Rainbow saturation and graph capacities

Dániel Korándi *

Abstract

The t-colored rainbow saturation number $\operatorname{rsat}_{t}(n, F)$ is the minimum size of a t-edge-colored graph on n vertices that contains no rainbow copy of F, but the addition of any missing edge in any color creates such a rainbow copy. Barrus, Ferrara, Vandenbussche and Wenger conjectured that $\operatorname{rsat}_{t}\left(n, K_{s}\right)=\Theta(n \log n)$ for every $s \geq 3$ and $t \geq\binom{ s}{2}$. In this short note we prove the conjecture in a strong sense, asymptotically determining the rainbow saturation number for triangles. Our lower bound is probabilistic in spirit, the upper bound is based on the Shannon capacity of a certain family of cliques.

1 Introduction

A graph G is called F-saturated if it is a maximal F-free graph. The classic saturation problem, first studied by Zykov [14] and Erdős, Hajnal and Moon [4], asks for the minimum number of edges in an F-saturated graph (as opposed to the Turán problem, which asks for the maximum number of edges in such a graph). A rainbow analog of this problem was recently introduced by Barrus, Ferrara, Vandenbussche and Wenger [1], where a t-edge-colored graph is defined to be rainbow F-saturated if it contains no rainbow copy of F (i.e., a copy of F where all edges have different colors), but the addition of any missing edge in any color creates such a rainbow copy. Then the t-colored rainbow saturation number $\operatorname{rsat}_{t}(n, F)$ is the minimum size of a t-edge-colored rainbow F-saturated graph.

Among other results, Barrus et al. showed that $\Omega\left(\frac{n \log n}{\log \log n}\right) \leq \operatorname{rsat}_{t}\left(n, K_{s}\right) \leq O(n \log n)$ and conjectured that their upper bound is of the right order of magnitude:

Conjecture 1.1 (1). For $s \geq 3$ and $t \geq\binom{ s}{2}, \operatorname{rsat}_{t}\left(n, K_{s}\right)=\Theta(n \log n)$.
Here we prove this conjecture in a strong sense: we give a lower bound that is asymptotically tight for triangles.

Theorem 1.2. For $s \geq 3$ and $t \geq\binom{ s}{2}$, we have

$$
\operatorname{rsat}_{t}\left(n, K_{s}\right) \geq \frac{t(1+o(1))}{(t-s+2) \log (t-s+2)} n \log n
$$

with equality for $s=3$.
We should point out that Conjecture 1.1 was independently verified by Girão, Lewis and Popielarz [9] and by Ferrara et al. [5], but with somewhat weaker bounds. In fact, our result proves a conjecture in [9], establishing the stronger estimate $\operatorname{rsat}_{t}\left(n, K_{s}\right)=\Theta_{s}\left(\frac{n \log n}{\log t}\right)$ with their upper bound.

[^0]Our lower bound is probabilistic in spirit, using ideas of Katona and Szemerédi [10], and Füredi, Horak, Pareek and Zhu [6] (similar techniques were used in [12, 2, 11). The upper bound for $s=3$ is based on the following theorem that follows from a strong information-theoretic result of Gargano, Körner and Vaccaro [8] on the Shannon capacities of graph families.

Theorem 1.3. For every $t \geq 3$, there is a set $X \subseteq[t]^{k}$ of $m=(t-1)^{\left(\frac{t-1}{t}-o(1)\right) k}$ strings of length k from alphabet $[t]=\{1, \ldots, t\}$ such that for any $x, x^{\prime} \in X$ and any $a \in[t]$, there is a position i where $x(i) \neq x^{\prime}(i)$ and $x(i), x^{\prime}(i) \neq a$.

In the next section we derive Theorem 1.3 from results about the Shannon capacity of graph families. This is followed by the proof of Theorem 1.2 in Section 3

2 Graph capacities

Let $\mathcal{G}=\left\{G_{1}, \ldots, G_{r}\right\}$ be a family of graphs on vertex set $[t]$. Let N_{k} be the maximum size of a set $X \subseteq[t]^{k}$ of strings of length k on alphabet $[t]$ such that for any two strings $x, x^{\prime} \in X$ and any $G_{j} \in \mathcal{G}$, there is a position $i_{j} \in[k]$ such that $x\left(i_{j}\right) x^{\prime}\left(i_{j}\right)$ is an edge in G_{j}. The Shannon capacity of the family \mathcal{G} is defined as $C(\mathcal{G})=\lim _{\sup _{k \rightarrow \infty}} \frac{1}{k} \log N_{k}$ (see, e.g., [13, 3] 1). When $\mathcal{G}=\{G\}$, we simply write $C(G)$ for $C(\mathcal{G})$.

