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Abstract

For linear inverse problems Y = Aµ + ξ, it is classical to recover
the unknown signal µ by iterative regularisation methods (µ̂(m),m =
0, 1, . . .) and halt at a data-dependent iteration τ using some stopping
rule, typically based on a discrepancy principle, so that the weak (or
prediction) squared-error ‖A(µ̂(τ) − µ)‖2 is controlled. In the context
of statistical estimation with stochastic noise ξ, we study oracle adap-
tation (that is, compared to the best possible stopping iteration) in
strong squared-error E

[
‖µ̂(τ) − µ‖2

]
.

For a residual-based stopping rule oracle adaptation bounds are
established for general spectral regularisation methods. The proofs
use bias and variance transfer techniques from weak prediction error
to strong L2-error, as well as convexity arguments and concentration
bounds for the stochastic part. Adaptive early stopping for the Landwe-
ber method is studied in further detail and illustrated numerically.
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1 Introduction and main results

1.1 Motivation

Statistical linear inverse problems

We wish to recover a signal (a function, an image) from noisy data when the
observation of the signal is further challenged by the action of a linear oper-
ator. As an illustrative example, we consider the model of inverse regression
in dimension d = 1 over [0, 1]. We observe

Yk = Aµ(k/n) + σξk, k = 1, . . . , n (1.1)

where µ ∈ L2([0, 1]) is the signal of interest, A : L2([0, 1]) → L2([0, 1])
is a bounded linear operator (with Aµ a continuous function), σ > 0 is
a measurement noise level and ξ1, . . . , ξn are independent standard normal
random variables. An idealised version of (1.1) is given by the continuous
observation of

Y (t) = Aµ(t) + δẆ (t), t ∈ [0, 1], (1.2)

where Ẇ is a Gaussian white noise in L2([0, 1]) with noise level

δ =
σ√
n
. (1.3)

For the asymptotics n → ∞ the rigorous statistical equivalence between
(1.1) and (1.2) goes back to Brown and Low [8] and was extended to higher
dimensions and possibly σ → 0 in Reiß [24]. This setting of statistical inverse
problems is classical and has numerous practical applications, see among
many other references Mair and Ruymgaart [21], Cohen et al. [11], Bissantz
et al. [5] and the survey by Cavalier [9].

Early stopping and regularization

Most implemented estimation or recovery methods for µ are based on a
combination of discretisation and iterative inversion or regularisation. Start
with an approximation space VD ⊆ L2([0, 1]) with dim(VD) = D ≤ n. First,
suppose that (1.1) is observed without noise, i.e., σ = 0. An approximation
µD for µ is then obtained by minimising the criterion

‖Y −Aµ‖2n =
1

n

n∑
k=1

(
Yk −Aµ(k/n)

)2 → min
µ∈VD

!
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Using gradient descent (also called Landweber iteration in this context), we
obtain the fixed point iteration for A = A|VD :

µ(0) = 0, µ(m+1) = µ(m) + A∗
(
Y − Aµ(m)

)
. (1.4)

If ‖A∗A‖ < 2, we have the convergence µ(m) → µD as m→∞.
The same program applies when the data are noisy: we fix a large ap-

proximation space VD and transfer our data into the approximating linear
model

Y = Aµ+ σξ (1.5)

with µ ∈ RD, A ∈ Rn×D and Y, ξ ∈ Rn, with obvious matrix-vector notation.
In formal analogy with (1.4) we obtain a sequence of iterations

µ̂(0) = 0, µ̂(m+1) = µ̂(m) + A∗
(
Y − Aµ̂(m)

)
. (1.6)

The presence of a noise term generates a classical conflict as m grows: the
iterates µ̂(0), µ̂(1), . . . , µ̂(m), . . . are ordered with decreasing bias ‖E[µ̂(m)]−µ‖
and increasing variance E[‖µ̂(m) − E[µ̂(m)]‖2], where E denotes expectation.
Thus, early stopping at some iteration m serves as a regularisation method
which simultaneously reduces numerical and statistical complexity at the
cost of a bias term.

More generally, spectral regularisation methods for linear inverse prob-
lems take the form µ̂(α) = fα(A∗A)A∗Y , where (fα)α>0 is a one-parameter
family of functions R+ → R+ satisfying certain generic conditions, see Engl
et al. [13]. In this parametrisation the limit α→ 0 corresponds to less regu-
larisation, with f0(u) = 1/u being the unregularised inverse. In this paper,
we will consider such general regularisation schemes using the reparametri-
sation g(t, λ) = λ2ft−2(λ2); hence, a larger regularisation parameter t > 0,
to be interpreted as computational time, indicates less regularisation (or a
larger variance) and limt→∞ g(t, λ) = 1.

Regularisation methods can be iterative or not, but it is common that
the regularisation parameter t is chosen from a fixed in advance grid
t0 < t1 < . . ., tm → ∞ as m → ∞, which we still refer to as “iterations”.
Conversely, any regularisation method defined only on a discrete grid, such as
Landweber iteration, can be extended to a continuous regularisation method
by appropriate interpolation, see also Remark 2.2 on the discretisation error
below. We note that even for methods that are not intrinsically iterative (for
instance Tikhonov regularisation g(t, λ) = (1 + (tλ)−2)−1), computing the
estimates for larger t is generally more resource-intensive since this compu-
tation is often numerically less stable.
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1.2 Adaptivity, oracle approach and early stopping

There are several ways to choose t = t̂ = t̂(Y ) from the data Y to try to
achieve close to optimal performance. Recent results are formulated within
the oracle approach, comparing the error of µ̂(t̂) to the minimal error among
(µ̂(t))t>0. An idealized oracle inequality would take the form

∀µ : E
[
‖µ− µ̂(t̂)‖2

]
. inf

t>0
E
[
‖µ− µ̂(t)‖2

]
, (1.7)

where . indicates inequality up to a constant. Such an inequality can be
seen as a convenient way to transfer an a priori optimal parameter choice to
an a posteriori one. Namely, given a family of signal classes Sr indexed by
some regularity parameter r, assume that for any r, there exists an a pri-
ori regularisation parameter choice t∗r such that µ̂(t

∗
r) has minimax-optimal

convergence rate over µ ∈ Sr. Then if (1.7) holds for the data-dependent
choice t̂, it implies that this a posteriori rule also enjoys minimax conver-
gence rates over the regularity classes (Sr). For more concrete statements,
such as adaptation over classes of Sobolev ellipsoids, see e.g. Cavalier [9].
The advantage of an oracle inequality is that it is a stronger statement than
a posteriori optimality over a certain family: it implies adaptation for any
given individual signal µ.

Typical statistical methods to determine t̂ use (generalized) cross val-
idation (Wahba [25]), penalized empirical risk minimisation (Cavalier and
Golubev [10]) or Lepski’s balancing principle for inverse problems (Mathé
and Pereverzev [22]). Some of these rules can be transferred to determinis-
tic inverse problems see e.g. Pereverzev and Schock [23]. All these methods
lead to some form of oracle inequality of the type (1.7), and thus to min-
imax adaptation over suitable regularity classes. They share, however, the
drawback that the estimators µ̂(t) have first to be computed up to some
maximal iteration (or general parameter choice) T , prescribed prior to data
analysis, and then be compared to each other in some way in order to finally
determine t̂. Computing all estimators in the first place seems an undesirable
waste of resources, in particular in hindsight those for t > t̂.

This state of the art for statistical inverse problems stands in contrast
with the deterministic inverse problem setting, in which the noise ξ in the
model (1.5) is assumed fixed and of norm bounded by 1. In that setting,
it is well-known that the discrepancy principle, consisting in stopping for
the first iteration such that the residual Rt = ‖Y − Aµ̂(t)‖ is smaller than
τσ (for some constant τ > 1), is an a posteriori rule enjoying, under mild
conditions, optimal adaptivity in the deterministic sense over signal classes

4



Sr defined by source conditions (see Engl et al. [13] for a precise analysis).
Yet, there is no easy transfer of results from the deterministic setting to the
statistical; let us point out in particular that (a) the optimal rates in the
statistical and deterministic settings are different, (b) under the white noise
model the typical order of the squared norm of the noise is not constant but
grows linearly with the output space dimension, and (c) in the statistical
setting, cancellation and law of large number effects due to independence of
the noise coordinates play a crucial role, whereas the deterministic setting
is worst-case (or “adversarial”) under the constraint ‖ξ‖ ≤ 1.

The stopping rules we consider will in fact be similar to the discrepancy
principle. Hansen [16] discusses practical issues, in particular modifications
of the discrepancy principle for statistical noise in Chapter 5. For statistical
inverse problems Blanchard and Mathé [7], Lu and Mathé [20] introduce reg-
ularised residuals in order to encompass the fact that R2

t becomes arbitrarily
large as D grows. Our approach will not require such further regularisations.

It turns out that one cannot establish full oracle adaptation of the form
(1.7); in a nutshell, the proposed stopping rule will only be oracle adaptive
with respect to a range of possible regularisation parameters t depending
on the the variance level of estimator µ̂(t) and on the total discretisation
dimension D. In a previous paper [6], it has been shown for the specific case
of truncated SVD regularisation that a lower bound holds which prevents
adaptation over the full range for early stopping rules. If the oracle error is
too small, then any stopping rule must incur an additional error of larger
order. In the present paper on general regularisation schemes this means
that we cannot start at t = 0, but can only consider stopping after a certain
minimal number t0 > 0 of iterations.

Let us point out that in the deterministic approach the noise level σ must
be known in advance in order to apply successfully a discrepancy principle,
an observation going back to Bakushinski [1]. An advantage of the statistical
approach of (1.1) and (1.5) is that the noise level σ2 can be estimated from
the data Y , see e.g. Golubev [15]. This is transparent in the limiting model
(1.2) since δ2 related to σ2 and the number n of observations in (1.3) is
identified by the continuous observation of (Y (t), t ∈ [0, 1]) thanks to its
quadratic variation.

1.3 Mathematical setting

Our analysis for the model (1.5) will use the representation of estimators in
the singular value decomposition (SVD): let (A∗A)1/2 have eigenvalues

1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λD > 0

5



with a corresponding orthonormal basis of eigenvectors (v1, . . . , vD) in terms
of the empirical scalar product 〈a, b〉n = 1

n

∑D
i=1 aibi, a, b ∈ RD. We obtain

the diagonal SVD model in terms of µi = 〈µ, vi〉n, Yi = 〈Y,wi〉n, wi = A∗vi
‖Avi‖n

and
Yi = λiµi + δεi, i = 1, . . . , D, (1.8)

where the εi are independent standard Gaussian random variables and δ =
σ√
n

is the noise level. Our objective is to recover the signal µ = (µi)1≤i≤D

with best possible accuracy from the data (Yi)1≤i≤D.
We do not rely on the calculation of the SVD, which is computationally

rarely feasible, but for the analysis we employ the following SVD represen-
tation of a linear estimator µ̂(t):

µ̂
(t)
i = γ

(t)
i λ−1i Yi = γ

(t)
i µi + γ

(t)
i λ−1i δεi, i = 1, . . . D. (1.9)

We thus specify linear estimation procedures by filters (γ
(t)
i )i=1,...,D,t≥0 that

satisfy γ
(t)
i ∈ [0, 1], γ

(0)
i = 0 and γ

(t)
i ↑ 1 as t→∞. These filter properties are

satisfied by typical spectral regularisation methods, see Example 2.4 below.
The squared bias-variance decomposition of the mean integrated squared

error (MISE) writes

E
[
‖µ̂(t) − µ‖2

]
= B2

t (µ) + Vt

with

B2
t (µ) =

D∑
i=1

(1− γ(t)i )2µ2i and Vt = δ2
D∑
i=1

(γ
(t)
i )2λ−2i . (1.10)

In distinction with the weak norm quantities defined below, we shall call
Bt(µ) strong bias and Vt strong variance.

