
Convergence of Finite Element Methods for

Singular Stochastic Control
Martin G. Vieten (University of Wisconsin-Milwaukee, mgvieten@uwm.edu)

Richard H. Stockbridge (University of Wisconsin-Milwaukee)
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1 Introduction

1.1 Motivation and Literature

This paper considers singular stochastic control problems for a process X whose dynamics are initially
specified by a stochastic differential equation (SDE)

dXt = b(Xt, ut)dt+ σ(Xt, ut)dWt + dξt, X0 = x0, (1.1)

where W is a Brownian motion process and ξ is another stochastic process that evolves singularly in time.
The process u represents the control influencing the evolution of X. Given two cost functions c̃0 and c̃1, u
has to be chosen from a set of admissible controls in such a way that it minimizes either a long-term average
cost criterion

lim sup
t→∞

1

t
E
[∫ t

0

c̃0(Xs, us) ds+

∫ t

0

c̃1(Xs, us) dξs

]
(1.2)

or a discounted infinite horizon cost criterion

E
[∫ ∞

0

e−αsc̃0(Xs, us) ds+

∫ ∞
0

e−αsc̃1(Xs, us) dξs

]
, (1.3)

for some discounting rate α > 0. Such control problems are considered in a relaxed sense by using a martingale
problem formulation involving the infinitesimal generators of X, and an equivalent infinite-dimensional linear
program for the expected occupation measures of both the process X and the control u. Approximate
solutions to this linear program are attained by discretizing the infinite-dimensional constraint space of
functions using a finite element approach, and discrete approximations of the expected occupation measures.
The ε-optimality of approximate solutions is shown and the method is applied to two example problems.
The classical analytic approach to stochastic control problems is given by methods based on the dynamic
programming principle, as presented in Fleming and Rishel [6] or Fleming and Soner [7]. Central to these
methods is the solution of the so-called Hamilton-Jacobi-Bellman (HJB) equation. Numerical methods can
be derived by solving a control problem for an approximate, discrete Markov chain, as extensively discussed
in Kushner and Dupuis [15], or by using discrete methods to approximate the solution to the HJB equation,
frequently considering viscosity solutions. An example is given in Kumar and Muthuraman [12]. Another
numerical technique using dynamic programming was analyzed in Anselmi et. al. [1].
As an alternative, linear programming approaches have been instrumental in the analytic treatment of various
stochastic control problems. The first example is given in Manne [18], where an ergodic Markov chain for
an inventory problem under long-term average costs is analyzed. Bhatt and Borkar [2] as well as Kurtz
and Stockbridge [13] investigated the linear programming approach for solutions of controlled martingale
problems using long-term average and discounted cost criteria for infinite horizon problems, as well as finite
horizon and first exit problems for absolutely continuous control. Taksar [22] establishes equivalence between
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a linear program and a stochastic control problem for a multi-dimensional diffusion with singular control.
Jump diffusions of Levy-Ito type are considered by Serrano [21].
To provide an alternative to numerical techniques based on the dynamic programming principle, the linear
programming approach has been exploited using various discretization techniques. A very general setting
can be found in Mendiondo and Stockbridge [19]. Moment-based approaches have been used in a line of
publications, as can be seen in Helmes et. al. [9] and Lasserre and Prieto-Rumeau [16]. Recent research
by Kaczmarek et. al. [11] and Rus [20] has been investigating a novel approximation technique for the
linear programming formulation by borrowing ideas from the finite element method used for solving partial
differential equations. A discretization of the occupation measures (by discretizing their densities) and
the linear constraints with a finite set of basis functions gives a solvable finite-dimensional linear program.
Kaczmarek et. al. [11] indicated that a finite element discretization approach may outperform Markov chain
approximation methods as well as a finite difference approximation to the Hamilton-Jacobi-Bellman equation
stemming from the dynamic programming approach. However, no analytic treatment of the convergence
properties was provided.
The present paper closes this gap by providing a modified finite element based approximation scheme for
which convergence of the computed cost criterion values can be guaranteed. To this end, the approximation
scheme is split up in several steps which either deal with the discretization of the measures or the constraints.
The separate steps are set up in such a way that convergence of the discrete optimal solutions to the analytic
optimal solution can be proven. The proofs are, on one hand, based on the concept of weak convergence of
measures, and on a detailed analysis of discretized approximations of the measures on the other hand.
The paper is structured as follows. The next subsection presents the notation and formally introduces the
linear programming formulation for singular stochastic control problems, along with a review of important
results from the literature. The approximation scheme is discussed in Section 2. Then, we provide the
convergence proof for this scheme in Section 3 and illustrate the performance of the numerical method on
two examples in Section 4. A short outlook on possible research directions concludes this paper. Additional
proofs needed to prove the results from Section 3 are given in Appendix A.

1.2 Notation and Formalism

The natural numbers are denoted by N, and the non-negative integers are N0 = N ∪ {0}. The symbol used
for the real numbers is R, and that for the non-negative real numbers is R+. The space of n-dimensional
vectors is Rn, and the space of n by m matrices is Rn×m.
The set of continuous functions on a topological space S is denoted by C(S). The set of twice differentiable
functions on S is denoted by C2(S), while its subset of twice differentiable functions with compact support
is referred to by C2

c (S). The space of uniformly continuous, bounded functions is denoted by Cub (S). On
a function space, ‖ · ‖∞ refers to the uniform norm of functions. On Rn, ‖ · ‖∞ refers to the maximum
norm of vector components, while on Rn×m, it refers to the maximum absolute row sum norm. The space of
Lebesgue integrable functions is L1(S). For any given function f , let f+ : E 3 x 7→ f+(x) := max(f(x), 0)
be the positive part of a function f .
In terms of measurable spaces, we use B(S) to describe the σ-algebra of Borel sets on a topological space
S. Given a measurable space (Ω,F ), the set of probability measures on Ω is P(Ω), while the set of finite
Borel measures is denoted byM(Ω). The symbol δ{s} denotes the Dirac measure on s ∈ S. When using the
differential dx as an integrator, it is understood that this refers to integration by Lebesgue measure. When
we explicitly refer to the Lebesgue measure, we use the symbol λ. A Brownian motion process is denoted by
the symbol W .

Consider the SDE given by (1.1). We assume that Xt ∈ E = [el, er], with ∞ < el < er < ∞, and
ut ∈ U = [ul, ur], with ∞ < ul < ur < ∞, for all t ≥ 0. E and U are called the state space and control
space, respectively. The coefficient functions b : E × U 7→ R and σ : E × U 7→ R+ − {0} are called the
drift and diffusion functions. They are assumed to be continuous. The process ξ is a singular stochastic
process stemming from the behavior of X at the boundaries of the state space el and er, and is given
by either a reflection, a jump or a combination of both. The infinitesimal generators of a process solving
(refintroduction:sde) are Ã : C2

c (E) 7→ C(E ×U), called the continuous generator, and B : C2
c (E) 7→ C(E ×

U), called the singular generator. For f ∈ C2
c (E), Ã is defined by Ãf(x, u) = b(x, u)f ′(x) + σ2(x, u)f ′′(x).
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B is defined by either of

Bf(x, u) = ±f ′(x) or Bf(x, u) = f(x+ u)− f(x). (1.4)

The first form of B models a reflection process (+ forcing a reflection to the right and − forcing a reflection
to the left) and the second form models a jump process jumping from x to x+ u. With these generators, a
specification of the dynamics that requires

f(Xt)− f(x0)−
∫ t

0

Ãf(Xs, us)ds−
∫ t

0

Bf(Xs, us)dξs (1.5)

to be a martingale for all f ∈ C2
c is equivalent to (1.1) in terms of weak solutions. Hence, the values of the

cost criteria determined by (1.2) and (1.3) remain identical. The following relaxed formulation of (1.5) is
better suited for the purpose of stochastic control.

Definition 1.1. Let X be a stochastic process with state space E, let Λ be a stochastic process taking
values in P(U), and let Γ be a random variable taking values in the space of measures on ([0,∞)×E × U),
with Γ([0, t] × E × U) ∈ M([0, t] × E × U) for all t. The triplet (X,Λ,Γ) is a relaxed solution to the
singular, controlled martingale problem for (Ã, B) if there is a filtration {Ft}t≥0 such that X, Λ and Γ are
Ft-progressively measurable and

f(Xt)− f(x0)−
∫ t

0

∫
U

Ãf(Xs, u) Λs(du) ds−
∫

[0,t]×E×U
Bf(x, u) Γ(ds× dx× du)

is an {Ft}t≥0-martingale for all f ∈ C2
c (E).

The relaxation is given by the fact that the control is no longer represented by a process u, but is encoded
in the random measures Λ and Γ. Assume that the cost functions c̃0 and c̃1 are continuous and non-negative.
The cost criteria for a relaxed solution of the singular, controlled martingale problem are

lim sup
t→∞

1

t
E

[∫ t

0

∫
U

c̃0(Xs, u) Λs(du) ds+

∫
[0,t]×E×U

c̃1(x, u) Γ(ds× dx× du)

]
, (1.6)

for the long-term average cost criterion, and for α > 0,

E

[∫ ∞
0

∫
U

e−αsc̃0(Xs, u) Λs(du) ds+

∫
[0,∞)×E×U

e−αsc̃1(x, u) Γ(ds× dx× du)

]
, (1.7)

for the infinite horizon discounted cost criterion. A stochastic control problem given by (1.5) together with
(1.6) or (1.7) can be reformulated as an infinite dimensional linear program. To this end, we set

c0(x, u) =

{
c̃0(x, u) if α = 0
c̃0(x, u)/α if α > 0

and c1(x, u) =

{
c̃1(x, u) if α = 0
c̃1(x, u)/α if α > 0.

Furthermore, for α ≥ 0 define the operator A : C2
c (E) 7→ C(E × U) by

Af(x, u) = Ãf(x, u)− αf(x) (1.8)

and the functional Rf = −αf(x0), x0 being the starting point of the diffusion.

Definition 1.2. The infinite-dimensional linear program for a singular stochastic control problem is given
by

Minimize
∫
E×U c0dµ0 +

∫
E×U c1dµ1

Subject to


∫
E×U Afdµ0 +

∫
E×U Bfdµ1 = Rf ∀f ∈ C2

c (E)

µ0 ∈ P(E × U)

µ1 ∈M(E × U).
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The measures µ0 and µ1 are the expected occupation measures of X and Γ. We frequently consider the
measures on (E,B(E)) given by µ0,E(·) = µ0(· × U) and µ1,E(·) = µ1(· × U). The refer to these measures
as the state space marginals of µ0 and µ1, respectively. The properties of such linear programs and their
relation to stochastic control problems for singular, controlled martingale problems are stated in Theorem
1.4. These results use the notion of a regular conditional probability defined as follows.

