

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© 2019 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 174–202 and American Statistical Association

Robust Optimization of PDEs with Random Coefficients Using a Multilevel
Monte Carlo Method∗

Andreas Van Barel† and Stefan Vandewalle†

Abstract. This paper addresses optimization problems constrained by partial differential equations with uncertain
coefficients. In particular, the robust control problem and the average control problem are considered
for a tracking type cost functional with an additional penalty on the variance of the state. The
expressions for the gradient and Hessian corresponding to either problem contain expected value
operators. Due to the large number of uncertainties considered in our model, we suggest evaluating
these expectations using a multilevel Monte Carlo (MLMC) method. Under mild assumptions, it is
shown that this results in the gradient and Hessian corresponding to the MLMC estimator of the
original cost functional. Furthermore, we show that the use of certain correlated samples yields a
reduction in the total number of samples required. Two optimization methods are investigated: the
nonlinear conjugate gradient method and the Newton method. For both, a specific algorithm is
provided that dynamically decides which and how many samples should be taken in each iteration.
The cost of the optimization up to some specified tolerance τ is shown to be proportional to the cost
of a gradient evaluation with requested root mean square error τ . The algorithms are tested on a
model elliptic diffusion problem with lognormal diffusion coefficient. An additional nonlinear term is
also considered.

Key words. robust optimization, stochastic PDEs, multilevel Monte Carlo, optimal control, uncertainty, gradient,
Hessian

AMS subject classifications. 35Q93, 65C05, 65K10, 49M05, 49M15

DOI. 10.1137/17M1155892

1. Introduction. We consider the optimization of a tracking type cost functional con-
strained by a partial differential equation (PDE) containing uncertain coefficients. The goal is
to find an optimum that is satisfactory in a broad parameter range and that is as insensitive as
possible to parameter uncertainties. To that end we solve the so-called robust control problem,
in which the expected value of the cost functional is optimized. Other problem formulations
that take into account the uncertainties can be found in [8, 7, 2, 23, 26]. They differ mainly in
computational cost and in the robustness of the obtained optimum. Several techniques to solve
the robust control problem have been described previously, in particular, stochastic collocation
methods [36, 9, 38, 11, 10] and stochastic Galerkin schemes [36, 27]. These are based on
earlier methods for simulation problems [3, 4, 42, 41, 33]. These methods are mainly used

∗Received by the editors November 7, 2017; accepted for publication (in revised form) November 19, 2018;
published electronically January 30, 2019.

http://www.siam.org/journals/juq/7-1/M115589.html
Funding: This research was supported by project IWT/SBO EUFORIA, “Efficient Uncertainty Quantification for

Optimization in Robust Design of Industrial Applications” (IWT-140068), of the Agency for Innovation by Science
and Technology, Flanders, Belgium. The work of the first author was also supported by a Ph.D. fellowship of the
Research Foundation, Flanders, Belgium.
†Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (andreas.

vanbarel@cs.kuleuven.be, stefan.vandewalle@cs.kuleuven.be).

174

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/juq/7-1/M115589.html
mailto:andreas.vanbarel@cs.kuleuven.be
mailto:andreas.vanbarel@cs.kuleuven.be
mailto:stefan.vandewalle@cs.kuleuven.be

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 175

for relatively small stochastic dimensions, because the amount of collocation points increases
rapidly with the dimension. Furthermore, Galerkin schemes may run into memory problems.
Many techniques sample the problem in some way and use a multigrid solver on the resulting
equations. This effectively comes down to taking the same number of samples on all levels
in the multigrid hierarchy. Fundamentally different is the method proposed by Kouri [21],
in which the multigrid optimization (MG/OPT) framework [31, 28] is applied to a hierarchy
of stochastic discretizations. “Finer” levels correspond to taking a larger number of sample
points in the stochastic space. Finally, Newton methods have also been applied successfully to
stochastic problems; see, e.g., [30].

The computation of the gradient and the Hessian vector product corresponding to the
robust optimization problem entail the solution of a system of PDEs containing uncertain
coefficients and expected value operators. Due to the large number of uncertainties considered
in our work, we propose to evaluate these expected values using a multilevel Monte Carlo
(MLMC) method. This is motivated by the recent developments in MLMC methods for the
simulation of elliptic [12, 37, 17] and other [5] PDEs with uncertain coefficients. The MLMC
method reduces the computational cost by taking most samples on coarse grids and refining
the resulting estimate using fewer samples on finer grids. This idea is mainly responsible for
the substantial performance increase of our method w.r.t. methods that implicitly take the
same number of samples on every grid. Recently, an MLMC method was proposed to solve the
pathwise control problem [2], which consists of calculating the average of many optimal control
solutions for different realizations of the PDE constraints. However, the resulting control is
not guaranteed to be robust.

The method described in this paper solves the robust control problem. It retains the
positive aspects of some of the previously described methods while avoiding some of the
drawbacks. In particular, our method uses a different number of samples on different spatial
discretization levels, it limits memory use by only storing a few samples of the state at any
given time, and it reduces cost by adapting the precision (and thus the amount of samples)
to the current stage of the optimization process; see also [22]. Furthermore, the method
dynamically choses the number of samples such that a solution satisfying a requested tolerance
on the gradient norm of the original (unsampled) problem can be obtained. The method can
also deal with an additional cost functional term for the variance on the state, as in [36]. The
method is especially suited for a large number of stochastic dimensions. If the samples are
carefully taken, the resulting calculated gradient and Hessian are shown to be exact for some
cost functional. Under mild conditions, this cost functional is equal to the one calculated using
MLMC. Furthermore, we demonstrate that it is possible to have cheaper samples if correlated
samples are allowed. This requires a slight extension of the classic MLMC theory. For the
problems in this paper, the effect of the correlations is such that fewer samples are required.

The paper is structured as follows. In section 2, it is shown that the robust control
formulation and the average control formulation are essentially equivalent for the tracking
type cost functional with additional variance term. Section 3 introduces the model PDE,
describes the properties of the stochastic variables, and explains how they are sampled.
Expressions for the gradient and Hessian are derived in section 4. The proposed optimization
methods follow the so-called reduced approach, i.e., the state is eliminated. Because the state
is stochastic, the alternative would imply storing all realizations of the state in memory, whichD

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

176 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

we want to avoid. Section 5 summarizes the existing MLMC theory and provides details on
how function valued quantities of interest can be dealt with. Section 6 applies the MLMC
method on the equations derived in section 4. Section 7 investigates two optimization methods:
the gradient based nonlinear conjugate gradient (NCG) method and the Newton method. For
both, a specific algorithm is provided that dynamically decides which and how many samples
should be used in each iteration. The cost of the optimization up to some specified tolerance τ
on the gradient norm is shown to be proportional to the cost of a gradient evaluation with
requested root mean square error (RMSE) τ . The algorithms are tested on a model elliptic
diffusion problem with lognormal diffusion coefficient in section 8. An additional nonlinear
term is also considered. Finally, we end with some concluding remarks in section 9.

2. Cost functional. Let (Ω,A, µ) denote a probability space. The sample space Ω contains
all possible realizations ω of the random influence. Its dimension is the stochastic dimension of
the problem and may be infinite. A is the set of all events (subsets of Ω) and µ is a measure
that maps events in A to probabilities in [0, 1]. The expected value operator, the variance
operator and the standard deviation operator, of a stochastic variable k are denoted as follows:

E[k] =

∫
Ω
k dµ(ω), V[k] = E[(k − E[k])2] = E[k2]− E[k]2, S[k] =

√
V[k].

Assume a domain D ⊂ Rd on which the state y, some target state yD, and the control
u are defined. In this paper, we consider the stochastic equivalent to the following classical
deterministic goal function of tracking type:

Jdet(y, u) = ‖y − yD‖2 + α‖u‖2(1)

with α > 0. The norm ‖.‖ denotes the L2-norm in D induced by the classical inner product
(., .) in L2(D). Consider now the case where, due to uncertainties in the state equations, y is
stochastic. The cost functional can then be made deterministic again in several ways [2, 7].
The robust control problem attempts to minimize the mean of the cost functional, yielding

Jrob(y, u) = E[‖y − yD‖2] + γ‖S[y]‖2 + α‖u‖2.(2)

The term ‖S[y]‖2 =
∫
D V[y] dx was added because it is desirable to have a control for which

the state is more accurately known, leading to a risk averse optimum. Note that the first
term minimizes the expected distance to the target function yD, which is not the same as
minimizing the distance of the expected state to the target function. The latter is called the
average control cost functional

Jav(y, u) = ‖E[y]− yD‖2 + γ′‖S[y]‖2 + α‖u‖2.(3)

Both cost functionals can easily be shown to be convex. Moreover, for L2-norm tracking, we
can prove that both are essentially equivalent.

Theorem 2.1 (equivalence of robust and average control). Assume ‖S[y]‖ 6= 0; then Jrob = Jav
iff γ′ = 1 + γ.D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 177

Proof. By switching the order of integration, we have

‖S[y]‖2 =

∫
D

√
E[(y − E[y])2]

2
dx =

∫
D

∫
Ω

(y − E[y])2 dµ(ω) dx = E[‖y − E[y]‖2].

We can now write

E[‖y − yD‖2] = E[‖E[y]− yD + y − E[y]‖2]

= E[‖E[y]− yD‖2] + E[‖y − E[y]‖2] + E[2(E[y]− yD, y − E[y])]

= ‖E[y]− yD‖2 + ‖S[y]‖2.