The estimators we consider take the form µ̂(τ) = (µ̂
(τ)
i )1≤i≤D where

µ̂
(τ)
i = γ

(τ)
i λ−1i Yi. As for the discrepancy principle, we search for a stopping

rule τ based on the information generated by the residual

R2
t = ‖Y − Aµ̂(t)‖2 =

D∑
i=1

(1− γ(t)i )2Y 2
i , t ≥ 0. (1.11)

The information provided by R2
t becomes transparent by considering the

weak or prediction norm ‖v‖A = ‖Av‖ and by decomposing the weak norm

6



error E[‖µ̂(t) − µ‖2A] = B2
t,λ(µ) + Vt,λ into a weak squared bias B2

t,λ(µ) and a
weak variance Vt,λ:

B2
t,λ(µ) = ‖E[µ̂(t)]− µ‖2A =

D∑
i=1

(
1− γ(t)i

)2
λ2iµ

2
i , (1.12)

Vt,λ = E
[
‖µ̂(t) − E[µ̂(t)]‖2A

]
= δ2

D∑
i=1

(
γ
(t)
i

)2
. (1.13)

Then a bias-corrected residual R2
t estimates the weak squared bias:

E
[
R2
t − δ2

D∑
i=1

(1− γ(t)i )2
]

= B2
t,λ(µ). (1.14)

We are led to consider stopping rules of the form

τ = inf
{
t ≥ t0 : R2

t ≤ κ
}

(1.15)

for some initial smoothing step t0 ≥ 0 and a threshold value κ > 0. A
residual R2

t larger than an appropriate choice of κ indicates strong evidence
that there is relevant information about µ beyond t.

1.4 Overview of main results

In Section 2, we first establish in Proposition 2.1 an oracle inequality for
µ̂(τ) in weak-norm by comparing to µ̂(t

∗), where the deterministic stopping
index

t∗ = t∗(µ) = inf
{
t ≥ t0 : Eµ[R2

t ] ≤ κ
}

(1.16)

is interpreted as an oracle proxy and Eµ emphasizes the dependence of the
expectation on µ. We transfer the weak estimates into strong estimates

thanks to appropriate assumptions on the filter functions (γ
(t)
i )1≤i≤D as

well as on A, i.e., on the singular values (λi)1≤i≤D. Under the mild con-
dition δ2

√
D . B2

t∗,λ(µ) . δ2D we then establish in Theorem 2.8 and its
Corollary 2.9 the oracle-type strong norm inequality

E
[
‖µ̂(τ) − µ‖2

]
. E

[
‖µ̂(t∗) − µ‖2

]
. (1.17)

Let us emphasize that classical interpolation arguments between Hilbert
scales, usually applied to control the approximation error under the discrep-
ancy principle (e.g., Section 4.3 in Engl et al. [13]), cannot be used for an
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oracle and thus non-minimax approach. It remains to investigate the perfor-
mance of the deterministic oracle proxy t∗ in connection with the choice of
the threshold κ that is free in the above estimates. This is the topic of Sec-
tion 3. We argue that the choice κ = Dδ2, up to deviations of order

√
Dδ2,

e.g. due to variance estimation, yields rate-optimal results. The study is
conducted by comparing t∗ with weakly and strongly balanced oracles

tw = tw(µ) = inf
{
t ≥ t0 : B2

t,λ(µ) ≤ Vt,λ
}
, (1.18)

ts = ts(µ) = inf
{
t ≥ t0 : B2

t (µ) ≤ Vt
}
. (1.19)

We obtain the bias-variance balance B2
tw,λ

(µ) = Vtw,λ unless B2
t0,λ

(µ) < Vt0,λ
and by the monotonicity of weak bias and variance in t it easily follows that

E
[
‖µ̂(tw) − µ‖2A

]
≤ 2 inf

t≥t0
E
[
‖µ̂(t) − µ‖2A

]
(1.20)

and analogously for the strongly balanced oracle in strong norm. In a con-
crete setting the residual, bias and variance as a function of t together with
the indices τ , t∗, tw and ts are visualized by Figure 1 (right) in Section 4 be-
low. The balanced oracles take over the role of the classical oracles (as error
minimisers) and form natural benchmarks for sequential stopping rules. We
establish in Theorem 3.5 a bound in terms of the rescaled weak oracle error
such that, in general,

E
[
‖µ̂(τ) − µ‖2

]
. max

(
E
[
‖µ̂(ts) − µ‖2

]
, t2w E

[
‖µ̂(tw) − µ‖2A

])
.

For a polynomial decay of singular values this bound becomes a more
tractable interpolation-type bound (Corollary 3.6). Assuming that the spec-
tral method has a sufficiently large qualification, Theorem 3.5 implies in
particular that µ̂(τ) attains the optimal rate δ2β/(2β+2p+d) for matrices A
with a degree p of ill-posedness and signals µ in Sobolev-type ellipsoids of
dimension d with a regularity β ranging within the appropriate adaptation
interval (Corollary 3.7 and [6]).

Section 4 studies more specifically the early stopping rule for Landweber
iterations. First, a large class of signals µ is identified for which an oracle
inequality

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,s E

[
‖µ̂(ts) − µ‖2

]
holds (Corollary 4.1). Then some numerical results show the scope and the
limitations of adaptive early stopping, confirming the theoretical findings.
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2 Oracle proxy bounds

We consider the family of linear estimators (µ̂(t))t≥0 from (1.9) characterised

by the filters (γ
(t)
i )i=1,...,D,t≥0. Recall the basic assumptions: t 7→ γ

(t)
i is a

nondecreasing continuous function with γ
(0)
i = 0, and γ

(t)
i ↑ 1 as t→∞.

Given the residual R2
t from (1.11), we introduce the residual-based stop-

ping rule τ = inf
{
t ≥ t0 : R2

t ≤ κ
}

from (1.15). Since R2
t ↓ 0 holds for t ↑ ∞

and t 7→ R2
t is continuous, we have R2

τ = κ unless R2
t0 < κ already, in which

case τ = t0. Also, recall the oracle proxy t∗ = inf
{
t ≥ t0 : E[R2

t ] ≤ κ
}

,
which by the same argument satisfies E[R2

t∗ ] = κ, unless already E[R2
t0 ] < κ

holds, implying t∗ = t0.

2.1 Upper bounds in weak norm

2.1 Proposition. The following inequality holds in weak norm:

E
[
‖µ̂(τ) − µ̂(t∗)‖2A

]
≤
(

2Dδ4 + 4δ2B2
t∗,λ(µ)

)1/2
. (2.1)

This implies the oracle-type inequality

E
[
‖µ̂(τ) − µ‖2A

] 1
2 ≤ E

[
‖µ̂(t∗) − µ‖2A

] 1
2 +

(
2Dδ4 + 4δ2B2

t∗,λ(µ)
)1/4

. (2.2)

Proof. The main (completely deterministic) argument uses consecutively the
definition of the weak norm, the inequality (A−B)2 ≤ |A2−B2| for A,B ≥ 0
and the bounds R2

τ = κ ≥ E[R2
t∗ ] for τ > t∗ ≥ t0 and R2

τ ≤ κ = E[R2
t∗ ] for

t∗ > τ ≥ t0:

‖µ̂(t∗) − µ̂(τ)‖2A =

D∑
i=1

(γ
(t∗)
i − γ(τ)i )2Y 2

i

≤
D∑
i=1

|(1− γ(t
∗)

i )2 − (1− γ(τ)i )2|Y 2
i

= (R2
t∗ −R2

τ )1(τ > t∗) + (R2
τ −R2

t∗)1(τ < t∗)

≤ (R2
t∗ − E[R2

t∗ ])1(τ > t∗) + (E[R2
t∗ ]−R2

t∗)1(τ < t∗)

≤ |R2
t∗ − E[R2

t∗ ]|

=
∣∣∣ D∑
i=1

(1− γ(t
∗)

i )2
(
δ2(ε2i − 1) + 2λiµiδεi

)∣∣∣.
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Note that the passage from the second to the third line simply follows from

the uniform monotonicity of filters, i.e., γ
(t∗)
i ≤ γ

(τ)
i for all i if t∗ ≤ τ

and γ
(t∗)
i ≥ γ

(τ)
i for all i if t∗ ≥ τ . By bounding the variance of the first

term (applying the Cauchy-Schwarz inequality) and using |1 − γ
(t)
i | ≤ 1,

Var(ε2i ) = 2 and Cov(ε2i , εi) = 0, this implies:

E
[
‖µ̂(t∗) − µ̂(τ)‖2A

]
≤
(

2δ4
D∑
i=1

(1− γ(t
∗)

i )4 + 4δ2
D∑
i=1

(1− γ(t
∗)

i )4λ2iµ
2
i

)1/2
≤
(

2Dδ4 + 4δ2B2
t∗,λ(µ)

)1/2
.

From this first inequality the second follows by the triangle inequality.

Let us point out that Proposition 2.1 continues to hold under minimal
assumptions on the noise: the variables εi need merely match the first four
Gaussian moments.

The last term in the right-hand side of (2.2) is of the order of the geo-
metric mean of Bt∗,λ and δ, and thus asymptotically negligible whenever the
oracle proxy squared-error is of larger order than δ2 (since E[‖µ̂(t∗)−µ‖2A] ≥
B2
t∗,λ). Consequently, the oracle-type inequality (2.2) is asymptotically ex-

act, in the sense that

E
[
‖µ̂(τ) − µ‖2A

]
≤
(
1 + o(1)

)
E
[
‖µ̂(t∗) − µ‖2A

]
(2.3)

as δ → 0, whenever the oracle-type squared-error on the right-hand side is
of larger order than

√
Dδ2. Our stopping rule thus gives reliable estimators

when the weak variance is at least of order
√
Dδ2, and we henceforth choose

the initial smoothing step t0 as

t◦ = inf{t ≥ 0 : Vt,λ = C◦D
1/2δ2} for some constant C◦ ≥ 1. (2.4)

Note that t◦ is well defined for C◦ < D1/2 since Vt,λ increases from 0 at
t = 0 to Dδ2 as t ↑ ∞, and that it is easily computable, since Vt,λ is
obtained as squared norm of the estimation method applied to the data δA1
with 1 = (1, . . . , 1)>. Moreover, we find back exactly the critical order from
the lower bound in [6].

2.2 Remark (Controlling the discretisation error). For the discrete stopping
rule m̂ = inf{m ∈ N : m ≥ t0, R

2
m ≤ κ} we obtain, using (A + B)2 ≤

2(A2 + B2), (A − B)2 ≤ |A2 − B2| for A,B ≥ 0, filter monotonicity and

10



m̂ ≥ τ :

E
[
‖µ̂(m̂) − µ̂(τ)‖2A

]
≤ 2E

[
B2
τ,λ −B2

m̂,λ

]
+ 2δ2 E

[ D∑
i=1

(
γ
(m̂)
i − γ(τ)i

)2
ε2i

]
.

By m̂ − 1 < τ and the filter monotonicity we further bound the right-hand
side by

2 max
m=1,...,D

(
B2
m−1,λ −B2

m,λ + δ2 E
[
maxi≤D ε

2
i

]
‖γ(m) − γ(m−1)‖2

)
.

Note that the filter differences are usually not large; for Landweber iteration,
for instance, ‖γ(m)−γ(m−1)‖2 ≤

∑D
i=1 λ

4
i . Because of E[maxi≤D ε

2
i ] . logD,

the second term is usually of order δ2 logD and much smaller than the error
term in the oracle inequality (2.2). The bias difference term depends on the
signal and does not permit a universal bound, but observe that m̂ stops later
than τ (or at τ) and thus µ̂(m̂) incurs less bias in the error bound than µ̂(τ).