Definition 1.3. Let (E × U,B(E × U), µ) be a measure space, and let P : E × U 3 (x, u) 7→ x ∈ E be the
projection map onto E. Let µE be the distribution of P , which is identical to the state space marginal of µ.
A map η : B(U)× E 7→ [0, 1] is called a regular conditional probability if

i) for each x ∈ E, η(·, x) : B(U) 7→ [0, 1] is a probability measure,

ii) for each V ∈ B(U), η(V, ·) : E 7→ [0, 1] is a measurable function, and

iii) for all V ∈ B(U) and all F ∈ B(E) we have

µ(F × V ) =

∫
F

η(V, x)µE(dx).

Theorem 1.4. The problem of minimizing either the long-term average cost criterion of (1.6) or the infinite
horizon discounted cost criterion of (1.7) over the set of all relaxed solutions (X,Λ,Γ) to the singular,
controlled martingale problem for (Ã, B) is equivalent to the linear program stated in (1.2). Moreover, there
exists an optimal solution (µ∗0, µ

∗
1). Let η∗0 and η∗1 be the regular conditional probabilities of µ∗0 and µ∗1

with respect to their state space marginals. Then an optimal relaxed control is given in feedback form by
Λ∗t = η∗0(·, X∗t ) and Γ∗(ds× dx× du) = η∗1(du, x)Γ̃∗(ds× dx) for a random measure Γ̃∗ on [0,∞)×E, where
(X∗,Λ∗,Γ∗) is a relaxed solution to the singular, controlled martingale problem for (Ã, B) having occupation
measures (µ∗0, µ

∗
1).

Proof. See Kurtz and Stockbridge [14], Theorem 2.1 and Theorem 3.3, respectively.

By this result, it suffices to find optimal solutions to the infinite linear program when solving a singular
stochastic control problem, and approximate solutions to the linear program serve as approximate solutions
to the control problem. Section 2.1 presents how we discretize the infinite dimensional linear program to a
computationally attainable formulation, which is the basis for the numerical technique used in this paper.
The analysis of this discretization scheme relies in part on the notion of weak convergence of finite measures
which is defined next. Let S be a measurable space in the following, equipped with a topology.

Definition 1.5. Consider a sequence of finite measures {µn}n∈N and another finite measure µ on S. We
say that µn converges weakly to µ, in symbol µn ⇒ µ, if for all f ∈ Cub (S)∫

S

f(x)µn(dx)→
∫
S

f(x)µ(dx) as n→∞

holds.

Note that we are considering finite measures, and not necessarily probability measures. In particular,
we could encounter a situation where the sequence of numbers {µn(S)}n∈N is unbounded. This differs from
‘classical’ considerations of weak convergence, which for example can be found in Billingsley [3]. However,
Bogachev [4] (see Chapter 8 in Volume 2) offers a discussion of the concept of weak convergence in this more
general case. Central to our purposes is Theorem 1.9, which states sufficient conditions for the existence of
weakly converging subsequences when considering sequences of finite measures, based on the following two
concepts.

Definition 1.6. A sequence of finite measures {µn}n∈N on S is called tight if for each ε > 0, there is a
compact set Kε in S such that

µn(KC
ε ) < ε

holds for all n ∈ N.
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Remark 1.7. If S is compact, any sequence of finite measures on S is tight.

Definition 1.8. A sequence of finite measures {µn}n∈N on S is called uniformly bounded if for some l ≥ 0,
µn(S) ≤ l holds for all n ∈ N.

If a sequence of finite measures on S is tight and uniformly bounded, the existence of convergent subse-
quences is guaranteed by the following result.

Theorem 1.9. Let {µn}n∈N be a sequence of finite measures on S. Then, the following are equivalent.

i) {µn}n∈N contains a weakly convergent subsequence,

ii) {µn}n∈N is tight and uniformly bounded.

Proof. See Bogachev [4], Theorem 8.6.2.

2 Approximation

We begin the presentation of the proposed method by describing the discretization scheme. Then, we discuss
the assumption being necessary for the convergence of the method.

2.1 Discretization

The proposed numerical technique is based on a discretization of the infinite-dimensional linear program in
three steps. First, we introduce a limit on the full mass of the measure µ1. Then, we restrict the number
of constraint functions. Thirdly, we introduce discrete versions of the measures. In the process, several
assumptions on the measure µ0 are made. For the sake of exposition, we elaborate on these assumptions
separately in Section 2.2.
Since the discretization brings forth several distinct sets of measures, we define the cost criterion using the
following, general formulation.

J : P(E × U)×M(E × U) 3 (µ0, µ1) 7→ J(µ0, µ1) =

∫
E×U

c0dµ0 +

∫
E×U

c1dµ1 ∈ R+

We choose to consider C2
c (E) as a normed space in the right sense. Set ‖f‖D = ‖f‖∞+ ‖f ′‖∞+ ‖f ′′‖∞ and

define D∞ = (C2
c (E), ‖ · ‖D) to designate that we consider C2

c (E) to be a specific normed space. Set

M∞ = {(µ0, µ1) ∈ P(E × U)×M(E × U) :

∫
Afdµ0 +

∫
Bfdµ1 = Rf ∀f ∈ D∞}.

For analytical purposes, we introduce an upper bound on µ1(E × U). For l > 0 define

M l
∞ = {(µ0, µ1) ∈M∞ : µ1(E × U) ≤ l}. (2.1)

Remark 2.1. As l increases, more measures of M∞ will lie in M l
∞. For l large enough, the optimal solution

will lie in M l
∞, as we have that µ∗1 ∈M(E × U) and hence µ∗1(E) <∞.

Definition 2.2. The l-bounded infinite-dimensional linear program is given by

min
{
J(µ0, µ1)|(µ0, µ1) ∈M l

∞
}
.

The set M l
∞ features an infinite set of constraints given by all f ∈ D∞ and measures µ0 and µ1 having

an infinite number of degrees of freedom. First, we discretize the set of constraints using B-spline basis
functions. To construct these basis functions, fix q ∈ N and consider a finite set of pointwise distinct grid
points {ek}q+3

k=−3 in E, with e0 = el, er = eq and ek < ek+1 for k = −3,−2, . . . , q + 2.

5



Definition 2.3. The set of cubic B-spline basis functions for a grid {ek}q+3
k=−3 is defined on R by

fk(x) = (ek+4 − ek)

k+4∑
i=k

[
(ei − x)3

]+
Ψ′k(ei)

, k = −3,−2, . . . , q − 1,

where

Ψk(x) =

k+4∏
i=k

(x− ei), k = −3,−2, . . . , q − 1.

An analysis of these basis function is given in de Boor [5]. Provided that

max
k=−3,...,q+2

(ek+1 − ek)→ 0 and

max
k=−3,...,q+2

(ek+1 − ej)

min
k=−3,...,q+2

(ek+1 − ej)
→ 1

as n→∞, Theorem 1 of Hall and Meyer [8] holds and the following statement can be shown.

Proposition 2.4. The normed space D∞ is separable and a countable basis
{fk}k∈N is given by the cubic B-splines basis functions.

For fixed q̃ ∈ N, define a grid using the dyadic partition of E given by

ek = el +
er − el

2q̃
· k, k = −3 . . . , 2q̃ + 3.

and consider the n := 2q̃ + 2 B-spline basis functions {fk}nk=1 on this grid. This allows us to define

Mn = {(µ0, µ1) ∈ P(E × U)×M(E × U) :∫
Afkdµ0 +

∫
Bfkdµ1 = Rfk, k = 1, . . . , n

}
and we can define M l

n in a similar manner using the mass restriction on µ1 as seen in (2.1).

Definition 2.5. The l-bounded (n,∞)-dimensional linear program is given by

min
{
J(µ0, µ1)|(µ0, µ1) ∈M l

n

}
.

Next, we discretize the measures. Theorem 1.4 reveals that it is sufficient to regard feedback controls
which can be represented by regular conditional probabilities. In particular, this result states that we can
consider measures (µ0, µ1) which can be decomposed according to µ0(dx × du) = η0(dx, u)µ0,E(dx) and
µ1(dx×du) = η1(dx, u)µ1,E(dx) for two regular conditional probabilities η0 and η1. We furthermore assume
that, first, for any interval or singleton V ⊂ U , x 7→ η0(V, x) is continuous almost everywhere with respect
to Lebesgue measure, second, that µ0,E has a density p with respect to Lebesgue measure and third, that
p satisfies the constraint that λ ({x : p(x) = 0}) = 0. In other words, p must only be equal to zero on a set
of Lebesgue measure 0. The particulars of these assumptions are discussed in Section 2.2, and we continue
here with the description of the approximation scheme.
Define a sequence km as follows. As c0, b and σ are continuous over a compact set, for all m ∈ N, there is a
δm > 0 such that for all u, v ∈ U with |u− v| ≤ δm, it is true that

max

{
|c0(x, u)− c0(x, v)|, |b(x, u)− b(x, v)|,

∣∣∣∣12σ2(x, u)− 1

2
σ2(x, v)

∣∣∣∣} ≤ 1

2m+1
, (2.2)

uniformly in x. Set km to be the smallest integer such that ur−ul

2km
≤ δm. The parameter km controls the

discretization of the control space U , and the specific choice enables an accurate approximate integration
of the cost function c0 and the functions Afk against the relaxed control η0 in the convergence proof of
Section 3. So, define

U (m) = {uj = ul +
ur − ul

2km
· j, j = 0, . . . , 2km}. (2.3)
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Similarly, we set

E(m) = {ej = el +
er − el

2m
· j, j = 0, . . . , 2m}. (2.4)

The union of these sets over all m ∈ N is dense in the control space and state space, respectively. The
number m is called the discretization level. It determines the degrees of freedom of the discrete measures µ̂0

(approximating µ0) and µ̂1 (approximating µ1), which are defined as follows.
First, we approximate the density p of µ0,E . Choose a countable basis of L1(E), say {pn}n∈N0

, given by
indicator functions over subintervals of E. We truncate this basis to p0, . . . , p2m−1 (given by the indicator
functions of the intervals of length 1/2m, compare (2.4)) to approximate the density p by

p̂m(x) =

2m−1∑
j=0

γjpj(x) (2.5)

where γj ∈ R+, j = 0, . . . , 2m − 1 are weights to be chosen under the constraint that∫
E
p̂m(x)dx = 1. Set Ej = [xj , xj+1) for j = 0, 1, . . . 2m − 2 and E2m−1 = [x2m−1, x2m ] to define

