Rainbow saturation and graph capacities

Dániel Korándi *

Abstract

The t-colored rainbow saturation number $\operatorname{rsat}_t(n, F)$ is the minimum size of a t-edge-colored graph on n vertices that contains no rainbow copy of F, but the addition of any missing edge in any color creates such a rainbow copy. Barrus, Ferrara, Vandenbussche and Wenger conjectured that $\operatorname{rsat}_t(n, K_s) = \Theta(n \log n)$ for every $s \geq 3$ and $t \geq \binom{s}{2}$. In this short note we prove the conjecture in a strong sense, asymptotically determining the rainbow saturation number for triangles. Our lower bound is probabilistic in spirit, the upper bound is based on the Shannon capacity of a certain family of cliques.

1 Introduction

A graph G is called F-saturated if it is a maximal F-free graph. The classic saturation problem, first studied by Zykov [14] and Erdős, Hajnal and Moon [4], asks for the minimum number of edges in an F-saturated graph (as opposed to the Turán problem, which asks for the maximum number of edges in such a graph). A rainbow analog of this problem was recently introduced by Barrus, Ferrara, Vandenbussche and Wenger [1], where a t-edge-colored graph is defined to be rainbow F-saturated if it contains no rainbow copy of F (i.e., a copy of F where all edges have different colors), but the addition of any missing edge in any color creates such a rainbow copy. Then the t-colored rainbow saturation number $\operatorname{rsat}_t(n, F)$ is the minimum size of a t-edge-colored rainbow F-saturated graph.

Among other results, Barrus et al. showed that $\Omega\left(\frac{n\log n}{\log\log n}\right) \leq \operatorname{rsat}_t(n, K_s) \leq O(n\log n)$ and conjectured that their upper bound is of the right order of magnitude:

Conjecture 1.1 ([1]). For $s \ge 3$ and $t \ge {s \choose 2}$, $\operatorname{rsat}_t(n, K_s) = \Theta(n \log n)$.

Here we prove this conjecture in a strong sense: we give a lower bound that is asymptotically tight for triangles.

Theorem 1.2. For $s \ge 3$ and $t \ge {s \choose 2}$, we have

$$\operatorname{rsat}_t(n, K_s) \ge \frac{t(1+o(1))}{(t-s+2)\log(t-s+2)} n \log n$$

with equality for s = 3.

We should point out that Conjecture 1.1 was independently verified by Girão, Lewis and Popielarz [9] and by Ferrara et al. [5], but with somewhat weaker bounds. In fact, our result proves a conjecture in [9], establishing the stronger estimate $\operatorname{rsat}_t(n, K_s) = \Theta_s(\frac{n \log n}{\log t})$ with their upper bound.

^{*}Institute of Mathematics, EPFL, Lausanne, Switzerland. Research supported in part by SNSF grants 200020-162884 and 200021-175977. Email: daniel.korandi@epfl.ch.

Our lower bound is probabilistic in spirit, using ideas of Katona and Szemerédi [10], and Füredi, Horak, Pareek and Zhu [6] (similar techniques were used in [12, 2, 11]). The upper bound for s = 3is based on the following theorem that follows from a strong information-theoretic result of Gargano, Körner and Vaccaro [8] on the Shannon capacities of graph families.

Theorem 1.3. For every $t \ge 3$, there is a set $X \subseteq [t]^k$ of $m = (t-1)^{(\frac{t-1}{t}-o(1))k}$ strings of length k from alphabet $[t] = \{1, \ldots, t\}$ such that for any $x, x' \in X$ and any $a \in [t]$, there is a position i where $x(i) \ne x'(i)$ and $x(i), x'(i) \ne a$.

In the next section we derive Theorem 1.3 from results about the Shannon capacity of graph families. This is followed by the proof of Theorem 1.2 in Section 3.