The quantity E[y]− yD is deterministic. Hence, the last term drops out because E[y − E[y]]=0.
It is now clear that

Jrob(y, u) = ‖E[y]− yD‖2 + (1 + γ)‖S[y]‖2 + α‖u‖2 = Jav(y, u)

iff γ′ = 1 + γ.

In [36] both robust and average control cost functionals are considered. Theorem 2.1
explains why two seemingly different problems produced the same result.1 The robust control
cost functional (2) will be denoted simply as J in the remainder of this paper.

3. Model problem PDE constraint. The method that we shall propose does not assume
any specific PDE. However, to make matters more concrete and to simplify some expressions,
we will focus our exposition on an elliptic model problem. Consider an object occupying
the spatial domain D = [0, 1]d ⊂ Rd and denote its boundary by ∂D. The temperature
distribution on D constitutes the state y. The control u is a heat source (or sink) on D
which we assume to be constant in time. The heat conduction coefficient is a stochastic field
k : D × Ω→ R : (x, ω) 7→ k(x, ω). With Dirichlet boundary conditions, the system equations
are now described by the following PDE with random coefficients:

−∇ · (k(x, ω)∇y(x, ω)) = β(x)u(x) on D,

y(x, ω) = 0 on ∂D.
(4)

The coefficient β(x) allows us to constrain the control input to a subset of D, by setting it to 1
if x is in the subset and 0 otherwise; see, e.g., [40]. The variables belong to the function spaces:

u ∈ L2(D), y ∈ H1
0 (D)⊗ L2(Ω), k ∈ L∞+ (D)⊗ L2(Ω), β ∈ L∞(D).

The symbol ⊗ denotes the tensor product. The subscript + indicates the subset of functions
that are positive almost everywhere.

3.1. Stochastic field k. We assume a lognormal field k(x, ω) , exp(z(x, ω)) with z a
Gaussian field. We take E[z] = 0 and use the common assumption of an exponential covariance
[12, 18]

Cz(x1, x2) = Cov[z(x1, ω), z(x2, ω)] = σ2 exp
(
− ‖x1 − x2‖1

λ

)
(5)

1Rosseel and Wells [36], p. 18, Table 1, first and fourth problems under “unknown mean control.”

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

178 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

Figure 1. Realizations of the lognormal field k for the 2D case with λ = 0.3, nKL = 500. Left: σ2 = 0.1.
Right: σ2 = 0.5.

with σ2 the variance of the field and λ the correlation length. Samples of z can be generated
starting from the Karhunen–Loève (KL) expansion [29, 19] of z:

z(x, ω) = E[z(x, ω)] +
∞∑
n=1

√
θnξn(ω)fn(x);(6)

see, e.g., [9, 10, 12, 18, 11]. The KL expansion is the unique expansion of the above form that
minimizes the total mean square error (MSE) if the expansion is truncated to a fixed finite
number of terms [16]. In this paper we confine ourselves to the choice λ = 0.3 and choose
nKL = 500 terms, capturing 94% of the variance for a two-dimensional (2D) problem. A typical
realization for two values of σ is found in Figure 1.

The accurate and efficient generation of samples is not the main topic of this paper. Other
sampling techniques such as circulant embedding [15, 18] may provide some computational
advantages over the KL expansion.

4. Optimality conditions. This section derives the optimality conditions for the model
problem. The constraint is denoted here by c(y, u) = ∇ · (k∇y) + βu = 0, without explicit
dependence on k or ω. It provides a relation between y ∈ H1

0 (D)⊗ L2(Ω) and u ∈ L2(D) for
all realizations of ω. All inputs u are assumed to be admissible, i.e., for every u, c(y, u) = 0
can be uniquely solved for y.

4.1. General expressions. The optimality conditions can be derived starting from the
Lagrangian

L(y, u, p) = J(y, u) + (p, c(y, u))D,Ω

with p ∈ H1(D) ⊗ L2(Ω) a Lagrange multiplier and (., .)D,Ω the standard inner product in
L2(D)⊗ L2(Ω). The necessary first order conditions for optimality are then found by setting
the partial derivatives to p, y, and u to zero:

0 = ∇pL = c(y, u),

0 = ∇yL = ∇yJ +
(∂c
∂y

)∗
[p],

0 = ∇uL = ∇uJ +
(∂c
∂u

)∗
[p].

(7)

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 179

The superscript ∗ denotes the adjoint of a linear operator. The expression (∂c∂y)∗[p], for example,
follows through the Riesz representation theorem [34] from

∂

∂y
(p, c)D,Ω[h] =

(
p,
∂c

∂y
[h]

)
D,Ω

=

((∂c
∂y

)∗
[p], h

)
D,Ω

.

4.2. Reduced gradient for the model problem. The robust optimization objective can
be reformulated in a more compact manner in terms of the norm ‖.‖D,Ω induced by (., .)D,Ω,

J(y, u) = E[‖y − yD‖2D] + γ‖S[y]‖2D + α‖u‖2D

=

∫
Ω

∫
D

(y − yD)2 dx dµ(ω) + γ

∫
D

∫
Ω

(y − E[y])2 dµ(ω) dx+ α

∫
D
u2 dx

= ‖y − yD‖2D,Ω + γ‖y − E[y]‖2D,Ω + α‖u‖2D.

The terms ∇yJ and ∇uJ in (7) can be evaluated by noting that

d

dy
‖y − E[y]‖2D,Ω[h] =

(
2(y − E[y]),

d(y − E[y])

dy
[h]

)
D,Ω

= (2(y − E[y]), h− E[h])D,Ω

= (2(y − E[y]), h)D,Ω.

(8)

In the last step we used that (y − E[y],E[h])D,Ω = (E[y] − E[y],E[h])D = 0. Hence we find
∇yJ = 2(y − yD) + 2γ(y − E[y]). Similarly, ∇uJ = 2αu. Since the operator ∇ · (k∇.) is linear
and self-adjoint, ∇y(p, c) = ∇ · (k∇p). Finally, for the third equation in (7) we find

∂

∂u
(p, c(y, u))D,Ω[h] = (p, βh)D,Ω = (βp, h)D,Ω.(9)

Since u ∈ L2(D), this equality must hold for all increments h ∈ L2(D) (as opposed to
L2(D)⊗ L2(Ω)). Since (βp, h)D,Ω = (βE[p], h)D, we find ∇u(p, c)D,Ω = βE[p]. Combining the
results, the system of equations (7) reduces to

−∇ · (k∇y) = βu on D,
−∇ · (k∇p) = 2(y − yD) + 2γ(y − E[y]) on D,

∇J̃(u) = 2αu+ βE[p] = 0.

(10)

The Dirichlet boundary conditions are omitted for brevity. The last equation provides the
so-called reduced gradient, i.e., the gradient of the reduced cost functional J̃(u) = J(Su, u)
where S solves the constraint c.

Remark. The E[y] term in the second equation of (10) causes a more intricate connection
between the values of y and p for the different instances governed by ω. This essentially bars
one from deriving the conditions for each ω separately and joining them in the third equation
through an expected value, as is often done in the case γ = 0.D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

180 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

4.3. Reduced Hessian for the model problem. Consider the second order derivative of a
functional f : H → R and apply some calculus to obtain

d2f(u)

du2
[h1, h2] =

d

du

(df(u)

du
[h2]
)

[h1] =
d

du

(
(∇f(u), h2)

)
[h1] =

(
d∇f(u)

du
[h1], h2

)
.(11)

The mapping d∇f(u)
du [.], H → H is the Hessian of f in u, denoted as Hess f(u)[.] [40]. In the

finite dimensional setting, the Hessian can be represented by an ordinary matrix M . For any
vectors h1 and h2, we have hT1 Mh2 = (Mh1, h2)Rn . The similarity with (11) should be clear.

Due to the linearity of the equations in (10), working out d∇J̃(u)
du [δu] immediately leads to

−∇ · (k∇ δy) = β δu on D,
−∇ · (k∇ δp) = 2 δy + 2γ(δy − E[δy]) on D,

Hess J̃(u)[δu] = 2α δu+ βE[δp].

(12)

The model problem is quadratic since the Hessian is independent of u.

4.4. Discretization. We assume that the discretization of the equations (10) leads to a
system of the form

Ay = βu,
A′p = 2(y − yD) + 2γ(y − E[y]),

∇J̃(u) = 2αu+ βE[p]

(13)

with A,A′ ∈ Rmd×md
dependent on ω. This is the case if, e.g., the finite volume discretization

with md volumes is used. We use boldface to denote the finite dimensional approximations.
Consider the discretized cost functional

J(y,u) = E[‖y − yD‖2] + γ‖S[y]‖2 + α‖u‖2 ≈ J(y, u),(14)

where the norms and inner products over Rmd
are defined as the approximation of their

continuous counterparts, i.e.,

‖v‖2 ,
vTv

md
≈ ‖v‖2 and (u,v) ,

uTv

md
≈ (u, v).(15)

This definition ensures that the discretized cost functional gives comparable results regardless
of the number of discretization points. Using standard differentiation techniques, one can
show that the discretized gradient (13) is also the exact gradient of the reduced cost func-
tional J̃(u) = J(A−1βu,u) w.r.t. the inner product given in (15). Discretizing the Hessian
(12) in the same way is identical to taking the derivative of the discretized gradient, i.e.,
Hess J̃(u)[δu] = d∇J̃(u)

du [δu].