η̂0,m (V, x) =

2m−1∑
j=0

2km∑
i=0

βj,iIEj
(x)δ{ui}(V ), (2.6)

where βj,i ∈ R+, j = 0, . . . ,m − 1, i = 0, . . . , km are weights to be chosen under the constraint that∑2m−1
i=0 βj,i = 1 for j = 0, . . . ,m− 1. We approximate η0 using (2.6), which means that this relaxed control

is approximated by point masses in U -‘direction’ and piecewise constant in E-‘direction’. Then, we set
µ̂0,m(du× dx) = η̂0,m(du, x)p̂m(x)dx.
To approximate the singular occupation measure µ1, we use that the process is only showing singular
behavior at el and er. Thus, if we introduce the regular conditional probability η1 and write µ1(dx× du) =
η1(du, x)µ1,E(dx), and for F ∈ B(E), we have for F ∈ B(E)

µ1,E(F ) = w1δ{el}(F ) + w2δ{er}(F ) (2.7)

with w1, w2 ∈ R+. We approximate the relaxed control η1 by

η̂1,m(V, el) =

2km∑
i=0

ζ1,iδ{ui}(V ), η̂1,m(V, er) =

2km∑
i=0

ζ2,iδ{ui}(V ) (2.8)

with
∑2km

i=0 ζj,i = 1 for j = 1, 2. So, we have µ̂1,m(dx× du) = η̂1,m(du, x)µ1,E(dx). In summary, we consider
measures of the form

(µ̂0,m, µ̂1,m) (dx× du) = (η̂0,m(du, x)p̂m(x)dx, η̂1,m(du, x)µ1,E(dx))

and we introduce the notation

M l
n,m =

{
(µ0,m, µ1,m) ∈M l

n : (µ0,m, µ1,m) (du, dx)

= (η̂m(du, x)p̂m(x)dx, η̂m(du, x)µ1,E(dx))
}
.

This finalizes the discretization of the measures and leaves us with the following linear program.

Definition 2.6. The l-bounded (n,m)-dimensional linear program is given by

inf
{
J(µ0, µ1)|(µ0, µ1) ∈M l

n,m

}
.

This linear program is linear in the coefficients given by the products βj,i · γj and ζj,i · αj , and the cost
functional can as well be expressed as a linear combination of these coefficients.
Up to this point, we introduced four sets of measures, M∞, M l

∞, M l
n and M l

n,m, and we later on will use

ε-optimal solutions in M l
n,m to approximate the optimal solution in M∞. However the relations between

those sets are M l
∞ ⊂M∞, M l

n ⊃M l
∞ and M l

n,m ⊂M l
n. As this does not provide a clear nested structure,

it has to be carefully analyzed how optimal solutions in these sets relate to each other. This is presented in
Section 3.
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2.2 Assumptions

Before we move to the presentation of the convergence argument, we elaborate on the assumptions on µ0

which were made in Section 2.1. These assumptions restrict the set of feasible measures considered in the
linear program given by (1.2) to measures which allow the approximation to converge. Albeit technical,
the imposed restrictions do not curtail the set of feasible measures beyond what can be considered to be
‘implementable’ solutions, in other words, the set of measures will still be large enough to include any type
of control that could be used in a real-world application.
First, we assume that the state space marginal µ0,E of the expected occupation measures µ0 has a density
p with respect to the Lebesgue measure. As shown in [23], Section II.2, this is guaranteed when certain
assumptions on the regular conditional probability η0 of the continuous occupation measure µ0 are fulfilled.
To be precise, we have to assert that the functions

x 7→
∫
U

b(x, u) η0(du, x), x 7→
∫
U

σ2(x, u) η0(du, x) (2.9)

are continuous everywhere except for finitely many points in E. On the one hand, this is satisfied for controls
of the form given by (2.6), which includes the important class of so-called bang-bang controls. Bang-bang
controls put full mass on either of the end points ul and ur of the control space U . Usually, when the cost
function c0 does not depend on the control value u, the optimal solution is given by a bang-bang control. If
this is not the case, optimal controls are frequently given in the form of a continuous function v : E 7→ U
and a control satisfying η0({v(x)} , x) = 1. It is easy to see that in both cases the two functions defined in
(2.9) are continuous except for finitely many points.
Secondly, we assume that p must be equal to zero only on a set of Lebesgue measure 0. The analysis in
[23], Section II.2 shows that the densities encountered when using both the long-term average cost criterion
and the discounted infinite horizon criterion satisfy this assumption. Thirdly, we assume that for any set
V ⊂ U which is either an interval or a singleton, the function x 7→ η0(V, x) is continuous almost everywhere
with respect to Lebesgue measure. This allows us to approximate the function x 7→ η0(V, x) uniformly by a
function which is piecewise constant over intervals, and the approximate function values on these intervals
are given by the values of η0(V, x) at the left endpoints of the intervals. This makes the statement of (3.8)
of the convergence argument true. Controls of the form given in (2.6) satisfy this requirement. However, if
η0 fulfills η0({v(x)} , x) = 1 for some continuous function v on E, we have to assert more regularity on v,
according to the following definition.

Definition 2.7. A continuous function v : E 7→ U is said to have finitely many modes if there are finitely
many points el = ŷ1 < ŷ2 < . . . < ŷk = er such that for all 2 ≤ i ≤ k − 1, there are points ai and bi with
ŷi−1 < ai < ŷi < bi < ŷi+1 and either of the following statements hold:

i) v is strictly increasing on (ai, ŷi) and strictly decreasing on (ŷi, bi) as well as increasing on (ŷi−1, ŷi)
and decreasing on (ŷi, ŷi+1),

ii) v is strictly decreasing on (ai, ŷi) and strictly increasing on (ŷi, bi) as well as decreasing on (ŷi−1, ŷi)
and increasing on (ŷi, ŷi+1).

We assume that v only has finitely many modes in the following. The rationale behind this assumption
is as follows. Obviously, x 7→ η0(V, x) is piecewise constant, either 0 or 1. The fact that v ‘oscillates’ only
finitely many times between its modes ensures that x 7→ η0(V, x) does not switch from 0 to 1 or from 1 to
0 more than finitely many times, and hence it is discontinuous on a set that has measure 0 with respect to
Lebesgue measure.

3 Convergence

The first part of this section gives an overview of the convergence argument, illustrating the main ideas of
the analysis. The proofs of the propositions and corollary are given in the second part.
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3.1 Statement of the main results

The l-bounded (n,m)-dimensional linear program introduced in Section 2.1 is a finite dimensional linear
program that can be solved with standard solvers that are available in numerical libraries, and hence optimal
solutions are attainable. We proceed to show that the optimal solution to the l-bounded (n,m)-dimensional
linear program is an ε-optimal solution to the infinite dimensional program for l, n and m large enough. We
use the notations

J∗ = inf
{
J(µ0, µ1)|(µ0, µ1) ∈M l

∞
}

J∗n = inf
{
J(µ0, µ1)|(µ0, µ1) ∈M l

n

}
J∗n,m = inf

{
J(µ0, µ1)|(µ0, µ1) ∈M l

n,m

}
.

For l large enough, J∗ is indeed the optimal solution to the unbounded problem, as stated in Remark 2.1,
in other words, J∗ = min {J(µ0, µ1)|(µ0, µ1) ∈M∞}
Since an infimum might not be computationally attainable in M l

∞ and M l
n, we withdraw to the slightly

relaxed optimization problem of finding an ε-optimal solution, in other words, we try to find a pair of
measures (µε0, µ

ε
1) ∈M l

∞ such that

J(µε0, µ
ε
1)− J(µ0, µ1) ≤ ε ∀(µ0, µ1) ∈M l

∞.

Note that trivially, J(µε0, µ
ε
1) − J∗ ≥ 0. The ε-optimality for M l

n is defined analogously. The following
convergence analysis proves that we can find ε-optimal measures in M l

∞ using the approximation proposed
in Section 2. The outline of the proof is as follows. First, it is shown that it suffices to find an ε-optimal
solution in M l

n.

Proposition 3.1. For each n ∈ N, assume that (µε0,n, µ
ε
1,n) ∈ M l

n and that for n ∈ N, (µε0,n, µ
ε
1,n) is an

ε-optimal solution for the l-bounded, (n,∞)-dimensional linear program. Then, for δ > 0, there exists an
N(δ) such that

J(µε0,n, µ
ε
1,n)− J∗ ≤ 2ε+ δ.

for all n ≥ N(δ).

Next, we establish that ε-optimal solutions in M l
n can be obtained using the discretization introduced in

Section 2.1. The central result reads as follows.

Proposition 3.2. For (µ0, µ1) ∈M l
n and each ε > 0, there is an m0 such that for all m ≥ m0 there exists

a (µ̂0,m, µ̂1,m) ∈M l
n,m, with

|J(µ0, µ1)− J(µ̂0,m, µ̂1,m)| < ε.

This result shows that arbitrary (not necessarily optimal) measures in M l
n can be approximated, in terms

of their cost criterion, by measures in M l
n,m. Regarding optimal measures, the following statement is an

easy consequence from Proposition 3.2.

Corollary 3.3. For each m ∈ N, assume that (µ∗0,n,m, µ
∗
1,n,m) ∈M l

n,m and that for m ∈M, (µ∗0,n,m, µ
∗
1,n,m)

is an optimal solution to the l-bounded, (n,m)-dimensional linear program. Then, the sequence of numbers
{J(µ∗0,n,m, µ

∗
1,n,m)}m∈N

converges to J∗n as m→∞.

In conjunction, the preceding results allow us to prove the following theorem.

Theorem 3.4. For any ε > 0, there is an l > 0, an N ∈ N and an M ∈ N such that

|J∗ − J∗n,m| < ε

holds for all n ≥ N and m ≥M .
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Proof. Pick any ε > 0. Choose l large enough such that
J∗ = min {J(µ0, µ1)|(µ0, µ1) ∈M∞}. Pick ε̂ and δ > 0 in such a way that 2ε̂ + δ < ε. By Proposition
3.1, choose N ∈ N large enough such that for all n ≥ N , an ε̂-optimal solution (µε̂0,n, µ

ε̂
1,n) to the l-

bounded, (n,∞)-dimensional program is an 2ε̂ + δ-optimal solution to the l-bounded infinite-dimensional
linear program. Now, using Corollary 3.3, choose M ∈ N large enough such that for all m ≥M , the optimal
solution (µ∗0,n,m, µ

∗
1,n,m) to the l-bounded (n,m)-dimensional linear program is an ε̂-optimal solution to the

l-bounded (n,∞)-dimensional program. But then,

|J∗ − J∗n,m| ≡ |J∗ − J(µ∗0,n,m, µ
∗
1,n,m)| < 2ε̂+ δ < ε

3.2 Proofs of the main results

The proof of Proposition 3.1 is a rather straight forward application of the theory of weak convergence as
introduced in Section 1.2. The proofs of Proposition 3.2 and Corollary 3.3 on the other hand require an
in-depth analysis of the approximation properties of the proposed discretization scheme. We begin with the
proof of Proposition 3.1, stated again for the sake of exposition.