2 Graph capacities

Let $\mathcal{G} = \{G_1, \ldots, G_r\}$ be a family of graphs on vertex set [t]. Let N_k be the maximum size of a set $X \subseteq [t]^k$ of strings of length k on alphabet [t] such that for any two strings $x, x' \in X$ and any $G_j \in \mathcal{G}$, there is a position $i_j \in [k]$ such that $x(i_j)x'(i_j)$ is an edge in G_j . The Shannon capacity of the family \mathcal{G} is defined as $C(\mathcal{G}) = \limsup_{k \to \infty} \frac{1}{k} \log N_k$ (see, e.g., $[13, 3]^1$). When $\mathcal{G} = \{G\}$, we simply write C(G) for $C(\mathcal{G})$.

We need an analogous definition for strings where the occurrences of each $a \in [t]$ are proportional to some probability measure P on [t]. So let $\mathcal{T}^k(P,\varepsilon)$ be the set of all strings $x \in [t]^k$ such that $|\frac{1}{k}\#\{i : x(i) = a\} - P(a)| < \varepsilon$ for every $a \in [t]$, and let $M_{k,\varepsilon}$ be the maximum size of a set $X \subseteq \mathcal{T}^k(P,\varepsilon)$ such that for every $x, x' \in X$ there is an i with $x(i)x'(i) \in G$. The Shannon capacity within type P is $C(G, P) = \lim_{\varepsilon \to 0} \limsup_{k \to \infty} \frac{1}{k} \log M_{k,\varepsilon}$. Using a clever construction, Gargano, Körner and Vaccaro [8] showed that $C(\mathcal{G})$ can be expressed in terms of the $C(G_j, P)$:

Theorem 2.1 ([8]). For a family of graphs $\mathcal{G} = \{G_1, \ldots, G_r\}$ on vertex set [t], we have

$$C(\mathcal{G}) = \max_{P} \min_{G_j \in \mathcal{G}} C(G_j, P).$$

In fact, they proved a more general result for *Sperner capacities*, the analogous notion for directed graphs. What we need is a corollary that follows easily from this theorem using standard tools about graph entropy (see the survey of Simonyi [13] for more information). Here we give a self-contained argument that goes along the lines of a proof by Gargano, Körner and Vaccaro [7] of the case s = 2.

Corollary 2.2. Let $2 \le s \le t$ be an integer and let \mathcal{G} be the family of all s-cliques on [t] (each with t-s isolated vertices). Then $C(\mathcal{G}) = \frac{s}{t} \log s$.

Proof. For the lower bound, we can take P to be the uniform measure on [t]. Then by Theorem 2.1, it is enough to show that $C(G, P) \geq \frac{s}{t} \log s$ where G is a clique on [s] with isolated vertices $s + 1, \ldots, t$. Let $X_k \subseteq \mathcal{T}^k(P, \frac{1}{k})$ be the set of all strings x of length k such that the first $\lfloor sk/t \rfloor$

¹The usual definition is with binary logarithm, but the base of our logarithms is unimportant for our purposes.

letters of x contain $\lfloor k/t \rfloor$ or $\lceil k/t \rceil$ instances of each $a \in [s]$, and x(i) = b for every $s + 1 \le b \le t$ and $\frac{(b-1)k}{t} < i \le \frac{bk}{t}$. Then

$$C(G,P) \ge \lim_{k \to \infty} \frac{\log(X_k)}{k} = \lim_{k \to \infty} \frac{1}{k} \log \frac{\left(\frac{sk}{t}\right)!}{\left(\left(\frac{k}{t}\right)!\right)^s} = \lim_{k \to \infty} \frac{1}{k} \log(s^{sk/t}) = \frac{s}{t} \log s.$$