5. Multilevel Monte Carlo. The evaluation of the reduced gradient (10) or Hessian (12)
requires an approximation for E[p] and, if γ 6= 0, also for E[y]. Because of the PDE setting, it
makes sense to consider an MLMC estimator, which is briefly recalled following the exposition
in [12]. Section 5.2 discusses in detail how we handle function valued quantities of interest.
Section 6 analyzes the application of the method to the estimation of E[p] in particular.D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 181

5.1. Scalar-valued quantities of interest. Assume one wishes to estimate the expected
value of some quantity of interest (QoI) Q : Ω→ R. Because of approximation or discretization
errors, one often can not generate exact samples Q(ω) of Q. Instead, one can generate
samples Qm(ω) of an approximation Qm to Q, where m is a measure for the accuracy of the
approximation. The numerical scheme is assumed to have a weak order of convergence equal
to ρ, i.e.,

|E[Qm −Q]| . m−ρ.(16)

We define a . b⇔ a ≤ cb with c independent of m and n below. We write a h b iff a . b and
b . a. The computational cost C(Qm(ω)) for a single sample is assumed to satisfy

C(Qm(ω)) . mκ(17)

for some constant κ. Both ρ and κ depend on the algorithm employed to solve the PDE.
In the MLMC method [12, 17] one considers multiple approximations Qm0 , . . . , QmL for Q.

In our setting, m` = m0 · 2` corresponds to the grid size in a single dimension of the PDE
discretization. The coarsest grid size is m0, the finest is mL. The method recursively estimates
an expected value on a finer grid as an expected value on a coarser grid (acting as a control
variate) combined with a corrective term. This leads to a telescopic sum decomposition

E[QmL] = E[Qm0] +
L∑
`=1

E[Qm`
−Qm`−1

] =
L∑
`=0

E[Y`],

where Yl , Qm`
− Qm`−1

and Qm−1 , 0. On level `, E[Y`] is estimated using the ordinary
Monte Carlo (MC) method with n` samples, yielding

Ŷ MC
`,n`

,
1

n`

n∑̀
i=1

Y`(ωi) =
1

n`

n∑̀
i=1

(
Qm`

(ωi)−Qm`−1
(ωi)

)
.(18)

It is important to use the same stochastic realization ωi on both levels for each sample of Y`
to ensure a high correlation. The MLMC estimator is then defined as

Q̂MLMC
m,n ,

L∑
`=0

Ŷ MC
`,n`

(19)

with the vector m = {m`}L`=0 and n = {n`}L`=0. The linearity of the expected value operator
and the fact that all the expectations are estimated independently lead to

E[Q̂MLMC
m,n] = E[QmL], V[Q̂MLMC

m,n] =

L∑
`=0

n−1
` V[Y`].(20)

Moreover, the MSE of Q̂MLMC
m,n as an estimator for E[Q] can be characterized (see [12]) as

follows:

E
[(
Q̂MLMC

m,n − E[Q]
)2]

= V[Q̂MLMC
m,n] +

(
E[Q̂MLMC

m,n]− E[Q]
)2

=
L∑
`=0

n−1
` V[Y`] + E[QmL −Q]2.(21)

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

182 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

The first term is due to the stochastic error, which can be decreased by taking more samples.
The second term is due to the discretization error, equal to the bias squared. It can be
decreased by solving the PDE on a finer grid, i.e., by increasing L. In order to have an RMSE
of at most ε it is sufficient if both2 terms are smaller than ε2/2.

Many possibilities exist for n to achieve a stochastic error smaller than ε2/2. This freedom
can be used to minimize the cost of the MLMC estimator. Denote the cost of taking a sample
of Y` as C`. The cost of the MLMC estimator is then C(Q̂MLMC

m,n) =
∑L

`=0 n`C`. Minimizing this

cost subject to the constraint
∑L

`=0 n
−1
` V[Y`] = ε2/2 yields an optimization problem which is

easily solved using Lagrange multipliers. The solution, rounded upward, yields the optimal
number of samples

n` =

⌈
2

ε2

√
V[Y`]C−1

`

L∑
i=0

√
V[Yi]Ci

⌉
.(22)

Substituting (22), before rounding upward, into the expression for the cost yields

C(Q̂MLMC
m,n) =

2

ε2

(
L∑
`=0

√
V[Y`]C`

)2

.

If V[Y`] decreases faster than C` increases with increasing `, the dominant cost is on the coarsest
level ` = 0 and is proportional to V[Y0]C0. The cost savings compared to the standard MC
method are then proportional to C0/CL h (m0/mL)κ h εκ/ρ. If the converse is true, then the
dominant cost is on the finest level L and proportional to V[YL]CL. The cost savings are then
approximately V[YL]/V[Y0].

Remark. Note that m0 cannot be made arbitrarily small. If the discretization is too coarse,
the relevant features of the PDE solution can no longer be resolved. The resemblance between
the coarse and the fine level solution will then be lost, i.e., V[Y1] will no longer be smaller than
V[Qm1]. It is then cheaper to estimate E[Qm1] directly, which is equivalent to increasing m0.

Collecting all of the assumptions and quantifying the decay of V[Y`] yields the MLMC cost
theorem as presented and proven in [12]:

Theorem 5.1 (multilevel Monte Carlo cost). Suppose that there are positive constants ρ, φ,
κ > 0 such that ρ > 1

2 min(φ, κ) and

|E[Qm`
−Q]| . m−ρ` , V[Y`] . m−φ` , C` . mκ

` .

Then, for any ε < e−1, there exist a value L and a sequence n = {n`}L`=0 such that the MSE

E
[(
Q̂MLMC

m,n − E[Q]
)2]

< ε2

and the cost

C(Q̂MLMC
m,n) .

ε−2 if φ > κ,
ε−2(log ε)2 if φ = κ,

ε−2−(κ−φ)/ρ if φ < κ.

(23)

2In practice, often a larger part of the RMSE is allocated to the stochastic error.D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 183

In practice, the problem dependent parameters ρ, φ, and κ are not always known in advance
and may have to be estimated. Furthermore, L has to be selected carefully in order to have a
sufficiently small bias term.

5.2. Function valued quantities of interest. The main quantities of interest in this paper
are the gradient and the Hessian vector product, which in our application are functions instead
of scalar values. These functions are discretized on the different levels and have to be combined
in the course of the estimation algorithm. Hence, it is necessary to define a mapping between
those discretizations.

5.2.1. Mapping between different levels. Consider a linear transform I`2`1 : Rm
d
`1 →

Rm
d
`2 : v 7→ I`2`1v that maps vectors from level `1 to level `2. The operator is a prolongation if

`1 < `2, a restriction if `1 > `2, and the identity if `1 = `2. For any `1, `2 ∈ N with `1 < `2, we
shall require that

I`2`1 = I`2`2−1I
`2−1
`2−2 . . . I

`1+1
`1

and I`2`1 = c`2−`1(I`1`2)T(24)

for some constant c. In our case, c = 2d. An analogous expression should hold if `1 > `2. The
precise definition of I`2`1 depends on the discretization method and the selection of the mesh
points at the different levels. The ideas in this paper do not depend on a specific method used
to solve PDE (4) for a single realization ω. Here the finite volume method will be used to
obtain function values at control volume centers. None of the nodes existing at a level ` are
then present at the level ` + 1; see Figure 2. The prolongation operator is often chosen to
interpolate linearly. In our situation, the effect is a smoothing of the function when mapped
from one level to the next. Note that MLMC works best if the results on consecutive levels
match as closely as possible. Alternative definitions for I`2`1 are of course possible. However,
choosing a poor definition results in a slower decay of V[Y `] since it can cause unnecessary
dissimilarity between Qm`

and I``−1Qm`−1
.

5.2.2. Revised algorithm and bias estimation. We can now amend (18) and (19) as
follows:

Ŷ MC
`,n`

=
1

n`

n∑̀
i=1

(
Qm`

(ωi)− I``−1Qm`−1
(ωi)

)
and Q̂MLMC

m,n ,
L∑
`=0

IL̄` Ŷ
MC
`,n`

.(25)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

x

`

0 0.2 0.4 0.6 0.8 1
−1
−0.5

0
0.5

1

x

I`0v

` = 0
` = 1
` = 2

Figure 2. Left: Discretization node pattern corresponding to the control volume centers for a 1D problem
using the finite volume method. None of the nodes existing at a certain level ` are present at another level.
Right: Interpolating some v to finer grids smooths it.

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

184 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

In this paper, the estimated functions are always returned discretized at some fixed level L̄.
If a sufficiently small RMSE is reached for some L < L̄, no samples are taken at levels
` > L. Returning the result at a fixed predetermined level simplifies the implementation of the
optimization algorithm. Optimization software usually requires the gradient and Hessian in a
format that is not allowed to change from iteration to iteration.

Some methods to extend the MLMC theory to vector or function valued QoI can be found
in [17, pp. 274–276]. Let I` be the discretization operator, which samples a function in the
discretization nodes of level `. In this paper, we demand the MSE (21) to be smaller than ε2

for each point on the return level L̄, i.e., we demand

E[(Q̂MLMC
m,n − IL̄E[Q])2] ≤ ε2.(26)

Much of the MLMC theory for scalar valued quantities can then be reused without much
modification. Some technical details about how we attempted to satisfy (26) now follow.

Evaluating the variance of Q̂MLMC
m,n from its definition (25) shows that the relevant series of

variances necessary to evaluate (22) for all discretization points is given by {V[IL̄` Y `]}L`=0. These
can be approximated as {IL̄` V[Y `]}L`=0, where V[Y `] are estimated using some warm-up samples.
The optimal number of samples is determined for each domain point separately. Then, the
maximum over all the domain points is taken as n. This ensures that

∑L
`=0 n

−1
` IL̄` V[Y `] ≤ ε2/2

in all points of the domain.
For the bias we start with an estimation of ρ in (16). Assume there exist c, c′ ∈ R such

that from a certain level ` onward

‖E[Qm`
− I`Q]‖∞ ≈ cm−ρ` = c2−ρ` and ‖E[Qm`

− I``−1Qm`−1
]‖∞ ≈ c′2−ρ`.

