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EXISTENCE OF POSITIVE STEADY STATES FOR WEAKLY

REVERSIBLE MASS-ACTION SYSTEMS∗
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Abstract. We prove the following. For each weakly reversible mass-action system, there exists
a positive steady state in each positive stoichiometric class.
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1. Introduction. Mass-action dynamical systems are probably the most com-
mon mathematical models in biochemistry, cell biology, and population dynamics.
Reversible and weakly reversible mass-action systems are the most studied classes
of such systems, and are ubiquitous in mathematical biology. Moreover, they rep-
resent a large class of polynomial dynamical systems that are very important both
theoretically and from the point of view of applications.

The four authors Jian Deng, Martin Feinberg, Christopher Jones, and Adrian
Nachman posted the manuscript [8] on arXiv.org in 2011, claiming that there exists a
positive steady state in each positive stoichiometric class for every weakly reversible
mass-action system. As mentioned in [8, Remark 3.4], a result corresponding to
Lemma 8 of the present paper was established by Adrian Nachman in the early 1980s,
and he obtained the existence of a positive steady state in each positive stoichiometric
class for every weakly reversible mass-action system with a single linkage class. How-
ever, his proof has never been made publicly available. Based on Adrian Nachman’s
work, roughly 20 years later, Jian Deng attacked the problem of extending the result
to the general case, i.e., for multiple linkage classes. This resulted in the arXiv.org
posting [8] in 2011. The main feature of their approach is that the original problem,
which is in the space of species, is translated to the existence of a zero of a map in the
space of complexes. Then they use Brouwer’s Fixed Point Theorem, directly to a ball
in the single linkage class case, and for technical reasons to a modification of a ball
in the two linkage classes case. They claim that similar arguments lead to resolve the
case of three or more linkage classes.

The ideas of both Adrian Nachman and Jian Deng are important building blocks
that are used and developed further in the present work. On the one hand, there
was a need for a clarified presentation, on the other hand, the case of three or more
linkage classes had to be worked out. This motivated the present work.

In [8], Deng et al. first concentrate on proving the existence of a positive steady
state at all. Only at the very end, using the accumulated material, they address
existence within positive stoichiometric classes. In the present paper, we right from
the beginning consider one fixed positive stoichiometric class and show the existence
of a positive steady state there. As a result, we quickly arrive to a complete proof in
the single linkage class case, and the line of the presentation becomes straightforward.

We note that the existence of a positive steady state was already proven in some
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2 B. BOROS

special cases, see the Deficiency-Zero and Deficiency-One Theorems in [11], the re-
versible case in [17], the reversible case in two dimension in [19], and the deficiency-one
case in [2].

Finally, the authors of [8] claim not only the existence, but also the finiteness of
positive steady states in each positive stoichiometric class, assuming weak reversibility.
However, their argument is insufficient. Moreover, with Gheorghe Craciun and Polly
Yu, we have constructed counterexamples to this claim [4].

The rest of this paper is organised as follows. After introducing some notations
and the necessary notions from CRNT in Sections 2 and 3, respectively, we state the
main result of this paper in Section 4. We perform some preliminary steps of the
proof of the main result in Section 5, followed by the proof in the single linkage class
case in Section 6. Before we turn to the proof in the multiple linkage classes case in
Section 9, we meditate about it in Section 7 and provide the proof for two linkage
classes in Section 8. Finally, in Appendices A to C, we provide some details about
a tool that is used in Section 5, prove one of the lemmata of Section 6, and display
the dependence of the numbered statements appearing in this paper via an acyclic
digraph, respectively.

2. Notations. We use standard notations.
For two vector spaces U and V , the notation U ≤ V expresses that U is a subspace

of V . For a subspace U ≤ R
m, the map ΠU : R

m → R
m is the orthogonal projection

to U . For a subspace U ≤ R
m, the symbol U⊥ denotes the orthogonal complement of

U .
For a linear map (or its matrix) A, we denote by kerA, ranA, rankA, and A⊤

its kernel, range, rank, and transpose, respectively.
For a vector z ∈ R

m, we denote by |z| and max(z) its Euclidean norm and the value
of the maximal entry of z, respectively. For two vectors z1, z2 ∈ R

m, the expression
〈z1, z2〉 denotes their Euclidean scalar product.

For a finite set Q, we denote by |Q| the number of its elements.
The element of R

m with all its coordinates being 1 is denoted by 1m.
For a set Ω ⊆ R

m, we denote by ∂Ω the boundary of Ω.
The symbol R+ denotes the set of positive real numbers, i.e., R+ = {x ∈ R | x >

0}.
For a vector x ∈ R

n
+ and a matrix Y ∈ R

n×m, the vector xY ∈ R
m
+ is defined by

(xY )j =
∏n

i=1 x
Yij

i for j ∈ {1, . . . ,m}.

3. Mass-action systems. We give a very brief introduction to the basic notions
of CRNT. For more details, the reader is advised to consult e.g. [9], [10], and [14].

A reaction network is a triple (X , C,R), where X , C, and R are the set of species,
complexes, and reactions, respectively. Throughout the paper, we use n = |X | and
m = |C|. The complexes are formal linear combinations of the species, the coefficients
are stored in the matrix Y ∈ R

n×m. The ith complex is then Y1iX1 + · · · + YniXn,
where X1, . . . ,Xn denote the species. The set R consists of ordered pairs of com-
plexes, the first and the second element of the pair are called reactant complex and
product complex, respectively. The reactant and the product complex of a reaction
are distinct.