For the upper bound, let $X \subseteq [t]^k$ be a maximum set of strings such that for any $x, x' \in X$ and for every s-clique $G \in \mathcal{G}$, there is an $i \in [k]$ such that $x(i)x'(i) \in G$. We set m = |X| to be this maximum. We may assume that $\{1, \ldots, s\}$ are the s least frequent elements appearing in the strings of X. Let d_x be the number of elements in $x \in X$ that are not in [s], so $\sum_{x \in X} d_x \ge \frac{t-s}{t}mk$, and let X_x be the set of strings obtained from x by replacing these elements arbitrarily with numbers from [s]. Then $|X_x| = s^{d_x}$, and $X_x, X_{x'}$ are disjoint for distinct $x, x' \in X$ because any string from X_x will differ from any string in $X_{x'}$ at the position i where x(i)x'(i) is an edge of the clique on [s]. Then using Jensen's inequality we have

$$s^k \ge \sum_{x \in X} s^{d_x} \ge m \cdot s^{(\sum_{x \in X} d_x)/m} \ge m \cdot s^{\frac{(t-s)k}{t}},$$

and hence $m \leq s^{sk/t}$, implying $C(\mathcal{G}) \leq \frac{1}{k} \log m \leq \frac{s}{t} \log s$.

Theorem 1.3 clearly follows from the case s = t - 1.

3 Rainbow saturation

Proof of Theorem 1.2. For the lower bound, suppose H is a t-edge-colored rainbow K_s -saturated graph, and split its vertices into two parts: let $A = \{a_1, \ldots, a_k\}$ be the set of vertices of degree at least $d = \log^3 n$, and B be the rest. We may assume $|A| \leq \frac{n}{\log n}$ (otherwise H has at least $\frac{1}{2}n \log^2 n$ edges), and thus B contains $m \geq (1 - \frac{1}{\log n})n$ vertices. Now let us define a string $x_v \subseteq [t+1]^k$ for every $v \in B$ that encodes the colors of the A-B edges touching v as follows: $x_v(i)$ is t+1 if $a_i v$ is not an edge in H, otherwise it is the color of $a_i v$.

Assume, without loss of generality, that t - s + 3, ..., t are the s - 2 most common colors among the A-B edges. For $v \in B$, let $X_v \subseteq [t - s + 2]^k$ be the set of strings obtained from x_v by replacing each t - s + 3, ..., t + 1 with an arbitrary number from [t - s + 2]. Then if d_v denotes the number of A-B edges in H touching v and d'_v denotes the number of such edges of colors t - s + 3, ..., t, then $|X_v| = (t - s + 2)^{k - d_v + d'_v}$.

We claim that if $v, w \in B$ are non-adjacent with no common neighbor in B, then X_v and X_w have no string in common. Indeed, adding the edge vw of color t creates a rainbow K_s with s - 2 vertices in A. So there must be an a_i such that a_iv and a_iw have different colors, also differing from $t - s + 3, \ldots, t$. But then all the strings in X_v have the color of a_iv as their *i*'th letter, and all the strings in X_w have the color of a_iw are disjoint.

Since vertices in B have degree at most d, each $v \in B$ has at most d^2 vertices $w \in B$ that are either adjacent to v or have a common neighbor with v in B. So each string in $[t-s+2]^k$ can appear

in no more than $d^2 + 1$ collections X_w , and hence we get

$$(d^{2}+1)(t-s+2)^{k} \geq \sum_{v \in B} |X_{v}| = \sum_{v \in B} (t-s+2)^{k-d_{v}+d'_{v}}$$
$$d^{2}+1 \geq \sum_{v \in B} (t-s+2)^{d'_{v}-d_{v}} \geq m \cdot (t-s+2)^{\frac{1}{m}(\sum_{v \in B} d'_{v}-\sum_{v \in B} d_{v})}$$

using Jensen's inequality.