2.2 Upper bounds in strong norm

Most common filter functions used in inverse problems are obtained from
spectral regularisation methods of the form

γ
(t)
i = g(t, λi), (2.5)

where g(t, λ) is a regulariser function R+×R+ → [0, 1], see for instance Engl
et al., Chapter 4 [13] (with the notation g(t, λ) = λ2gt−2(λ2) in terms of their
function gα ). Let us collect all required properties and discuss conditions
under which they are fulfilled.

A first set of assumptions concerns the regulariser function:

2.3 Assumption (R).

R1. The function g(t, λ) is nondecreasing in t and λ, continuous in t with
g(0, λ) = 0 and limt→∞ g(t, λ) = 1 for any fixed λ > 0.

R2. For all t ≥ t′ ≥ t◦, the function λ 7→ 1−g(t′,λ)
1−g(t,λ) is nondecreasing.

R3. There exist positive constants ρ, β−, β+ such that for all t ≥ t◦ and
λ ∈ (0, 1], we have

β−min
(

(tλ)ρ , 1
)
≤ g(t, λ) ≤ min

(
β+ (tλ)ρ , 1

)
. (2.6)
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R2 is not needed given R3 if we allow less accurate control in the con-
stants of Lemma 5.1 (see Proposition 2.6 and its proof below). Still, it is
usually satisfied. The value ρ in R3 should be distinguished from the qual-
ification of a regularisation method, as introduced in Corollary 3.7 below.
While the qualification is intended to control the approximation error, the
constant ρ introduced in (2.6) guarantees instead the control of E0[R

2
t ] (ex-

pectation under null signal) and Vt, Vt,λ for large D, a pure noise property
independent of the signal.

2.4 Example. Let us list some commonly used filters (cf. Engl et al. [13])
that all can be directly seen to satisfy Assumption (R) with ρ = 2 in R3.

(a) The Landweber filter, as developed in (1.6) of the introduction, is ob-
tained by gradient descent of step size 1 (note λ1 ≤ 1):

µ̂(m) =

m−1∑
i=0

(I − A∗A)iA∗Y = (I − (I − A∗A)m)(A∗A)−1A∗Y.

When interpolating with t =
√
m for t ≥ 1 this yields g(t, λ) = 1 −

(1 − λ2)t2; we further interpolate by g(t, λ) = (tλ)2 for t ∈ [0, 1] for
technical convenience: then for assumption (R3) β− = 1

2 , β+ = 1
works in (2.6) for all t ≥ 0, λ ∈ [0, 1].

(b) The Tikhonov filter g(t, λ) = (1 + (tλ)−2)−1 is obtained from the min-
imisation in µ ∈ RD

‖Y − Aµ‖2 + t−2‖µ‖2 → minµ! (2.7)

Assumption (R3) is satisfied with β− = 1
2 , β+ = 1.

(c) The m-fold iterated Tikhonov estimator µ̂(α,m) is obtained by min-
imising iteratively in m the criterion (2.7), but with penalty α2‖µ −
µ̂(α,m−1)‖2, where µ̂(α,1) is the standard Tikhonov estimator with t =
α−1. The reparametrisation t =

√
m yields the filters gα(t, λ) = 1−(1+

α−2λ2)−t
2
. Assumption (R3) is satisfied with β− = α−2

2 , β+ = α−2.

(d) Showalter’s method or asymptotic regularisation is the general con-
tinuous analogue of iterative linear regularisation schemes. Its filter
is given by g(t, λ) = 1 − e−t

2λ2. Assumption (R3) is satisfied with
β− = 1

2 , β+ = 1.

A second assumption concerns the spectrum and is satisfied, for instance,
for singular values of the form λi = ci−1/ν(log(i + 1))p with some c, ν > 0,
p ∈ R.

12



2.5 Assumption (S). There exist constants ν−, ν+ > 0 and L ∈ N such
that for all L ≤ k ≤ D:

0 < L−1/ν− ≤ λk
λd k

L
e
, and

λk
λb k

L
c
≤ L−1/ν+ < 1. (2.8)

The indices ν− and ν+ are related to the so-called lower and upper
Matuszewska indices of the function F (u) = # {i : λi ≥ u} in the theory of
O-regularly varying functions, see Bingham et al. [3], Section 2.1. In classical
definitions these indices are defined asymptotically. Since we aim at non-
asymptotic results, we require a version holding for all k; to account for
possible multiple eigenvalues at the beginning of the sequence, we allow L
to be an arbitrary integer (typically L would be larger than the multiplicity
of λ1). For connections to inverse and singular value problems in numerical
analysis see Djurcic et al. [12] or Fleige [14].

Assumptions (S) and (R) on the filter functions γ
(t)
i and on the spectrum

of A enable us to develop our theory, e.g. transfer weak norm estimates
for the bias and the variance terms into estimates in strong norm, via the
following estimates:

2.6 Proposition. Suppose Assumptions (S) and (R) are satisfied with ρ >
ν+ and the filter functions given by (2.5). Then there exist constants π ≥
1, CV,λ ≥ 1, cλ > 0, C`1,`2 ≥ 1, depending only on ρ, β−, β+, L, ν−, ν+, such
that the following properties are satisfied:

A1. For all t ≥ t′ ≥ t◦, the sequence
(
1−γ(t

′)
i

1−γ(t)i

)
i=1,...,D

with values in [0,∞]

is nonincreasing in i.

A2. For all i′ ≤ i and t ≥ t◦, we have γ
(t)
i ≤ γ

(t)
i′ .

A3. For some π ≥ 1 there exists a constant CV,λ ≥ 1 so that for all t ≥ t′ ≥
t◦, we have

Vt ≤ CV,λ(Vt,λ/Vt′,λ)πVt′ .

A4. There exists cλ > 0 such that for every k = 1, . . . , D:

1

k

k∑
i=1

λ−2i ≥ c
2
λλ
−2
k .

A5. There exists a constant C`1,`2 such that for all t ≥ t◦ we have

D∑
i=1

γ
(t)
i ≤ C`1,`2

D∑
i=1

(γ
(t)
i )2.

13



The condition ρ > ν+ is often encountered in statistical inverse problems,
ensuring, independently of D, a control of the variances of the estimators.
The proof of Proposition 2.6 is delayed until Appendix 5.1. In Appendix 5.2
we also present the proof of the following result, which gives the strong-to-
weak variance order Vt ∼ (t ∧ λ−1D )2Vt,λ in this framework.

2.7 Lemma. Under Assumptions (R) and (S), we have for all t ≥ t◦

Vt,λ ≤ CV (t ∧ λ−1D )−2Vt with CV = L1+2/ν−
L−1 β−2− .

Under Assumptions (R), (S) with ρ > 1 + ν+/2 we have for all t ≥ t◦:

Vt,λ ≥ cV (t ∧ λ−1D )−2Vt,

with

cV := min

(
1,

(
C◦
√
D(1−L1−2ρ/ν+ )
(L−1)β+

) 1
ρ
)

(1−L1−(2ρ−2)/ν+ )β2
−

L2(ρ+1)/ν−
.

Main oracle proxy result in strong norm

We prove the main bound in strong norm first and provide the necessary
technical tools afterwards. The weak-to-strong transfer of error bounds re-
quires at least higher moment bounds, so that we derive immediately results
in high probability. From now on, we consider τ = inf{t ≥ t◦ : R2

t ≤ κ}
with t◦ from (2.4).

2.8 Theorem. Grant A1, A2, A3, A4 from Proposition 2.6 with constants
π,CV,λ, cλ. Then for x ≥ 1 with probability at least 1−c1e−c2x, where c1, c2 >
0 are constants depending on cλ only, we have the oracle-type inequality

‖µ̂(τ) − µ‖2 ≤ K E
[
‖µ̂(t∗) − µ‖2

]
+ 2δ2xλ−2bxc∧D, (2.9)

with

K := 4CV,λ

(
1 +

( (4
√
D + 12)δ2 +

√
32δBt∗,λ(µ)

1(t∗ > t◦) min
(
Vt∗,λ, B

2
t∗,λ(µ)

)
+ 1(t∗ = t◦)Vt◦,λ

x
)1/2)2π

.

Proof. We bound (γ
(τ)
i λ−1i Yi − µi)2 ≤ 2(1− γ(τ)i )2µ2i + 2(γ

(τ)
i )2λ−2i δ2ε2i and

we use the fact that any linear function f(w1, . . . , wD) =
∑D

i=1wizi with
z1, . . . , zD ∈ R attains its maximum over 1 ≥ w1 ≥ · · · ≥ wD ≥ 0 at one of

14



the extremal points where wi = 1(i ≤ k), k ∈ {0, . . . , D} (cf. also the proof
of Lemma 2.12 below). Under A2 we thus obtain for ω > 0

‖µ̂(τ) − µ‖2 ≤ 2B2
τ + 2δ2

D∑
i=1

(
γ
(τ)
i

)2
λ−2i ε2i

≤ 2B2
τ + 2(1 + ω)Vτ + 2δ2 max

1≥w1≥···≥wD≥0

D∑
i=1

wiλ
−2
i (ε2i − 1− ω)

= 2B2
τ + 2(1 + ω)Vτ + 2δ2 max

k=0,...,D

k∑
i=1

λ−2i (ε2i − 1− ω).

By Lemma 5.4 in Appendix 5.3 below, for ω = 1 the last term is bounded by
2δ2xλ−2bxc∧D with probability at least 1−C1e

−C2x with C1, C2 > 0 depending
only on cλ from A4.

For τ < t∗ (and so t∗ > t◦) we have Vτ ≤ Vt∗ , and the bias transfer
bound B2

τ ≤ (B2
τ,λ/B

2
t∗,λ)B2

t∗ is ensured by Lemma 2.10 below under A1. In

addition, Proposition 2.13 guarantees that the weak bias B2
τ,λ is with high

probability close to the oracle proxy analogue B2
t∗,λ under A2. We deduce

more precisely that with probability at least 1− 3e−x (x ≥ 1):

B2
τ ≤

(
1 + 1(t∗ > t◦)

(4
√
D + 12)δ2 +

√
32δBt∗,λ

B2
t∗,λ

x
)
B2
t∗ .

On the other hand, for τ > t∗ we have Bτ ≤ Bt∗ , and we derive, using
A3 on the variance transfer and Proposition 2.14 below on the deviation
between Vτ,λ and Vt∗,λ, that with probability at least 1− 3e−x:

Vτ ≤ CV,λ
(

1 +
((4
√
D + 2)δ2 +

√
8δBt∗,λ

Vt∗,λ
x
)1/2)2π

Vt∗ .

Observing E
[
‖µ̂(t∗) − µ‖2

]
= B2

t∗ + Vt∗ , the result follows by taking the
maximum of the two previous bounds and simplifying the constants.

A direct consequence of the preceding result is a moment bound, which
has the character of an oracle inequality under mild conditions on the weak
bias at the oracle proxy t∗.