The weak components of the digraph (C,R) are called linkage classes. The number
of linkage classes is denoted by ℓ. The reaction network is said to be weakly reversible
if all the weak components of the digraph (C,R) are strongly connected, i.e., for
every pair (i, j) of complexes, the existence of a directed path from i to j implies the
existence of a directed path from j to i.
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The incidence matrix of the digraph (C,R) is denoted by I, while its range is by
I. (Each column v of I corresponds to a reaction, has exactly two nonzero entries,
vi = −1 (respectively, vi = 1) if the ith complex is the reactant (respectively, product)
complex of the reaction in question.) Elementary considerations show that

I =



z ∈ R

m
∣∣∣
∑

i∈C(j)
zi = 0 for all j ∈ {1, . . . , ℓ}



 ,

where C(j) denotes the set of those complexes that belong to the jth linkage class. In
Sections 7 to 9, we will use the notation mj = |C(j)|.

Denoting by x(τ) ∈ R
n
+ the concentration vector of the species at time τ , as-

suming mass-action kinetics, the time evolution of the species concentration vector is
described by the autonomous ordinary differential equation (ODE)

ẋ(τ) = Y Aκx(τ)
Y with state space R

n
+,(1)

where κ : R → R+ and the matrix Aκ ∈ R
m×m is the Laplacian of the labelled digraph

(C,R, κ). Namely,

Aκ =



κ11 · · · κm1

...
. . .

...
κ1m · · · κmm


−




∑m

i=1 κ1i 0
. . .

0
∑m

i=1 κmi


 ,

where we implicitly set κij = 0 for (i, j) /∈ R. (In other situations, one might define
the Laplacian as A⊤

κ , −Aκ, or −A⊤
κ , but the natural definition of the Laplacian in the

field of CRNT is the one we gave.) The reason we defined the ODE in the positive
orthant (not in the nonnegative orthant) is that we allow negative entries in Y . The
quadraple (X , C,R, κ) is called a mass-action system.

The main object we are interested in in this paper is the set of positive steady
states E+, defined by

E+ = {x ∈ R
n
+ | Y Aκx

Y = 0}.

The matrix S = Y I is called the stoichiometric matrix. In general, ranAκ ≤ I.
(There are several ways to show that weak reversibility implies ranAκ = I, see
e.g. [12, Appendix], [9, Corollary 4.6], [20, Lemma V.2], and [3, Corollary 2.8].
In particular, assuming weak reversibility, ranAκ is independent of κ.) Thus, the
translations of ranS are forward invariant under the ODE (1). We call the sets
(p + ranS) ∩ R

n
+ for p ∈ R

n
+ positive stoichiometric classes. The relevant object to

study is not E+, but E+ ∩ P , where P is a fixed positive stoichiometric class.

4. Main result. The main result of this paper is the following theorem.

Theorem 1. Let (X , C,R, κ) be a weakly reversible mass-action system and let
P be a positive stoichiometric class. Then E+ ∩ P 6= ∅.

The way we prove Theorem 1 is the following. In Section 5, we arrive (via a series
of lemmata) to Theorem 5. This latter theorem provides an equivalent formulation to
E+ ∩P 6= ∅ (for an arbitrary mass-action system) in terms of an intersection problem
in R

m (note that the original problem is in R
n
+). Finally, Theorem 6 states that weak

reversibility is sufficient to the solvability of this intersection problem. The proof of
this latter theorem under the extra assumptions ℓ = 1, ℓ = 2, and ℓ ≥ 1 are carried
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out in Sections 6, 8, and 9, respectively. Both of Sections 8 and 9 build heavily on
Section 6, however, Sections 8 and 9 are independent of each other. The reason we
spell out the proof of the case ℓ = 2 is that it is a nice warm up for the case of
arbitrary ℓ (the latter is slightly more abstract than other parts of this paper).

The Permanence Conjecture states that for each weakly reversible mass-action
system and each positive stoichiometric class P there exists a compact subset K of
P such that K is forward invariant and is a global attractor when the dynamics is
restricted to P , see [7] and [13]. Once the permanence conjecture is proved, Theorem 1
follows immediately.

5. Preliminary steps towards proving the main result. In this section, we
start analysing the question of the non-emptiness of the set E+ ∩ P .

The set E+ ∩ P lies in R
n
+. The following lemma translates the question of its

non-emptiness to an intersection problem in R
m of two manifolds, one linear and one

nonlinear. The following definition will be used throughout this paper. Let us define
the function G : R

m → R
m by

G(z) = Aκe
z for z ∈ R

m.

Lemma 2. Let (X , C,R, κ) be a mass-action system and let P be a positive stoi-
chiometric class. Then

E+ ∩ P 6= ∅ if and only if G(Y ⊤ logP) ∩ (ranY ⊤)⊥ 6= ∅.

Proof. By definition, x ∈ E+ ∩ P if and only if x ∈ P and Aκx
Y ∈ kerY . The

observations xY = eY
⊤ log x and kerY = (ranY ⊤)⊥ conclude the proof.

As Lemma 2 suggests, we investigate the set Y ⊤ logP . Let us define the subspace
K ≤ R

m by K = ΠI(ranY ⊤). This notation will be used only in Lemmata 3 and 4,
Theorem 5, and Appendix A.

Lemma 3. Let (X , C,R) be a reaction network and let P be a positive stoichio-
metric class. Then there exists a unique function F : K → I⊥ such that

Y ⊤ logP = {z + F (z) | z ∈ K}.(2)

Moreover, F is continuous.

Proof. By Lemma 15 in Appendix A, the map Ψ : P → K, defined by Ψ(x) =
ΠIY ⊤ log(x) is a bijection between P and K. Clearly, it is even a homeomorphism.