Now $t - s + 3, \ldots, t$ were the s - 2 most common colors, so we also have $\sum_{v \in B} d'_v \ge \frac{s-2}{t} \sum_{v \in B} d_v$ and thus $\sum_{v \in B} d'_v - \sum_{v \in B} d_v \ge \frac{s-2-t}{t} \sum_{v \in B} d_v$. Taking logs, we obtain

$$\sum_{v \in B} d_v \ge \frac{t}{t - s + 2} m \left(\log_{t - s + 2} m - \log_{t - s + 2} (d^2 + 1) \right)$$

As the left-hand side is a lower bound on the number of edges in H, this establishes the desired lower bound (using $d = \log^3 n$ and m = n + o(n)).

For the upper bound in the case of triangles, let k be large enough, and take a set X of size m as provided by Theorem 1.3. Consider a k-by-m complete bipartite graph G_0 with parts A and B, where $A = \{a_1, \ldots, a_k\}$, and B corresponds to the strings in X. For every vertex $v \in B$, we look at the corresponding string $x \in X$, and color each edge va_i by the color x(i). G_0 is clearly (rainbow) triangle-free, and by the definition of X, adding an edge to G_0 between two vertices of B in any color $a \in [t]$ creates a rainbow triangle.

Now let G be a maximal rainbow triangle-free supergraph of G_0 . Then G is rainbow trianglesaturated by definition, and compared to G_0 , it only has new edges induced by A, thus it has at most $km + \binom{k}{2}$ edges. Here n = k + m and $k = \frac{t(1+o(1))}{(t-1)\log(t-1)}\log m$, implying the required upper bound. \Box

For s > 3 our lower bound is probably not tight. It would be interesting to determine the asymptotics of $\operatorname{rsat}_t(n, K_s)$ for general s.

Acknowledgements. I thank Shagnik Das for finding [7] for me, and Gábor Simonyi for some clarifications about capacities.

References

- M. D. Barrus, M. Ferrara, J. Vandenbussche and P. S. Wenger, Colored saturation parameters for rainbow subgraphs, J. Graph Theory, 86 (2017), 375-386.
- [2] B. Bollobás and A. Scott, Separating systems and oriented graphs of diameter two, J. Combin. Theory Ser. B 97 (2007), 193-203.
- [3] I. Csiszár and J. Körner, Information Theory, 2nd edition, Cambridge University Press, 2011.
- [4] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly, 71 (1964), 1107-1110.

- [5] M. Ferrara, D. Johnston, S. Loeb, F. Pfender, A. Schulte, H. C. Smith, E. Sullivan, M. Tait and C. Tompkins, On edge-colored saturation problems, arXiv:1712.00163 preprint
- [6] Z. Füredi, P. Horak, C. M. Pareek and X. Zhu, Minimal oriented graphs of diameter 2, Graphs Combin. 14 (1998), 345-350.
- [7] L. Gargano, J. Körner and U. Vaccaro, Sperner capacities, *Graphs Combin.*, 9 (1993), 31-46.
- [8] L. Gargano, J. Körner and U. Vaccaro, Capacities: from information theory to extremal set theory, J. Combin. Theory Ser. A, 68 (1994), 296-316.
- [9] A. Girão, D. Lewis and K. Popielarz, Rainbow saturation of graphs, arXiv:1710.08025 preprint
- [10] G. Katona and E. Szemerédi, On a problem of graph theory, Studia Sci. Math. Hungar. 2 (1967), 23-28.
- [11] D. Korándi and B. Sudakov, Saturation in random graphs, *Random Structures Algorithms* 51 (2017), 169-181.
- [12] A. V. Kostochka, T. Łuczak, G. Simonyi and E. Sopena, On the minimum number of edges giving maximum oriented chromatic number, in: Contemporary Trends in Discrete Mathematics, *DIMACS Series in Discrete Mathematics and Theoretical Computer Science*, vol 49. (1999), 179-182.
- [13] G. Simonyi, Perfect graphs and graph entropy. An updated survey, in: Perfect Graphs, Wiley (2001), 293-328.
- [14] A. Zykov, On some properties of linear complexes (in Russian), Mat. Sbornik N. S. 24 (1949), 163-188.