2.9 Corollary. In the setting of Theorem 2.8 assume C11(t∗ > t◦)Vt◦,λ ≤
B2
t∗,λ(µ) ≤ C2 supt>0 Vt,λ for some C1, C2 > 0. Then under Assumption (S)

for a constant Cτ,t∗ only depending on C◦, C1, C2, cλ, π, CV,λ, ν−, L:

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,t∗ E

[
‖µ̂(t∗) − µ‖2

]
.
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Proof. Noting supt>0 Vt,λ = Dδ2, and on the one hand Vt∗,λ ≥ Vt◦,λ =

C◦
√
Dδ2 ≥ C◦C

−1/2
2 Bt∗,λ(µ)δ, on the other hand, B2

t∗,λ(µ) ≥ C1Vt◦,λ (then
further bounded as above) in the case t∗ > t◦, it is simple to check that the
factor K in Theorem 2.8 is bounded for x ≥ 1 as K ≤ C∗xπ, where C∗ only
depends on C◦, C1, C2, CV,λ. For the remainder term in (2.9), note that by
Assumption (S) for m ∈ N and Lm−1 < k ≤ Lm

λ−2k ≤ λ
−2
Lm∧D ≤ L

2m/ν−λ−21 ≤ (Lk)2/ν−λ−21 ,

and thus

δ2xλ−2bxc∧D ≤ δ
2x(Lx)2/ν−λ−21 ≤ C

−1
◦ L2/ν−D−1/2x1+2/ν−λ−21 Vt◦,λ, x ≥ 1.

Due to the polynomial increase in x both for K and the remainder term,
we can now integrate the bound with respect to c1e

−c2xdx, note λ−21 Vt◦,λ ≤
Vt◦ ≤ Vt∗ and obtain the announced result.

The corollary shows that the estimator µ̂(τ) performs also in strong norm
up to a constant as well as µ̂(t

∗) with the deterministic oracle proxy t∗. The
main restriction is the choice of the minimal index t◦ according to (2.4). For
smaller t◦ the variability in the residual and thus in τ would induce a too
high variability in µ̂(τ), compared to the variance of the oracle estimator.

Intermediate estimates from weak to strong norm

We now set out in detail the ingredients used in the proof of Theorem 2.8.

2.10 Lemma. Under A1 of Proposition 2.6, we have for t ≥ t′ ≥ t◦ that
B2
t′,λ ≤ CB2

t,λ for some C ≥ 1 implies B2
t′ ≤ CB2

t .

Proof. The assumed decay for the filter ratios implies that there is an index

i0 ∈ {0, 1, . . . , D} such that 1 − γ
(t′)
i ≤ C(1 − γ

(t)
i ) holds for i > i0 and

1− γ(t
′)

i ≥ C(1− γ(t)i ) for i ≤ i0 (trivial cases for i0 = 0, i0 = D). Then:

B2
t′ − CB2

t =

D∑
i=1

(
(1− γ(t

′)
i )2 − C(1− γ(t)i )2

)
µ2i

≤ λ−2i0
i0∑
i=1

(
(1− γ(t

′)
i )2 − C(1− γ(t)i )2

)
λ2iµ

2
i

− λ−2i0
D∑

i=i0+1

(
C(1− γ(t)i )2 − (1− γ(t

′)
i )2

)
λ2iµ

2
i
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≤ λ−2i0 (B2
t′,λ − CB2

t,λ) ≤ 0,

which implies the assertion.

2.11 Lemma. For any x > 0 we have with probability at least 1− 2e−x

|R2
t∗ − E[R2

t∗ ]| ≤
(
2δ2
√
D +

√
8δBt∗,λ

)√
x+ 2δ2x.

Proof. We have R2
t∗ − E[R2

t∗ ] =
∑D

i=1(1− γ
(t∗)
i )2

(
δ2(ε2i − 1) + 2λiµiδεi

)
. By

Lemma 5.3 in the Appendix, δ2
∑D

i=1(ε
2
i − 1) is with probability at least

1− e−x smaller than δ22
√
Dx+ δ22x, while the Gaussian summand is with

the same probability smaller than 2δBt∗,λ
√

2x, using (1 − γ
(t∗)
i )4 ≤ (1 −

γ
(t∗)
i )2.

2.12 Lemma. Under A2 of Proposition 2.6 we have for any z1, . . . , zD ∈ R
D∑
i=1

(
(1− γ(τ)i )2 − (1− γ(t

∗)
i )2

)
zi ≤ max

k=0,...,D

D∑
i=k+1

zi on {τ ≤ t∗},

D∑
i=1

(
(1− γ(t

∗)
i )2 − (1− γ(τ)i )2

)
zi ≤ max

k=0,...,D

k∑
i=1

(1− γ(t
∗)

i )2zi on {τ ≥ t∗}.

Proof. For τ ≤ t∗ introduce the weight space

W≤ =
{
w ∈ RD : wi ∈ [(1− γ(t

∗)
i )2, 1 + (1− γ(t

∗)
i )2], wi increasing in i

}
.

Then
(
(1−γ(τ)i )2

)
1≤i≤D ∈W

≤ holds on {τ ≤ t∗} by A2 for the monotonicity

in i, and because of γ
(τ)
i ∈ [0, γ

(t∗)
i ]. The set W≤ is convex with extremal

points

wk =
(
(1− γ(t

∗)
i )2 + 1(i > k)

)
1≤i≤D, k = 0, 1, . . . , D.

Hence, the linear functional w 7→
∑

iwizi attains its maximum over W≤ at
some wk. This implies

D∑
i=1

(1− γ(τ)i )2zi ≤ max
k=0,...,D

{ D∑
i=1

(1− γ(t
∗)

i )2zi +
D∑

i=k+1

zi

}
on {τ ≤ t∗},

which gives the first inequality. For the second inequality consider

W≥ =
{
w ∈ RD : wi ∈ [0, (1− γ(t

∗)
i )2], wi increasing in i

}
and conclude similarly via

∑D
i=1(1−γ

(τ)
i )2zi ≥ mink

∑D
i=k+1(1−γ

(t∗)
i )2zi on

{τ ≥ t∗}.
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Next, we treat the deviation of the weak bias part.

2.13 Proposition. Under A2 of Proposition 2.6, we obtain for any x ≥ 1
that with probability at least 1− 3e−x

B2
τ,λ −B2

t∗,λ ≤
(

(4
√
D + 12)δ2 +

√
32δBt∗,λ

)
x.

Proof. Since t 7→ B2
t,λ is nonincreasing, only the case τ < t∗ needs to be

considered. By definition of τ , we obtain R2
τ ≤ κ = E[R2

t∗ ] (since t∗ > τ ≥
t0), and thus, by γ

(τ)
i ≤ γ(t

∗)
i :

B2
τ,λ −B2

t∗,λ = R2
τ −R2

t∗ −
D∑
i=1

(
(1− γ(τ)i )2 − (1− γ(t

∗)
i )2

)(
δ2ε2i + 2λiµiδεi

)
≤ E[R2

t∗ ]−R2
t∗ −

D∑
i=1

(
(1− γ(τ)i )2 − (1− γ(t

∗)
i )2

)(
δ2ε2i + 2λiµiδεi

)
≤ E[R2

t∗ ]−R2
t∗ + 2δ

D∑
i=1

(
(1− γ(τ)i )2 − (1− γ(t

∗)
i )2

)
(−λiµiεi).

By Lemma 2.12, for any ω > 0, the last term is bounded as

2δ
D∑
i=1

(
(1− γ(τ)i )2 − (1− γ(t

∗)
i )2

)
(−λiµiεi)

=2δ

D∑
i=1

(
(1− γ(τ)i )2 − (1− γ(t

∗)
i )2

)(
− λiµi(εi + ωδ−1λiµi)

)
+ 2ω(B2

τ,λ −B2
t∗,λ)

≤2δ max
k=0,...,D

D∑
i=k+1

(
− λiµiεi − ωδ−1λ2iµ2i

)
+ 2ω(B2

τ,λ −B2
t∗,λ).

Concerning the sum within the maximum, we can identify the term −λiµiεi
with an increment of Brownian motion B over a time step λ2iµ

2
i . Hence,

the maximum is smaller than maxt>0(Bt − ωδ−1t) which is exponentially
distributed with parameter 2ωδ−1, see Problem 3.5.8 in Karatzas and Shreve
[17]. This term is thus smaller than xδ

2ω with probability at least 1− e−x. In
view of Lemma 2.11 we have with probability at least 1− 3e−x, x ≥ 1,

B2
τ,λ −B2

t∗,λ ≤
(

2(1 +
√
D)δ2 +

√
8δBt∗,λ +

δ2

ω

)
x+ 2ω(B2

τ,λ −B2
t∗,λ).

The choice ω = 1/4 yields the result.
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Finally, for the stochastic error, we obtain a comparable deviation result.

2.14 Proposition. Under A2 of Proposition 2.6, we obtain for any x ≥ 1,
with probability at least 1− 3e−x:

V
1/2
τ,λ − V

1/2
t∗,λ ≤

(
δ2(4
√
D + 2) +

√
8δBt∗,λ

)1/2√
x.

Proof. Since t 7→ V
1/2
t,λ is nondecreasing, we only need to consider the case

τ > t∗. Using V
1/2
t,λ = δ‖γ(t)‖, the inverse triangle inequality, (A − B)2 ≤

A2−B2 for A ≥ B ≥ 0, R2
τ ≥ E[R2

t∗ ] for τ > t∗, and Lemma 2.12, we obtain:

δ−2
(
V

1/2
τ,λ − V

1/2
t∗,λ

)2 ≤ ‖γ(τ) − γ(t∗)‖2
≤ ‖1− γ(t∗)‖2 − ‖1− γ(τ)‖2

= δ−2(R2
t∗ −R2

τ ) +
D∑
i=1

(
(1− γ(t

∗)
i )2 − (1− γ(τ)i )2

)
(1− δ−2Y 2

i )

≤ δ−2(R2
t∗ − E[R2

t∗ ]) + max
k=0,...,D

k∑
i=1

(1− γ(t
∗)

i )2(1− δ−2Y 2
i ).

Observe next that Y 2
i is stochastically larger under Pµ with µi 6= 0 than

under Pµ with µi = 0, using the unimodality and symmetry of the normal
density:

sup
µ∈RD

Pµ(Y 2
i ≤ y) = sup

µi∈R

(
Φ(−λiµiδ−1 + δ−1

√
y)− Φ(−λiµiδ−1 − δ−1

√
y)
)

≤ Φ(δ−1
√
y)− Φ(−δ−1√y) = P0(Y

2
i ≤ y), y > 0.

By independence of (Yi), it thus suffices to bound the deviation probability
of

δ−2(R2
t∗ − E[R2

t∗ ]) + max
k=0,1,...,D

k∑
i=1

(1− γ(t
∗)

i )2(1− ε2i ).

Lemma 5.3 in the Appendix gives that the maximum is smaller than 2
√
Dx

with probability at least 1−e−x, and Lemma 2.11 gives the deviation bound
for the first term, so that the result follows by insertion.

3 Oracle property for early stopping

It remains to investigate the relationship of the deterministic oracle proxy
t∗ with the balanced oracles tw, ts in (1.18),(1.19), which, of course, depend

19



on the choice of κ > 0 that until now was completely arbitrary. We continue
working with t0 = t◦ from (2.4).

By definition we have E[R2
t∗ ] ≤ κ and the weak bias at t∗ = t∗(µ) satisfies

B2
t∗,λ(µ) ≤ κ− δ2

D∑
i=1

(1− γ(t
∗)

i )2 = κ−Dδ2 − Vt∗,λ + 2δ2
D∑
i=1

γ
(t∗)
i

with equality if t∗ > t◦. At this stage we exactly require A5 of Proposition
2.6 and obtain

B2
t∗,λ(µ)−

(
κ−Dδ2

)
≤ (2C`1,`2 − 1)Vt∗,λ; (3.1)

furthermore, we also have (since γ
(t)
i ∈ [0, 1]):

B2
t∗,λ(µ)−

(
κ−Dδ2

)
≥ −Vt∗,λ + 2δ2

D∑
i=1

(γ
(t∗)
i )2 = Vt∗,λ, if t∗ > t◦. (3.2)

The larger the choice of κ, the smaller t∗ and thus also Vt∗,λ. The control
of B2

t∗,λ(µ) is not clear because in (3.1) the effects in κ and Vt∗,λ work in

opposite directions. Note that for κ ≤ Dδ2, the weak bias part dominates
the weak variance at t∗, in other words t∗ ≤ tw holds. A natural choice is
therefore κ = Dδ2 but other choices could be tailored; moreover, the noise
variance δ2 usually needs to be estimated. For these reasons we shall allow
for deviations of the form

|κ−Dδ2| ≤ Cκ
√
Dδ2 for some Cκ > 0. (3.3)

Thanks to the control of E[‖µ̂(τ) − µ̂(t
∗)‖2A] in Proposition 2.1, a weakly

balanced oracle inequality can be derived.