Since Ψ is surjective, for all z ∈ K there exists a z′ ∈ I⊥ such that z + z′ ∈
Y ⊤ logP . Since Ψ is injective, such a z′ is unique. Thus, there exists a unique
function F : K → I⊥ such that (2) holds. Finally, since F : K → I⊥ is actually
defined by F (z) = ΠI⊥Y ⊤ log(Ψ−1(z)), it is continuous.

Based on Lemma 3, we give another form of the set G(Y ⊤ logP) ∩ (ranY ⊤)⊥.

Lemma 4. Let (X , C,R, κ) be a mass-action system and let P be a positive stoi-
chiometric class. Further, let F : K → I⊥ be as in Lemma 3. Then

G(Y ⊤ logP) ∩ (ranY ⊤)⊥ = Ĝ(K) ∩K⊥,

where Ĝ : K → R
m is defined by Ĝ = G ◦ (Id+F ).
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Proof. Note that for any two subspaces U and V and for any element u ∈ U , we
have u ∈ V ⊥ if and only if u ∈ (ΠUV )⊥. Thus, with U = I and V = ranY ⊤, we have

G(Y ⊤ logP) ∩ (ranY ⊤)⊥ = G(Y ⊤ logP) ∩K⊥.

By Lemma 3, the latter intersection equals to Ĝ(K) ∩K⊥.

Theorem 5 below is an immediate consequence of the Lemmata 2 and 4. It
provides an equivalent condition to the non-emptiness of E+ ∩ P in terms of an
intersection problem in R

m. The highly nontrivial Theorem 6 below states that this
intersection problem, under weak reversibility, is always solvable.

Theorem 5. Let (X , C,R, κ) be a mass-action system and let P be a positive
stoichiometric class. Further, let F : K → I⊥ be as in Lemma 3. Then

E+ ∩ P 6= ∅ if and only if Ĝ(K) ∩K⊥ 6= ∅,

where Ĝ : K → R
m is defined by Ĝ = G ◦ (Id+F ).

Theorem 6. Let (X , C,R, κ) be a weakly reversible mass-action system. Let H
be an arbitrary subspace of I and F : H → I⊥ be an arbitrary continuous function.
Then Ĝ(H) ∩H⊥ 6= ∅, where Ĝ : H → R

m is defined by Ĝ = G ◦ (Id+F ).

We conclude this section by meditating on a possible approach one can try to prove
the above theorem (and we will indeed follow this way in the upcoming sections). Fix

H ≤ I. Clearly, Ĝ(H) ∩ H⊥ 6= ∅ if and only if 0 ∈ ΠH(Ĝ(H)). Thus, our goal

is to show that the map ΠH ◦ Ĝ : H → H attains 0 ∈ R
m. By Brouwer’s Fixed

Point Theorem, it suffices to show that there exists an R > 0 such that we have
〈ΠH(Ĝ(z)), z〉 < 0 for all z ∈ H with |z| = R. Since 〈ΠH(Ĝ(z)), z〉 = 〈Ĝ(z), z〉 for

all z ∈ H , we will investigate the sign of the scalar product 〈Ĝ(z), z〉 for z ∈ H . As
it will turn out, the way we just sketched indeed works under the extra assumption
ℓ = 1. To prove Theorem 6 for arbitrary ℓ, we have to do a little surgery on the ball
{z ∈ H | |z| = R}.

6. Proof of Theorem 6 under ℓ = 1. In this section, we prove Theorem 6
under the extra assumption ℓ = 1.

We start by an elementary lemma. Its proof is deferred to Appendix B.

Lemma 7. Let M ≥ 1 and y0 = 0. Then

inf
y1,...,yM−1≥0

(
M∑

i=1

e−yi−1yi

)
→ ∞ as yM → ∞.

Taking also into account the discussion at the end of Section 5, the following
lemma (whose proof is based on Lemma 7) concludes the proof of Theorem 6 under
the extra assumptions ℓ = 1 and F ≡ 0.

Lemma 8. Let (X , C,R, κ) be a weakly reversible mass-action system with ℓ = 1.
Then the following two statements hold.
(i) There exists an L > 0 such that

〈G(z), z〉 < 0 for all z ∈ I with max(z) ≥ L.

(ii) There exists an R > 0 such that

〈G(z), z〉 < 0 for all z ∈ I with |z| ≥ R.
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Proof. It is an easy exercise to show that for all L > 0 there exists an R > 0 such
that z ∈ I (i.e.,

∑m

i=1 zi = 0) and |z| ≥ R together imply max(z) ≥ L. Thus, once we
show (i), the statement (ii) follows immediately. The rest of this proof is devoted to
show (i).

Since

〈G(z), z〉 = z⊤Aκe
z =

=
∑

(i,j)∈R
eziκij(zj − zi) =

= emax(z)
∑

(i,j)∈R
κije

−(max(z)−zi)[(zj −max(z)) + (max(z)− zi)],

for any R′ ⊆ R we have

−e−max(z)〈G(z), z〉 = A+B + C,

where

A =
∑

(i,j)∈R′

κije
−(max(z)−zi)(max(z)− zj),

B =
∑

(i,j)∈R\R′

κije
−(max(z)−zi)(max(z)− zj),

C = −
∑

(i,j)∈R
κije

−(max(z)−zi)(max(z)− zi).

Our goal is to show that for each z ∈ I with max(z) being big enough, one can choose
R′ such that A+B + C is positive. Clearly, B ≥ 0, because each term in the sum is
nonnegative. Also, C ≥ −|R|max(κ), because e−xx ≤ 1 for all x ≥ 0. To estimate A
from below, we will use Lemma 7.

