuous time Markov chains, µ is positive on all states of Γ.

If Γ is a singleton containing an absorbing state x /∈ Z
n
≥0, then the result follows. So for the rest of

the proof we focus on the case Γ ⊆ Z
n
≥0.

Now, let GΓ = (SΓ, CΓ,RΓ) denote the active subnetwork of (G,KS) in Γ. By Theorem 4.4, the
network GΓ is weakly reversible. Denote by (GΓ,KS) the mass action system whose rate constants are
naturally determined by those of (G,KS), and let nΓ be the cardinality of SΓ.

If nΓ < n, then necessarily the species in S \ SΓ have constant counts on Γ: indeed if the counts of
a species S are not constant on Γ, then there must be a reaction y → y′ ∈ RΓ with y′ − y having a
non-zero entry for S, which implies S ∈ SΓ. Hence, if nΓ < n, after potentially reordering the species,
Γ = Γ′ × {q} with Γ′ ⊆ Z

nd being an active irreducible component of GΓ and q ∈ Z
n−nd . Finally, we

have that the measure on Γ′ defined by µ′(x′) = µ(x′, q) is a complex balanced measure of (GΓ,KS).
Note that the latter holds even if nΓ = n, in which case µ′ = µ.

Now introduce a set of fictitious species {Sy}y∈CΓ
, one fictitious species for one complex of GΓ, and

consider the mass action system, denoted by (Ĝ,KS) and described by the set of reactions

R̂ := {y + Sy → y′ + Sy′ : y → y′ ∈ RΓ},
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The resulting reaction network Ĝ is clearly weakly reversible since the reactions R̂ are in one-to-one
correspondence with the reactions RΓ. By using this correspondence, we equip Ĝ with mass action
kinetics, with the same rate constants as (GΓ,KS) (that correspond to a subset of those of (G,KS)).

Furthermore, Ĝ = (Ŝ, Ĉ, R̂) has deficiency zero. (See the proof of [7, Theorem 18]. In the same paper, a
definition of deficiency is given, together with a discussion on its meaning.) Since the reaction network

Ĝ has deficiency zero and is weakly reversible, from [11], it follows that the network (Ĝ,KD) is complex
balanced for every choice of positive reaction rate constants.

Let mΓ be the number of complexes of GΓ (equivalently of Ĝ) and let (x′, x̂) ∈ Z
nΓ

≥0 × Z
mΓ

≥0 denote a

state of (Ĝ,KS), where the entries of x
′ and x̂ refer to the original and fictitious species, respectively. Let

ey denote the vector of ZmΓ

≥0 whose entry relative to the complex y is 1, and whose other entries are zero.

Consider the set Γ̂ = Γ′ × {ey}y∈CΓ
. Since Γ′ is an irreducible component of (GΓ,KS), it follows that Γ̂

is a closed set for the reaction network (Ĝ,KS), in the sense that no state outside Γ̂ is accessible from

within Γ̂. Furthermore, from the state (x′, ey) only the states (x′ − y + y′, ey′) are accessible, provided
that x′ ≥ y and that there is a path from y to y′ in the reaction graph of GΓ, which is equivalent to the
existence of a path from y + Sy to y′ + Sy′ in the reaction graph of Ĝ. Since finitely many states are

accessible from any given state, every irreducible component of (Ĝ,KS) has finitely many states. Finally,

since Ĝ is weakly reversible, (x′′, ey′) is accessible from (x′, ey) if and only if (x′, ey) is accessible from

(x′′, ey′). Thus, we have shown that Γ̂ is a union of irreducible components of (Ĝ,KS), each of which has
finitely many states.

Now define a measure µ̂ on Γ̂ by

µ̂(x′, ey) = µ′(x′) for all (x′, ey) ∈ Γ̂.