3.1 Proposition. Grant (3.3) for κ and A5 of Proposition 2.6. Then the
following oracle inequality holds in weak norm:

E
[
‖µ̂(τ) − µ‖2A

]
≤ 2C`1,`2 E

[
‖µ̂(tw) − µ‖2A

]
+ 4
(
2C`1,`2 + Cκ

)√
Dδ2.

Proof. Consider first the case tw > t∗. Then B2
tw,λ

= Vtw,λ since tw > t◦,
and we have by monotonicity in t of Vt,λ:

E[‖µ̂(tw) − µ‖2A] = B2
tw,λ + Vtw,λ = 2Vtw,λ ≥ 2Vt∗,λ.

Moreover, from inequality (3.1) together with (3.3), we have

B2
t∗,λ ≤ (2C`1,`2 − 1)Vt∗,λ + Cκ

√
Dδ2, (3.4)
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and bringing together the last two displays yields

B2
t∗,λ + Vt∗,λ ≤ C`1,`2 E[‖µ̂(tw) − µ‖2A] + Cκ

√
Dδ2.

In the case tw < t∗, since B2
tw,λ
≤ Vtw,λ always holds, by monotonicity in t

of B2
t,λ we have

E[‖µ̂(tw) − µ‖2A] = B2
tw,λ + Vtw,λ ≥ 2B2

tw,λ ≥ 2B2
t∗,λ.

Moreover, from equation (3.2) (which holds since in this case t∗ > t◦),
together with (3.3), we have

Vt∗,λ ≤ B2
t∗,λ + Cκ

√
Dδ2;

combining the two last displays and using C`1,`2 ≥ 1 yields again

B2
t∗,λ + Vt∗,λ ≤ C`1,`2 E[‖µ̂(tw) − µ‖2A] + Cκ

√
Dδ2,

so that this inequality holds in all cases (including t∗ = tw in which case the
inequality holds trivially since C`1,`2 ≥ 1). Applying (2.1) and (A + B)2 ≤
2A2 + 2B2, we arrive at

E
[
‖µ̂(τ) − µ‖2A

]
≤ 2E

[
‖µ̂(t∗) − µ‖2A

]
+ 2
(
2Dδ4 + 4δ2B2

t∗,λ

)1/2
≤ 2C`1,`2 E[‖µ̂(tw) − µ‖2A] + 2Cκ

√
Dδ2 + 4δ

(
1
2Dδ

2 +B2
t∗,λ

)1/2
.

Furthermore, 1
2Dδ

2 + B2
t∗,λ ≤ (2C`1,`2 − 1

2)Dδ2 + Cκ
√
Dδ2 follows directly

from (3.4) (which holds in all cases) and the trivial bound Vt∗,λ ≤ Dδ2. It
remains to simplify the bound, using C`1,`2 ≥ 1.

In weak norm, the oracle inequality immediately implies rate-optimal
estimation by µ̂(τ) whenever the weak oracle error inft≥0 E

[
‖µ̂(t)−µ‖2A

]
is at

least of order
√
Dδ2. The constants are not optimised, but give a reasonable

order of magnitude.
In strong norm, the oracle property is more involved. The next result

shows that the strong error at t∗ can be bounded by the strong error at the
weakly balanced oracle tw, which depends only on the underlying regularisa-
tion method and on the spectrum of A, but not on the particular adaptation
method.

3.2 Proposition. Grant A1, A3 and A5 of Proposition 2.6 and (3.3) for
κ with constants π,CV,λ, C`1,`2 , Cκ. Then the oracle proxy t∗ and the weakly
balanced oracle tw satisfy the strong norm bound

E
[
‖µ̂(t∗) − µ‖2

]
≤ Ct∗,tw E

[
‖µ̂(tw) − µ‖2

]
,
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where Ct∗,tw = max
(

2C`1,`2 + CκC
−1
◦ − 1, CV,λ(1 + CκC

−1
◦ )π

)
.

Proof. For t∗ < tw, we obtain by (3.1), using Vt∗,λ ≤ Vtw,λ = B2
tw,λ

(equality

due to tw > t◦) as well as C◦
√
Dδ2 ≤ Vt◦,λ ≤ Vtw,λ:

B2
t∗,λ ≤ (2C`1,`2 + CκC

−1
◦ − 1)B2

tw,λ.

By Lemma 2.10, we can transfer a weak bias inequality into a strong bias
inequality with the same constant and the result follows. In the case t∗ > tw,
we argue in a similiar manner using (3.2) (which holds since t∗ > t◦):

Vt∗,λ ≤ B2
t∗,λ + Cκ

√
Dδ2 ≤ B2

tw,λ + CκC
−1
◦ Vt◦,λ ≤ (1 + CκC

−1
◦ )Vtw,λ,

followed by the variance transfer guaranteed by A3.

Next, we turn to the control of the strong bias at the weak oracle tw.
Surprisingly, this is quite universally feasible whenever tw is smaller than ts.

3.3 Proposition. Grant Assumptions (R) and (S). For all µ with tw(µ) ≤
ts(µ) we have with the constant CV from Lemma 2.7:

E
[
‖µ̂(tw) − µ‖2] ≤ Cw,s E

[
‖µ̂(ts) − µ‖2

]
,

with Cw,s =
(
(2β+)2/ρCV + 4

)
.

Proof. First assume ts ≤ λ−1D . By Assumption R3 we have 4(1− γ(t)i )2 ≥ 1
if tλi ≤ c := (2β+)−1/ρ. Consequently, for any t ≥ tw:

B2
tw − 4B2

t =
D∑
i=1

(
(1− γ(tw)

i )2 − 4(1− γ(t)i )2
)
µ2i

≤
∑

i:λi>ct−1

(1− γ(tw)
i )2µ2i

≤
∑

i:λi>ct−1

(1− γ(tw)
i )2(c−1tλi)

2µ2i

≤ c−2t2B2
tw,λ ≤ c

−2t2Vtw,λ.

From Lemma 2.7 we know Vt,λ ≤ CV (t ∧ λ−1D )−2Vt. We insert t = ts(≤ λ−1D )
and use Vtw,λ ≤ Vs,λ to conclude

B2
tw ≤ 4B2

ts + c−2CV Vts .
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Adding Vtw ≤ Vs and simplifying the constant yields the result.
Consider now the case ts > λ−1D . In this case Lemma 2.7 implies

λ−2D Vts,λ ≤ CV Vts . For the bias, we have by definition of tw and monotonicity:

B2
tw ≤ λ

−2
D B2

tw,λ ≤ λ
−2
D Vtw,λ ≤ λ−2D Vts,λ ≤ CV Vts ,

also implying the desired result.

Section 4.1 below shows for the Landweber method that tw(µ) ≤ ts(µ)
or at least Vtw(µ) . Vts(µ) holds for a large class of polynomially decaying
signals µ. For rapidly decaying signals µ, however, the inverse relationship
tw(µ)� ts(µ) may happen:

3.4 Example (Generic counterexample to tw ≤ ts). Consider the signal

µ1 = 1, µi = 0 for i ≥ 2 and assume λ1 = 1, γ
(t)
1 < 1 for all t ≥ 0.

Then we have B2
t (µ) = B2

t,λ(µ) > 0 whereas Vt ∼ (t ∧ λ−1D )2Vt,λ holds in the
setting of Lemma 2.7. Hence, noting that tw → ∞ as δ → 0, we see that
Vtw ∼ (tw ∧ λ−1D )2Vtw,λ = (tw ∧ λ−1D )B2

tw,λ
(µ) = (tw ∧ λ−1D )2B2

tw(µ) is larger

than B2
tw(µ), implying tw > ts. If we consider an asymptotic setting where

D →∞, λD → 0 as δ → 0, we even have tw/ts →∞ as δ → 0.

The weakly balanced oracle does not profit from the regularity of µ in
strong norm. Notice that this loss of efficiency is intrinsic to residual-based
stopping rules which have access to the weak bias only. Still, we are able to
control the error by an inflated weak oracle error.

3.5 Theorem. Suppose Assumptions (R), (S) hold with ρ > max(ν+, 1 +
ν+
2 ) and (3.3) holds for κ with Cκ ∈ [0, C◦). Then for all µ with tw(µ) ≤ ts(µ)

we have
E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,s E

[
‖µ̂(ts) − µ‖2

]
.

For all µ with tw(µ) ≥ ts(µ) we obtain

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,w(tw ∧ λ−1D )2 E

[
‖µ̂(tw) − µ‖2A

]
.

The constants Cτ,s and Cτ,w depend only on ρ, β−, β+, L, ν−, ν+, C◦, Cκ.

Proof. We want to apply Corollary 2.9 (bounding the strong error of µ̂(τ)

by that of µ̂(t
∗)) followed by Proposition 3.2 (from µ̂(t

∗) to µ̂(tw)) in order to
bound E[‖µ̂(τ) − µ‖2] by Cτ,t∗Ct∗,tw E

[
‖µ̂(tw) − µ‖2

]
.

We have that Cκ ∈ [0, C◦) implies by the bounds in (3.1)-
(3.2) together with Vt∗,λ ≥ Vt◦,λ = C◦

√
Dδ2 that B2

t∗,λ ∈ [(1 −
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CκC
−1
◦ )Vt∗,λ1(t∗ > t◦), (2C`1,`2 + CκC

−1
◦ − 1)Vt∗,λ], as required for Corol-

lary 2.9. Also the condition ρ > ν+ ensures via Proposition 2.6 that A1,
A2, A3, A4 hold as required.

For the case tw ≤ ts we can conclude the first inequality by the bound on
E[‖µ̂(tw) − µ‖2] in Proposition 3.3. In the other case, B2

tw ≤ Vtw ≤ c−1V (tw ∧
λ−1D )2Vtw,λ is implied by Lemma 2.7, using ρ > 1 + ν+/2, and the second
result follows. It remains to trace back the dependencies of the constants
involved.

Let us specify this main result for polynomially decaying singular values
λi. Then we can write an oracle inequality which involves the oracle errors
in weak and strong norm instead of the index tw itself.

3.6 Corollary. Grant Assumption (R) with ρ > 1, (3.3) with Cκ ∈ [0, C◦)
and λi = cAi

−1/ν , i = 1, . . . , D, for cA > 0 and 0 < ν < min(ρ, 2ρ−2). Then

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,ws max

(
δ−4/ν E

[
‖µ̂(tw) − µ‖2A

]1+2/ν
, E
[
‖µ̂(ts) − µ‖2

])
holds with a constant Cτ,ws depending only on ρ, β−, β+, cA, C◦, Cκ.

