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Rainbow saturation and graph capacities
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Abstract

The t-colored rainbow saturation number rsatt(n, F ) is the minimum size of a t-edge-colored

graph on n vertices that contains no rainbow copy of F , but the addition of any missing edge in any

color creates such a rainbow copy. Barrus, Ferrara, Vandenbussche and Wenger conjectured that

rsatt(n,Ks) = Θ(n logn) for every s ≥ 3 and t ≥
(

s

2

)

. In this short note we prove the conjecture

in a strong sense, asymptotically determining the rainbow saturation number for triangles. Our

lower bound is probabilistic in spirit, the upper bound is based on the Shannon capacity of a

certain family of cliques.

1 Introduction

A graph G is called F -saturated if it is a maximal F -free graph. The classic saturation problem, first

studied by Zykov [14] and Erdős, Hajnal and Moon [4], asks for the minimum number of edges in an

F -saturated graph (as opposed to the Turán problem, which asks for the maximum number of edges

in such a graph). A rainbow analog of this problem was recently introduced by Barrus, Ferrara,

Vandenbussche and Wenger [1], where a t-edge-colored graph is defined to be rainbow F -saturated

if it contains no rainbow copy of F (i.e., a copy of F where all edges have different colors), but the

addition of any missing edge in any color creates such a rainbow copy. Then the t-colored rainbow

saturation number rsatt(n, F ) is the minimum size of a t-edge-colored rainbow F -saturated graph.

Among other results, Barrus et al. showed that Ω
(

n logn
log logn

)

≤ rsatt(n,Ks) ≤ O(n log n) and

conjectured that their upper bound is of the right order of magnitude:

Conjecture 1.1 ([1]). For s ≥ 3 and t ≥
(s
2

)

, rsatt(n,Ks) = Θ(n log n).

Here we prove this conjecture in a strong sense: we give a lower bound that is asymptotically

tight for triangles.

Theorem 1.2. For s ≥ 3 and t ≥
(s
2

)

, we have

rsatt(n,Ks) ≥
t(1 + o(1))

(t− s + 2) log(t− s + 2)
n log n

with equality for s = 3.

We should point out that Conjecture 1.1 was independently verified by Girão, Lewis and Popielarz

[9] and by Ferrara et al. [5], but with somewhat weaker bounds. In fact, our result proves a conjecture

in [9], establishing the stronger estimate rsatt(n,Ks) = Θs(
n logn
log t ) with their upper bound.
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Our lower bound is probabilistic in spirit, using ideas of Katona and Szemerédi [10], and Füredi,

Horak, Pareek and Zhu [6] (similar techniques were used in [12, 2, 11]). The upper bound for s = 3

is based on the following theorem that follows from a strong information-theoretic result of Gargano,

Körner and Vaccaro [8] on the Shannon capacities of graph families.

Theorem 1.3. For every t ≥ 3, there is a set X ⊆ [t]k of m = (t− 1)(
t−1
t

−o(1))k strings of length k

from alphabet [t] = {1, . . . , t} such that for any x, x′ ∈ X and any a ∈ [t], there is a position i where

x(i) 6= x′(i) and x(i), x′(i) 6= a.

In the next section we derive Theorem 1.3 from results about the Shannon capacity of graph

families. This is followed by the proof of Theorem 1.2 in Section 3.

2 Graph capacities

Let G = {G1, . . . , Gr} be a family of graphs on vertex set [t]. Let Nk be the maximum size of a

set X ⊆ [t]k of strings of length k on alphabet [t] such that for any two strings x, x′ ∈ X and any

Gj ∈ G, there is a position ij ∈ [k] such that x(ij)x
′(ij) is an edge in Gj . The Shannon capacity

of the family G is defined as C(G) = lim supk→∞
1
k logNk (see, e.g., [13, 3]1). When G = {G}, we

simply write C(G) for C(G).

We need an analogous definition for strings where the occurrences of each a ∈ [t] are proportional

to some probability measure P on [t]. So let T k(P, ε) be the set of all strings x ∈ [t]k such that

| 1k#{i : x(i) = a} − P (a)| < ε for every a ∈ [t], and let Mk,ε be the maximum size of a set

X ⊆ T k(P, ε) such that for every x, x′ ∈ X there is an i with x(i)x′(i) ∈ G. The Shannon capacity

within type P is C(G,P ) = limε→0 lim supk→∞
1
k logMk,ε. Using a clever construction, Gargano,

Körner and Vaccaro [8] showed that C(G) can be expressed in terms of the C(Gj, P ):

Theorem 2.1 ([8]). For a family of graphs G = {G1, . . . , Gr} on vertex set [t], we have

C(G) = max
P

min
Gj∈G

C(Gj , P ).

In fact, they proved a more general result for Sperner capacities, the analogous notion for directed

graphs. What we need is a corollary that follows easily from this theorem using standard tools about

graph entropy (see the survey of Simonyi [13] for more information). Here we give a self-contained

argument that goes along the lines of a proof by Gargano, Körner and Vaccaro [7] of the case s = 2.

Corollary 2.2. Let 2 ≤ s ≤ t be an integer and let G be the family of all s-cliques on [t] (each with

t− s isolated vertices). Then C(G) = s
t log s.

