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Abstract: This manuscript presents an adaptive high order discretization technique
for elliptic boundary value problems. The technique is applied to an updated version of
the Hierarchical Poincaré-Steklov (HPS) method. Roughly speaking, the HPS method
is based on local pseudospectral discretizations glued together with Poincaré-Steklov
operators. The new version uses a modified tensor product basis which is more efficient
and stable than previous versions. The adaptive technique exploits the tensor product
nature of the basis functions to create a criterion for determining which parts of
the domain require additional refinement. The resulting discretization achieves the
user prescribed accuracy and comes with an efficient direct solver. The direct solver
increases the range of applicability to time dependent problems where the cost of
solving elliptic problems previously limited the use of implicit time stepping schemes.

1. Introduction

This manuscript presents an adaptive discretization technique for problems of the form

(1)

{
Au(x) = g(x) x ∈ Ω,

u(x) = f(x) x ∈ Γ = ∂Ω,

where Ω is a rectangle in R2 with boundary Γ, and where A is a coercive elliptic partial differential
operator

(2) [Au](x) = −c11(x)[∂2
1u](x)− 2c12(x)[∂1∂2u](x)− c22(x)[∂2

2u](x)

+ c1(x)[∂1u](x) + c2(x)[∂2u](x) + c(x)u(x).

The discretization technique presented here is an updated version of the composite spectral
discretization techniques presented in [18, 17, 23]. It is based on local pseudospectral discretizations
that are “glued” together by Poincaré-Steklov operators. These Poincaré-Steklov operators are
glued in a hierarchically yielding a direct solver. Hence, the discretization technique is called the
Hierarchical Poincaré-Steklov (HPS) method. The adaptive refinement strategy presented in this
manuscript is inspired by the technique in [21] which determines which parts of the geometry to
refine by looking at Chebychev expansion coefficients of the local approximate solution. Like the
HPS methods in [18, 17, 23, 1], the adaptive discretization technique can also be modified to handle
a range of different domains, including curved ones. Additional novelty of this paper lies in an
update to the local discretization. The new local discretization uses a modified tensor product basis
which makes the local discretization less expensive than previous versions [18, 17, 23, 1] and the
whole algorithm easier to implement.

While constructing the adaptive discretization and the direct solver has a computational cost that
scales O(N3/2) where N is the number of discretization points, the cost of applying the solver is
O(N logN) with a small constant. The constant in the solve step is typically much smaller than for
a uniform discretization thus making the method useful for applications that involve many elliptic
solves that require locally refined high order discretizations. For example, having an efficient direct
solver for elliptic partial differential equations can increase the range of problems for which implicit
time stepping schemes are computationally affordable.

1.1. Overview of discretization technique. Roughly speaking the adaptive discretization tech-
nique can be broken into three steps.
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Step 1: First, the geometry is partitioned into a collection of patches using an quad tree with an
adaptive interpolation strategy applied so that the coefficients in (2) and body load function
g(x) in (1) are captured to the user prescribed tolerance ε.

Step 2: Next each patch is discretized using a high order spectral collocation technique and the
patches are “glued” together at the boundaries via a Poincaré-Steklov operators in a hierar-
chical fashion. In the process of gluing patches together, solution operators that propagate
boundary data to the interior of a box are constructed. Then by applying the solution opera-
tors (small matrix vector multiplies) the boundary data is propagated down the hierarchical
tree giving an approximate solution on each patch.

Step 3: All patches are checked to see if they need to be further refined. If there are patches marked
for refinement, they are refined and steps 2 and 3 are repeated until no patches are marked
for refinement. If the refinement is localized in the domain, the bulk of the computation
from step 2 can be reused.

While the method can be employed with any Poincaré-Steklov operator, for simplicity of presen-
tation, this paper uses the Dirichlet-to-Neumann operator for gluing boxes as in [18, 23, 1]. For the
Helmholtz experiments in this paper, the impedance-to-impedance (ItI) operator is used instead.
[17] presents the ItI version of the solution technique for a homogeneous PDE. The appendix of this
manuscript presents the ItI based solution technique when there is a body load g(x).