Proposition 3.1. For each n ∈ N, assume that (µε0,n, µ
ε
1,n) ∈ M l

n and that for n ∈ N, (µε0,n, µ
ε
1,n) is an

ε-optimal solution for the l-bounded, (n,∞)-dimensional linear program. Then, for δ > 0, there exists an
N(δ) such that

J(µε0,n, µ
ε
1,n)− J∗ ≤ 2ε+ δ.

for all n ≥ N(δ).

Proof. Assume first that (µε0,n, µ
ε
1,n) converges weakly to some (µε0, µ

ε
1). Then, for g ∈ D∞, and gk → g in

D∞ we have ∫
Agdµ0 +

∫
Bgdµ1 = lim

k→∞
lim
n→∞

∫
Agkdµ

ε
0,n +

∫
Bgkdµ

ε
1,n

= lim
k→∞

lim
n→∞

Rgk = lim
k→∞

Rgk = Rg.

Thus, (µε0, µ
ε
1) ∈M∞. Now observe that since c1 and c2 are continuous,

J(µε0,n, µ
ε
1,n)→ J(µε0, µ

ε
1). Assume there would be an (µ̂0, µ̂1) ∈M l

∞ such that J(µε0, µ
ε
1) > J(µ̂0, µ̂1)+ε, that

is, assume (µε0, µ
ε
1) would not be ε-optimal. For n large enough, we would have J(µε0,n, µ

ε
1,n) > J(µ̂0, µ̂1) + ε.

But as Mn ⊃M∞, this would imply that (µε0,n, µ
ε
1,n) is not ε-optimal. So, (µε0, µ

ε
1) is ε-optimal.

In general, we cannot guarantee weak convergence of (µε0,n, µ
ε
1,n), but since E×U is compact and the full mass

of µε0,n and µε1,n is uniformly bounded by 1 and l, respectively, the existence of a convergent subsequence
is given by Theorem 1.9. Consider two different subsequences of ε-optimal measures (µε0,n1

, µε1,n1
) and

(µε0,n2
, µε1,n2

). Set z1 = limn1→∞ J(µε0,n1
, µε1,n1

) and z2 = limn2→∞ J(µε0,n2
, µε1,n2

). Both z1 and z2 are ε-

optimal cost criterion values in M l
∞. Hence we can conclude that |z1 − z2| < ε. In particular, for z ∈ R

such that J(µε0, µ
ε
1) ∈ [z − ε

2 , z + ε
2 ] for any weak limit (µε0, µ

ε
1) of a sequence of ε-optimal measures. This

means that for δ > 0, there is an N ≡ N(δ) large enough such that for all n ≥ N , J(µε0,n, µ
ε
1,n) ∈(

z − ε
2 − δ, z + ε

2 + δ
)
. Now assume that (µε0,n, µ

ε
1,n) does not converge weakly, and that J(µε0,n, µ

ε
1,n) /∈(

z − ε
2 − δ, z + ε

2 + δ
)

infinitely often. This would allow for the construction of a subsequence (µε0,n3
, µε1,n3

)

with J(µn3
, µ1,n3

) /∈
(
z − ε

2 − δ, z + ε
2 + δ

)
∀n3 ∈ N. However, by the tightness argument of Theorem

1.9, that sequence contains a converging sub-subsequence (µ0,n4
, µ1,n4

). This means that J(µ0,n4
, µ1,n4

) ∈(
z − ε

2 − δ, z + ε
2 + δ

)
eventually, contradicting the preceding assumption. So, there exists an N ∈ N such

that J(µε0,n, µ
ε
1,n) ∈

(
z − ε

2 − δ, z + ε
2 + δ

)
∀n ≥ N . Consider a limit (µε0, µ

ε
1) of a convergent subsequence

of (µε0,n, µ
ε
1,n). By its ε-optimality and the properties of the infimum,

J∗ + ε ≥ J(µε0, µ
ε
1) ≥ z − ε

2

⇔ J∗ ≥ z − 3ε

2
.
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Thereby, for n ≥ N ,

J(µε0,n, µ
ε
1,n)− J∗ ≤ z +

ε

2
+ δ −

(
z − 3ε

2

)
= 2ε+ δ

from which the claim follows.

We proceed to analyze the discretization scheme of Section 2.1 and its approximation properties in order
to prove Proposition 3.2. From here on, we consider a fixed n, assuming that it is large enough to guarantee
that the statement of Proposition 3.1 holds. In particular, we consider the space Dn, which is spanned by
the basis functions f1, f2, . . . , fn.
Proposition 3.2 states that we can approximate the cost criterion of a pair of measures (µ0, µ1) ∈ M l

n

arbitrarily closely by a pair of measures (µm,0, µm,1) ∈M l
n,m. In the following, we consider a fixed pair of

measures (µ0, µ1). If η0 and η1 are the regular conditional probabilities of µ0 and µ1, respectively, we use
the following choice of the coefficients βj,i and ζj,i in (2.6) and (2.8), respectively. We use the mesh points
in E and U as defined in (2.4) and (2.3). Set

Ui = [ui, ui+1) for 0 ≤ i ≤ 2km − 1, U2km = {u2km} (3.1)

and with that,

βj,i = η0(Ui, xj) =

∫
Ui

η0(du, xj), j = 0, . . . , 2m − 1, i = 0, . . . , 2km , (3.2)

ζ1,i = η1(Ui, el) =

∫
Ui

η1(du, el), ζ2,i = η1(Ui, er) =

∫
Ui

η1(du, er), (3.3)

i = 0, . . . , 2km .

The following two facts can easily be derived using the uniform continuity of c0, c1 as well as f1, . . . , fn
(recall that these are continuous functions on a compact set), and the specific forms of the generators A and
B as in seen (1.8) and (1.4), respectively.

Lemma 3.6. For ε > 0, there is a δ > 0 such that, uniformly in x ∈ E,

max {|c0(x, u)− c0(x, v)|, |Af1(x, u)−Af1(x, v)|, . . . , |Afn(x, u)−Afn(x, v)|} < ε

holds whenever |u− v| < δ.

Lemma 3.7. For ε > 0, there is a δ > 0 such that for s = el or s = er,

max {|c1(s, u)− c1(s, v)|, |Bf1(s, u)−Bf1(s, v)|, . . . , |Bfn(s, u)−Bfn(s, v)|} < ε

holds whenever |u− v| < δ.

The following two results ensure that we can approximate the cost criterion of a pair of measures (µ0, µ1) ∈
M l

n arbitrarily closely, and that the our approximate measures ‘almost’ satisfy the linear constraints.

Proposition 3.8. Consider a regular conditional probability η0 and a probability density function p stemming
from a continuous occupation measure µ0 such that µ0(dx× du) = η0(du, x)p(x)dx. Let g(x, u) = c0(x, u) or
g(x, u) = Afk(x, u) for any k = 1, 2, . . . , n. For ε > 0, there exists an m0 ∈ N such that for all m ≥ m0,∣∣∣∣∫

E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

g(x, u)η̂0,m(du, x)p(x)dx

∣∣∣∣ < ε, (3.4)

where η̂0,m is of the form (2.6), using the coefficients specified in (3.2).
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Proof. Observe that given (2.6),

|I| ≡
∣∣∣∣∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

g(x, u)η̂0,m(du, x)p(x)dx

∣∣∣∣
=

∣∣∣∣∣∣
∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

2m−1∑
j=0

2km∑
i=0

βj,iIEj (x)g(x, ui)

 p(x)dx

∣∣∣∣∣∣ .

By the definition of βj,i in (3.2) and the triangle inequality it follows that

|I| ≤

∣∣∣∣∣∣
∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

2km∑
i=0

g(x, ui)

∫
Ui

η0(du, x)

 p(x)dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
E

2km∑
i=0

g(x, ui)

∫
Ui

η0(du, x)−
2m−1∑
j=0

2km∑
i=0

∫
Ui

η0(du, xj)IEj
(x)g(x, ui)

 p(x)dx

∣∣∣∣∣∣
≡ |I1|+ |I2| .

Observe that

|I1| =

∣∣∣∣∣∣
∫
E

2km∑
i=0

∫
Ui

(g(x, u)− g(x, ui)) η0(du, x)

 p(x)dx

∣∣∣∣∣∣ .
By Lemma 3.6, there is a δ > 0 such that for all |u− v| < δ, we have that |g(x, u)− g(x, v)| < ε

2 , uniformly
in x ∈ E. Choose m1 large enough such that for all m ≥ m1 it is true that 1

2km
< δ. Then

|I1| <

∣∣∣∣∣∣
∫
E

2km∑
i=0

∫
Ui

ε

2
η0(du, x)

 p(x)dx

∣∣∣∣∣∣ =
ε

2
. (3.5)

We now examine the term

|I2| =

∣∣∣∣∣∣
∫
E

2km∑
i=0

g(x, ui)

∫
Ui

η0(du, x)−
2m−1∑
j=0

IEj
(x)

∫
Ui

η0(du, xj)

 p(x)dx

∣∣∣∣∣∣ . (3.6)

Regard I2 as a sequence with two indices, say I2(a, b) ≡ I2(a, kb) ≡ I2, where a and b are two discretization
levels, with a slight abuse of notation.
Our first claim is that I2(a, b) is a Cauchy sequence in b. To see this, we analyze two successive elements of
the sequence. Consider

|I2(a, b+ 1)− I2(a, b)| = |I2(a, kb+1)− I2(a, kb)|

=

∣∣∣∣∣∣
∫
E

2kb+1∑
i=0

g(x, ũi)

η0(Ũi, x)−
2a−1∑
j=0

IEj
(x)η0(Ũi, xj)


−

2kb∑
i=0

g(x, ui)