Proof. For the lower bound, we can take P to be the uniform measure on [t]. Then by Theorem

2.1, it is enough to show that C(G,P ) ≥ s
t log s where G is a clique on [s] with isolated vertices

s + 1, . . . , t. Let Xk ⊆ T k(P, 1k ) be the set of all strings x of length k such that the first ⌊sk/t⌋

1The usual definition is with binary logarithm, but the base of our logarithms is unimportant for our purposes.
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letters of x contain ⌊k/t⌋ or ⌈k/t⌉ instances of each a ∈ [s], and x(i) = b for every s + 1 ≤ b ≤ t and
(b−1)k

t < i ≤ bk
t . Then

C(G,P ) ≥ lim
k→∞

log(Xk)

k
= lim

k→∞

1

k
log

(skt )!

((kt )!)s
= lim

k→∞

1

k
log(ssk/t) =

s

t
log s.

For the upper bound, let X ⊆ [t]k be a maximum set of strings such that for any x, x′ ∈ X and

for every s-clique G ∈ G, there is an i ∈ [k] such that x(i)x′(i) ∈ G. We set m = |X| to be this

maximum. We may assume that {1, . . . , s} are the s least frequent elements appearing in the strings

of X. Let dx be the number of elements in x ∈ X that are not in [s], so
∑

x∈X dx ≥ t−s
t mk, and let

Xx be the set of strings obtained from x by replacing these elements arbitrarily with numbers from

[s]. Then |Xx| = sdx , and Xx,Xx′ are disjoint for distinct x, x′ ∈ X because any string from Xx will

differ from any string in Xx′ at the position i where x(i)x′(i) is an edge of the clique on [s]. Then

using Jensen’s inequality we have

sk ≥
∑

x∈X

sdx ≥ m · s(
∑

x∈X dx)/m ≥ m · s
(t−s)k

t ,

and hence m ≤ ssk/t, implying C(G) ≤ 1
k logm ≤ s

t log s.

Theorem 1.3 clearly follows from the case s = t− 1.

3 Rainbow saturation

Proof of Theorem 1.2. For the lower bound, suppose H is a t-edge-colored rainbow Ks-saturated

graph, and split its vertices into two parts: let A = {a1, . . . , ak} be the set of vertices of degree at

least d = log3 n, and B be the rest. We may assume |A| ≤ n
logn (otherwise H has at least 1

2n log2 n

edges), and thus B contains m ≥ (1 − 1
logn)n vertices. Now let us define a string xv ⊆ [t + 1]k for

every v ∈ B that encodes the colors of the A-B edges touching v as follows: xv(i) is t + 1 if aiv is

not an edge in H, otherwise it is the color of aiv.

Assume, without loss of generality, that t− s+ 3, . . . , t are the s− 2 most common colors among

the A-B edges. For v ∈ B, let Xv ⊆ [t− s + 2]k be the set of strings obtained from xv by replacing

each t− s+ 3, . . . , t+ 1 with an arbitrary number from [t− s+ 2]. Then if dv denotes the number of

A-B edges in H touching v and d′v denotes the number of such edges of colors t− s + 3, . . . , t, then

|Xv| = (t− s + 2)k−dv+d′v .

We claim that if v,w ∈ B are non-adjacent with no common neighbor in B, then Xv and Xw

have no string in common. Indeed, adding the edge vw of color t creates a rainbow Ks with s − 2

vertices in A. So there must be an ai such that aiv and aiw have different colors, also differing from

t − s + 3, . . . , t. But then all the strings in Xv have the color of aiv as their i’th letter, and all the

strings in Xw have the color of aiw as their i’th letter, so Xv and Xw are disjoint.

Since vertices in B have degree at most d, each v ∈ B has at most d2 vertices w ∈ B that are

either adjacent to v or have a common neighbor with v in B. So each string in [t−s+2]k can appear

3



in no more than d2 + 1 collections Xw, and hence we get

(d2 + 1)(t− s + 2)k ≥
∑

v∈B

|Xv | =
∑

v∈B

(t− s + 2)k−dv+d′v

d2 + 1 ≥
∑

v∈B

(t− s + 2)d
′
v−dv ≥ m · (t− s + 2)

1
m
(
∑

v∈B d′v−
∑

v∈B dv)

using Jensen’s inequality.

Now t− s+ 3, . . . , t were the s− 2 most common colors, so we also have
∑

v∈B d′v ≥ s−2
t

∑

v∈B dv
and thus

∑

v∈B d′v −
∑

v∈B dv ≥ s−2−t
t

∑

v∈B dv . Taking logs, we obtain

∑

v∈B

dv ≥
t

t− s + 2
m

(

logt−s+2m− logt−s+2(d
2 + 1)

)

.

As the left-hand side is a lower bound on the number of edges in H, this establishes the desired lower

bound (using d = log3 n and m = n + o(n)).

For the upper bound in the case of triangles, let k be large enough, and take a set X of size m

as provided by Theorem 1.3. Consider a k-by-m complete bipartite graph G0 with parts A and B,

where A = {a1, . . . , ak}, and B corresponds to the strings in X. For every vertex v ∈ B, we look at

the corresponding string x ∈ X, and color each edge vai by the color x(i). G0 is clearly (rainbow)

triangle-free, and by the definition of X, adding an edge to G0 between two vertices of B in any

color a ∈ [t] creates a rainbow triangle.

Now let G be a maximal rainbow triangle-free supergraph of G0. Then G is rainbow triangle-

saturated by definition, and compared to G0, it only has new edges induced by A, thus it has at most

km+
(

k
2

)

edges. Here n = k+m and k = t(1+o(1))
(t−1) log(t−1) logm, implying the required upper bound.

For s > 3 our lower bound is probably not tight. It would be interesting to determine the

asymptotics of rsatt(n,Ks) for general s.

Acknowledgements. I thank Shagnik Das for finding [7] for me, and Gábor Simonyi for some

clarifications about capacities.
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