1.2. Applications utilizing the HPS method. While the HPS method is relatively new, it is
already being utilized for scattering problems. Applications involving scattering problems include
underwater acoustics [4], ultrasound and microwave tomography [14, 30], wave propagation in meta-
materials and photonic crystals, and seismology [31]. In [17], the HPS method was extended to free
space scattering problems where the deviation from a constant coefficient problem had compact
support. The numerical results in that paper showed the method did not observe pollution for
problems where the support of the deviation from constant coefficient was 100 time the smallest
wavelength in size. In [5], the method was utilized to build a inverse scattering solver via the recur-
sive linearization procedure proposed in [9]. The recursive linearization procedure requires solving
a sequence of linear least squares problems at successively higher frequencies to reconstruct an un-
known sound speed. Next, in [6], the HPS method was utilized for inverse scattering problems with
a random noisy background medium. In each of these inverse scattering solvers, the least squares
solve requires solving the same variable coefficient elliptic partial differential equation many times
to apply the forward and adjoint operators. The proposed adaptive discretization could improve
the efficiency of the techniques listed in this section.

1.3. Prior and related work. There is a vast literature of adaptive methods for finite element
(FEM) based discretization techniques for elliptic problems. A high level overview is presented here.
Early works [13, 2] focused on defining appropriate error estimators for Poisson problems using face
and volume residuals giving the user the ability to identify where to refine. Recent trends in adaptive
FEM for Poisson problems focus on proving that the adaptive algorithms converge [25, 8]. A local
indicators and error estimators for FEM applied to Helmholtz problems are presented in [3]. There
has also been an extensive work on hp-adaptivity [26, 10, 11]. The adaptive discretization presented
here is an an h-adaptive scheme which is specific for the HPS discretization technique. The local
error indicator can be (and is) applied to both Poisson and Helmholtz problems. The relative
convergence error stopping criterion determines if the problem has been resolved.

The direct solver for the HPS discretization is related to the direct solvers for sparse systems
arising from finite difference and finite element discretizations of elliptic PDEs such as the classical
nested dissection method of George [15, 19] and the multifrontal methods by Duff and others [12].
These methods can be viewed as a hierarchical version of the “static condensation” idea in finite
element analysis [32]. High order finite difference and finite element discretizations lead to large
frontal matrices (since the “dividers” that partition the grid have to be wide), and consequently
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very high cost of the LU-factorization (see, e.g., Table 2 in [18]). It has been demonstrated that
the dense matrices that arise in these solvers have internal structure that allows the direct solver
to be accelerated to linear or close to linear complexity, see, e.g., [33, 16, 20, 22, 27]. The HPS
discretization technique has one dimensional “dividers” independent of order and thus the direct
solver only pays (in terms of computational complexity) the price of high order at the lowest level in
the hierarchical tree. The same ideas that accelerate the nested dissection and multifrontal solvers
can be applied the HPS direct solver [18].

In the previous versions of the HPS method special care was taken to deal with or avoid dis-
cretization points at the corners of the small patches. The method presented in [23] involves tedious
bookkeeping of corner points. Additionally, possible singularities at the corners of the geometry Ω
are of concern. By introducing interpolation at the level of the local discretizations, the methods
in [18, 1, 17] avoid the corners of Ω. The new local discretization presented in this manuscript does
not involve the corner points at all; thus improving the robustness and efficiency of the method.

1.4. Outline of paper. For simplicity of presentation, the proposed algorithm is described for a
PDE with no body load (i.e. g(x) = 0 in (1)). The manuscript begins by reviewing the HPS method
with uniform refinement in section 2 but with the new local discretization technique. Next, the
adaptive refinement procedure is presented in section 3. Then, numerical experiments demonstrating
the performance of the method in section 4. Finally the manuscript concludes with a summary of
the paper in section 5.