These assumptions were found experimentally to hold best, especially for low `, when using
the inf-norm. Fitting a line to log2 ‖E[Qm`

− I``−1Qm`−1
]‖∞ ≈ log2 c

′− ρ` and getting the first
degree coefficient then provides an estimation of ρ. The reverse triangle inequality yields

‖E[Qm`
− I``−1Qm`−1

]‖∞ ≥ ‖E[I``−1Qm`−1
− I`Q]‖∞ − ‖E[Qm`

− I`Q]‖∞
≈ (2ρ − 1)‖E[Qm`

− I`Q]‖∞,

leading to the following bound for the largest bias over the domain:

‖E[Qm`
− I`Q]‖∞ ≤ (2ρ − 1)−1‖E[Qm`

− I``−1Qm`−1
]‖∞.(27)

Since the necessary number of levels L is not a priori known, the algorithm starts out with
only a few levels and checks∥∥∥∥ L∑

`=0

n−1
` IL̄` V[Y `]

∥∥∥∥
∞

+ ‖E[QmL
− ILQ]‖2∞ ≤ ε2(28)

with the second term estimated through (27). This is a somewhat overly conservative test for
(26). The above equation holds for all domain points if it holds for the worst case point, hence
the inf-norm over the first term. It is also sufficient to simply replace the first term by ε2/2.D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 185

Algorithm 1. Multilevel Monte Carlo estimation of function valued quantities

1: L← 0, converged← false
2: while not converged and L ≤ L̄ do
3: take an amount ninit of initial samples at level L
4: estimate V[Y L] from these samples
5: calculate the optimal number of samples n = {n`}L`=0 following subsection 5.2.2
6: take more samples on levels 0, . . . , L until the total number taken is at least n
7: if L ≥ 1 then
8: estimate ρ and the bias following subsection 5.2.2
9: converged← check (28) at level L

10: end if
11: L← L+ 1
12: end while
13: return Q̂MLMC

m,n , following (25)

If the resulting requirement for the bias is not satisfied, an additional level is added. An
overestimation of either term would cause the algorithm to consider an additional unnecessary
level. Note that this is not too bad if the dominant cost is on the coarsest grid, as is the case for
all experiments in this paper. This provides another justification for the use of the conservative
inf-norm in the bias estimation. The full MLMC algorithm is given in Algorithm 1.

6. Estimator for the gradient. We turn now to the specific problem of finding an estimate
for E[p] and thus for the gradient in the optimality conditions (13). Estimating E[p] seems
to require an estimation of E[y] first. This leads to two problems. First, it is assumed that
the available computer memory is too small to save all the samples used to estimate E[y].
Any such sample is thus lost unless it is recalculated later, thereby increasing calculation cost.
Second, it is unclear which MSE would have to be requested for E[y]. So, we want to get rid
of the need to estimate E[y] in advance. Moreover, we want to retain the property that the
calculated gradient is exact, meaning that it is the exact gradient of some cost function.

6.1. Generating samples of p directly. The E[y] term in (13) stems from ∇yγ‖S[y]‖2
= 2γ(y − E[y]), where the gradient is expressed w.r.t. the inner product

(u,v)D,Ω =

∫
Ω

uTv

md
dµ(ω) ≈ (u, v)D,Ω.(29)

This holds for any stochastic space, in particular also for a finite subset of samples Ω0 =
{ω1, . . . , ωn} ⊂ Ω, each having equal probability. For any such set Ω0, (29) reduces to

(u,v)D,Ω0 =
1

n

∑
ω∈Ω0

uTv

md
.(30)

Writing y(ωi) = yi, the following gradient w.r.t. (., .)D,Ω0 is therefore equal to

∇y

∥∥∥∥∥
√√√√ 1

n

n∑
j=1

(
yj −

1

n

n∑
i=1

yi

)2∥∥∥∥∥
2

= 2

(
y − 1

n

n∑
i=1

yi

)
.(31)

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

186 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

Hence, if E[y] in (13) is estimated by means of n MC samples, the standard deviation term in
J(y,u) is to be evaluated as suggested by the left-hand side in (31), i.e., by using the standard
(biased) sample variance. Any alternative way to estimate E[y] entails a corresponding change
in the estimator for the variance in the cost functional and vice versa. Consider another
estimator based on two sets of n samples each,

V̂ [y] ,
1

2n

n∑
j=1

(yj − y′j)2,(32)

with y′j = y(ω′j) and Ω′0 = {ω′1, . . . , ω′n} ⊂ Ω a second set of samples. All of the 2n samples are
independent. Due to the independence of ωj and ω′j in particular, it is an unbiased estimator
for the variance since

E[(yj − y′j)2] = E[(yj − E[y] + E[y]− y′j)2]

= E[(yj − E[y])2] + E[(E[y]− y′j)2]

= 2V[y].

Note that the MSE V[V̂[y]] is somewhat less favorable than that of the standard biased
estimator, i.e., more samples are needed for an accurate estimate of V[y]. This can be
demonstrated as follows. Assuming that yj and y′j are Gaussian with variance σ2, it can

be shown that V[(yj − y′j)2] = 8σ4 and thus V[V̂[y]] = 2σ4

n . The standard biased variance
estimator uses only n realizations of y and has the same variance. However, since it leads to
a gradient containing the term E[y], which has to be estimated in advance with additional
samples of y, its implied computational cost is not lower in practice. In contrast, the gradient
corresponding to V̂[y] w.r.t. (., .)D,Ω0 is

∇y

∥∥∥√V̂ [y]
∥∥∥2

= y − y′.(33)

Using this expression in (13) to replace 2(y − E[y]) yields the gradient of (14) where S[y] is
estimated by (V̂[y])1/2 and E[.] by the average over Ω0. The jth sample of p at some given
level then requires two solves of the state equation to obtain yj and y′j and a single solve of
the adjoint equation. Because each sample pj depends on distinct samples ωj and ω′j , all of
{pj}nj=1 are clearly independent, as is required in the MLMC method.

Remark. It is in principle possible to improve the resulting gradient estimator by using
{y′j}nj=1 to generate additional samples {p′j}nj=1 of p that in effect correspond with {ω′j}nj=1,
at the cost of n additional adjoint equation solves. However, pj and p′j are not independent!
If compromising on the independence of samples is allowed, many other methods can be
constructed. The next section provides such a method that is very similar but easier to analyze
and generalize.

6.2. Generating cheaper samples of p directly. Consider yet another estimator for the
variance based only on a single set of n independent samples Ω0:

V̂1[y] ,
1

2n

n∑
j=1

(yj − yj−1)2,(34)

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 187

where y0 = yn. Since the samples Ω0 are independent, we have again E[(yj − yj−1)2] = 2V[y],
making V̂1[y] an unbiased estimator for V[y]. The gradient w.r.t. (., .)D,Ω0 is worked out
explicitly in Appendix A, yielding

∇y

∥∥∥√V̂1[y]
∥∥∥2

= 2y − y⊕1 − y	1,(35)

where y⊕i denotes the stochastic variable y “shifted” by i samples in the sampled stochastic
space: y⊕i(ωj) , y(ωj+i) with ωn+i = ωi, and y	i , y⊕−i. This definition only makes sense
for a given ordered finite subset of Ω. A single sample of (35), e.g., the sample corresponding to
ωj , is then 2yj − yj+1− yj−1. Calculating multiple samples in succession then merely requires
saving the previous sample, yj−1, and obtain the next sample, yj+1, early.

One of the disadvantages is the somewhat higher variance of the estimator:

V[V̂1[y]] =
1

4n2

n∑
j=1

V[(yj − yj−1)2] +
1

2n2

n∑
j=1

Cov[(yj − yj−1)2, (yj+1 − yj)2].

Under the assumption that yj are Gaussian variables with variance σ2, one has that

V[(yj − yj−1)2] = 8σ4 and Cov[(yj − yj−1)2, (yj+1 − yj)2] = 2σ4

and therefore

V[V̂1[y]] =
2σ4

n
+
σ4

n
=

3σ4

n
.

This is to be compared to the Cramér–Rao lower bound for unbiased estimators of the variance,
which is 2σ4

n for Gaussian variables.
Taking dependent samples requires some changes in the classical MC and MLMC theory.

For simplicity, the description is, as before, given for a scalar valued QoI. We consider only
dependencies between samples of Y` taken on the same level `. From (19) we then have

V[Q̂MLMC
m,n] =

L∑
`=0

V[Ŷ MC
`,n`

] =
L∑
`=0

n−2
`

n∑̀
i=1

n∑̀
j=1

Cov[Y`,i, Y`,j],

where Y`,i, the ith sample of Y`, is interpreted as a random variable. If the covariance matrix
is circulant and if Cov[Y`,i, Y`,j] = 0 for b < |i− j| < n` − b, we get

V[Q̂MLMC
m,n] =

L∑
`=0

n−1
`

V[Y`] + 2
b+1∑
j=2

Cov[Y`,1, Y`,j]

 .(36)

For independent samples, b = 0 and this equation reduces to (20). For the sampling method
associated with V̂1 above, we have b = 2. It is then necessary to estimate the b = 2 covariances
in addition to the sample variance in line 5 of Algorithm 1. In (22) and in Theorem 5.1,
V[Y`] is then replaced by V[Y`] + 2

∑b+1
j=2 Cov[Y`,1, Y`,j]. Note that since the covariances can

also be negative, they can actually reduce the amount of samples required! Because the
variances and covariances are estimated by a small number of samples, especially at the finer
levels, the risk of underestimating the latter quantity is mitigated by replacing V[Y`] withD

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

188 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

max{1
2V[Y`],V[Y`] + 2

∑b+1
j=2 Cov[Y`,1, Y`,j]} instead. The 1

2 term was chosen rather arbitrarily
and can probably be improved, depending on the precision of the estimators. V̂1 is used in the
remainder of this text.