η0(Ui, x)−
2a−1∑
j=0

IEj
(x)η0(Ui, xj)

 p(x)dx

∣∣∣∣∣∣
where Ũi and ũi are used to indicate the partition of U and the points of the discrete set in U of the
discretization level b+ 1, defined analogously to (2.3) and (3.1). Due to the additivity of measures, the two
sums over i, if regarded as a Riemann-type approximation to an integral, only differ by a more accurate choice
of the ‘rectangle height’ g(x, ui) and g(x, ũi) in the Riemann sum. To formalize this, for i ∈ {0, . . . , 2kb+1}
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let π(i) ∈ {0, . . . , 2kb} be the index such that Ũi ⊂ Uπ(i). Observe that
∑2kb+1

i=0 |η0(Ui, x)− η0(Ui, xj)| ≤ 2,

independently of xj , and thus independently of our choice of E(a). This is due to the fact regular conditional
probabilities are indeed probability measures with a full mass of 1. Then,

|I2(a, b+ 1)− I2(a, b)|

=

∣∣∣∣∣∣
∫
E

2kb+1∑
i=0

(
g(x, ũi)− g(x, uπ(i))

)
·

η0(Ũi, x)−
2a−1∑
j=0

IEj
(x)η0(Ũi, xj)

 p(x)dx

∣∣∣∣∣∣
≤
∫
E

2kb+1∑
i=0

∣∣ g(x, ũi)− g(x, uπ(i))
∣∣ ·
∣∣∣∣∣∣η0(Ũi, x)−

2a−1∑
j=0

IEj
(x)η0(Ũi, xj)

∣∣∣∣∣∣
 p(x)dx

≤ K
(

1

2

)b+1 ∫
E

2kb+1∑
i=0

∣∣∣∣∣∣η0(Ũi, x)−
2a−1∑
j=0

IEj
(x)η0(Ũi, xj)

∣∣∣∣∣∣
 p(x)dx

≤ K
(

1

2

)b+1

· 2 = K

(
1

2

)b
by the fact that

∣∣ g(x, ũi)− g(x, uπ(i))
∣∣ is uniformly bounded by K

(
1
2

)b+1
, with K = 1 if g(x, u) = c0(x, u),

and K = max{‖f1‖D , . . . , ‖fk‖D} if g(x, u) = Afk(x, u) by our choice of U (km), compare (2.2).

Now, for some ϑ > 0, choose b large enough such that
∑∞
j=b

(
1
2

)j
< ϑ

K . Then, for all b1 > b2 ≥ b, we have

|I2(a, b1)− I2(a, b2)| =

∣∣∣∣∣∣
b1−1∑
j=b2

I2(a, j + 1)− I2(a, j)

∣∣∣∣∣∣
≤
b1−1∑
j=b2

|I2(a, j + 1)− I2(a, j)|

≤ K
b1−1∑
j=b2

(
1

2

)j
< ϑ, (3.7)

revealing that I2 is Cauchy in b, which is the same as saying it is Cauchy in kb. The bound on the increment
of I2 in kb (given by (3.7)) is independent of a, so it does not depend on the choice of E(a). Given this result,
choose m2 ≥ m1 such that for all m ≥ m2, we have that km is large enough to make |I2(m, b1)−I2(m, b2)| < ε

4
hold for all b1, b2 ≥ km. An application of the dominated convergence theorem together with the assumption
that x 7→ η(Ui, x) is continuous almost everywhere reveals that the choice of coefficients in (3.2) ensures that
for km fixed and for each i ∈ {0, 1, . . . , 2km}, there is a m(1,i) large enough such that for all m(i) ≥ m(1,i),
we have ∫

E

∣∣∣∣∣∣η0(Ui, x)−
2m(i)

−1∑
j=0

IEj
(x)η0(Ui, xj)

∣∣∣∣∣∣ p(x)dx

<
ε

4 max {‖c0‖∞, ‖Af1‖∞, . . . ‖Afn‖∞} (2km+1)
(3.8)

Set m̃ = max
{

maxi=0,...,2km m(1,i),m2

}
. Then,

I2(m̃, km) ≤
∫
E

‖g‖∞
2km∑
i=0

∣∣∣∣∣∣η0(Ui, x)−
2m̃−1∑
j=0

IEj (x)η0(Ui, xj)

∣∣∣∣∣∣ p(x)dx

≤ ‖g‖∞
2km∑
i=0

∫
E

∣∣∣∣∣∣η0(Ui, x)−
2m̃−1∑
j=0

IEj (x)η0(Ui, xj)

∣∣∣∣∣∣ p(x)dx

≤ ε

4
.
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Note that I2(m̃, km) is decreasing in m̃, which again is revealed using the dominated convergence theorem.
Also, for l ≥ km, we have

|I2(m̃, l)| ≤ |I2(m̃, l)− I2(m̃, km)|+ |I2(m̃, km)|

<
ε

4
+
ε

4
=
ε

2

which means that I2 ≡ I2(m̃, km) does not exceed ε
2 when m̃ or km increase. Choose m0 = max{m̃,m2}.

Then, for all m ≥ m0, we have that I2 <
ε
2 .

Proposition 3.9. Consider a singular occupation measure µ1 that decomposes into µ1(dx×du) = η1(du, x)µ1,E(dx).
Let g(x, u) = c1(x, u) or g(x, u) = Bfk(x, u) for any k = 1, 2, . . . , n. For ε > 0, there exists an m0 ∈ N such
that for all m ≥ m0,∣∣∣∣∫

E

∫
U

g(x, u)η1(du, x)µ1,E(dx)−
∫
E

∫
U

g(x, u)η̂1,m(du, x)µ1,E(dx)

∣∣∣∣ < ε, (3.9)

where η̂1,m is of the form (2.8), using the coefficients specified in (3.3).

Proof. We only have to show that∣∣∣∣∫
U

g(s, u)η1(du, s)− g(s, u)η̂1,m(du, s)

∣∣∣∣ < ε

µ1,E(E)
(3.10)

uniformly for s = el or s = er, since µ1,E only puts mass on these two points. By (3.3),∣∣∣∣∫
U

g(s, u)η1(du, s)−
∫
U

g(s, u)η̂1,m(du, s)

∣∣∣∣
=

∣∣∣∣∣∣
2km∑
i=0

∫
Ui

g(s, u)η1(du, s)−
∫
Ui

g(s, u)η̂1,m(du, s)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2km∑
i=0

∫
Ui

g(s, u)η1(du, s)− g(s, ui)ζj,i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2km∑
i=0

∫
Ui

g(s, u)η1(du, s)− g(s, ui)

∫
Ui

η1(du, s)

∣∣∣∣∣∣
≤

2km∑
i=0

∫
Ui

|g(s, u)− g(s, ui)| η1(du, s)

holds. According to Lemma 3.7, there is a δ > 0 such that |g(s, u)− g(s, v)| < ε
µ1,E(E) whenever |u− v| < δ.

Hence it suffices to choose m0 large enough such that for all m ≥ m0 it is true that 1
2km

< δ to ensure that
|u− ui| < δ.

Proposition 3.8 and Proposition 3.9 have established the approximation properties of the coefficient
choices made by (3.2) and (3.3), without paying any respect to the constraints defining M l

n,m. We proceed
to link these approximate controls to measures that actually fulfill those constraints. To do so, we need to
be able to quantify how far away a given approximation is from satisfying the constraints. This motivates
the following definitions.

Definition 3.10. Let η0 be any relaxed control. For n,m ∈ N, define the constraint matrix C(m) ∈ Rn+1,2m

by

C
(m)
k,j =

∫
E

∫
U

Afk(x, u)η0(du, x)pj(x)dx, k = 1, 2, . . . , n, j = 0, 1, . . . , 2m − 1

C
(m)
n+1,j =

∫
E

pj(x)dx j = 0, 1, . . . , 2m − 1.
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Definition 3.11. For m ∈ N and η̂0,m given by (3.2), η̂1,m given by (3.3) and some p̃ in the span of
{p0, p1, . . . , p2m−1}, with µ1,E being the state space marginal of the previously fixed measure µ1, the constraint
error d(m)(p̃) ∈ Rn+1 is defined for k = 1, . . . , n by

d
(m)
k (p̃) = Rfk −

∫
E

∫
U

Afk(x, u)η̂0,m(du, x)p̃(x)dx

−
∫
E

∫
U

Bfk(x, u)η̂1,m(du, x)µ1,E(dx),

and for k = n+ 1 by d
(m)
n+1 = 1−

∫
E
p̃(x)(dx).

One can increase m to the point that the constraint matrix C(m) has full rank. This will help us find
adjustments to the coefficients of p̃ which will let the constraint error vanish. The following results show
that we can attain an arbitrarily small constraint error using the proposed approximation. Their proofs are
rather technical, and are given in Appendix A.

Lemma 3.12. Let p be a probability density function with λ ({x : p(x) = 0}) = 0. Then, for any ε > 0
and D1 > 0, there exists an ε̂1 < ε and an m0 such that for all m ≥ m0, there is a p̃m in the span of
{p0, p, . . . , p2m−1} with ‖p− p̃m‖L1(E) <

ε̂1
D1

and p̃m ≥ ε̂1 on E.

Lemma 3.13. Consider a pair of measures (µ0, µ1) ∈ Mn,∞, and let µ0(dx × du) = η0(du, x) p(x) dx as
well as µ1(dx× du) = η1(du, x)µ1,E(dx). Let
Ā = maxk=1,...,n ‖Afk‖∞. For δ > 0 and D2 ≥ 1, there exists an ε̂2 ≤ δ and an m0 ∈ N such that for all
m ≥ m0, there is a function p̃m in the span of {p0, p1, . . . , p2m−1} with ‖d(m)(p̃m)‖∞ < ε̂2, where d(m)(p̃m)
is the constraint error using the approximations η̂0,m(du, x) and η̂1,m(du, x) of the given controls η0 and η1

defined by the coefficients given in (3.2) and (3.3). In particular, ‖p − p̃m‖L1(E) <
ε̂2

3 max{Ā,1}
as well as

p̃m ≥ D2 · ε̂2 holds.

Next, we establish that we can find a ‘correction’ term y for the coefficients of p̃, which can be used to
define a measure that satisfies the constraints, with a maximum norm that does not exceed a given bound
ε. For the proof of the following statement, we again refer to Appendix A.