Clearly, µ̂ is positive on every state of Γ̂. We now show that µ̂ is a non-null stationary measure. Noting
that λy′+Sy′→y′′+Sy′′

(x′, ey) is nonzero and equal to the rate λy→y′′(x′) of (GΓ,KS) if and only if y′ = y,

for every (x′, ey) in Γ̂ we have

∑

y′′∈Ĉ

∑

y′∈Ĉ

µ̂(x′, ey)λy′+Sy′→y′′+Sy′′
(x′, ey) =

∑

y′′∈C̃

µ′(x′)λy→y′′(x′)

=
∑

y′′∈C̃

µ′(x′ + y′′ − y)λy′′→y(x
′ + y′′ − y)

=
∑

y′′∈Ĉ

∑

y′∈Ĉ

µ̂(x′ + y′′ − y′, ey+y′′−y′)λy′′+Sy′′→y′+Sy′
(x′ + y′′ − y′, ey+y′′−y′)

where in the second equality, we used that µ′ is a complex balanced measure on Γ′. This shows that µ̂
is stationary.

Let L be an irreducible component within Γ̂. Since µ̂ is a non-null, σ-finite stationary measure on L
which has only a finite number of states, it follows that µ̂ is finite on L, and therefore µ̂ is a constant
multiple of the stationary distribution on L. As noted earlier in the proof, every deterministic mass
action system defined on the network Ĝ is complex balanced. Let c be a positive complex balanced
equilibrium of the mass action system (Ĝ,KD). Hence, by [2, Theorem 4.1] (stated here as Theorem 5.1)

we have that within every irreducible component L ⊂ Γ̂

µ̂(x′, ey) = ML
cx

′

x′!
for all (x′, ey) ∈ L,

for some ML > 0.
We now show that ML does not depend on the irreducible component L. First, it follows from

µ̂(x′, ey) = µ′(x′) that ML = µ(x′)x′!/cx
′

=: f(x′). To show that ML1
= ML2

for two different

irreducible components L1, L2 ⊂ Γ̂, it suffices to show that f(x′
1) = f(x′

2) for x′
1 and x′

2 such that
(x′

1, ey) ∈ L and (x′
2, ey′) ∈ L′, for some y, y′ ∈ CΓ. Since x′

1, x
′
2 ∈ Γ′, x′

2 is accessible from x′
1, i.e. there

is a finite sequence of reactions that takes x′
1 to x′

2. Therefore, to argue by induction, it is sufficient to
show that f(x′

1) = f(x′
2) assuming that x′

2 = x′
1− y+ y′′ and λy→y′′(x′

1) > 0. Under the last assumption
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(x′
1, ey) and (x′

2, ey′′) are in the same irreducible component L, so necessarily f(x′
1) = ML = f(x′

2).

Thus, we have that for every x′ ∈ Γ′, µ′(x′) = Mcx
′

/x′! and therefore,

∑

x∈Γ

µ(x) =
∑

x′∈Γ′

µ′(x′) = M
∑

x′∈Γ′

cx
′

x′!
≤ M

∑

x′∈Z
nΓ
≥0

cx
′

x′!
= M

nΓ∏

i=1

eci < ∞.

Thus µ is finite, which concludes the proof.

Remark 4.5. Since a reaction balanced measure is complex balanced, a similar result as Proposition 4.7
can be stated for a reaction balanced measure. Unlike the case of reaction balance and complex balance,
a σ-finite reaction vector balanced measure within an irreducible component is not necessarily finite, as
shown in Remark 4.4(1).

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6. Suppose that µ is a σ-finite complex balanced measure within Γ, an active irre-
ducible component of (G,KS). By Proposition 4.7, µ(Γ) < ∞, and therefore µ is a stationary distribution,
up to a positive multiplicative constant. The claim is then proved by Theorem 4.5.