Let y0 = 0 and for fixed M ∈ {1, 2, . . . ,m− 1}, let LM > 0 be such that

M∑

i=1

e−yi−1yi ≥ 2|R|
max(κ)

min(κ)
for all y1, . . . , yM−1 ≥ 0 and for all yM ≥ LM .

Finally, let L = max(L1, . . . , Lm−1). We will show in the rest of this proof that
A+B + C is positive for all z ∈ I with max(z) ≥ L.

Fix z ∈ I. Since
∑m

i=1 zi = 0, there exist k and l such that zk = max(z) and
zl ≤ 0. The digraph (C,R) is assumed to be strongly connected, therefore, there
exists a directed path from k to l. Let R′ be the edge set of this directed path, denote
by M ≥ 1 the length of this path, and let π(0), π(1), . . . , π(M) be the enumeration
of the vertices visited while travelling from k to l (thus π(0) = k and π(M) = l).
Further, let yi = max(z)− zπ(i) (i = 0, 1, . . . ,M). With this, y0 = 0, y1, . . . , yM ≥ 0,
and

A =
M∑

i=1

κije
−yi−1yi ≥ min(κ)

M∑

i=1

e−yi−1yi.

Then, since yM = max(z)− zl ≥ max(z), assuming max(z) ≥ L, we have

A+B + C ≥ 2|R|
max(κ)

min(κ)
min(κ) + 0− |R|max(κ) = |R|max(κ) > 0.

This concludes the proof.
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We mentioned before Lemma 8 that the lemma concludes the proof of Theorem 6
under the extra assumption ℓ = 1 and F ≡ 0. As it is explained in the rest of
this paragraph, not only for identically zero functions F . If F : H → I⊥ is an
arbitrary function (and ℓ = 1 holds) then all the coordinates of F are equal, i.e.,
there exists a function F1 : H → R such that F (z) = F1(z)1m for all z ∈ H . Thus,

Ĝ(z) = eF1(z)G(z) for all z ∈ H . Therefore, the sign of the scalar product 〈Ĝ(z), z〉 is
independent of F . This concludes the proof of Theorem 6 under the extra assumption
ℓ = 1.

We conclude this section by two more results. Lemma 9 below is a stronger version
of Lemma 8. It is apparent from the proof of Lemma 8 (i) that Lemma 9 (i) also
holds (the positive constant L can be chosen such that it serves its purpose uniformly
for many κ’s at the same time). Lemma 9 (ii) follows from Lemma 9 (i) exactly the
same way as Lemma 8 (ii) followed from Lemma 8 (i). As a consequence of Lemma 9
(ii), we will obtain Corollary 10 below. This latter corollary will play a crucial role
in the proof of Theorem 6 under ℓ ≥ 2, see Lemmata 12 and 14 in Sections 8 and 9,
respectively.

Lemma 9. Let (X , C,R) be a weakly reversible reaction network with ℓ = 1 and
let D > 0. Then the following two statements hold.

(i) There exists an L > 0 such that for all κ : R → R+ with max(κ)
min(κ) ≤ D we have

z⊤Aκe
z < 0 for all z ∈ I with max(z) ≥ L.

(ii) There exists an R > 0 such that for all κ : R → R+ with max(κ)
min(κ) ≤ D we have

z⊤Aκe
z < 0 for all z ∈ I with |z| ≥ R.

Corollary 10. Let (X , C,R, κ) be a weakly reversible mass-action system with
ℓ = 1. Then for all ̺ ≥ 0 there exists an R̺ > 0 such that

z⊤Aκe
z+w < 0 for all w ∈ R

m with |w| ≤ ̺ and for all z ∈ I with |z| ≥ R̺.

Proof. Motivated by Aκe
z+w = Aκ diag(e

w)ez, let us define κ(w) : R → R+ by

κ
(w)
ij = κije

wi for (i, j) ∈ R (diag(ew) is the diagonal matrix with the entries of

ew on its diagonal). Since 〈G(z + w), z〉 = z⊤Aκ(w)ez, inf |w|≤̺min(κ(w)) > 0, and

sup|w|≤̺max(κ(w)) < ∞, Lemma 9 (ii) immediately gives the result.

7. Meditation about proving Theorem 6 under ℓ ≥ 2. Throughout this
section, let (X , C,R, κ) be a weakly reversible mass-action system, H be an arbitrary
subspace of I, and F : H → I⊥ be an arbitrary function. We want to show that
Ĝ(H) ∩ H⊥ 6= ∅, where Ĝ : H → R

m is defined by Ĝ = G ◦ (Id+F ). Following the
ideas outlined at the end of Section 5, it would be ideal if we could prove the existence
of an R > 0 such that we have 〈Ĝ(z), z〉 < 0 for all z ∈ H with |z| = R. As we have
already seen in Section 6, this approach works for ℓ = 1. Under the restriction F ≡ 0,
one could prove it also for arbitrary ℓ. However, as the example in the next paragraph
demonstrates, in case both ℓ and F can be arbitrary, the existence of such an R is
not guaranteed.

Let us consider a mass-action system, for which

Aκ =




−1 1 0 0
1 −1 0 0
0 0 −2 1
0 0 2 −1


 .
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Further, let H be the span of u and v, where

u =




−1
1
0
0


 and v =




0
0

−1
1


 .

Finally, let F : H → I⊥ be a linear function with

Fu =




−2
−2
0
0


 and Fv =




0
0
0
0


 .