6.3. Exactness of the MLMC generated gradient. Assume one uses the MLMC method
to calculate the gradient in a given point u defined on the finest level. This requires the
method to take samples Qm`

(v, ω,Ωk) which depend on v = I`
L̄
u. Following the previous

subsections, each sample may depend on multiple elements in the given ordered sample set Ωk.
The variable ω ∈ Ωk is simply used to index the samples.

Theorem 6.1 (exactness of the MLMC gradient). Assume that for any level ` and any
sample set Ωk ⊂ Ω of size nk, the mapping Rmd

` → Rmd
` : v 7→ n−1

k

∑
ω∈Ωk

Qm`
(v, ω,Ωk) forms

the exact gradient of some cost function. Then, the MLMC method that uses on each level
a combination of those sample sets describes a mapping Rm

d
L̄ → Rm

d
L̄ : u 7→ ∇Ĵ(u) which is

itself the exact gradient of some cost function Ĵ .

Proof. Let J̃k` : Rmd
` → R denote the cost function corresponding to the exact gradient

n−1
k

∑
ω∈Ωk

Qm`
(v, ω,Ωk) = ∇J̃k` (v) ∈ Rmd

` . Consider u ∈ Rm
d
L̄ given at the level L̄. The

chain rule and the second equation of (24) yield

d

du
J̃k` (I`L̄u)[h] = (∇J̃k` (I`L̄u), I`L̄h) =

1

md
`

∇J̃k` (I`L̄u)T I`L̄h =
c`md

L̄

cL̄md
`

(IL̄` ∇J̃k` (I`L̄u),h).(37)

Note that the two instances of the inner product (15) are different since they use a different
number of discretization points. Let ∇Ĵ(u) denote the gradient approximation generated by
the MLMC algorithm, assumed to have converged on a level L. Denote the set of n` samples
taken by the algorithm at any level ` by Ω` ⊂ Ω. From (25) we have

∇Ĵ(u) =
L∑
`=0

IL̄`
1

n`

∑
ω∈Ω`

(
Qm`

(I`L̄u, ω,Ω`)− I``−1Qm`−1
(I`−1
L̄
u, ω,Ω`)

)
= IL̄0 ∇J̃0

0 (I0
L̄u) +

L∑
`=1

IL̄`
(
∇J̃ `` (I`L̄u)− I``−1∇J̃ ``−1(I`−1

L̄
u)
)
.

This calculated gradient is the exact gradient of the cost functional

Ĵ(u) =
cL̄md

0

c0md
L̄

J̃0
0 (I0

L̄u) +
L∑
`=1

(
cL̄md

`

c`md
L̄

J̃ `` (I
`
L̄u)−

cL̄md
`−1

c`−1md
L̄

J̃ ``−1(I`−1
L̄
u)

)
(38)

as can be checked using (37).

In a similar fashion, it can be proven that the Hessian vector product calculated using
MLMC is exact for some cost functional. Note that in this paper, the constant c from (24)
satisfies c = 2d and md

` = 2d`md
0 such that c`md

L̄
(cL̄md

`)
−1 = 1 in (37). This is also true for

many other common grid definitions and mapping operators. The cost functional (38) then
simplifies to

Ĵ(u) = J̃0
0 (I0

L̄u) +
L∑
`=1

(
J̃ `` (I

`
L̄u)− J̃ ``−1(I`−1

L̄
u)
)
,(39)

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 189

which corresponds to the cost functional calculated using MLMC. The reason to construct the
MLMC estimator for the gradient directly is that the optimization requires the gradient with
some known precision, as measured by the RMSE. For some given number of samples n, the
RMSE on the cost functional estimator is, in general, completely different from the RMSE on
the gradient estimator. Finally, we remark that (38) implies that MLMC retains convexity
properties. In Theorem 6.1, the term “cost function” may be replaced everywhere by “convex
cost function,” since the convexity of all Jk` implies convexity of Ĵ . Strict convexity is retained
only if L = L̄.

7. Numerical optimization. We follow the reduced optimization approach, in which the
state y is eliminated. This results in u being the only unknown in the optimization problem.
The alternative is the simultaneous approach in which the original constrained optimization
problem is solved directly [6]. However, in the stochastic case, one has that y ∈ H1

0 (D)⊗L2(Ω).
Assuming an MLMC approach, the full sample set of discretized state functions on all levels
would have to be part of the variables that one optimizes for. This approach seems infeasible
due to excessive memory demands.

In this section, we elaborate on two methods to solve our optimization problem up to a
given gradient tolerance. First, the use of the NCG method is investigated. Specific attention
is given to how many samples and which samples should be used. Next, the Newton method is
studied, which requires Hessian information. Because of its unwieldy size in the problems we
consider, the Hessians are never computed explicitly and the linear systems in the Newton
iterations are solved using a matrix vector product based implementation of the conjugate
gradient (CG) method . For quadratic problems, the NCG method and a single Newton step
with CG are known to be equivalent [32]. The difference in this stochastic context will lie
mainly in the times at which the samples are updated.

7.1. Gradient based optimization. The use of MLMC in a gradient based optimization
algorithm is tested using the NCG method. Variables at the kth iteration are indicated by a
(k) superscript. The gradient calculated at iteration k is denoted by g(k). In the NCG method,
the search direction d(k) is obtained recursively as d(k) = −g(k) + β(k)d(k−1) with d(0) = −g(0).
We use the Dai–Yuan (DY) formula

β(k) =
||g(k)||2

(d(k−1), g(k) − g(k−1))
,

which offers certain advantages in PDE constrained optimization [7, 13]. The system input
is then updated as u(k+1) = u(k) + s(k)d(k). The step size s(k) is found by approximating the
cost function along the search direction with an interpolating parabola using a second gradient
evaluation (we use the point u(k) + s(k−1)d(k) with s(−1) some well-chosen initial value). Note
that this approximate linesearch is exact for a quadratic problem.

7.1.1. Choosing samples. In theory, the gradient and the Hessian vector product are
deterministic quantities due to the expected value operators in their equations. Computationally,
however, the result depends on the specific samples drawn by the MLMC algorithm. These
samples can be saved memory efficiently by storing the number of samples n taken at each
level and the random number generator seeds that have ultimately determined the samples.
Let the subscript f in ∇Ĵf (u) denote that the gradient in some u is calculated using someD

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

190 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

0 10 20 30 40

10−4

10−2

iteration k

Figure 3. Effect of using fixed or new samples on the evolution of the gradient; see section 7.1.1. ‖∇Ĵf (u
(k)
f)‖

(), ‖∇Ĵ$(u
(k)
f)‖ (), ‖∇Ĵ$(u

(k)

$)‖ (). The expected RMSE ε of ∇Ĵf (u
(k)
f) ().

fixed set of samples f . The function ∇Ĵf is then deterministic. Because n and L are then
given, the bias and many other things do not have to be estimated again. The case where new
samples are taken is denoted with the subscript $, e.g., ∇Ĵ$(u).

To demonstrate the effect of any fixed or new samples, we perform 40 NCG-DY optimization
steps using ∇Ĵf . Here, f is determined during the first gradient evaluation call with the
tolerance for the underlying MLMC algorithm set to ε = 1e−3. The blue line in Figure 3
shows the decay of the norm of ∇Ĵf . The resulting sequence of control inputs {u(k)

f }
40
k=0 are

then evaluated using ∇Ĵ$. Only this new sample gradient ∇Ĵ$(u) is relevant to assess the
quality of a control input u. After all, the solution must perform well for the original problem,
not just for the specific set of fixed samples f . The norm (15) of ∇Ĵ$(u

(k)
f) is shown as the red

line in Figure 3. Observe that the decay levels off at a certain point because ∇Ĵf only resolves
the gradient up to some RMSE ε, which we have estimated using (27) and (28). It is thus
important either to stop at that point or to decrease ε, generating a new, larger set of samples.
For comparison NCG-DY is also executed using ∇Ĵ$, i.e., while always using new random
samples in each iteration. The resulting iterates, denoted by {u(k)

$ }
40
k=0, are outperformed by

those produced using fixed samples, even when tested using new samples. This is the argument
for holding onto the fixed samples as long as possible.

Consider again the sequence {u(k)
f }

40
k=0. As the iterates come closer to the minimizer ū, the

variances V[Y `] tend to converge to some constant and, in general, nonzero level. Indeed, if
k →∞, u(k) → ū and the variances in consideration tend to those for ū. This is illustrated in
Figure 4, where ‖V[Y `]‖∞ and ‖max{1

2V[Y `],V[Y `] + 2
∑b+1

j=2 Cov[Y `,1,Y `,j]}‖∞ are shown
for each level as a function of k. The use of correlated samples clearly reduces the variance
on all levels. Observe also that during the first few iterations, the variances still change
substantially. This causes the expected RMSE ε to fluctuate in Figure 3.