Suppose now that µ is a σ-finite reaction balanced measure within Γ, an active irreducible component
of (G,KS). Since a reaction balanced measure is complex balanced, we have already shown that there
exists a unique stationary distribution within every irreducible component Γ′ of (G,KS), and by [7,
Corollary 19] (stated here as Theorem 5.3) they are of the form πΓ′(x) = M c

Γ′cx/x!, where c > 0 and
M c

Γ′ > 0. In particular, πΓ = µ is a reaction balanced measure, hence by plugging πΓ(x) = M c
Γc

x/x! and
the mass action reaction rates in (4.1) and by simplifying, we obtain

(
κy→y′ − κy′→yc

y′−y
)
1{x≥y} = 0

for all x ∈ Γ and every y → y′ ∈ R. Since Γ is an active irreducible component, every reaction y → y′ ∈ R
is active at some state x, i.e. for every y → y′ ∈ R there is a state x ∈ Γ such that x ≥ y. Therefore,
κy→y′ = κy′→yc

y′−y for every y → y′ ∈ R. It follows that for every irreducible component Γ′, for all
x ∈ Γ′ and all y → y′ ∈ R, we have πΓ′(x)λy→y′(x) = πΓ′(x+ y′ − y)λy→y′(x+ y′ − y), which concludes
the proof.

The following results explore sufficent conditions for reaction balance, given in terms of complex
balance and reaction vector balance.

Theorem 4.8. Suppose that π is a σ-finite complex balanced measure of a stochastic mass action system
(G,KS). Assume that supp(π) includes a subset A ⊆ Z

n
≥0 such that no nonzero polynomial of degree

at most maxy→y′∈R ‖y‖1 vanishes on A. Furthermore, suppose that (4.3) holds for ξ ∈ R
n and x ∈ A.

Then, (G,KS) is reaction balanced.

The proof of Theorem 4.8 makes use of results developed in Section 5. Hence, it is deferred to
Subsection 5.3. The following result is an immediate corollary.

Corollary 4.9. Suppose that π is a σ-finite complex balanced measure of a stochastic mass action system
(G,KS) with supp(π) ⊆ Z

n
≥0. Assume that π is also reaction vector balanced and such that no nonzero

polynomial of degree at most maxy→y′∈R ‖y‖1 vanishes on supp(π). Then, (G,KS) is reaction balanced
and cycle balanced.

We give here an example that shows that the somewhat technical conditions in the statement of
Theorem 4.8 and of Corollary 4.9 are necessary.

Example 4.1. Consider the stochastic mass action system (G,KS) depicted below.

A

0

B A+ C

C

B + C

2

1

2

1

2

1
2

1

2

1

2

1
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π(x) = (xA!xB !)
−1 for x ∈ Z

3
≥0 is a complex balanced measure with supp(π) = Z

3
≥0, thus (G,KS) is

complex balanced by Proposition 4.2 and Remark 4.1. The irreducible components of the stochastic mass
action system (G,KS) contained in Z

n
≥0 are given by xC = l with l ∈ Z≥0. It can be checked that the

stationary distribution π1 within the irreducible component with l = 1 is reaction vector balanced, but no
stationary distribution of (G,KS) is reaction balanced. This does not contradict Theorem 4.8 because the
nonzero polynomial xC − 1 (of degree 1 < 2 = maxy→y′∈R ‖y‖1) vanishes on supp(π1).

The following result is somewhat surprising, as it breaks down the symmetry between the results
for graphical balance in the deterministic sense (Section 3) and the results for graphical balance in the
stochastic sense. Indeed, the corresponding statement for the deterministic case is not true in general
(see Remark 3.3(1)).

Corollary 4.10 (Complex balance & reaction vector balance =⇒ Reaction balance). Suppose that
(G,KS) is a complex balanced stochastic mass action system. If (G,KS) is reaction vector balanced, then
G is reversible and (G,KS) is reaction balanced.

Proof. By Theorem 4.4, since there exists a complex balanced distribution on an active irreducible
component, then G is weakly reversible. Hence, due to [22], Zn

≥0 is a union of irreducible components.
Therefore, there exists a complex balanced distribution π with supp(π) = Z

n
≥0, which is necessarily

reaction vector balanced by assumption. The conclusion follows from Corollary 4.9.

5 Bridging deterministic and stochastic mass action systems

The main focus of this section is to relate graphical balance of a deterministic mass action system with
graphical balance of the corresponding stochastic mass action system, and vice versa. We begin by
stating some known results.

5.1 Existing results

Connection between equilibria of particular deterministic mass action systems and the stationary distri-
butions of the stochastic counterparts have been shown in [2, 7, 15].