Proof. Since Assumption (S) holds with ν+ = ν− = ν, by Lemma 5.2 in the
Appendix it holds that tw ≥ t◦ ≥ ζλ−11 ≥ ζ (ζ only depending on C◦ and

L). From δ−2Vtw,λ =
∑D

i=1(γ
(tw)
i )2 we deduce via Assumption R3

δ−2Vtw,λ ≥ β2−((ζcA)ρ ∧ 1)2#{i : 1 ≤ i ≤ D,λi ≥ ζcA/tw}
≥ β2−((ζcA)ρ ∧ 1)2(b(ζ−1tw)νc ∧D)

≥ β2−((ζcA)ρ ∧ 1)2((ζ−1tw)ν/2 ∧ (cAλ
−1
D )ν)

≥ C1(tw ∧ λ−1D )ν , with C1 =
1

2
β2−ζ

2ρ(ζ−1 ∧ cA)ν+2ρ.

Because of δ−4/ν E[‖µ̂(tw) − µ‖2A]2/ν ≥ (δ−2Vtw,λ)2/ν ≥ C
2/ν
1 (tw ∧ λ−1D )2, the

bound follows by combining the two inequalities from Theorem 3.5.

A further consequence is a minimax rate-optimal bound over the
Sobolev-type ellipsoids

Hβ
d (R) =

{
µ ∈ RD :

D∑
i=1

i2β/dµ2i ≤ R2
}
, β ≥ 0, R > 0. (3.5)

In the case of Fourier coefficient sequences (µi) the class Hβ
d (R) corresponds

to a ball of radius R in a d-dimensional L2-Sobolev space of regularity β. At
this stage the concept of qualification of the spectral regularisation method,
i.e., the filter sequence, enters.
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3.7 Corollary. Grant Assumption (R) with ρ > 1, (3.3) with Cκ ∈ [0, C◦),
λi = cAi

−p/d for cA > 0 and p/d > min(ρ, (2ρ− 2))−1 as well as

1− g(t, λ) ≤ Cq(tλ)−2q, t ≥ t◦, λ ∈ (0, 1],

for some qualification index q > 0. Then µ̂(τ) attains the minimax-optimal
rate over Hβ

d (R) from (3.5)

sup
µ∈Hβ

d (R)

E
[
‖µ̂(τ) − µ‖2

]
. R2(R−1δ)4β/(2β+2p+d),

provided 2q − 1 ≥ β/p and (R/δ)2d/(2β+2p+d) &
√
D for D →∞ as δ → 0.

Proof. A qualification q ≥ β/(2p) in combination with Assumption (R)

ensures for µ ∈ Hβ
d (R), compare also Thm. 4.3 in Engl et al. [13]:

B2
t (µ) ≤

D∑
i=1

C2
q min

(
(tλi)

−2q, 1
)2
µ2i ≤ C2

q

D∑
i=1

(tcAi
−p/d)−2β/pµ2i

≤ C2
q c
−2β/p
A R2t−2β/p.

Similarly, we deduce for 2q − 1 ≥ β/p:

t2B2
t,λ(µ) ≤

D∑
i=1

C2
q min

(
(tλi)

−2q+1, tλi
)2
µ2i ≤ C2

q c
−2β/p
A R2t−2β/p.

Under Assumption R3 the weak variance satisfies Vt,λ .
δ2
∑

i min(β+(tλi)
2ρ, 1) . δ2td/p provided λi ∼ i−p/d, p > d/(2ρ). For

p > d/(2ρ− 2) we obtain in a similar manner Vt . δ2t2+d/p.
A rate-optimal choice of t is thus of order (R/δ)2p/(2β+2p+d) and gives

inf
t≥0

max
(
E[‖µ̂(t) − µ‖2

]
, t2 E[‖µ̂(t) − µ‖2A

])
. R2(R−1δ)4β/(2β+2p+d),

with a constant independent of µ, D and δ. Using the last assumption in
the corollary, we deduce t ≥ t◦ for a rate-optimal choice of t via

Vt,λ ∼ δ2(R/δ)2d/(2β+2p+d) & δ2D1/2 ∼ Vt◦,λ.

In view of the narrow sense oracle property (1.20) of tw and equally of ts in
strong norm, we thus conclude by applying Theorem 3.5.
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For the filters of Example 2.4 we see that the Landweber and Showalter
method have any qualification q > 0 while standard Tikhonov regularisation
has qualification q = 1. The statement is very much in the spirit of the results
for the deterministic discrepancy principle, see e.g. Thm. 4.17 in Engl et al.
[13], when interpreting κ = Dδ2 as the squared noise level, cf. Hansen [16].
Note, however, that we do not require a slightly enlarged critical value and
that the condition (R/δ)2d/(2β+2p+d) &

√
D, which means that the minimax

estimation rate for δ → 0 is not faster than D1/2+p/dδ2, indicates an intrinsic
difference between deterministic and statistical inverse problems.

Cohen et al. [11] argue that in the present setting a dimension Dδ ∼
δ−2d/(2p+d) of the approximation space suffices to attain the optimal rates
for all Sobolev (infinite) sequence spaces, i.e., the error introduced by the
approximation space of dimension Dδ is of order smaller than the minimax
rate. With this choice of Dδ, all optimal squared error rates of size δ and
slower are attained by µ̂(τ); only excluded is the faster rate interval [δ2, δ),
which corresponds to the high regularity β > p+d/2, see also the numerical
results and the discussion on the two-stage procedure in Section 4 below.

Theorem 3.5 can also serve to deduce bounds on the Bayes risk of µ̂(τ)

with respect to a prior for the signals µ. For concrete methods and general
classes of priors Bayesian oracle inequalities are thus conceivable similar to
Bauer and Reiß [2], but in a different setup.

4 More on the Landweber method

4.1 A sufficient condition for the complete oracle property

For the concrete example of the Landweber method, let us investigate for
which signals µ we have a true oracle inequality in the sense that in Theorem
3.5 the first inequality applies with a universal constant Cτ,s > 0. Note first
that, under Assumption (S), if we can ensure additionally that Vtw ≤ C1Vts
for some C1 > 1, then Proposition 3.3 yields the more general bound

E
[
‖µ̂(tw) − µ‖2] ≤ max

(
(2β+)2/ρCV + 4, C1

)
E
[
‖µ̂(ts) − µ‖2

]
. (4.1)

This generalisation is just due to Btw(µ) ≤ Bts(µ) in the case tw > ts.
To establish Vtw ≤ C1Vts , let us assume D/L ∈ N and consider for some

cµ > 0 the class of signals µ

C := C(L, cµ) :=
{
µ ∈ RD : ∀i = 1, . . . , D/L : µ2(L−1)i+1+· · ·+µ

2
Li ≥ cµµ2i

}
.

(4.2)
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From the definition of the Landweber filters in Example 2.4 we obtain for
i ≤ D/L:

(1− γ(t)i )2

(1− γ(t)Li )2
=
(

1−
λ2i − λ2Li
1− λ2Li

)2t2
≤ exp

(
− 2t2λ2i (1− L−2/ν+)

)
.

By the decay of C(r) := re−(1−L
−2/ν+ )r for r ≥ r0 := (1 − L−2/ν+)−1, we

can thus bound for µ ∈ C∑
i:tλi≥r1/2,
i≤D/L

(1−γ(t)i )2(tλi)
2µ2i ≤ c−1µ C(r)2

∑
i:tλi≥r1/2,
i≤D/L

(1−γ(t)Li )
2
(
µ2(L−1)i+1+· · ·+µ

2
Li

)
.

Additionally, if t ≤ λ−1D , then

D∑
i=D/L+1

(1− γ(t)i )2(tλi)
2µ2i ≤ L2/ν−

D∑
i=D/L+1

(1− γ(t)i )2µ2i .

This implies t2B2
t,λ(µ) ≤ (r + c−1µ C(r)2 + L2/ν−)B2

t (µ) provided t ≤ λ−1D .

Using (t∧λ−1D )2Vt,λ ≥ CV Vt from Lemma 2.7, the definition of the balanced
oracles, and monotonicity, we conclude in the case tw > ts and ts ≤ λ−1D :

Vtw ≤ C−1V (tw ∧ λ−1D )2Vtw,λ = C−1V (tw ∧ λ−1D )2B2
tw,λ(µ)

≤ C−1V (tw ∧ λ−1D )2B2
tw∧λ−1

D ,λ
(µ)

≤ C−1V (c−1µ C(r)2 + r + L2/ν−)B2
tw∧λ−1

D
(µ)

≤ C−1V (c−1µ C(r)2 + r + L2/ν−)B2
ts(µ)

= C−1V (c−1µ C(r)2 + r + L2/ν−)V 2
ts ,

providing the desired strong variance inequality. Finally, in the case tw >

ts > λ−1D we have γ
(ts)
i ≥ β− for all i = 1, . . . , D by Assumption (R3) and

therefore Vtw ≤ β−1− Vts .
The value of r may be optimised or we just take r = r0 to define C1 =

C(r0) and thus conclude from Theorem 3.5 and (4.1):

4.1 Corollary. In the setting of Theorem 3.5, we have for Landweber iter-
ation and all signals µ ∈ C(L, cµ) from (4.2) the oracle inequality

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,s E

[
‖µ̂(ts) − µ‖2

]
with a constant Cτ,s depending only on ρ, β−, β+, L, ν−, ν+, cµ, Cκ, C◦.
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Figure 1: Left: SVD representation of a super-smooth (blue), a smooth (red)
and a rough (olive) signal. Right: residuals, weak/strong bias and variance
for t ∈ {0, . . . , 400} Landweber iterations and the smooth signal.

The class C in combination with Counterexample 3.4 illustrates that the
early stopping rule τ may exhibit bad strong norm adaptation only if the
signal has a significantly stronger strength in the lower than in the higher
SVD coefficients. Interestingly, also for noise level-free posterior regularisa-
tion methods, these kinds of signals must be excluded in deterministic in-
verse problems, cf. Prop. 4.6 in Kindermann [18]. Let us emphasize, however,
that this discussion only concerns the individual oracle approach, whereas
the minimax optimality under standard polynomial source conditions is sat-
isfied by Corollary 3.7.

4.2 Numerical examples

Consider the moderately ill-posed case λi = i−1/2 (as, e.g., for the Radon
transform) with noise level δ = 0.01 and dimension D = 10 000. After 51
Landweber iterations the weak variance attains the level

√
2Dδ2, which is

the dominating term in (2.2) and corresponds to C◦ =
√

2 in the choice
of t◦ (by abuse of notation, indices t denote numbers of iterations in this
subsection).

In Figure 1 (left) we see the SVD representation of three signals: a very
smooth signal µ(1), a smooth signal µ(2) and a rough signal µ(3), the at-
tributes coming from the interpretation via the decay of Fourier coefficients.
The weakly balanced oracle indices tw are (42, 299, 1074). So, we stop before
t◦ in the super-smooth case and expect a high variability of τ around t∗.
The strong indices ts are (29, 235, 1185). For the smooth and super-smooth
case with rapid decay and oscillations the signals lie in the class C from (4.2)
for relatively small cµ > 0 only, which explains why here tw > ts occurs.
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We choose κ = Dδ2 = 1.0 although the ratio
∑

i γ
(t)
i /

∑
i(γ

(t)
i )2, defining

the constant C`1,`2 , is about 1.05 at t◦. The relationship (3.1) therefore
indicates that a smaller value of κ might be beneficial, which indeed in
practice yields much better results, especially for the smooth and rough
cases. In any case, in this simulation we use κ = Dδ2 off the shelf and we
compute the stopping rule τ starting at t0 = 0 to illustrate the effects when
very early stopping is recommended.

For the smooth signal µ(2) Figure 1 (right) displays squared bias, vari-
ance and residuals (for one realisation) as a function of the number of itera-
tions and indicates the stopping indices (the bias and variance functions are
rescaled to fit into the picture). We see that the residual and its expected
value are hardly distinguishable and thus τ is very close to the oracle proxy
t∗. While our error analysis uses the weak norm oracle inequality to establish
the strong norm bound, here the strongly balanced oracle ts is closer to τ
than the weak counterpart tw. The effects will become obvious in the error
plots below.