We need an analogous definition for strings where the occurrences of each $a \in[t]$ are proportional to some probability measure P on $[t]$. So let $\mathcal{T}^{k}(P, \varepsilon)$ be the set of all strings $x \in[t]^{k}$ such that $\left|\frac{1}{k} \#\{i: x(i)=a\}-P(a)\right|<\varepsilon$ for every $a \in[t]$, and let $M_{k, \varepsilon}$ be the maximum size of a set $X \subseteq \mathcal{T}^{k}(P, \varepsilon)$ such that for every $x, x^{\prime} \in X$ there is an i with $x(i) x^{\prime}(i) \in G$. The Shannon capacity within type P is $C(G, P)=\lim _{\varepsilon \rightarrow 0} \lim \sup _{k \rightarrow \infty} \frac{1}{k} \log M_{k, \varepsilon}$. Using a clever construction, Gargano, Körner and Vaccaro [8] showed that $C(\mathcal{G})$ can be expressed in terms of the $C\left(G_{j}, P\right)$:

Theorem 2.1 ([8]). For a family of graphs $\mathcal{G}=\left\{G_{1}, \ldots, G_{r}\right\}$ on vertex set $[t]$, we have

$$
C(\mathcal{G})=\max _{P} \min _{G_{j} \in \mathcal{G}} C\left(G_{j}, P\right) .
$$

In fact, they proved a more general result for Sperner capacities, the analogous notion for directed graphs. What we need is a corollary that follows easily from this theorem using standard tools about graph entropy (see the survey of Simonyi [13] for more information). Here we give a self-contained argument that goes along the lines of a proof by Gargano, Körner and Vaccaro [7] of the case $s=2$.

Corollary 2.2. Let $2 \leq s \leq t$ be an integer and let \mathcal{G} be the family of all s-cliques on [t] (each with $t-s$ isolated vertices). Then $C(\mathcal{G})=\frac{s}{t} \log s$.

Proof. For the lower bound, we can take P to be the uniform measure on $[t]$. Then by Theorem 2.1. it is enough to show that $C(G, P) \geq \frac{s}{t} \log s$ where G is a clique on [s] with isolated vertices $s+1, \ldots, t$. Let $X_{k} \subseteq \mathcal{T}^{k}\left(P, \frac{1}{k}\right)$ be the set of all strings x of length k such that the first $\lfloor s k / t\rfloor$

[^1]letters of x contain $\lfloor k / t\rfloor$ or $\lceil k / t\rceil$ instances of each $a \in[s]$, and $x(i)=b$ for every $s+1 \leq b \leq t$ and $\frac{(b-1) k}{t}<i \leq \frac{b k}{t}$. Then
$$
C(G, P) \geq \lim _{k \rightarrow \infty} \frac{\log \left(X_{k}\right)}{k}=\lim _{k \rightarrow \infty} \frac{1}{k} \log \frac{\left(\frac{s k}{t}\right)!}{\left(\left(\frac{k}{t}\right)!\right)^{s}}=\lim _{k \rightarrow \infty} \frac{1}{k} \log \left(s^{s k / t}\right)=\frac{s}{t} \log s
$$