The first result in this sense is [2, Theorem 4.1], which states the following:

Theorem 5.1. Let (G,KD) be a deterministic mass action system with a positive complex balanced
equilibrium c ∈ R

n
>0. Then, the corresponding stochastic mass action system (G,KS) has a product-form

Poisson-like stationary distribution within every irreducible component Γ given by the expression

πΓ(x) = M c
Γ

cx

x!
for x ∈ Γ, (5.1)

where M c
Γ is a normalizing constant.

The study is then carried on in [7, 15], where further relations between stochastic and deterministic
models are unveiled. We start with presenting one of the main results of [15, Theorems 5.9 and 5.10]:

Theorem 5.2. If the deterministic mass action system (G,KD) is reaction balanced (i.e. detailed bal-
anced as a reaction network), then the corresponding stochastic mass action system (G,KS) is reaction
vector balanced (i.e. detailed balanced as a Markov chain). Moreover, the converse holds if the function

y → y′ 7−→ y′ − y

is a one-to-one correspondence between the reactions in R and their reaction vectors.

In [7] a study on complex balanced distribution is conducted, and a stochastic counterpart for the
deterministic model deficiency zero theory is developed. In particular, [7, Corollary 19] states the fol-
lowing:

Theorem 5.3. If a stochastic reaction system (G,KS) admits a complex balanced distribution within
an active irreducible component then G is weakly reversible. Moreover, a stochastic mass action system
(G,KS) admits a complex balanced distribution within an active irreducible component if and only if the
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corresponding deterministic mass action system (G,KD) admits a positive complex balanced state. If this
is the case, then on every irreducible component Γ there exists a unique stationary distribution πΓ. Such
πΓ is a complex balanced distribution and it has the form (5.1), where c is a positive complex balanced
equilibrium of (G,KD).

Moreover, the following is implied by [7, Theorem 23 and discussion in Section 5.1].

Theorem 5.4. Let A ⊆ Z
n
≥0 be any set such that no nonzero polynomial of degree at most maxy→y′∈R ‖y‖1

vanishes on A. Let Ã := A ∪ {x ∈ Z
n
≥0 : x ≥ y for some y → y′ ∈ R and such that x − y + y′ ∈ A}.

Suppose that π is a stationary distribution of a stochastic mass action system (G,KS) such that π(x) =

M(x)cx/x! for x ∈ Ã, where M(x) = M(x′) for any x, x′ within the same irreducible component. Then
(G,KD) is complex balanced and c is a complex balanced equilibrium of (G,KD).

Corollary 5.5. Suppose that π = cx/x! for x ∈ Z
n
≥0 is a stationary measure of a stochastic mass action

system (G,KS). Then (G,KD) is complex balanced and c is a complex balanced equilibrium of (G,KD).

5.2 Expanding the bridge

In this section, we establish further connections between a deterministic mass action system (G,KD) and
the corresponding stochastic mass action system (G,KS).

Theorem 5.6. Suppose that (G,KD) is a deterministic mass action system and (G,KS) is the corre-
sponding stochastic mass action system.

1. (G,KD) is reaction balanced if and only if (G,KS) is reaction balanced.

2. (G,KD) is complex balanced if and only if (G,KS) is complex balanced.

3. (G,KD) is cycle balanced if and only if (G,KS) is cycle balanced.

Proof. 1. Suppose that (G,KD) is reaction balanced. Let c be a positive reaction balanced equilibrium
of (G,KD). In other words, for every y → y′ ∈ R, the following holds:

κy→y′cy = κy′→yc
y′

Then c is a complex balanced equilibrium of (G,KD) and by Theorem 5.1, π(x) = cx/x! for all
x ∈ Z

n
≥0 defines a complex balanced measure of (G,KS). It is straightforward to verify by a direct

calculation that π is a reaction balanced stationary measure of (G,KS). On the other hand, if
(G,KS) is reaction balanced, by Theorems 4.3 and 5.3 there is a c > 0 such that π(x) = cx/x! for
all x ∈ Z

n
≥0 defines a reaction balanced stationary measure. But this implies that c is a reaction

balanced equilibrium of (G,KD) which proves that (G,KD) is reaction balanced (by Theorem 3.4).