7.1.2. Algorithm. Let τ denote the tolerance on the gradient norm and consider Algorithm
2. Line 2 evaluates the initial gradient and collects the samples into an object f . Lines 4–8
implement the stopping condition. If ‖g(k)‖ ≤ τ , the current iterate is checked again using
new samples (see line 5) before returning it. Lines 9–10 describe the optimization step. Other
optimization algorithms can also be used here. Lines 11–16 govern the generation of theD

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 191

0 10 20 30 40
10−10

10−6

10−2

iteration k

Figure 4. Evolution of the variances. ‖V[Y `]‖∞ () and ‖max{ 1
2
V[Y `],V[Y `] + 2

∑b+1
j=2

Cov[Y `,1,Y `,j]}‖∞ () for levels ` = {0, . . . , 5}. A higher line always corresponds to a coarser grid.

gradient. In each iteration step, either the gradient is calculated using new samples, which are
stored in f (see line 13), or the gradient is calculated using the existing fixed sample set f
(see line 15). In that case the expected RMSE ε is also calculated. During the optimization
procedure, a gradient is useful only if the gradient estimator g(k) has an RMSE ε ≤ q‖g(k)‖. The
constant q, which we set to 1 for all experiments, essentially determines how large the relative
RMSE ε/‖g(k)‖ is allowed to be. An error of a given size has little effect on a large gradient
but may completely distort a small gradient. Algorithm 2 therefore keeps ε proportional to
the currently attained gradient norm. Note that this is much more efficient than keeping ε
proportional to the target norm3 τ since, in the former approach, all but the last few iterations
are then computed using a larger ε. The samples are reused as long as possible until ε ≤ q‖g(k)‖
no longer holds; see line 11. At that point ε is reduced by a well-chosen factor η. A smaller η
causes a given set of samples to last for more iterations, but the requested tolerance ε might
then be reduced more than necessary, which is inefficient. In this paper we use η = 0.2. Note
that ε should not be reduced below qτ as the iteration will stop approximately when ‖g(k)‖ ≤ τ
anyway. This is the reason for the max in lines 11–12. Note that line 11 also checks if ε is
unnecessarily small by testing ε(k) < η2q‖g(k)‖.

7.1.3. Performance. For the NCG-DY algorithm, the norm of the gradient is known to
converge linearly, i.e., ||g(k)|| = O(e−k). We assume that this linear convergence is retained
even though the sample set that generates the gradient changes at some of the iterations. We
also assume that a single triple ρ, φ, κ exists such that the three assumptions4 in Theorem
5.1 hold uniformly, i.e., for the same constants implicit in ., for each point on the return
level L̄. This follows from simply considering the constants corresponding to the worst case
point. Furthermore, it is reasonable to also assume uniformity from a certain optimization
step onward. It was observed already that the variances converge to fixed values, meaning φ
converges to a fixed value. The costs at each level, and therefore also κ, are constant by design.

3This behavior can still be achieved using Algorithm 2 by setting ε(0) = qτ and η = 0.
4For correlated samples, the second assumption is amended as suggested by (36); see subsection 6.2.D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

192 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

Algorithm 2. Gradient based optimization

1: input τ , q, ε(0), η, kmax, u(0), ∇Ĵ.(.)
2: (g(0), f)← ∇Ĵ$(u(0)) using RMSE ε(0). . Save new sample data in f
3: for k = 0, . . . , kmax − 1 do
4: if ‖g(k)‖ ≤ τ then . Test convergence using current samples
5: if ‖∇Ĵ$(u(k))‖ ≤ τ then . Test convergence using new random samples
6: return u(k)

7: end if
8: end if
9: Get d(k) and s(k), e.g., using NCG-DY and approximate linesearch

10: u(k+1) ← u(k) + s(k)d(k)

11: if ε(k) > max{qτ, q‖g(k)‖} or ε(k) < η2q‖g(k)‖ then
12: ε(k+1) ← max{qτ, ηq‖g(k)‖}
13: (g(k+1), f)← ∇Ĵ$(u(k+1)) using RMSE ε(k+1). . Save new sample data in f
14: else
15: (g(k+1), ε(k+1))← ∇Ĵf (u(k+1)) . Calculate expected RMSE ε
16: end if
17: end for

Theorem 7.1 (MLMC optimization cost). Let ρ, φ, κ exist such that the assumptions in
Theorem 5.1 hold uniformly for each point on the return level L̄ and from a certain optimization
step onward and let ε(0) be independent of τ . If the norm of the gradient converges linearly,
the cost Copt(τ) for Algorithm 2 to reach a gradient ‖g(k)‖ ≤ τ is

Copt(τ) .

τ−2 if φ > κ,
τ−2(log τ)2 if φ = κ,

τ−2−(κ−φ)/ρ if φ < κ,

τ → 0.(40)

Proof. Since ||g(k)|| = O(e−k), the number of iterations K needed to satisfy the tolerance τ
is K = O(− log τ). Consider the three cases in (23). From a certain optimization step onward,
the case in which one finds oneself remains the same. We now consider each case separately.
Assume the cost of a gradient evaluation to be C(g(k)) . (ε(k))−2, i.e., assume the first case in
Theorem 5.1. If ε(k) ' ‖g(k)‖, the total cost is

Copt(τ) =
K∑
k=0

C(g(k)) .
K∑
k=0

‖g(k)‖−2 '
K∑
k=0

e2k =
e2K+2 − 1

e2 − 1
= O(τ−2), τ → 0.

The case φ = κ in Theorem 5.1 has C(g(k)) . (ε(k))−2(log ε(k))2 and yields

K∑
k=0

‖g(k)‖−2(log ‖g(k)‖)2 '
K∑
k=0

k2e2k = O(K2e2K) = O(τ−2(log τ)2), τ → 0.

The third case is mathematically analogous to the first.D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 193

This cost is proportional to the cost of a single gradient evaluation with RMSE τ . Note
that if instead the tolerance would be kept fixed, i.e., ε(0) = · · · = ε(k) ' τ, τ → 0, the total
cost would amount to

Copt(τ) = C(g(k))O(− log τ) .

−τ−2 log τ if φ > κ,
−τ−2(log τ)3 if φ = κ,

−τ−2−(κ−φ)/ρ log τ if φ < κ,

τ → 0.

7.2. Hessian based optimization. For a general problem, the cost functional can be
approximated at a certain iteration as

J̃(u(k) + ∆u) ≈ J̃(u(k)) + (∇J̃(u(k)))T∆u(k) +
1

2
∆uT (Hess J̃(u(k)))∆u.

For our quadratic model problem, this approximation is exact. Taking the derivative to u and
setting it to 0 yields

(Hess J̃(u(k)))∆u = −∇J̃(u(k)).(41)

Solving for ∆u constitutes a Newton step and produces the next point u(k+1) = u(k) + ∆u.
The model problem converges in one single Newton iteration. Of course, in general, multiple
Newton steps are required.

As was already noted, it is infeasible to directly solve (41) because the Hessian is very
large and dense. Therefore, a CG method is employed, as described in, e.g., [39]. This
method requires only Hessian vector products and solves symmetric positive definite systems of
equations. It can be shown that for a quadratic problem, the NCG method and a single solve
of (41) using the CG method are equivalent, assuming the linesearches are exact. A concise
overview of these relationships can be found in, e.g., [32]. This allows us to reuse some results
from the previous section. Notably, Figure 3 can be reinterpreted as being about the residual
r(i) = (Hess Ĵ(u(k)))∆u(i) +∇Ĵ(u(k)) for iteration i of the CG method. Analogously, we
conclude that the CG iterations can be meaningful only as long as ε ≤ q‖r(i)‖, with q having
the same meaning as before, leading to a residual tolerance of q−1ε. A possible algorithm is
then given as Algorithm 3. It is constructed such that the CG method can be thought of as a
black box solver (which allows one to swap it with other iterative methods). The sample set
used in a single Newton iteration is determined by the RMSE ε requested for the gradient.
The first iteration uses a large RMSE ε(0) to cheaply get somewhat close to the optimizer ū.
Subsequent Newton steps lower the RMSE by a factor η (we take η = 0.2) until qτ (we take
q = 1) is reached.

7.2.1. Performance. Close to the solution, the Hessian does not change significantly.
Consider the sequence of all CG iterations during all the Newton steps in the algorithm
and index it with i. The total amount of steps until convergence is I = O(− log τ). From
the algorithm it is clear that ε(i) . ‖r(i)‖ (where ε(i) now denotes the value of ε during CG
iteration i). The cost of a single CG iteration, denoted C(CG(i)), is dominated by the Hessian
vector product, which uses the samples f in line 3. Hence, this cost is again given by Theorem
5.1 as a function of ε(i). Everything thus being analogous to the gradient case, working out
Copt(τ) =

∑I
i=0 C(CG(i)) leads again to (40).D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

194 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

Algorithm 3. Hessian based optimization

1: input τ , q, ε(0), η, kmax, u(0), ∇Ĵ.(.), Hess Ĵ.(.)[.]
2: for k = 0, . . . , kmax − 1 do
3: (g(k), f)← ∇Ĵ$(u(k)) using RMSE ε(k).
4: if ‖g(k)‖ ≤ τ then
5: if ‖∇Ĵ$(u(k))‖ ≤ τ then
6: return u(k)

7: end if
8: end if
9: ∆u← CG(Hess Ĵf (u(k))[.],−g(k)) with residual tolerance q−1ε(k).

10: u(k+1) ← u(k) + ∆u
11: ε(k+1) ← max{qτ, ηε(k)}
12: end for

8. Numerical results. This section contains results of a set of numerical experiments
in which the gradient and Hessian based optimization algorithms are applied to the model
problem. The algorithms are also tested on a nonlinear problem in section 8.3. The target
function is set as

yD(x) =

{
1 x ∈ [0.25, 0.75]× [0.25, 0.75],

0 otherwise.