For the upper bound, let $X \subseteq[t]^{k}$ be a maximum set of strings such that for any $x, x^{\prime} \in X$ and for every s-clique $G \in \mathcal{G}$, there is an $i \in[k]$ such that $x(i) x^{\prime}(i) \in G$. We set $m=|X|$ to be this maximum. We may assume that $\{1, \ldots, s\}$ are the s least frequent elements appearing in the strings of X. Let d_{x} be the number of elements in $x \in X$ that are not in $[s]$, so $\sum_{x \in X} d_{x} \geq \frac{t-s}{t} m k$, and let X_{x} be the set of strings obtained from x by replacing these elements arbitrarily with numbers from $[s]$. Then $\left|X_{x}\right|=s^{d_{x}}$, and $X_{x}, X_{x^{\prime}}$ are disjoint for distinct $x, x^{\prime} \in X$ because any string from X_{x} will differ from any string in $X_{x^{\prime}}$ at the position i where $x(i) x^{\prime}(i)$ is an edge of the clique on $[s]$. Then using Jensen's inequality we have

$$
s^{k} \geq \sum_{x \in X} s^{d_{x}} \geq m \cdot s^{\left(\sum_{x \in X} d_{x}\right) / m} \geq m \cdot s^{\frac{(t-s) k}{t}}
$$

and hence $m \leq s^{s k / t}$, implying $C(\mathcal{G}) \leq \frac{1}{k} \log m \leq \frac{s}{t} \log s$.
Theorem 1.3 clearly follows from the case $s=t-1$.

3 Rainbow saturation

Proof of Theorem 1.2. For the lower bound, suppose H is a t-edge-colored rainbow K_{s}-saturated graph, and split its vertices into two parts: let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ be the set of vertices of degree at least $d=\log ^{3} n$, and B be the rest. We may assume $|A| \leq \frac{n}{\log n}$ (otherwise H has at least $\frac{1}{2} n \log ^{2} n$ edges), and thus B contains $m \geq\left(1-\frac{1}{\log n}\right) n$ vertices. Now let us define a string $x_{v} \subseteq[t+1]^{k}$ for every $v \in B$ that encodes the colors of the $A-B$ edges touching v as follows: $x_{v}(i)$ is $t+1$ if $a_{i} v$ is not an edge in H, otherwise it is the color of $a_{i} v$.

Assume, without loss of generality, that $t-s+3, \ldots, t$ are the $s-2$ most common colors among the A - B edges. For $v \in B$, let $X_{v} \subseteq[t-s+2]^{k}$ be the set of strings obtained from x_{v} by replacing each $t-s+3, \ldots, t+1$ with an arbitrary number from $[t-s+2]$. Then if d_{v} denotes the number of $A-B$ edges in H touching v and d_{v}^{\prime} denotes the number of such edges of colors $t-s+3, \ldots, t$, then $\left|X_{v}\right|=(t-s+2)^{k-d_{v}+d_{v}^{\prime}}$.

We claim that if $v, w \in B$ are non-adjacent with no common neighbor in B, then X_{v} and X_{w} have no string in common. Indeed, adding the edge $v w$ of color t creates a rainbow K_{s} with $s-2$ vertices in A. So there must be an a_{i} such that $a_{i} v$ and $a_{i} w$ have different colors, also differing from $t-s+3, \ldots, t$. But then all the strings in X_{v} have the color of $a_{i} v$ as their i 'th letter, and all the strings in X_{w} have the color of $a_{i} w$ as their i 'th letter, so X_{v} and X_{w} are disjoint.

Since vertices in B have degree at most d, each $v \in B$ has at most d^{2} vertices $w \in B$ that are either adjacent to v or have a common neighbor with v in B. So each string in $[t-s+2]^{k}$ can appear
in no more than $d^{2}+1$ collections X_{w}, and hence we get

$$
\begin{aligned}
\left(d^{2}+1\right)(t-s+2)^{k} & \geq \sum_{v \in B}\left|X_{v}\right|=\sum_{v \in B}(t-s+2)^{k-d_{v}+d_{v}^{\prime}} \\
d^{2}+1 & \geq \sum_{v \in B}(t-s+2)^{d_{v}^{\prime}-d_{v}} \geq m \cdot(t-s+2)^{\frac{1}{m}\left(\sum_{v \in B} d_{v}^{\prime}-\sum_{v \in B} d_{v}\right)}
\end{aligned}
$$

using Jensen's inequality.
Now $t-s+3, \ldots, t$ were the $s-2$ most common colors, so we also have $\sum_{v \in B} d_{v}^{\prime} \geq \frac{s-2}{t} \sum_{v \in B} d_{v}$ and thus $\sum_{v \in B} d_{v}^{\prime}-\sum_{v \in B} d_{v} \geq \frac{s-2-t}{t} \sum_{v \in B} d_{v}$. Taking logs, we obtain

$$
\sum_{v \in B} d_{v} \geq \frac{t}{t-s+2} m\left(\log _{t-s+2} m-\log _{t-s+2}\left(d^{2}+1\right)\right)
$$

As the left-hand side is a lower bound on the number of edges in H, this establishes the desired lower bound (using $d=\log ^{3} n$ and $m=n+o(n)$).