2. This follows from Theorem 5.3.

3. In the case of mass action kinetics, both the deterministic cycle balance condition (3.4) for a
positive vector c and the stochastic cycle balance condition (4.4) for a distribution π on an active
irreducible component reduce to the same condition on reaction rate constants. Both (G,KD) and
(G,KS) are cycle balanced if and only if for every sequence of distinct complexes (y1, . . . , yj) ⊆ C
with j ≥ 3, the reaction rate constants satisfy

j∏

i=1

κyi→yi+1
=

j∏

i=1

κyi+1→yi

where by assumption κy→y′ = 0 if y → y′ /∈ R, and yj+1 := y1. To see this in the stochastic
setting, note that if an irreducible component Γ is active, for y1 → y2 ∈ R there exists x ∈ Γ with
x ≥ y1 and for all 1 ≤ i ≤ j, if x ≥ yi, then x − yi + yi+1 ≥ yi+1. It follows that (G,KD) is cycle
balanced if and only if (G,KS) is cycle balanced.
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Remark 5.1. Theorem 5.6 implies that we can talk about complex balanced, reaction balanced and
cycle balanced mass action systems regardless whether we are considering the stochastic or deterministic
modeling regime.

Remark 5.2. In general, the corresponding statement in Theorem 5.6 for reaction vector balance is not
true in either direction. We give examples to illustrate this point.

1. (Deterministic reaction vector balance 6=⇒ Stochastic reaction vector balance.) Denote the deter-
ministic mass action system in (3.6) by (G,KD). We saw earlier that (G,KD) is reaction vector
balanced and complex balanced but not reaction balanced. By Theorem 5.6, it follows that the corre-
sponding stochastic mass action (G,KS) is complex balanced. Now suppose that (G,KS) is reaction
vector balanced, so that by Corollary 4.10, (G,KS) is reaction balanced. This implies that, by The-
orem 5.6, (G,KD) is reaction balanced, which is a contradiction. Therefore, (G,KS) cannot be
reaction vector balanced.

Another example is given by the deterministic mass action system (3.8), which is reaction vector
balanced. However, the corresponding stochastic mass action system has no active irreducible com-
ponents and therefore no stationary distributions within an active irreducible component. Hence,
it cannot be reaction vector balanced.

2. (Stochastic reaction vector balance 6=⇒ Deterministic reaction vector balance.) Consider the
stochastic mass action system (G,KS) depicted below:

0 A 3A

2A 4A
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4

1
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3

1

4

(5.2)

Similarly to Remark 4.4 (2), the reactions corresponding to the edges in red have reaction vector
±1 while the reactions corresponding to the edges in black have reaction vector ±2. The only active
irreducible component is Z≥0, and the only stationary distribution within Z≥0 is

π(x) = M

x−1∏

j=0

1

2j + 1
for x ∈ Z≥0,

where M is a normalizing constant. It can be checked that π is reaction vector balanced, which
implies that (G,KS) is reaction vector balanced. The reaction vector balanced equilibria of the
corresponding deterministic mass action system (G,KD) are solutions of

0 = 1− 2a2,

0 = 4 + 2a+ 2a2 − 24a3 − 8a4.

The only positive solution of the first equation is a = 1/
√
2, which is not a solution of the second

equation. Thus (G,KD) does not have any reaction vector balanced equilibria.

As an immediate consequence of Corollary 4.10 and Theorem 5.6, the following can be stated, in the
spirit of Theorem 5.2 (due to [15]):

Corollary 5.7. If the stochastic mass action system (G,KS) is reaction vector balanced (i.e. detailed
balanced as a Markov chain) and complex balanced, then the corresponding deterministic mass action
system (G,KD) is reaction balanced (i.e. detailed balanced as a reaction system).
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Note that the converse does not hold: deterministic complex balance and reaction vector balance
does not imply stochastic reaction vector balance (hence reaction balance), as highlighted in Remark
5.2(1).