The following table contains all parameters that we fix for all experiments:

uncertainty solver parameters

λ = 0.3
nKL = 500

m0 = 8
mL̄ = 256

q = 1
η = 0.2

ε(0) = 1e−2

u(0) = 0

All calculations are performed in MATLAB on an Intel Core i5-5200U CPU @ 2.20GHz. The
algebraic system of equations resulting from the finite volume discretization of the PDEs are
solved using the MATLAB sparse matrix solver. This can be shown experimentally to yield
κ = 2.26 in Theorems 5.1 and 7.1 for our 2D problem. In these experiments φ > κ, and
therefore the dominant cost is on the coarsest level. The optimization results for the next
three problems can be found in Figure 5.

8.1. Problem 1. Problem 1 is further defined by

α = 1e−6, γ = 1, τ = 1e−4, σ2 = 0.1;(42)

see also Figure 1. The problem is solved using Algorithms 2 and 3. The convergence behavior
of both methods is visualized in Figure 6. The total time (with all overhead included) was
1542s (gradient based) and 1989s (Hessian based). Tables 1 and 2 give sampling information
each time new samples are generated for both methods. At the finer levels, the number of
initial samples sometimes appears, meaning that no additional samples were required beyond
those initial samples. The timings are calculated as the average wallclock time for a singleD

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 195

Figure 5. Optimization results. 256× 256.

NCG or CG iteration that uses the indicated number of samples. For comparison, taking n0

samples on level 4, as would be approximately the case for the classical MC method, would
take an estimated 19 hours for a single NCG iteration and 12 hours for a single CG iteration
for ε = 1e−4.

Figure 7 shows (a cross section of) the contributions to the gradient on each level. Note
that the smoothness of these contributions follows from the discussion about Figure 2. Since
the gradient must converge to zero, the contributions cancel each other out more effectively in
the later iterations. Nevertheless, the variances remain much higher on the coarsest levels (the
behavior is similar to the behavior observed in Figure 4). Therefore, removing the coarsest
level (i.e., setting m0 = 16 instead) would not improve performance.

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

196 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

0 5 10 15 20 25

10−4

10−3

10−2

10−1

iteration k (NCG) or i (CG)

‖g(k)‖
ε(k)

‖r(i)‖
ε(i)

Figure 6. Behavior of Algorithms 2 and 3 for Problem 1. The crosses (×) indicate the results of convergence
tests performed using new samples.

Table 1
Behavior of gradient based optimization (Algorithm 2).

k ε(k) n0 n1 n2 n3 n4 n5 Estimate of ρ t(k)[s]

0 1e−2 140 76 44 2.0237 2.05
4 2.24e−4 17150 1512 80 28 20 1.5824 47.49
15 1e−4 98452 9156 940 118 20 1.5825 248.84

Table 2
Behavior of Hessian based optimization (Algorithm 3).

i ε(i) n0 n1 n2 n3 n4 n5 Estimate of ρ t(i)[s]

0 1e−2 140 76 44 1.8355 4.12
2 2e−3 140 76 44 1.7030 4.36
4 4e−4 5964 521 44 28 20 1.5905 14.45
13 1e−4 96159 9010 821 93 22 1.6195 153.42

0 0.2 0.4 0.6 0.8 1
−4

−2

0

·10−3

(a) Iteration k = 5

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
·10−3

(b) Iteration k = 18 (last)

Figure 7. Cross section of g(k) =
∑L

`=0 I
L̄
` Ŷ

MC
`,n`

() and of contributions IL̄` Ŷ
MC
`,n`

at levels 0, . . . , L
(, , , ,) for Problem 1.

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 197

8.2. Problem 2. Problem 2 is further defined by

α = 1e−5, γ = 0, τ = 1e−4, σ2 = 0.5.(43)

Figure 8 and Tables 3 and 4 describe the behavior of the optimization algorithms in the
same way as before. The total time (with all overhead included) was 6973s (gradient based)
and 5114s (Hessian based). For ε = 1e−4, taking n0 samples at level 5 instead, would take
approximately 427 hours for a single NCG iteration and 259 hours for a single CG iteration.

8.3. Problem 3. Consider as an example the following nonlinear extension to the model
problem:

−∇ · (k∇y) + f(y) = βu on D with y = 0 on ∂D.(44)

0 2 4 6 8 10 12 14 16

10−4

10−3

10−2

10−1

iteration k (NCG) or i (CG)

‖g(k)‖
ε(k)

‖r(i)‖
ε(i)

Figure 8. Behavior of Algorithms 2 and 3 for Problem 2. The crosses indicate convergence tests performed
using new samples.

Table 3
Behavior of gradient based optimization (Algorithm 2).

k ε(k) n0 n1 n2 n3 n4 n5 Estimate of ρ t(k)[s]

0 1e−2 140 76 44 2.0237 2.06
4 3.51e−4 35563 3220 136 28 20 1.5824 93.44
9 1e−4 375256 38259 2082 135 21 16 1.5825 1092.71

Table 4
Behavior of Hessian based optimization (Algorithm 3).

i ε(i) n0 n1 n2 n3 n4 n5 Estimate of ρ t(i)[s]

0 1e−2 140 76 44 1.9102 8.89
2 2e−3 393 76 44 2.0975 11.77
5 4e−4 33063 6980 193 28 20 1.7029 76.20
10 1e−4 388834 37023 1747 255 56 16 1.7818 668.58D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

198 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

0 5 10 15 20 25
10−5

10−4

10−3

10−2

10−1

100

iteration k (NCG) or i (CG)

‖g(k)‖
ε(k)

‖r(i)‖
ε(i)

Figure 9. Behavior of Algorithms 2 and 3 for Problem 3. The crosses indicate convergence tests performed
using new samples.

The function f is some nonlinear reaction term. From (7) it is clear that only the term (∂c∂y)∗p
needs updating, leading to

−∇ · (k∇y) + f(y) = βu on D,
−∇ · (k∇p) + f ′(y)p = 2(y − yD) + 2γ(y − E[y]) on D,

∇J̃(u) = 2αu+ βE[p].

(45)

The expression f ′ denotes the derivative of f , which is again localized (f ′(y)(x) = g′(y(x))).
The derivation of the Hessian equations is slightly more involved. We only state the result:

−∇ · (k∇ δy) + f ′(y) δy = β δu. on D,
−∇ · (k∇ δp) + f ′(y) δp+ f ′′(y)p δy = 2 δy + 2γ(y − E[δy]) on D,

Hess J̃(u)[δu] = 2α δu+ βE[δp].

(46)

It is important to note that the adjoint equation is always linear in p for the gradient and δp
for the Hessian. Therefore, the sampling methods from section 6 can always be used.

Consider as an example the nonlinear term f(y) = 20 + e5y and the parameters

α = 1e−5, γ = 1, τ = 5e−5, σ2 = 0.5.(47)

Figure 9 shows the convergence plot. Figure 10 shows a cross section of the contributions
to the gradient on each level. The details obtained during the optimization are described in
Tables 5 and 6 for both algorithms. The total time (with all overhead included) was 2607s
(gradient based) and 8307s (Hessian based). For ε = 5e−5, a single NCG and CG iteration
would take approximately 73 hours and 69 hours, respectively.

9. Conclusions and further work. We presented an MLMC method for solving the robust
optimization problem for a tracking type cost functional. Including an additional penalty
on the variance of the state allows us to also solve the average control problem in the same
framework. It has been shown that correlations between a limited number of samples of the
gradient are hard to avoid if efficiency and correct error estimation are desired. The classical
MLMC theory was extended to be able to deal with these samples. Since the correlations are

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 199

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1
·10−3

(a) Iteration k = 7

0 0.2 0.4 0.6 0.8 1

−1

0

1
·10−3

(b) Iteration k = 12 (last)

Figure 10. Cross section of g(k) =
∑L

`=0 I
L̄
` Ŷ

MC
`,n`

() and of contributions IL̄` Ŷ
MC
`,n`

at levels 0, . . . , L
(, , , , ,) for Problem 3.

Table 5
Behavior of gradient based optimization (Algorithm 2).

k ε(k) n0 n1 n2 n3 n4 n5 Estimate of ρ t(k)[s]

0 1e−2 923 83 44 1.6309 10.19
7 7.32e−5 13369 3093 391 43 20 16 1.6069 341.36
12 5e−5 33347 11435 711 77 20 16 1.5983 508.27

Table 6
Behavior of Hessian based optimization (Algorithm 3).

i ε(i) n0 n1 n2 n3 n4 n5 Estimate of ρ t(i)[s]

0 1e−2 826 76 44 1.9102 9.95
2 2e−3 140 76 44 2.0975 7.55
4 4e−4 305 108 44 28 1.5521 14.54
9 8e−5 14357 3211 205 28 20 1.5931 153.21
16 5e−5 34181 7623 850 345 44 16 1.5964 593.68
20 5e−5 24287 7394 2647 122 20 16 1.6211 727.11
23 5e−5 26008 7058 1597 1057 20 16 1.5856 996.88

usually negative, the usage of correlated samples turns out to reduce the number of samples
required.

The MLMC method proves to be orders of magnitude more efficient compared to the
regular MC method, which takes all samples on the finest level. In our experiments, the NCG
method is usually more performant than the Hessian based method, but not always. The
performance depends on the specific problem considered. The Hessian based method may be
better suited for a small number of optimization variables. The Newton equation could then be
solved directly.The method was tested in this paper on simple elliptic academic model problems.
Its performance for realistic applications has not yet been investigated. In theory, other types
of PDE constraints, such as parabolic or hyperbolic PDEs, do not formally require any major
adaptations to the proposed strategy. In practice, however, the challenge will be to ensure that
the realizations for the same stochastic parameters on two consecutive discretization levelsD

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

200 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

remain highly correlated. This will depend on how the levels are defined precisely. Note also
that any difficulties appearing in the deterministic PDE constrained optimization problem will
of course remain in the stochastic case.