Short calculation shows that 〈Ĝ(z), z〉 > 0 for all z = αu+βv with α ≥ 5 and β = 1/5.
We have two goals in the rest of this section. One is to explain what can go

wrong, the other is to prepare the notation for Sections 8 and 9.
Let us have a closer look at the scalar product 〈Ĝ(z), z〉. Since the image of F

is in I⊥, there exist functions F1, . . . , Fℓ from H to R such that the vector F (z) (for
z ∈ H) takes the form



F1(z)1m1

...
Fℓ(z)1mℓ


 ∈ R

m1+···+mℓ ,

and it is also straightforward to consider the Laplacian matrix Aκ ∈ R
m×m and any

vector z ∈ R
m in the block forms

Aκ =



Aκ(1) 0

. . .

0 Aκ(ℓ)


 ∈ R

(
∑ℓ

i=1 mi)×(
∑ℓ

i=1 mi) and z =



z(1)
...

z(ℓ)


 ∈ R

∑ℓ
i=1 mi ,

respectively, where the ith block corresponds to the ith linkage class. (Recall from
Section 3 that mi denotes the number of complexes in the ith linkage class.) With
these, we have

〈Ĝ(z), z〉 = eF1(z)z(1)⊤Aκ(1)e
z(1) + · · ·+ eFℓ(z)z(ℓ)⊤Aκ(ℓ)e

z(ℓ).(3)

We know from Lemma 8 (ii) that for each i the product z(i)⊤Aκ(i)e
z(i) is negative

if |z(i)| is big enough. Further, the function z(i) 7→ z(i)⊤Aκ(i)e
z(i) is bounded from

above. Still, as the above example shows, the scalar product 〈Ĝ(z), z〉 could be positive
no matter how big |z| is. This is because even if |z| is big, there could exist an i such
that |z(i)| is small, z(i)⊤Aκ(i)e

z(i) is positive, and the factors eF1(z), . . . , eFℓ(z) make
the positive term dominant among the ℓ terms on the r.h.s. of (3).

To overcome the above sketched difficulty, we will truncate the “bad parts” of the
ball {z ∈ H | |z| = r}. By “bad parts”, we mean points on the boundary of the ball,

where the scalar product 〈Ĝ(z), z〉 is not negative, i.e., the vectorfield ΠH ◦Ĝ : H → H
does not point inwards. After this surgery, we will still have a compact and convex
set Ω ⊆ {z ∈ H | |z| = r}. We will show that the vector field points inwards for all
boundary points of Ω.
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In Sections 8 and 9, we give the proof of Theorem 6 for ℓ = 2 and arbitrary ℓ,
respectively. The case ℓ = 2 is detailed only for didactic reasons (going directly to the
general case is a rather big step in the level of abstraction and therefore the essential
features of the approach might remain hidden for the first reading). During the course
of the proof of the general case, we will not refer at all to the proof of the case ℓ = 2.
Those readers who are short of time, are encouraged to skip Section 8, and proceed
directly to Section 9.

8. Proof of Theorem 6 under ℓ = 2. Assume throughout this section that
ℓ = 2. Let Π1 : R

m1+m2 → R
m1+m2 and Π2 : R

m1+m2 → R
m1+m2 be the orthogonal

projections defined by

Π1z =

[
z(1)
0

]
and Π2z =

[
0

z(2)

]
for z ∈ R

m1+m2 ,

respectively. Further, let

H1 = H ∩ kerΠ2,

H2 = H ∩ kerΠ1, and

V = H ∩ (H1 +H2)
⊥.

(4)

Then, by construction, H is the orthogonal direct sum of H1, H2, and V . Thus, each
z ∈ H can be written uniquely as

z = z1 + z2 + y with z1 ∈ H1, z2 ∈ H2, and y ∈ V.(5)

The introduced notations will be used throughout this section.
Some useful properties of these objects are summarised in the following lemma.

Lemma 11. For any subspace H ≤ R
m1+m2 , let H1, H2, and V be as in (4).

Further, for a z ∈ H, let z1, z2, and y be as in (5). Then the following two statements
hold.
(i) For each z ∈ H,

z(1) is the orthogonal sum of z1(1) and y(1) and

z(2) is the orthogonal sum of z2(2) and y(2).

(ii) There exists an ε > 0 such that |y(1)| ≥ ε|y| and |y(2)| ≥ ε|y| hold for all y ∈ V .

Proof. First, we prove statement (i). Since z2 ∈ kerΠ1, we have z2(1) = 0, and
therefore, z(1) = z1(1) + y(1). Furthermore, since z1 ⊥ y and z1(2) = 0, we have
z1(1) ⊥ y(1). The case of z(2) is symmetric to the case of z(1).

It is left to show (ii). Since both Π1|V and Π2|V are injective (as can be readily
seen from the definition of V ), the composition (Π2|V ) ◦ (Π1|V )−1 is a linear bijection
between ran(Π1|V ) and ran(Π2|V ). Thus, there exists a c > 0 such that

c|Π1y| ≤ |Π2y| and c|Π2y| ≤ |Π1y| for all y ∈ V.

Since |Π1y| = |y(1)|, |Π2y| = |y(2)|, and |y|2 = |y(1)|2 + |y(2)|2, there exists an ε > 0
such that |y(1)| ≥ ε|y| and |y(2)| ≥ ε|y| for all y ∈ V (e.g. ε = c√

1+c2
).

For a triple (r0, r1, r2) with 0 = r0 < r1 < r2, let

Ω =

{
z ∈ H

∣∣∣ |z| ≤
√
r22 − r20 , |z1| ≤

√
r22 − r21 , |z2| ≤

√
r22 − r21

}
.(6)
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Clearly, Ω is a compact and convex set. Once we prove the following lemma, it also
concludes the proof of Theorem 6 for the special case ℓ = 2.