For the upper bound in the case of triangles, let k be large enough, and take a set X of size m as provided by Theorem 1.3. Consider a k-by- m complete bipartite graph G_{0} with parts A and B, where $A=\left\{a_{1}, \ldots, a_{k}\right\}$, and B corresponds to the strings in X. For every vertex $v \in B$, we look at the corresponding string $x \in X$, and color each edge $v a_{i}$ by the color $x(i) . G_{0}$ is clearly (rainbow) triangle-free, and by the definition of X, adding an edge to G_{0} between two vertices of B in any color $a \in[t]$ creates a rainbow triangle.

Now let G be a maximal rainbow triangle-free supergraph of G_{0}. Then G is rainbow trianglesaturated by definition, and compared to G_{0}, it only has new edges induced by A, thus it has at most $k m+\binom{k}{2}$ edges. Here $n=k+m$ and $k=\frac{t(1+o(1))}{(t-1) \log (t-1)} \log m$, implying the required upper bound.

For $s>3$ our lower bound is probably not tight. It would be interesting to determine the asymptotics of $\operatorname{rsat}_{t}\left(n, K_{s}\right)$ for general s.

Acknowledgements. I thank Shagnik Das for finding [7] for me, and Gábor Simonyi for some clarifications about capacities.

References

[1] M. D. Barrus, M. Ferrara, J. Vandenbussche and P. S. Wenger, Colored saturation parameters for rainbow subgraphs, J. Graph Theory, 86 (2017), 375-386.
[2] B. Bollobás and A. Scott, Separating systems and oriented graphs of diameter two, J. Combin. Theory Ser. B 97 (2007), 193-203.
[3] I. Csiszár and J. Körner, Information Theory, 2nd edition, Cambridge University Press, 2011.
[4] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly, 71 (1964), 1107-1110.
[5] M. Ferrara, D. Johnston, S. Loeb, F. Pfender, A. Schulte, H. C. Smith, E. Sullivan, M. Tait and C. Tompkins, On edge-colored saturation problems, arXiv:1712.00163 preprint
[6] Z. Füredi, P. Horak, C. M. Pareek and X. Zhu, Minimal oriented graphs of diameter 2, Graphs Combin. 14 (1998), 345-350.
[7] L. Gargano, J. Körner and U. Vaccaro, Sperner capacities, Graphs Combin., 9 (1993), 31-46.
[8] L. Gargano, J. Körner and U. Vaccaro, Capacities: from information theory to extremal set theory, J. Combin. Theory Ser. A, 68 (1994), 296-316.
[9] A. Girão, D. Lewis and K. Popielarz, Rainbow saturation of graphs, arXiv:1710.08025 preprint
[10] G. Katona and E. Szemerédi, On a problem of graph theory, Studia Sci. Math. Hungar. 2 (1967), 23-28.
[11] D. Korándi and B. Sudakov, Saturation in random graphs, Random Structures Algorithms $\mathbf{5 1}$ (2017), 169-181.
[12] A. V. Kostochka, T. Łuczak, G. Simonyi and E. Sopena, On the minimum number of edges giving maximum oriented chromatic number, in: Contemporary Trends in Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol 49. (1999), 179-182.
[13] G. Simonyi, Perfect graphs and graph entropy. An updated survey, in: Perfect Graphs, Wiley (2001), 293-328.
[14] A. Zykov, On some properties of linear complexes (in Russian), Mat. Sbornik N. S. 24 (1949), 163-188.

[^0]: *Institute of Mathematics, EPFL, Lausanne, Switzerland. Research supported in part by SNSF grants 200020162884 and 200021-175977. Email: daniel.korandi@epfl.ch.

[^1]: ${ }^{1}$ The usual definition is with binary logarithm, but the base of our logarithms is unimportant for our purposes.