Relative to the target tw, Figure 2 (left) displays box plots (a box repre-
senting the inner quartile range, whiskers the main support, points outliers
and a horizontal bar the mean) for the relative number of iterations τ/tw
and τ/ts, respectively, in 1000 Monte Carlo repetitions and for the three
signals. We see the high variability for the super-smooth signal and the fact
that for all three signals τ usually stops too early. For the weak norm this
can be cured by choosing κ smaller taking into account the size of C`1,`2 ,
as discussed above (independently of the unknown signal). Relative to the
strongly balanced oracle ts, however, the stopping rule τ comes closer to the
oracle for the super-smooth and smooth signals and moves further away for
the rough signal because of tw > ts and tw < ts, respectively.

In Figure 2 (right) the box plots show for the same Monte Carlo run the
relative errors mint≥0 E[‖µ̂(t) − µ‖2A]1/2/E[‖µ̂(τ) − µ‖2A]1/2 (weak norm) and
mint≥0 E[‖µ̂(t) − µ‖2]1/2/E[‖µ̂(τ) − µ‖2]1/2 (strong norm) such that higher
values indicate better performance. As expected from the stopping rule re-
sults, the variability is largest for the super-smooth case, and as predicted
by theory, the relative efficiency in weak norm is best for the rough signal.
In strong norm all three efficiencies become much better. Due to ts < tw
this was to be expected for the super-smooth and smooth signals, cf. also
Figure 1 (right). For the rough signal this is quite surprising because the
stopping rule τ usually stops at about half the value of ts. This is explained
by a roughly linear decay of t 7→ B2

t around ts and a strong growth in
t 7→ Vt such that the total error t 7→ B2

t + Vt is quite flat to the left of
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Figure 2: Left: number of Landweber iterations for τ divided by the balanced
oracle numbers. Right: oracle RMSE errors divided by RMSE of µ̂(τ).

ts. Note that in weak norm t 7→ B2
t,λ decays much faster and the ’flatness’

disappears. This is the common phenomenon that the relative error due to
a data-driven parameter choice often becomes smaller for ill-posed than for
well-posed settings.

Further unreported simulations confirm these findings, in particular the
relative error due to residual-based stopping remains small (rarely larger
than 2, i.e. relative efficiency usually larger than 0.5). Only for super-smooth
signals, where we ought to stop before t◦, the variability may become harm-
ful.

As a practical procedure, we propose to run the iterations always until
t◦ (51 iterates here) and if the stopping rule τ tells us not to continue, then
we apply a standard model selection procedure to choose among the t◦ first
iterates. For the truncated SVD case this two-step procedure can be proven
to be rate-optimal for all regularities β, not only within the adaptation
interval, see [6]. For our general spectral regularisation approach the lack of
a complete oracle inequality in strong norm is due to potentially stopping
later than at ts. Hence, a natural suggestion would be to apply a second
model selection step to select among µ̂(0), . . . , µ̂(τ) for any outcome of τ . The
performance of this general two-step approach needs to be studied further,
but seems very promising from the perspective of both, statistical errors and
numerical complexity.
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5 Appendix

5.1 Proof of Proposition 2.6

We start with an important result for a nonincreasing sequence satisfying
(S). This is related to comparisons between a function and its power inte-
grals, also known as Karamata’s one-sided relations.

5.1 Lemma (One-sided Karamata relations). Suppose Assumption (S) is
satisfied. Then for any p > 0 and k ≥ 1 we have∑

j≤k λ
−p
j

kλ−pk
≥ L−p/ν−(1− L−1) for p > 0 and 1 ≤ k ≤ D, (5.1)∑Lk

j=k+1 λ
p
j

kλpk
≥ (L− 1)L−p/ν− for p > 0 and 1 ≤ k ≤ bD/Lc, (5.2)∑D

j=k λ
p
j

kλpk
≤ L− 1

1− L1−p/ν+
for p > ν+ and 1 ≤ k ≤ D. (5.3)

Proof. For inequality (5.2), write:

Lk∑
j=k+1

λpj ≥ (L− 1)kλpLk ≥ L
−p/ν−(L− 1)kλpk.

We turn to (5.1), for which we write

∑
j≤k

λ−pj ≥
k∑

j=dk/Le

λ−pj ≥
(
k+ 1−

⌈ k
L

⌉)
λ−pdk/Le ≥ (1−L−1)kL−p/ν−λ−pk .

Finally, for (5.3), we have λLk
λk
≤ L−1/ν+ and

D∑
j=k

λpj =

dD/Le∑
`=0

(kL`+1−1)∧D∑
i=kL`

λpi ≤
dD/Le∑
`=0

kL`(L− 1)λp
kL`

≤ k(L− 1)λpk

∑
`≥0

L`(1−p/ν+) =
(L−1)kλpk
1−L1−p/ν+

.

We will need the following auxiliary result:
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5.2 Lemma. Suppose Assumptions (S) and (R) are satisfied with 2ρ > ν+,
then the constant t◦ defined via (2.4) is such that

t◦ ≥ ζ̃λ−11 , with ζ̃ :=

(
C◦
√
D(1− L1−2ρ/ν+)

(L− 1)β+

)1/2ρ

. (5.4)

It follows, for any k = 1, . . . , D:

δ2λ−2k ≤ Ck
2/ν−Vt◦ , with C = β−2− L2/ν−(1 ∧ ζ̃)−2ρ. (5.5)

Proof. Using Assumption R3 and then (5.3) gives

Vt,λ = δ2
D∑
i=1

(γ
(t)
i )2 ≤ δ2β+t2ρ

D∑
i=1

λ2ρi ≤ δ
2β+t

2ρλ2ρ1
L− 1

1− L1−2ρ/ν+
.

By definition, Vt◦,λ = C◦D
1/2δ2 holds and (5.4) follows. We then have as a

consequence

Vt◦ ≥ δ2(γ
(t◦)
1 )2λ−21 ≥ β

2
−min(1, ζ̃)2ρδ2λ−21 .

Finally, for any k = 1, . . . , D, put ` := dlog k/ logLe, then (2.8) entails (no-
tice ddk/Lie/Le = dk/Li+1e in the implicit iterations for the first inequality):

λ−2k ≤ L
2`/ν−λ−2dk/L`e = λ−21 L2`/ν− ≤ λ−21 (Lk)2/ν− .

Combining the two last displays yields (5.5).

Proof of Proposition 2.6. The monotonicity, continuity and limiting be-
haviour of g(t, λ) in t = 0, t → ∞ for fixed λ required from R1 ensure

the basic requirements on the filter sequence (namely t 7→ γ
(t)
i continuous,

γ
(0)
i = 0 and γ

(t)
i ↑ 1 as t → ∞ ). Since the spectral sequence (λi)1≤i≤D is

nonincreasing, the monotonicity in λ of g(t, λ) ensures the validity of A2.
Similarly, Assumption R2 transparently ensures A1.

We turn to checking A4. For this we use (5.1) with p = 2, yielding

∀k ≥ 1 :

∑
j≤k λ

−2
j

kλ−2k
≥ L−2/ν−(1− L−1) =: cλ.

We now check A5 for t ≥ t◦. Denote ζ := min(ζ̃, 1), where ζ̃ is from (5.4).
Introduce j∗t := min {k : 1 ≤ k ≤ D,λk < ζ/t} ∪ {D + 1}. Property t ≥ t◦
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and (5.4) imply j∗t ≥ 2. Assumption R3 and (2.5) ensure γ
(t)
j ∈ [ζρβ−, 1] for

all j < j∗t , so that

D∑
i=1

γ
(t)
i =

j∗t−1∑
i=1

γ
(t)
i +

D∑
i=j∗t

γ
(t)
i ≤ ζ

−ρβ−1−

j∗t−1∑
i=1

(
γ
(t)
i

)2
+ β+t

ρ
D∑
i=j∗t

λρi . (5.6)

To control the second term (present only if j∗t ≤ D), we note that, since
ρ > ν+, (5.3) yields∑

j≥k
λρj ≤ Ckλ

ρ
k, where C :=

L− 1

1− L1−p/ν+
.

We apply this relation to k = j∗t . We deduce from λj∗t < ζ/t and j∗t ≥ 2

tρ
D∑
i=j∗t

λρi ≤ Cj
∗
t t
ρλρj∗t

≤ 2Cζρ(j∗t − 1) ≤ 2Cζ−ρβ−2−

j∗t−1∑
i=1

(γ
(t)
i )2.

Plugging this into (5.6) yields A5 with C`1,`2 = ζ−ρ(β−1− + 2Cβ+β
−2
− ).

We finally turn to A3. Without loss of generality we can assume β+ ≥ 1
in (R3). As for all A,B > 0

1

2
(A+B)−1 ≤ min(A−1, B−1) ≤ (A+B)−1, (5.7)

it follows that condition (R3) implies for all t ≥ t◦:

β−(1+(tλ)−ρ)−1 ≤ g(t, λ) ≤ 2(1+β−1+ (tλ)−ρ)−1 ≤ 2β+(1+(tλ)−ρ)−1. (5.8)

Denote h(t) := (1+t−ρ)−1; the above implies together with (2.5) that
γ
(t)
i

h(tλi)
∈

[β−, 2β+]. We infer that for t ≥ t′ ≥ t◦:

Vt
Vt′

=

∑D
i=1(γ

(t)
i λ−1i )2∑D

i=1(γ
(t′)
i λ−1i )2

≤
4β2+
β2−

∑D
i=1

(
λ−1i h(tλi)

)2∑D
i=1

(
λ−1i h(t′λi)

)2 =:
4β2+
β2−

H(t)

H(t′)
,

while

Vt,λ
Vt′,λ

=

∑D
i=1(γ

(t)
i )2∑D

i=1(γ
(t′)
i )2

≥
β2−
4β2+

∑D
i=1 h(tλi)

2∑D
i=1 h(t′λi)2

=:
β2−
4β2+

G(t)

G(t′)
.
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The desired bound A3 with CV,λ := (4β2+/β
2
−)1+π for some constant π > 0

follows from H(t)/H(t′) ≤ (G(t)/G(t′))π. It therefore suffices to establish
for all t ≥ t◦:

d

dt
logH(t) =

H ′(t)

H(t)
≤ πG

′(t)

G(t)
= π

d

dt
logG(t), (5.9)

i.e., to check the inequality

∑D
i=1 λ

−1
i hh′(tλi)∑D

i=1 λ
−2
i h(tλi)2

= ρt−ρ−1
∑D

i=1 λ
−ρ−2
i

(
1 + (tλi)

−ρ)−3∑D
i=1 λ

−2
i

(
1 + (tλi)

−ρ)−2
≤ πt−ρ−1

∑D
i=1 λ

−ρ
i

(
1 + (tλi)

−ρ)−3∑D
i=1

(
1 + (tλi)

−ρ)−2 = π

∑D
i=1 λihh

′(tλi)∑D
i=1 h(tλi)2

.

Using (5.7) again, it is sufficient to check the above inequality when replacing

everywhere
(
1 + (tλi)

−ρ)−1 by min(1, (tλi)
ρ), and π by π/32.