Lemma 12. Let (X , C,R, κ) be a weakly reversible mass-action system with ℓ = 2.
Let H be an arbitrary subspace of I and F : H → I⊥ be an arbitrary function.
Further, let the function Ĝ : H → R

m be defined by Ĝ = G◦(Id+F ). Then there exists

a triple (r0, r1, r2) with 0 = r0 < r1 < r2 such that the vector field ΠH ◦ Ĝ : H → H
points inwards everywhere on ∂Ω, where Ω is defined by (6).

Proof. Clearly, ∂Ω is covered by

{
z ∈ Ω

∣∣∣ |z| =
√
r22 − r20

}⋃
(

2⋃

i=1

{
z ∈ Ω

∣∣∣ |zi| =
√
r22 − r21

})
.

The numbers r1 and r2 will be chosen below such that 〈Ĝ(z), n(z)〉 is negative for
all z ∈ ∂Ω, where n(z) denotes any outer normal vector of Ω at z (the outer normal
vector is not necessarily unique). Thus, we have to show that (after choosing r1 and
r2 appropriately)

〈Ĝ(z), z〉 < 0 for all z ∈ Ω with |z| =
√
r22 − r20 ,(7)

〈Ĝ(z), z1〉 < 0 for all z ∈ Ω with |z1| =
√
r22 − r21 ,(8)

〈Ĝ(z), z2〉 < 0 for all z ∈ Ω with |z2| =
√
r22 − r21 .(9)

First, we will set r1 such that (7) holds. Since

〈Ĝ(z), z〉 = eF1(z)z(1)⊤Aκ(1)e
z(1) + eF2(z)z(2)⊤Aκ(2)e

z(2),(10)

it suffices to show that both |z(1)| and |z(2)| are at least R = max(R(1), R(2)), where
R(i) is the threshold guaranteed to exist by Lemma 8 (ii) when applied to the ith
linkage class (i = 1, 2). (Instead of referring to Lemma 8 (ii), one could equivalently
refer to Corollary 10 with ̺ = 0.)

Assuming |z| =
√
r22 − r20 , and using also |z2| ≤

√
r22 − r21 , we have

|z1|
2 + |y|2 = |z|2 − |z2|

2 ≥ (r22 − r20)− (r22 − r21) = r21 − r20 .

Therefore,

|z(1)|2 = |z1(1)|
2 + |y(1)|2 = |z1|

2 + |y(1)|2 ≥

≥

{
|z1|2 ≥ r21−r20

2 , if |y|2 ≤ r21−r20
2 ,

|y(1)|2 ≥ ε2|y|2 ≥ ε2
r21−r20

2 , if |y|2 ≥ r21−r20
2 ,

where the first equality comes from Lemma 11 (i), while ε is as in Lemma 11 (ii). Thus,

in any case, |z(1)| ≥ ε

√
r21−r20

2 . Analogous reasoning shows that |z(2)| ≥ ε

√
r21−r20

2 .

Let us fix r1 > r0 such that ε

√
r21−r20

2 > R. Then both terms on the r.h.s. of (10) are

negative and we have proven (7).
Finally, we will set r2 such that both (8) and (9) hold. Fix i ∈ {1, 2}. Since

z1 =

[
z1(1)
0

]
and z2 =

[
0

z2(2)

]
,
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we have

〈Ĝ(z), zi〉 = eFi(z)zi(i)Aκ(i)e
zi(i)+y(i).(11)

Assuming |zi| =
√
r22 − r21 , and using also |z| ≤

√
r22 − r20 , we have

|y(i)|2 ≤ |y|2 = |z|2 − |z1|
2 − |z2|

2 ≤ (r22 − r20)− (r22 − r21) = r21 .

Let now r2 be such that
√
r22 − r21 > max(Rr1(1), Rr1(2)), where Rr1(i) is the thresh-

old guaranteed to exist by Corollary 10 when applied to the ith linkage class with
̺ = r1. Then, by Corollary 10, the r.h.s. of (11) is negative. This concludes the proof
of (8) and (9), also the proof of the lemma, and, in turn, also the proof of Theorem 6
in the special case ℓ = 2.

9. Proof of Theorem 6 for arbitrary ℓ. As preparation for proving Theorem 6
in general (i.e., without any restriction on the number of linkage classes), we first
collect some general observations.

Fix Q,Q′ ⊆ {1, . . . , ℓ} with Q′ ⊆ Q and a subspace H ≤ R

∑ℓ
i=1 mi for the part

before Lemma 13. Further, let Qc = {1, . . . , ℓ} \Q.

Let ΠQ : R

∑
ℓ
i=1 mi → R

∑
ℓ
i=1 mi be the orthogonal projection defined by

(ΠQz)(i) =

{
z(i), if i ∈ Q,

0, if i /∈ Q,

or equivalently, with vectorial notation, (ΠQz)(Q) = z(Q) and (ΠQz)(Q
c) = 0.

Let us define the subspace HQ of H by

HQ = H ∩ kerΠQc .

I.e., HQ consists of those elements of H whose support is contained in the blocks
corresponding to Q. For z ∈ H , we will use the shorthand notation zQ for ΠHQ

z (i.e.,
zQ is the component of z lying in HQ).