Methods for optimization under uncertainties are often born out of previous research
in simulation and uncertainty quantification of stochastic problems. In that context, the
quasi–Monte Carlo (QMC) method [18, 14] and its multilevel [25, 24] and multi-index [35]
variants have been shown to reduce the cost for a given RMSE ε from O(ε−2) to, in ideal
circumstances, O(ε−1). Hence, the use of QMC is expected to reduce the complexity of (40)
even further. Some other variance reduction techniques, such as importance sampling [1, 20],
might also be worth considering. The algorithmic details and the numerical evidence remain
to be investigated.

Appendix A. Gradient of V̂1. This section provides the details of the derivation of
the gradient of the variance estimator V̂1, i.e., we show how to arrive at (35). Note that
‖
√
v‖2 = (v,1), such that

d

dy

∥∥∥∥∥
√√√√ 1

2n

n∑
j=1

(yj − yj−1)2

∥∥∥∥∥
2

[h] =
1

2n

d

dy

 n∑
j=1

(yj − yj−1)2,1

 [h].

For simplicity, let yi = yn+i and hi = hn+i. Using, e.g., the limit definition of the derivative
yields

1

2n

d

dy

 n∑
j=1

(yj − yj−1)2,1

 [h] =
1

n

 n∑
j=1

(yj − yj−1)(hj − hj−1),1

=

1

n

 n∑
j=1

yjhj +

n∑
j=1

yj−1hj−1 −
n∑
j=1

yjhj−1 −
n∑
j=1

yj−1hj ,1

=

1

n

 n∑
j=1

yjhj +

n∑
j=1

yjhj −
n∑
j=1

yj+1hj −
n∑
j=1

yj−1hj ,1

=

1

n

 n∑
j=1

(2yj − yj−1 − yj+1)hj ,1

= (2y − y	1 − y⊕1,h)D,Ω0 .

Therefore, the gradient of V̂1 w.r.t. (., .)D,Ω0 is equal to 2y − y	1 − y⊕1.

REFERENCES

[1] M. B. Alaya, K. Hajji, and A. Kebaier, Adaptive Importance Sampling for Multilevel Monte Carlo
Euler Method, preprint, arXiv:1603.02959, 2017.

[2] A. A. Ali, E. Ullmann, and M. Hinze, Multilevel Monte Carlo analysis for optimal control of elliptic
PDEs with random coefficients, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 466–492.D

ow
nl

oa
de

d
03

/1
1/

19
 to

 1
34

.5
8.

44
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://arxiv.org/abs/1603.02959

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

ROBUST OPTIMIZATION OF PDEs USING MLMC 201

[3] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential
equations with random input data, SIAM Rev., 52 (2010), pp. 317–355.

[4] I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic
elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–825.

[5] A. Barth, A. Lang, and C. Schwab, Multilevel Monte Carlo method for parabolic stochastic partial
differential equations, BIT, 53 (2013), pp. 3–27.

[6] A. Borz̀ı and V. Schulz, Multigrid methods for PDE optimization, SIAM Rev., 51 (2009), pp. 361–395.
[7] A. Borz̀ı and V. Schulz, Computational Optimization of Systems Governed by Partial Differential

Equations, Comput. Sci. Eng. 8, SIAM, Philadelphia, 2012.
[8] A. Borz̀ı, V. Schulz, C. Schillings, and G. Von Winckel, On the treatment of distributed uncertainties

in PDE-constrained optimization, GAMM-Mitt., 33 (2010), pp. 230–246.
[9] A. Borz̀ı and G. von Winckel, Multigrid methods and sparse-grid collocation techniques for parabolic

optimal control problems with random coefficients, SIAM J. Sci. Comput., 31 (2009), pp. 2172–2192.
[10] A. Borz̀ı and G. von Winckel, A POD framework to determine robust controls in PDE optimization,

Comput. Vis. Sci., 14 (2011), pp. 91–103.
[11] P. Chen and A. Quarteroni, Weighted reduced basis method for stochastic optimal control problems

with elliptic PDE constraint, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 364–396.
[12] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods

and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011).
[13] Y.-H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property,

SIAM J. Optim., 10 (1999), pp. 177–182.
[14] J. Dick, F. Y. Kuo, and I. H. Sloan, High-dimensional integration: The quasi-Monte Carlo way, Acta

Numer., 22 (2013), pp. 133–288.
[15] C. R. Dietrich and G. N. Newsam, Fast and exact simulation of stationary Gaussian processes through

circulant embedding of the covariance matrix, SIAM J. Sci. Comput., 18 (1997), pp. 1088–1107.
[16] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Courier Corporation,

Mineola, NY, 2003.
[17] M. B. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259–328.
[18] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan, Quasi-Monte Carlo methods for

elliptic PDEs with random coefficients and applications, J. Comput. Phys., 230 (2011), pp. 3668–3694.
[19] K. Karhunen, Über lineare methoden in der wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fenn. Math.

Physi., 37 (1947), pp. 1–79.
[20] A. Kebaier and J. Lelong, Coupling importance sampling and multilevel Monte Carlo using sample

average approximation, Methodol. Comput. Appl. Probab., 20 (2018), pp. 611–641.
[21] D. P. Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain

coefficients, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 55–81.
[22] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, A trust-region

algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci.
Comput., 35 (2013), pp. A1847–A1879.

[23] D. P. Kouri and T. M. Surowiec, Risk-averse PDE-constrained optimization using the conditional
value-at-risk, SIAM J. Optim., 26 (2016), pp. 365–396.

[24] F. Y. Kuo, R. Scheichl, C. Schwab, I. H. Sloan, and E. Ullmann, Multilevel quasi-Monte Carlo
methods for lognormal diffusion problems, Math. Comp., 86 (2017), pp. 2827–2860.

[25] F. Y. Kuo, C. Schwab, and I. H. Sloan, Multi-level quasi-Monte Carlo finite element meth-
ods for a class of elliptic PDEs with random coefficients, Found. Comput. Math., 15 (2015),
pp. 411–449.

[26] H.-C. Lee and M. D. Gunzburger, Comparison of approaches for random PDE optimization problems
based on different matching functionals, Comput. Math. Appl., 73 (2017), pp. 1657–1672.

[27] H.-C. Lee and J. Lee, A stochastic Galerkin method for stochastic control problems, Commun. Comput.
Phys., 14 (2013), pp. 77–106.

[28] R. M. Lewis and S. G. Nash, Model problems for the multigrid optimization of systems governed by
differential equations, SIAM J. Sci., Comput., 26 (2005), pp. 1811–1837.

[29] M. Loève, Fonctions aléatoires de second ordre, Rev. Sci., (1946), pp. 195–206.

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

202 ANDREAS VAN BAREL AND STEFAN VANDEWALLE

[30] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, A stochastic Newton MCMC method for
large-scale statistical inverse problems with application to seismic inversion, SIAM J. Sci. Comput., 34
(2012), pp. A1460–A1487.

[31] S. G. Nash, A multigrid approach to discretized optimization problems, Optim. Methods Softw., 14 (2000),
pp. 99–116.

[32] J. Nazareth, Conjugate gradient method, Wiley Interdiscip. Rev. Comput. Stat., 1 (2009), pp. 348–353.
[33] F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic collocation method for partial

differential equations with random input data, SIAM J. Numer. Anal., 46 (2008), pp. 2309–2345.
[34] J. Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Examples, Springer,

Cham, Switzerland, 2015.
[35] P. Robbe, D. Nuyens, and S. Vandewalle, A multi-index quasi–Monte Carlo algorithm for lognormal

diffusion problems, SIAM J. Sci. Comput., 39 (2017), pp. S851–S872.
[36] E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints and uncertain controls,

Comput. Methods Appl. Mech. Engrg., 213 (2012), pp. 152–167.
[37] A. L. Teckentrup, R. Scheichl, M. B. Giles, and E. Ullmann, Further analysis of multilevel monte

carlo methods for elliptic pdes with random coefficients, Numer. Math., 125 (2013), pp. 569–600.
[38] H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for optimal control problems

with stochastic PDE constraints, SIAM J. Control Optim., 50 (2012), pp. 2659–2682.
[39] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[40] F. Tröltzsch, Optimal Control of Partial Differential Equations, AMS, Providence, RI, 2010.
[41] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random

inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139.
[42] D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial

chaos, J. Comput. Phys., 187 (2003), pp. 137–167.

D
ow

nl
oa

de
d

03
/1

1/
19

 to
 1

34
.5

8.
44

.1
42

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	Introduction
	Cost functional
	Model problem PDE constraint
	Stochastic field k

	Optimality conditions
	General expressions
	Reduced gradient for the model problem
	Reduced Hessian for the model problem
	Discretization

	Multilevel Monte Carlo
	Scalar-valued quantities of interest
	Function valued quantities of interest
	Mapping between different levels
	Revised algorithm and bias estimation

	Estimator for the gradient
	Generating samples of bold0mu mumu ppsubsectionpppp directly
	Generating cheaper samples of bold0mu mumu ppsubsectionpppp directly
	Exactness of the MLMC generated gradient

	Numerical optimization
	Gradient based optimization
	Choosing samples
	Algorithm
	Performance

	Hessian based optimization
	Performance

	Numerical results
	Problem 1
	Problem 2
	Problem 3

	Conclusions and further work
	Appendix A. Gradient of 1