Our results complete the framework of [2,7,15]. Indeed, given a stochastic mass action system (G,KS),
we say that a set A ⊆ Z

n
≥0 has property P if no nonzero polynomial of degree at most maxy→y′∈R ‖y‖1

vanishes on A. Then, we have the following scheme of implications:

(G,KS) is reaction balanced

Existence of a reaction balanced
measure π with supp(π) = Z

n
≥0

Existence of reaction balanced mea-
sure within one active irreducible
component

π(x) = cx/x! for x ∈ Z
n
≥0 is reaction

vector balanced

π(x) = cx/x! if π(x) 6= 0 for x ∈
Z
n
≥0, π is reaction vector balanced,

and supp(π) has property P

(G,KS) is complex balanced

Existence of a complex balanced
measure π with supp(π) = Z

n
≥0

Existence of a complex balanced
measure within one active irre-
ducible component

π(x) = cx/x! for x ∈ Z
n
≥0 is a sta-

tionary measure

π(x) = cx/x! if π(x) 6= 0 for x ∈
Z
n
≥0, π is a stationary measure, and

supp(π) has property P

(G,KS) is reaction vector balanced

Existence of a reaction vector bal-
anced measure π with supp(π) =
Z
n
≥0

Existence of a reaction vector bal-
anced measure within one active
irreducible component

Further implications connecting the deterministic and stochastic models are summarized in Figure 1.

5.3 Proof of Theorem 4.8

We have A ⊆ supp(π) with A being a non-empty subset of Zn
≥0. Moreover, since complex balanced

measure are stationary measures by Theorem 4.1, by standard Markov chain theory and by the fact that
under mass action kinetics the irreducible components are either contained in Z

n
≥0 or disjoint from it,

we can restrict π to a complex balanced measure within Z
n
≥0.

Since π is a σ-finite complex balanced measure of (G,KS), by Proposition 4.7, π(Zn
≥0) < ∞. Fix y →

y′ ∈ R. Since (G,KS) is a mass action system, we have λy→y′(x) = κy→y′

∏n
i=1 xi(xi−1) · · · (xi−yi+1)

for some κy→y′ > 0 and for all x ∈ Z
n
≥0 (see Remark 2.1). By assumption, λy→y′ cannot vanish on

supp(π), so there exists an irreducible component in supp(π) such that y → y′ is active at some x ∈ Γ.
Since π is complex balanced, by Theorem 4.6 GΓ is weakly reversible. It also follows from [7, Theorem
18] that (GΓ,KD) is (deterministically) complex balanced with the reaction rates inherited from (G,KD).
Since this holds for every y → y′ ∈ R, it follows that G is weakly reversible. Therefore, the subnetworks
GΓ are necessarily a union of connected components of G: if x ≥ y, then x − y + y′ ≥ y′, so if y → y′

is active at some state of Γ, the same holds for y′ → y′′, and so on. In conclusion, since (3.2) only
concerns reactions in the same connected component, (G,KD) is complex balanced. By Theorem 5.1,
for all x ∈ supp(π), π(x) = MΓc

x/x!, where MΓ is a positive constant depending on the irreducible
component containing x, and c ∈ Z

n
>0. By assumption, (4.3) holds for all x ∈ A and all reaction

vectors ξ. Substituting the expressions for π and λ into the reaction vector balance condition (4.3) and
simplifying yields

∑

y→y′ : y′−y=ξ

(
κy→y′ − cξκy′→y

) n∏

i=1

xi(xi − 1) · · · (x− yi + 1) = 0

for all x ∈ A and all reaction vectors ξ. It follows that the polynomial on the left-hand side is null.
By linear independence of the polynomials

∏n
i=1 xi(xi − 1) · · · (x − yi + 1) in the sense of Remark 2.1,

the expressions κy→y′ − cy
′−yκy′→y must be equal to zero for all y → y′ ∈ R. This implies that c is a

reaction balanced state and therefore by Theorem 5.6, π is a reaction balanced measure.
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