Then the subspace HQ is the orthogonal direct sum of HQ′ , HQ\Q′ , and VQ,Q′ ,

where VQ,Q′ is by definition HQ ∩ (HQ′ +HQ\Q′)⊥. Thus, for each z ∈ H , we have

zQ = zQ′ + zQ\Q′ + y,(12)

where y is by definition the component of zQ lying in VQ,Q′ . (Our notations are already
cumbersome enough, so we do not indicate in the notation of y its dependence on Q,
Q′, and z. It will not cause any misunderstanding.) The three components of zQ
on the r.h.s. of (12) are pairwise orthogonal. Further, note that the supports of the
vectors zQ, zQ′ , zQ\Q′ , and y lie in the blocks corresponding to Q.

Some useful properties of the introduced objects are summarised in the following
lemma.

Lemma 13. Fix a subspace H ≤ R

∑ℓ
i=1 mi and a pair (Q,Q′) with Q′ ⊆ Q ⊆

{1, . . . , ℓ}. With the introduced notations, the following two statements hold.
(i) For each z ∈ H, the vector zQ(Q

′) is the orthogonal sum of zQ′(Q′) and y(Q′),
where y is as in (12).

(ii) There exists an ε > 0 such that |y(Q′)| ≥ ε|y| holds for all y ∈ VQ,Q′ .
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Proof. First, we prove statement (i). Since zQ\Q′ ∈ kerΠQ′ , we have zQ\Q′(Q′) =
0, and therefore, zQ(Q

′) = zQ′(Q′) + y(Q′). Furthermore, since zQ′ ⊥ y and zQ′(Q \
Q′) = 0, we have zQ′(Q′) ⊥ y(Q′).

It is left to show (ii). In order to ease the notation, we write V for VQ,Q′ . Since
both ΠQ′ |V and ΠQ\Q′ |V are injective (as can be readily seen from the definition of
V ), the composition (ΠQ\Q′ |V ) ◦ (ΠQ′ |V )−1 is a linear bijection between ran(ΠQ′ |V )
and ran(ΠQ\Q′ |V ). Thus, there exists a c > 0 such that

c|ΠQ′y| ≤ |ΠQ\Q′y| and c|ΠQ\Q′y| ≤ |ΠQ′y| for all y ∈ V.

Since |ΠQ′y| = |y(Q′)|, |ΠQ\Q′y| = |y(Q \ Q′)|, and |y|2 = |y(Q′)|2 + |y(Q \ Q′)|2,
there exists an ε > 0 such that |y(Q′)| ≥ ε|y| holds for all y ∈ V (e.g. ε = c√

1+c2
).

For a tuple (r0, r1, . . . , rℓ) with 0 = r0 < r1 < · · · < rℓ, let

Ω =
{
z ∈ H

∣∣∣ |zQ| ≤
√
r2ℓ − r2

ℓ−|Q| for all ∅ 6= Q ⊆ {1, . . . , ℓ}
}
.(13)

Clearly, Ω is a compact and convex set. Once we prove the following lemma, it also
concludes the proof of Theorem 6 for arbitrary ℓ.

Lemma 14. Let (X , C,R, κ) be a weakly reversible mass-action system. Let H be
an arbitrary subspace of I and F : H → I⊥ be an arbitrary function. Further, let
the function Ĝ : H → R

m be defined by Ĝ = G ◦ (Id+F ). Then there exists a tuple

(r0, r1, . . . , rℓ) with 0 = r0 < r1 < · · · < rℓ such that the vector field ΠH ◦ Ĝ : H → H
points inwards everywhere on ∂Ω, where Ω is defined by (13).

Proof. Clearly, ∂Ω is covered by

⋃

∅6=Q⊆{1,...,ℓ}

{
z ∈ Ω

∣∣∣ |zQ| =
√
r2ℓ − r2

ℓ−|Q|

}
.

We will set the values of r1, . . . , rℓ such that for all ∅ 6= Q ⊆ {1, . . . , ℓ} we have

〈Ĝ(z), zQ〉 < 0 for all z ∈ Ω with |zQ| =
√
r2ℓ − r2

ℓ−|Q|.(14)

The way we proceed is the following. First we set the value of r1 such that (14)
holds for Q = {1, . . . , ℓ}. Then we set the value of r2 such that (14) holds for all
Q ⊆ {1, . . . , ℓ} with |Q| = ℓ − 1. And so on. The final step is to set the value of rℓ
such that (14) holds for all Q ⊆ {1, . . . , ℓ} with |Q| = 1.

Fix k ∈ {1, . . . , ℓ} and assume that the values of r0, r1, . . . , rk−1 are already fixed
such that (14) holds for all Q ⊆ {1, . . . , ℓ} with |Q| ≥ ℓ − (k − 2). Our goal is to set
the value of rk such that (14) holds for all Q ⊆ {1, . . . , ℓ} with |Q| = ℓ− (k − 1).

Fix now Q ⊆ {1, . . . , ℓ} with |Q| = ℓ− (k − 1). Since zQ(i) = 0 for all z ∈ H and
for all i ∈ Qc, we have

〈Ĝ(z), zQ〉 =
∑

i∈Q

eFi(z)zQ(i)Aκ(i)e
z(i).

Since for all z ∈ H we have the orthogonal decomposition z = zQ + zQc + y, we also
have z(i) = zQ(i) + y(i) for all i ∈ Q. Therefore,

〈Ĝ(z), zQ〉 =
∑

i∈Q

eFi(z)zQ(i)Aκ(i)e
zQ(i)+y(i).(15)
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For all z ∈ Ω with |zQ| =
√
r2ℓ − r2k−1 and for all i ∈ Q, using also |z| ≤

√
r2ℓ − r20 , we

have

|y(i)|2 ≤ |y|2 = |z|2 − |zQ|
2 − |zQc |2 ≤ (r2ℓ − r20)− (r2ℓ − r2k−1) = r2k−1.(16)

Let now R = maxi∈Q Rrk−1
(i), where Rrk−1

(i) is the threshold guaranteed to exist by
Corollary 10 when applied to the ith linkage class with ̺ = rk−1. Thus, taking also
into account (16), if we can set rk such that |zQ(i)| ≥ R for all i ∈ Q then all the
terms on the r.h.s. of (15) are negative.