Lemma 3.14. Consider a pair of measures (µ0, µ1) ∈ Mn,∞, and let µ0(dx × du) = η0(du, x) p(x) dx as

well as µ1(dx× du) = η1(du, x)µ1,E(dx). For any ϑ > 0, there is a ϑ̂ < ϑ and an m0 ∈ N such that for all
m ≥ m0, there is a p̃m ∈ span{p0, p1, . . . , p2m−1} such that the equation C(m)y = −d(m)(p̃m) has a solution

ỹ with ‖ỹ‖∞ ≤ ϑ̂, In particular, p̃m ≥ ϑ̂ and ‖p− p̃m‖L1(E) < ϑ̂ hold.

At this point, we have gathered the results to prove Proposition 3.2, stated again for the sake of presen-
tation.

Proposition 3.2. For (µ0, µ1) ∈M l
n and each ε > 0, there is an m0 such that for all m ≥ m0 there exists

a (µ̂0,m, µ̂1,m) ∈M l
n,m, with

|J(µ0, µ1)− J(µ̂0,m, µ̂1,m)| < ε.

Proof. Fix ε > 0. For (µ0, µ1) ∈M l
n, let µ0,E be the state space marginal of µ0 and let η0 be the regular condi-

tional probability such that µ0(dx×du) = η0(du, x)µ0,E(dx). Similarly, let µ1(dx×du) = η1(du, x)µ1,E(dx).
Define η̂0,m and η̂1,m using the coefficients given by (3.2) and (3.3), respectively. First, by Proposition 3.9,
we have that there is an m1 such that ∀m ≥ m1,∣∣∣∣∫

E

∫
U

c1(x, u)η1(du, x)µ1,E(dx)−
∫
E

∫
U

c1(x, u)η̂1,m(du, x)µ̂1,E(dx)

∣∣∣∣ < ε

2
. (3.11)

Now, we consider the approximation of the cost accrued by c0. We will show that∣∣∣∣∫
E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,m(du, x)p̂m(x)dx

∣∣∣∣ < ε

2
, (3.12)
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for the given choice of η̂0,m and a choice of p̂m to be identified. This will be done by a successive application
of the triangle inequality. First, observe that∣∣∣∣∫

E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,m(du, x)p̂m(x)dx

∣∣∣∣
≤

∣∣∣∣∫
E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,m(du, x)p(x)dx

∣∣∣∣
+

∣∣∣∣∫
E

∫
U

c0(x, u)η̂0,m(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,m(du, x)p̂m(x)dx

∣∣∣∣
≡ |I1|+ |I2| .

Now set

ϑ = min

{
ε

8‖c0‖∞max{1, (er − el)}
,

3εmax{Ā, 1}
8‖c0‖∞

}
. (3.13)

By Lemma 3.14 we can choose an m2 ≥ m1 such that for all m ≥ m2, there is a function p̃m =
∑2m−1
i=0 γ̃ipi ∈

span{p0, p1, . . . , p2m−1} that allows for a solution ỹ to C(m)y = −d(m)(p̃m) with ‖ỹ‖∞ ≤ ϑ̂ < ϑ for some

ϑ̂ < ϑ, but p̃m ≥ ϑ̂. This m2 is also large enough to approximate p by p̃m with an accuracy of ε
8‖c0‖∞ for all

m ≥ m2. Define new coefficients γi = γ̃i − ỹi and set p̂m =
∑2m−1
i=0 γipi. Then, for all k = 1, 2, . . . , n,

d
(m)
k (p̂m) = Rfk −

(
C(m)γ

)
k
−
∫
E

∫
U

Bfk(x, u)η̂1,mµ1,E(dx)

= Rfk −
(
C(m)(γ̃ − ỹ)

)
k
−
∫
E

∫
U

Bfk(x, u)η̂1,mµ1,E(dx)

= Rfk −
(
C(m)γ̃

)
k
−
∫
E

∫
U

Bfk(x, u)η̂1,mµ1,E(dx) +
(
C(m)ỹ

)
k

= d
(m)
k (p̃m)− d(m)

k (p̃m) = 0

and
d

(m)
n+1(p̂m) = 1− (C(m)γ̃)n+1 + (C(m)ỹ)n+1 = d

(m)
n+1(p̃m)− d(m)

n+1(p̃m) = 0

which shows that p̂m fulfills the constraints. But also, p̂m ≥ 0. So
(η̂0,m(du, x)p̂m(x)dx, η̂0,m(du, x)µ1,E(dx) ∈M l

n,m. Furthermore,

‖p− p̂m‖L1(E) ≤ ‖p− p̃m‖L1(E) + ‖p̃m − p̂m‖L1(E) ≤
ε

8‖c0‖∞
+

ε

8‖c0‖∞
=

ε

4‖c0‖∞
.

This shows that

|I2| ≤
∫
E

‖c0‖∞
∫
U

η̂0,m(du, x)|p(x)− p̂m(x)|dx < ‖c0‖∞‖p− p̂m‖L1 <
ε

4
,

since
∫
U
η̂0,m(du, x) = 1. Turning to |I1|, we have seen in Proposition 3.8 that there is an m3 ≥ m2 such

that for all m ≥ m3, |I1| < ε
4 . To sum up,∣∣∣∣∫

E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,m(du, x)p̂m(x)dx

∣∣∣∣
≤ I1 + I2 ≤

ε

4
+
ε

4
=
ε

2

But this gives us the assertion, and finishes the proof, setting m0 = m3.

So far, we have investigated the approximation of arbitrary measures. Proposition 3.2 is instrumental in
proving the next important result, Corollary 3.3, which analyzes how optimal solutions in M l

n,m relate to

ε-optimal solution in M l
n. The following lemma will as well be needed. Its proof is similar to an argument

used in (3.1), and thus is omitted.
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Lemma 3.15. Let {µ0,n,m, µ1,n,m} be a sequence of measures such that for each m, (µ0,n,m, µ1,n,m) ∈M l
n,m.

Assume that µ0,n,m ⇒ µ̂0,n and µ1,n,m ⇒ µ̂1,n as m→∞. Then, (µ̂0,n, µ̂1,n) ∈M l
n.

Now we can prove Corollary 3.3 from Section 3.1.

Corollary 3.3. For each m ∈ N, assume that (µ∗0,n,m, µ
∗
1,n,m) ∈M l

n,m and that for m ∈M, (µ∗0,n,m, µ
∗
1,n,m)

is an optimal solution to the l-bounded, (n,m)-dimensional linear program. Then, the sequence of numbers
{J(µ∗0,n,m, µ

∗
1,n,m)}m∈N

converges to J∗n = inf(µ0,n,µ1,n)∈M l
n
J(µ0,n, µ1,n) as m→∞.

Proof. First, observe that if µ∗0,n,m ⇒ µ̂∗0,n and µ∗1,n,m ⇒ µ̂∗1,n as m → ∞ for some (µ̂∗0,n, µ̂
∗
1,n) ∈ M l

n,
it follows that J(µ̂∗0,n, µ̂

∗
1,n) = J∗n. The proof of this claim is as follows. Assume the opposite. Then,

there is a pair of measures (µ̂0,n, µ̂1,n) ∈ M l
n with J(µ̂∗0,n, µ̂

∗
1,n) − J(µ̂0,n, µ̂1,n) > ε for some ε > 0.

Select m0 large enough such that for all m ≥ m0, |J(µ̂∗0,n, µ̂
∗
1,n) − J(µ∗0,n,m, µ

∗
1,n,m)| < ε

2 and hence
J(µ∗0,n,m, µ

∗
1,n,m) − J(µ̂0,n, µ̂1,n) > ε

2 for all m ≥ m0. By Proposition 3.2, select m ≥ m0 large enough

that there is a a pair of measures (µ̂0,n,m, µ̂1,n,m) ∈M l
n,m with |J(µ̂0,n, µ̂1,n)− J(µ̂0,n,m, µ̂1,n,m)| < ε

2 . But
then, J(µ̂0,n,m, µ̂1,n,m) < J(µ∗0,n,m, µ

∗
1,n,m), contradicting that (µ∗0,n,m, µ

∗
1,n,m) is the optimal solution in

M l
n,m.

Also, {J(µ∗0,n,m, µ
∗
1,n,m)}m∈N is a decreasing sequence which is bounded from below, so it converges. As

{µ∗0,n,m}m∈N and {µ∗1,n,m}m∈N are sequences of measures over a compact space, they are tight, and the full
mass of {µ∗1,n,m}m∈N is uniformly bounded by l. So there is a convergent subsequence {(µ∗0,n,m1

, µ∗1,n,m1
)}m1∈N

with
µ∗0,n,m1

⇒ µ̂∗0,n and µ∗1,n,m1
⇒ µ̂∗1,n (3.14)

for some (µ̂∗0,n, µ̂
∗
1,n) ∈Mn. By the first part of this proof and because c0 and c1 are bounded and uniformly

continuous,

J∗n = J(µ̂∗0,n, µ̂
∗
1,n) =

∫
c0dµ̂

∗
0,n +

∫
c1dµ̂

∗
1,n

= lim
m1→∞

(∫
c0dµ̂

∗
0,n,m1

+

∫
c1dµ̂

∗
1,n,m1

)
= lim
m1→∞

J(µ∗0,n,m1
, µ∗1,n,m1

),

but {J(µ∗0,n,m, µ
∗
1,n,m)}m∈N converges, and any subsequence has to converge to its very limit. So,

lim
m→∞

J(µ∗0,n,m, µ
∗
1,n,m) = J∗n

4 Examples

4.1 Modified Bounded Follower

Consider a stochastic control problem with state space E = [0, 1] such that the process is governed by the
SDE

dXt = u(Xt)dt+ σdWt + dξt, X0 = x0

in which u(x) ∈ U = [−1, 1], and ξ is a process that captures the singular behavior of X. The latter is given
by a reflection to the right at {0} and a jump from {1} to {0}. We use the relaxed martingale formulation,
compare Definition 1.1, and retain the coefficient functions b(x, u) = u and σ(x, u) ≡ σ. We adopt the
long-term average cost criterion, with cost functions c0(x, u) = x2, c1(er, u) ≡ c1 at the right endpoint for
some c1 ∈ R+ and c1(el, u) = 0 at the left endpoint. This problem is known as the modified bounded follower
in the literature. According to [10], the optimal control for this problem is a degenerate relaxed control η0

with η0({ua(x)}, x) = 1, where ua is of the form

ua(x) =

{
−1 x < a
+1 x ≥ a.
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Figure 4.1: Computed optimal relaxed control,
coarse grid, modified bounded follower
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Figure 4.2: Computed optimal average control,
coarse grid, modified bounded follower

The ‘switching point’ a depends on the coefficient and cost functions. Furthermore, the state space marginal
µ0,E under the optimal control has the density

pa(x) =

∫ 1

x
exp

(∫ y
x
− 2
σ2ua(z) dz

)
dy∫ 1

0

∫ 1

x
exp

(∫ y
x
− 2
σ2ua(z) dz

)
dy dx

.