Denoting k∗t := inf
{
k : 1 ≤ k ≤: λk < t−1

}
∪ {D + 1}, we thus have to

establish the sufficient condition (for some constant π)∑
i<k∗t

λ−ρ−2i +
∑D

i=k∗t
t3ρλ2ρ−2i∑

i<k∗t
λ−2i +

∑D
i=k∗t

t2ρλ2ρ−2i

≤ π

32

∑
i<k∗t

λ−ρi +
∑D

i=k∗t
t3ρλ2ρi

(k∗t − 1) +
∑D

i=k∗t
t2ρλ2ρi

. (5.10)

Writing the left fraction as (A1 + A2)/(B1 + B2) and the right fraction
(without π/32) as (A3 +A4)/(B3 +B4), we check this relation by bounding
AiBj ≤ π

32AjBi for i = 1, 2, j = 3, 4. Without loss of generality we assume
1 < k∗t ≤ D (otherwise some products are just zero). Let us recall that (5.1)
implies that

∀k, 1 ≤ k ≤ D : kλ−ρk ≤ C
∑
j≤k

λ−ρj , (5.11)

for C := Lρ/ν−/(1−L−1). We will also need below a similar bound with λk
replaced by λk+1 on the left-hand side. For this, notice that by Assumption
(S) we have λk

λk+1
≤ λk

λLk
≤ L1/ν− , combining with (5.11) we get:

∀k, 1 ≤ k ≤ D : kλ−ρk+1 ≤ kL
ρ/ν−λ−ρk ≤ C

′
∑
j≤k

λ−ρj (5.12)

with C ′ := L2ρ/ν−/(1−L−1). The first term to handle is now (using (5.11)):
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A1B3 = (k∗t − 1)
∑
i<k∗t

λ−ρ−2i ≤ (k∗t − 1)λ−ρk∗t−1

∑
i<k∗t

λ−2i

≤ C
(∑
i<k∗t

λ−2i
)(∑
i<k∗t

λ−ρi
)

= CB1A3.

For the second term we clearly have A2B4 = A4B2. The third term (using
(5.12) and the definition of k∗t ) is bounded as:

B3A2 = (k∗t − 1)

D∑
i=k∗t

t3ρλ2ρ−2i ≤ C ′tρλρk∗t (
∑
i<k∗t

λ−ρi )(
D∑

i=k∗t

t2ρλ2ρ−2i )

≤ C ′(
∑
i<k∗t

λ−ρi )(

D∑
i=k∗t

t2ρλ2ρ−2i ) = C ′A3B2.

For the fourth term we bound, using the definition of k∗t ,

A1B4 =
∑
i<k∗t

λ−2i (tλi)
−ρ

D∑
i=k∗t

t3ρλ2ρi ≤
D∑

i=k∗t

t3ρλ2ρi (
∑
i<k∗t

λ−2i ) = A4B1.

Hence, (5.10) is established if we choose π ≥ 32C ′.

5.2 Proof of Lemma 2.7

We start with considering the case t < λ−1D . Let us introduce the spectral
distribution function F (u) = #{i : λi ≥ u} for u > 0. Then Assumption (S)
gives for k ≤ bD/Lc:

F (L1/ν−u) ≥ k ⇔ λk ≥ L1/ν−u⇒ λLk ≥ u⇔ F (u) ≥ Lk,

so that taking k = F (L1/ν−u) in the above display yields F (u) ≤ L
L−1(F (u)−

F (L1/ν−u)), provided F (L1/ν−u) ≤ bD/Lc. We will apply the relation for
u = 1/t below, and check

u = t−1 > λD ≥ L−1/ν−λdD
L
e ≥ L

−1/ν−λbD
L
c+1 ⇒ F (L1/ν−u) ≤ bD/Lc.

Set again k∗t := inf{k ≥ 1 : λk < t−1} ∧ (D + 1) = F (1/t) + 1. Under
Assumption (R) we conclude for t ≥ t◦

δ−2Vt,λ =
D∑
i=1

(γ
(t)
i )2 ≤ F (1/t) +

D∑
i=k∗t

(tλi)
−2(γ

(t)
i )2
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≤ L

L− 1

∑
i:1/t≤λi<L1/ν−/t

(L−1/ν−tλi)
−2 +

D∑
i=k∗t

(tλi)
−2(γ

(t)
i )2

≤ L1+2/ν−

L− 1
t−2

D∑
i=1

λ−2i (γ
(t)
i /β−)2

= L1+2/ν−
L−1 β−2− t−2δ−2Vt.

This establishes the first inequality. In the other direction, denote, as in the
proof of Prop. 2.6, j∗t := inf{i : 1 ≤ i ≤ D,λi < ζ/t} ∪ {D + 1}, where
ζ := min(ζ̃, 1) with ζ̃ from (5.4). Under Assumption R3 we have

t−2δ−2Vt = t−2
D∑
i=1

λ−2i (γ
(t)
i )2 ≤ ζ−2

∑
i<j∗t

(γ
(t)
i )2 + β2+t

2ρ−2
D∑
i=j∗t

λ2ρ−2i .

We concentrate on the second term and assume without loss of generality
that j∗t ≤ D (otherwise this term vanishes). IfD ≥ Lj∗t , we use the Karamata
relations (5.3), then (5.2), and 2ρ− 2 > ν+, to bound

D∑
i=j∗t

λ2ρ−2i ≤
(L− 1)j∗t λ

2ρ−2
j∗t

1− L1−(2ρ−2)/ν+
≤ L2ρ/ν−

(1− L1−(2ρ−2)/ν+)
λ−2j∗t

D∑
i=j∗t

λ2ρi .

If D < Lj∗t , then directly using (2.8) and ρ ≥ 1:

D∑
i=j∗t

λ2ρ−2i ≤ λ−2D
D∑
i=j∗t

λ2ρi ≤ L
2ρ/ν−λ−2j∗t

D∑
i=j∗t

λ2ρi ,

which implies that the inequality derived in the first case still holds. Ad-
ditionally, since j∗t ≥ 2 from Lemma 5.2 and t ≥ t◦, we have λj∗t ≥
λ(L(j∗t−1))∧D ≥ L

−1/ν−λj∗t−1 ≥ L
−1/ν−ζt−1, so that

t2ρ−2
D∑
i=j∗t

λ2ρ−2i ≤ ζ−2L2(ρ+1)/ν−

(1−L1−(2ρ−2)/ν+ )

D∑
i=j∗t

(tλi)
2ρ ≤ ζ−2L2(ρ+1)/ν−

(1−L1−(2ρ−2)/ν+ )β2
−

D∑
i=j∗t

(γ
(t)
i )2.

Altogether, we obtain the second inequality:

t−2Vt ≤ ζ−2L2(ρ+1)/ν−

(1−L1−(2ρ−2)/ν+ )β2
−
Vt,λ.
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We turn to the case t ≥ λ−1D . Then Assumption R3 implies that for all

i = 1, . . . , D we have γ
(t)
i ≥ β−. It follows from this and (5.1):

δ−2Vt =
D∑
i=1

λ−2i (γ
(t)
i )2 ≥ β2−

D∑
i=1

λ−2i

≥ β2−Dλ−2D L−2/ν−(1− L−1)
≥ β2−L−2/ν−(1− L−1)λ−2D δ−2Vt,λ ,

establishing the first bound in this case. The inequality in the other direction
follows directly from

δ−2Vt ≤ Dλ−2D ≤ β
−2
− λ−2D δ−2Vt,λ.

5.3 Maximal inequality for weighted χ2-variables with drift

We first recall a result on the concentration of weighted chi-squared type
random variables.

5.3 Lemma (Laurent and Massart, Lemma 1 in [19]). Let (Y1, . . . , YD) be
i.i.d. N (0, 1) variables. For nonnegative numbers a1, . . . , aD set

Z = max
1≤k≤D

k∑
i=1

ai(Y
2
i − 1).

With ‖a‖∞ := max1≤i≤D ai the following inequalities hold for any x > 0:

P
(
Z > 2‖a‖

√
x+ 2‖a‖∞x) < e−x, (5.13)

P
(
Z < −2‖a‖

√
x
)
< e−x (5.14)

and also

P
(
Z > x) < exp

(
− 1

4

x2

‖a‖2 + ‖a‖∞x

)
, P

(
Z < −x

)
< exp

(
− 1

4

x2

‖a‖2
)
.

Lemma 5.3 is stated in a slightly more general setting, since the original
result of Laurent and Massart [19], based itself on Lemma 8 in Birgé and
Massart [4], has no maximum in k for the definition of Z. The proof, however,
is based on the classical Chernov bound argument, which readily carries over
with a maximum: indeed, for t ≥ 0 and λ > 0,

P (Z ≥ t) = P
(

max
1≤k≤D

eλ
∑k
i=1 ai(Y

2
i −1) ≥ eλt

)
≤ e−λt E

[
eλ

∑D
i=1 ai(Y

2
i −1)

]
by Doob’s maximal inequality applied to the submartingale

(eλ
∑k
i=1 ai(Y

2
i −1))1≤k≤D.
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5.4 Lemma. Work under A4 of Proposition 2.6. Then, for every ω > 0 and
every x > 0 we have with probability at least 1−C1e

−C2x, where C1, C2 > 0
only depend on cλ and ω:

max
k≥1

k∑
i=1

λ−2i (ε2i − 1− ω) ≤ xλ−2bxc∧D.

Proof. From Lemma 5.3 with ‖a‖p`p(k) =
∑k

i=1|ai|p for p ≥ 1 and the usual

modification for p = ∞ as well as ‖λ−2‖`p(k) ≤ ‖λ−2‖`∞(k)k
1/p for p = 1, 2

and ‖λ−2‖`1(k) ≥ c2λkλ
−2
k = c2λk‖λ−2‖`∞(k) by A4, we obtain for any integer

k ≥ 1

P
(

max
k=1,...,D

k∑
i=1

λ−2i (ε2i − 1− ω) > r
)

≤
D∑
k=1

P
( k∑
i=1

λ−2i (ε2i − 1− ω) > r
)

=
D∑
k=1

P
( k∑
i=1

λ−2i (ε2i − 1) > r + ω‖λ−2‖`1(k)
)

≤
D∑
k=1

P
( k∑
i=1

λ−2i (ε2i − 1) > r + ωc2λk‖λ−2‖`∞(k)

)
≤

D∑
k=1

exp
(
− 1

4

(r + ωc2λk‖λ−2‖`∞(k))
2

‖λ−2‖2
`2(k)

+ ‖λ−2‖`∞(k)(r + ωc2λk‖λ−2‖`∞(k))

)
≤

D∑
k=1

exp
(
− 1

4

(r + ωc2λk‖λ−2‖`∞(k))
2

k‖λ−2‖2`∞(k) + ‖λ−2‖`∞(k)(r + ωc2λk‖λ−2‖`∞(k))

)
=

D∑
k=1

exp
(
− 1

4

(rλ2k + c2λωk)2

(1 + c2λω)k + rλ2k

)
≤

D∑
k=1

exp
(
−

c2λω

4(1 + c2λω)
(rλ2k + c2λωk)

)
≤

k∗∑
k=1

exp
(
−

c2λω

4(1 + c2λω)
rλ2k

)
+

D∑
k=k∗+1

exp
(
−

c2λω

4(1 + c2λω)
c2λωk

)
≤ k∗ exp

(
−

c2λωrλ
2
k∗

4(1 + c2λω)

)
+

1

ec
4
λω

2/(4+4c2λω) − 1
exp

(
−

c4λω
2k∗

4(1 + c2λω)

)
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for any k∗. The choice k∗ = bxc ∧ D and r = xλ−2k∗ yields the asserted
deviation bound with suitable constants C1, C2 > 0.
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[20] S. Lu and P. Mathé. Discrepancy based model selection in statistical
inverse problems. Journal of Complexity, 30:386–407, 2014.

[21] B. Mair and F.H. Ruymgaart. Statistical estimation in Hilbert scale.
SIAM Journal on Applied Mathematics, 56:1424–1444, 1996.
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