Fix i ∈ Q and a z ∈ Ω with |zQ| =
√
r2ℓ − r2k−1. Then with Q′ = {i} we have

zQ = zQ′ + zQ\Q′ + y, where the three components of zQ on the r.h.s. are pairwise

orthogonal. Thus, using also |zQ\Q′ | ≤
√
r2ℓ − r2k (since |Q \Q′| = ℓ− k), we have

|zQ′ |2 + |y|2 = |zQ|
2 − |zQ\Q′ |2 ≥ (r2ℓ − r2k−1)− (r2ℓ − r2k) = r2k − r2k−1.

Therefore,

|zQ(i)|
2 = |zQ′(i)|2 + |y(i)|2 = |zQ′ |2 + |y(i)|2 ≥

≥

{
|zQ′ |2 ≥

r2k−r2k−1

2 , if |y|2 ≤
r2k−r2k−1

2 ,

|y(i)|2 ≥ ε(Q, i)2|y|2 ≥ ε(Q, i)2
r2k−r2k−1

2 , if |y|2 ≥
r2k−r2k−1

2 ,

where the first equality comes from Lemma 13 (i), while ε(Q, i) is as in Lemma 13

(ii) when applied with Q′ = {i}. Thus, in any case, |zQ(i)| ≥ εk

√
r2
k
−r2

k−1

2 , where εk
is the minimum of the numbers ε(Q, j) over all pairs (Q, j) with |Q| = ℓ− (k− 1) and
j ∈ Q.

Choose rk so big that εk

√
r2
k
−r2

k−1

2 ≥ R holds. This concludes the proof this
lemma, the proof of Theorem 6, and, in turn, the proof of our main result, Theorem 1.

Appendix A. A tool that is crucial for proving Lemma 3.

The following lemma is the heart of the proof of Lemma 3.

Lemma 15. Let Y ∈ R
n×m, I ∈ R

m×d, I = ran I, K = ΠI(ranY ⊤), p ∈ R
n
+, and

P = (p+ran(Y I))∩R
n
+. Then the map Ψ : P → K, defined by Ψ(x) = ΠIY ⊤ log(x),

is a bijection between P and K.

Lemma 15 is a consequence of Lemma 16 below. The latter, due to its relation to
Martin Birch’s work [1], is sometimes called Birch’s Theorem, see e.g. [18, Theorem
1.10] and [13, Theorem 5.12]. Several versions/generalizations appear in the CRNT
literature, see e.g. [15, Section 4], [9, Corollary 4.14], [11, Appendix B], [20, Lemma
IV.1], [14, Section 6], [5, Propositon 10], [13, Section 5], [16, Theorem 13], and [6,
Theorem 6.7].

Lemma 16. Let S ≤ R
n
+ and p ∈ R

n
+. Then for each x∗ ∈ R

n
+ there exists a unique

x ∈ R
n
+ such that x− p ∈ S and log x− log x∗ ∈ S⊥.

We explain in the rest of this section how Lemma 15 follows from Lemma 16. Since
the elements of K are exactly those that can be written in the form ΠIY ⊤ log x∗ for
some x∗ ∈ R

n
+, the bijectivity of Ψ is equivalent to the following statement. For each

x∗ ∈ R
n
+ there exists a unique x ∈ P such that

ΠIY
⊤ log x = ΠIY

⊤ log x∗.(17)
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Since I = ran I, the equality (17) is equivalent to

I⊤Y ⊤(log x− log x∗) = 0.

Therefore, the bijectivity of Ψ can be rephrased in the following way. For each x∗ ∈ R
n
+

there exists a unique x ∈ R
n
+ such that x−p ∈ ran(Y I) and log x− log x∗ ∈ ran(Y I)⊥.

Finally, the latter holds by Lemma 16 with S = ran(Y I).

Appendix B. Proof of Lemma 7.

The case M = 1 is trivial (y1 → ∞ as y1 → ∞).
Let now M ≥ 1 and assume that the lemma is true for M . We will show that it is

also true for M + 1. For fixed y0 = 0, y1, . . . , yM−1 ≥ 0, and yM+1 > 0, the function

R ∋ yM
Φ
7→

M+1∑

i=1

e−yi−1yi ∈ R

is monotone decreasing on the interval (−∞, yM−1 + log yM+1], while monotone in-
creasing on the interval [yM−1 + log yM+1,∞). Thus, the restriction Φ|[0,∞) attains
its minimum either at 0 or at yM−1 + log yM+1.

Note that

Φ(yM−1 + log yM+1) =

=

(
M−1∑

i=1

e−yi−1yi

)
+ e−yM−1(yM−1 + log yM+1) + e−yM−1−log yM+1yM+1 ≥

≥

(
M−1∑

i=1

e−yi−1yi

)
+ e−yM−1 log yM+1 → ∞ as log yM+1 → ∞

due to the induction hypothesis. Further,

Φ(0) =

(
M−1∑

i=1

e−yi−1yi

)
+ yM+1 ≥ yM+1 → ∞ as yM+1 → ∞.

This concludes the proof.

Appendix C. The acyclic digraph of the implications.

L 7 L 9 (i) L 9 (ii)

C 10 L 14 T 6

T 5

T 1L 8 (i) L 8 (ii)

L 11 L 12

L 13

L 2L 3

L 4

L 15L 16
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