We will compare the performance of the proposed numerical method against this analytic solution. Table 4.1
shows the configuration of the problem, along with the optimal switching point a under this configuration
and the weights of the occupation measure µ1, capturing the singular behavior on the left boundary {0} and
on the right boundary {1}, denoted w1 and w2, respectively. It also shows the value of the cost criterion J∗

under the optimal control. Table 4.2 and Table 4.3 show the results and performance measures for various

Table 4.1: Configuration and analytic solution, modified bounded follower

x0 σ c1 a w1 w2 J∗

0.1
√

2 0.01 0.7512 2.4659 1.5555 0.1540

Table 4.2: Results (1), modified bounded follower
n m T J∗n,m ea er eL1

3 3 0.0089 0.15400 9.798 · 10−6 6.363 · 10−5 9.082 · 10−2

4 4 0.0091 0.15399 1.199 · 10−6 7.789 · 10−6 4.563 · 10−2

5 5 0.0101 0.15399 5.447 · 10−7 3.537 · 10−6 2.287 · 10−2

6 6 0.0124 0.15399 4.809 · 10−7 3.123 · 10−6 1.145 · 10−2

7 7 0.0173 0.15399 4.713 · 10−7 3.061 · 10−6 5.73 · 10−3

8 8 0.0338 0.15399 4.694 · 10−7 3.048 · 10−6 2.866 · 10−3

9 9 0.0844 0.15399 3.306 · 10−7 2.147 · 10−6 1.451 · 10−3

10 10 0.2754 0.15399 2.655 · 10−7 1.724 · 10−6 7.258 · 10−4

11 11 0.9586 0.15399 3.550 · 10−7 2.305 · 10−6 4.509 · 10−4

discretization levels n and m. To achieve higher accuracy, we added another mesh point for the choice of
basis functions for p by cutting the interval in the middle of the state space in half. As the cost function
does not depend on u we expect the optimal solution to be a bang-bang control. Hence it suffices to choose
km = 0, which means the optimization has to choose between two possible control values {−1, 1}.
Table 4.2 shows the result for the approximate cost criterion J∗n,m. The column ea refers to the absolute
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error between J∗ and J∗n,m, the column er to the relative error between J∗ and J∗n,m and the column eL1

to the L1(E)-distance between p̂m and p. T is the execution time, which is an average time taken from
1000 repetitions of the same optimization run. In Table 4.3, ŵ1 and ŵ2 refer to the approximate values for
w1 and w2. The discretization levels m for table 4.3 are the same as in table 4.2 for respective n, and as
before, ea refers to the absolute error and er refers to the relative error of these quantities. Note that the

Table 4.3: Results (2), modified bounded follower
n ŵ1 ea er ŵ2 ea er
3 2.4667 7.887 · 10−4 3.199 · 10−4 1.5577 2.157 · 10−3 1.387 · 10−3

4 2.4661 1.984 · 10−4 8.047 · 10−5 1.5560 5.440 · 10−4 3.480 · 10−4

5 2.4659 4.969 · 10−5 2.015 · 10−5 1.5556 1.355 · 10−4 8.700 · 10−5

6 2.4659 1.243 · 10−5 5.040 · 10−6 1.5555 3.388 · 10−5 2.178 · 10−5

7 2.4659 3.107 · 10−6 1.260 · 10−6 1.5555 8.471 · 10−6 5.446 · 10−6

8 2.4659 7.768 · 10−7 3.150 · 10−7 1.5555 2.118 · 10−6 1.362 · 10−6

9 2.4650 8.577 · 10−4 3.478 · 10−4 1.5532 2.331 · 10−3 1.499 · 10−3

10 2.4655 4.286 · 10−4 1.738 · 10−4 1.5543 1.167 · 10−3 7.500 · 10−4

11 2.4631 2.833 · 10−3 1.149 · 10−3 1.5543 1.165 · 10−3 7.489 · 10−4

method produces already fairly accurate approximations in almost negligible time for n = 5 or n = 6. The
over-proportional increase in computing time for higher discretization levels (n = 10 and n = 11) is due
to longer execution time of the linear program solver, and might indicate that the approximate problem is
becoming ill-conditioned. For n = 12 and m = 12, no reliable solution could be produced. In this case,
the linear programming solver could find no point satisfying the constraints, which can be circumvented by
increasing the discretization level m without increasing the number of constraints n. However, this did not
show better performance than the presented cases. The absolute error for n = 11 is on a comparable level to
results obtained in [20]. Both the error of the cost criterion value and the L1-error of the state space density
are steadily decreasing, which is a strong indication of a convergent method, together with the presented
convergence results. The inferior approximation quality at n = 11 compared to n = 10 is believed to be due
to the problem becoming ill-conditioned.

Figure 4.1 shows the computed relaxed control η̂0 for n = 4 and m = 4. Figure 4.2 shows the average
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Figure 4.3: Computed optimal relaxed control,
fine grid, modified bounded follower
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Figure 4.4: Computed optimal average control,
fine grid, modified bounded follower

control value specified by this relaxed control. These figures have to be understood as follows. Figure 4.1
displays the full relaxed control, specifying the probability to pick a certain control value u when the process
is in a certain state x. This state x is found on the x-axis of the plot, labeled ‘state space’ and the choice of a
control value u corresponds to the y-axis of the plot, labeled ‘control space’, while the probability η̂0({u}, x)
of picking this control value u is presented on the z-axis, labeled ‘probability’. For example, at x = 0.25,
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the control value u = −1 is chosen with probability 1, and the control value u = 1 is chosen with probability
0. We can see that for any possible value of x, η̂0 assigns full mass on either one of the two possible control
values u = −1 and u = 1. Hence, η̂0 can be represented by its average control function, which is given by
x 7→

∫
U
uη̂0(du, x). It is shown in Figure 4.2. In both Figure 4.1 and Figure 4.2, the red dots represent the

mesh points of the mesh E(m) as defined in (2.4). The switching point a at x = 0.75, where the control
switches from −1 to +1 is clearly visible in both figures.
The approximate state space density for n = 4 and m = 4, as displayed in blue in Figure 4.5, clearly shows
the features inherited from the piecewise constant basis functions we use to approximate p. Its irregular
pattern is due to the fact that we introduced an additional mesh point in the middle of the state space.
Figure 4.5 also shows the exact solution displayed in red.
For a finer grid with parameters n = 10 and m = 10, Figure 4.3 shows the computed relaxed control η̂0.
Figure 4.4 shows the average control function. The switching point a again is clearly visible. The red dots
indicating the mesh points lie so dense that they form a solid line in both plots. Figure 4.6 shows the
approximate state space density for the parameter choice of n = 10 and m = 10. The exact solution could
not be visually distinguished from the approximate solution and is thus omitted from the figure. One can
also see a change in concavity of the state space density at roughly x = 0.75, which is where the control
switches its behavior from selecting u = −1 to u = 1.
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Figure 4.5: State space density, coarse grid, mod-
ified bounded follower
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bounded follower

4.2 Simple Particle Problem with Costs of Control

To illustrate the performance of the numerical method on a different type of problem, consider a stochastic
control problem with state space E = [−1, 1] such that the process is governed by the SDE

dXt = u(Xt)dt+ σdWt + dξt, X0 = x0

in which u(x) ∈ U = [−1, 1]. ξ models reflections at both −1 (to the right) and 1 (to the left), keeping
the process inside of E. X can be viewed as a particle that randomly diffusions inside a confined space,
and bounces off at the boundaries. Again, we adopt the long-term average cost criterion and use the
relaxed martingale formulation, compare Definition 1.1. We retain the coefficient functions b(x, u) = u
and σ(x, u) ≡ σ. To differentiate this example from the previous one, consider a cost structure given by
c0 = x2 + u2 and c1(x, u) ≡ c1 for some c1 ∈ R+ at both left endpoint x = −1 and right endpoint x = 1. In
particular, this means that using the control induces a cost. In contrast to the modified bounded follower
of Section 4.1, we will see a different structure of the control since choosing the maximal or minimal control
values might not be optimal any longer, as this introduces additional costs. For this problem, no analytical
solution is known to the authors.
We examine the influence of the cost of the reflection c1 on the optimal control. All subsequent calculations
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use σ =
√

2/2, n = 9, m = 9 and km = m+ 3 = 12. The latter is needed to attain a sufficient approximation
of the cost function, compare (2.2).

Figure 4.7 shows the average control x 7→
∫
U
u η̂0(du, x) for a cost of reflections given by c1 = 0.01. We
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Figure 4.7: Average of optimal control, c1 = 0.01,
simple particle problem
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Figure 4.8: State space density, c1 = 0.01, simple
particle problem

chose to show a plot of the average control function rather than the full relaxed control since the numerical
solutions were degenerate relaxed controls, putting full mass on the values attained by x 7→

∫
U
u η̂0(du, x),

with the exception of small rounding errors. Moreover, a full visualization of the relaxed control as seen in
Section 4.1 is infeasible due to the high number of possible control values. Figure 4.8 shows the state space
density associated with the control of Figure 4.7. The computed optimality criterion is J∗n,m = 0.30259.
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Figure 4.9: Average of optimal control, c1 = 1,
simple particle problem
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Figure 4.10: State space density, c1 = 1, simple
particle problem
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Figure 4.11: Average of optimal control, c1 = 6,
simple particle problem
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Figure 4.12: State space density, c1 = 6, simple
particle problem

The interesting observation from this simulation is that the optimal control favors using the effect of
the reflection to efficiently ‘push’ the process back into the interior. As the penalty for the reflection with
c1 = 0.01 is rather mild compared to the cost of using the control at full scale, increasingly less influence is
enacted by the control as we move closer to both boundaries −1 and 1. Figure 4.9 shows the optimal control
when the costs of the reflection is increased to c1 = 1. It reveals that with a higher penalty for the reflection,
it is beneficial to use the control more extensively, although a similar pattern as in the previous case can be
observed when the process approaches the boundaries of the state space. The control is used slightly less in
this area to benefit from the reflection in direction of the origin. The overall heavier use of the control results
in a state space density (Figure 4.10) which is more concentrated around the origin than the one from the
previous case, see Figure 4.8. The value of the optimality criterion is given by J∗n,m = 0.42745.
To illustrate an extreme case, we show a third example with c1 = 6. Figure 4.11 shows the optimal control in
this setting, Figure 4.12 displays the state space density. In contrast to the previous two cases, the optimal
control tries to avoid a reflection under all circumstances by using its full force pushing back to the origin
when the process approaches the boundaries of the state space. Still, a trade-off is made when the process
is close to the origin, and the control is used with less than full force to avoid the costs induced by c0. The
state space density concentrates even more around the origin in this setting. The value of the cost criterion
is given by J∗n,m = 0.66399.

5 Outlook

The considerations presented in the present paper can be extended in several ways. From a numerical analysis
point of view, it is highly interesting how the numerical scheme behaves if higher-order basis elements are
used to approximate the density p of the state space marginal of the occupation measure µ0. The analytic
solution described in Section 4.1 has a density that is infinitely differentiable everywhere but at one point,
thus justifying the use of, for example, piecewise linear basis functions. However, this would require an
adaption of the presented convergence proof, in particular regarding the analysis leading up to the proof
of Lemma 3.14. One aspect to be addressed is the fact that as soon as we use standard elements with a
order larger than 1, for example, quadratic Lagrange elements, the non-negativity of the approximate density
cannot be guaranteed by restricting the coefficients to be non-negative.
Another topic to research would be the introduction of adaptive meshing techniques for both state and control
space. Analytic or heuristic error estimator could guide a successive refinement of the meshes, leading to a
increase in accuracy without significantly higher computation time.
From a modeling point of view, on the one hand, an adaption of the discretization scheme for models
featuring an unbounded state space would enhance the number of applications for this numerical scheme.
Several control problems in finance and economics feature an unbounded state space, and are well suited for
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the linear programming approach. Initial investigations show that models with an unbounded state space
can be approximated using a bounded state space with reflection boundaries. A full analysis of this approach
would allow us to use the methods presented in this paper in order to solve such models.
On the other hand, problems with finite time horizon or even optimal stopping problems could also be
solved with similar numerical techniques. While the analytic linear programming approach to address such
problems is well studied, the discretization techniques presented in this chapter would have to be enhanced
to reflect the time dependency of both constraint functions and measures. A numerical analysis of such
techniques was conducted in [17], but a convergence analysis remained unconsidered.

A Additional proofs

This appendix provides the proofs of Lemma 3.12, Lemma 3.13 and Lemma 3.14.

Proof of Lemma 3.12. Find ε̂1 < ε such that λ ({x : p(x) ≤ ε̂1}) < 1
2D1

, which is possible due to the conti-
nuity from above of measures. Define

p̄(x) =

{
p(x) p(x) > ε̂1

ε̂1 p(x) ≤ ε̂1
.

Then, ‖p− p̄‖L1(E) ≤ ε̂1 ·λ ({x : p(x) ≤ ε̂1}) ≤ ε̂1
2D1

. Now, choose m0 large enough such that for all m ≥ m0,

there is a p̃m ∈ span (p0, p1, . . . , p2m−1) with ‖p̄ − p̃m‖L1(E) ≤ ε̂1
2D1

and p̃m ≥ ε̂1 (note there is no point in
choosing p̃m < ε̂1 when approximating p̄). Then,

‖p− p̃m‖L1(E) ≤ ‖p− p̄‖L1(E) + ‖p̄− p̃m‖L1(E) <
ε̂1

2D1
+

ε̂1
2D1

=
ε̂1
D1

holds.

Proof of Lemma 3.13. Fix δ > 0. Since (µ0, µ1) ∈Mn,∞, we have that for each k = 1, 2, . . . , n

Rfk =

∫
E

∫
U

Afk(x, u)η0(du, x)p(x)dx+

∫
E

∫
U

Bfk(x, u)µ1(dx× du)

and thereby for any p̃m in the span of {p0, p1, . . . , p2m−1}

d
(m)
k (p̃m)

= Rfk −
∫
E

∫
U

Afk(x, u)η̂0,m(du, x)p̃m(x)dx−
∫
E

∫
U

Bfk(x, u)η̂1,m(du, x)µ1,E(dx)

=

∫
E

∫
U

Afk(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

Afk(x, u)η̂0,m(du, x)p̃m(x)dx

+

∫
E

∫
U

Bfk(x, u)η1(du, x)µ1,E(dx)−
∫
E

∫
U

Bfk(x, u)η̂1,m(du, x)µ1,E(dx)

holds. The triangle inequality reveals that

|d(m)
k (p̃m)|

≤
∣∣∣∣∫
E

∫
U

Afk(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

Afk(x, u)η̂0,m(du, x)p(x)dx

∣∣∣∣
+

∣∣∣∣∫
E

∫
U

Afk(x, u)η̂0,m(du, x)p(x)dx−
∫
E

∫
U

Afk(x, u)η̂0,m(du, x)p̃m(x)dx

∣∣∣∣
+

∣∣∣∣∫
E

∫
U

Bfk(x, u)η1(du, x)µ1,E(dx)−
∫
E

∫
U

Bfk(x, u)η̂1,m(du, x)µ1,E(dx)

∣∣∣∣
≡
∣∣∣d(m)
k,1

∣∣∣+
∣∣∣d(m)
k,2

∣∣∣+
∣∣∣d(m)
k,3

∣∣∣ .
23



Apply Lemma 3.12 with ε = δ and D1 = D2 ·3 ·max{Ā, 1}. Take ε̂1 and m1 from this result. Set ε̂2 = ε̂1/D2.
Then, ε̂2 ≤ δ and for all m ≥ m1, there is a p̃m ∈ span{p0, p1, . . . , p2m−1} such that ‖p − p̃m‖L1(E) <

ε̂2

3·max{Ā,1}
as well as p̃m ≥ D2 · ε̂2 holds. Also,

∣∣∣d(m)
k,2

∣∣∣ ≡ ∣∣∣∣∫
E

∫
U

Afk(x, u)η̂0,m(du, x) (p(x)− p̃m(x)) dx

∣∣∣∣ ≤ Ā‖p− p̃m‖L1(E) <
ε̂2
3
.

By Proposition 3.8, we can choose m2 ≥ m1 such that for all m ≥ m2, |dmk,1| is bounded by ε̂2
3 . By

Proposition 3.9, we can choose m3 ≥ m2 such that |d(m)
k,3 | is bounded by ε̂2

3 for all m ≥ m3, which shows that∣∣∣d(m)
k (p̃m)

∣∣∣ < ε̂2 for k = 1, 2, . . . , n. For k = n+ 1, since p is a probability density,

‖p̃m‖L1(E) ≤ ‖p̃m − p‖L1(E) + ‖p‖L1(E) <
ε̂2

3 max{Ā, 1}
+ 1 < ε̂2 + 1.

Now assume that ‖p̃m‖L1(E) < 1− ε̂2. Then,

‖p‖L1(E) ≤ ‖p− p̃m‖L1(E) + ‖p̃m‖L1(E) <
ε̂2

3 max{Ā, 1}
+ 1− ε̂2 < ε̂2 + 1− ε̂2 = 1,

a contradiction, and we have that
1− ε̂2 ≤ ‖p̃m‖L1(E) ≤ 1 + ε̂2.

Hence, |d(m)
n+1(p̃m)| < ε̂2, which completes the proof, upon setting m0 = m3.

Now we can show that the statement of Lemma 3.14 is true.

Proof of Lemma 3.14. Fix ϑ > 0. Select m1 ∈ N large enough such that for all m ≥ m1, C(m) has full rank
and thus n+ 1 independent columns. For any m ≥ m1, let C̄(m) ∈ Rn+1,n+1 be a matrix consisting of n+ 1
independent columns of C(m). Set

δ =
ϑ

max
{

1,
∥∥∥(C̄(m1)

)−1
∥∥∥
∞

}
and by Lemma 3.13, with δ and D2 = max{1, ‖

(
C̄(m1)

)−1 ‖∞}, find m2 ≥ m1 such that for all m ≥ m2,

there is a p̃m, with ‖d(m)(p̃m)‖∞ < ε̂2 ≤ δ, for some ε̂2 > 0, satisfying

p̃m ≥ max

{
1, ‖

(
C̄(m1)

)−1

‖∞
}
· ε̂2 ≥ ‖

(
C̄(m1)

)−1

‖∞ · ε̂2

as well as ‖p− p̃m‖L1(E) <
ε̂2

3·max{Ā,1}
. Set ϑ̂ = max

{
1, ‖

(
C̄(m1)

)−1 ‖∞
}
· ε̂2 and note that ε̂2

3·max{Ā,1}
< ϑ̂.

Consider the solution ỹ ∈ R2m1
for C(m1)y = −d(m2)(p̃m) that is given by injecting ȳ =

(
C̄(m1)

)−1 (−d(m2)(p̃m)
)
∈

Rn+1 into R2m1
. Then,

‖ỹ‖∞ = ‖ȳ‖∞ =

∥∥∥∥(C̄(m1)
)−1

d(m2)(p̃m)

∥∥∥∥
∞
<

∥∥∥∥(C̄(m1)
)−1

∥∥∥∥
∞
‖d(m2)(p̃m)‖∞ ≤ ϑ̂.

We now show that there is a solution ỹ to C(m2)y = d(m2)(p̃m) that satisfies ‖ỹ‖∞ ≤ ϑ̂. By the definition of
the constraint matrix, for any m ∈ N, we have that for k = 1, 2, . . . , n+ 1 and i = 0, 1, . . . , 2m − 1,

C
(m+1)
k,2i + C

(m+1)
k,2i+1 = C

(m)
k,i

holds. Indeed, since for 1 ≤ k ≤ n, by the choice of basis functions {p0, p1, . . . , p2m−1} as indicator functions

over dyadic intervals, the entries of C
(m)
k,i are given by integration of the functions Afk over intervals that
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are cut in half, and if k = n+ 1, the entries are simply given by the interval lengths (xj+1− xj) since pj = 1

on [xj+1, xj). Hence, if y is a solution to C(m)y = −d, the vector ȳ ∈ R2m+1

with components

ȳ2i+1 = ȳ2i = yi

where i = 0, 1, . . . , 2m−1, satisfies C(m+1)y = −d, and ‖y‖∞ = ‖ȳ‖∞ holds. Inductively, this reveals that for

any m ≥ m1, there is a solution ỹ to C(m)y = −d(m2)(p̃m) which satisfies ‖ỹ‖∞ = ‖y‖∞ ≤ ϑ̂. In particular,

this means that there is a solution ỹ to C(m2)y = −d(m2)(p̃m), with ‖ỹ‖∞ = ‖y‖∞ < ϑ̂. For any m ≥ m2,
this analysis can be conducted similarly, showing the result for m0 = m2.
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