2. The HPS method

This section presents the HPS method with a new local discretization technique. The HPS
method begins by partitioning the domain Ω into a collection of square (or possibly rectangular)
boxes, called leaf boxes. Throughout this paper, we assume that the parameter for the order of the
discretization nc is fixed (nc = 16 is often a good choice). For a uniform discretization, the size
of all leaf boxes is chosen so that any potential u of equation (1), as well as its first and second
derivatives, can be accurately interpolated from their values at the local discretization points on
any leaf box.

Next a binary tree on the collection of leaf boxes is constructed by hierarchically merging them,
making sure that all boxes on the same level are roughly of the same size, cf. Figure 1. The boxes
should be ordered so that if τ is a parent of a box σ, then τ < σ. We also assume that the root of
the tree (i.e. the full box Ω) has index τ = 1. We let Ωτ denote the domain associated with box
τ . If a box ρ is child of σ and σ is a child of τ , we call ρ a grandchild of τ . For example in Figure
1, boxes 16 − 19 are grandchildren of box 4. (This vocabulary is needed for the adaptive scheme
presented in section 3.)

For each leaf box, approximate Dirichlet-to-Neumann (DtN) and solution operators are con-
structed via the modified spectral collocation method presented in section 2.1. The DtN approx-
imations are “glued” together in a hierarchical fashion two boxes at a time. Section 2.2 presents
the technique for constructing approximate DtN and solution operators for the union of two boxes.
Algorithm 1 gives an overview of the construction of the discretization and direct solver. Once the
hierarchical collection of approximate solution operators is constructed, the solution on the interior
can be found for O(N logN) cost via Algorithm 2.

Definition 2.1 (Dirichlet-to-Neumann map). For domain Ω with boundary Γ, the Dirichlet-to-
Neumann (DtN) operator T : H1(Γ)→ L2(Γ) is defined by

(3) Tf = un,

for any Dirichlet boundary data f(x) ∈ H1(Γ), where un denotes the normal derivative of u on Γ
in the direction of the normal vector n pointing out of Ω.



4

1 2 3

4

5

6

7

8 9

10 11

12 13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 1. The square domain Ω is split into 4 × 4 leaf boxes. These are then
gathered into a binary tree of successively larger boxes as described in Section 2.
One possible enumeration of the boxes in the tree is shown, but note that the only
restriction is that if box τ is the parent of box σ, then τ < σ.

2.1. Leaf computation. This section describes a modified spectral collocation method for con-
structing approximate DtN Tτ and solution Ψτ operators for a leaf box τ .

The modified spectral collocation technique begins with the classic nc × nc product Chebychev
grid and the corresponding differential matrices Dx and Dy from for example [29]. Let Iτi denote
the index vector corresponding to points on the interior of Ωτ and Iτb denote the index vector
corresponding to points on the boundary of Ωτ not including the corner points based on the tensor
classic tensor grid. Figure 2 illustrates the indexing of the points in terms of the classic discretization.

Thus {xj}n
2
c−4
j=1 denotes the discretization points in Ωτ given by the union of the red and blue points

in Figure 2. We order the solution vector u and flux vector v according to the following: u =

[
ub
ui

]
where ub and ui denote the approximate values of the solution on the boundary and the interior,
respectively. The ordering of the entries related to the boundary corresponding to the discretization
points is Iτb = [Is, Ie, In, Iw] where Is denotes the blue points on the south boundary in Figure 2,
etc. Let Iτ = [Iτb , I

τ
i ] denote the collection of all indices that are used in the discretization.

Thanks to the tensor product basis, we know the entries of Dx and Dy corresponding to the
interaction of the corner points with the points on the interior of Ωτ are zero. The directional basis
functions for the other points on the boundary are not impacted by the removal of the corner points.
Thus the differential operators from the classic pseudospectral discretization can be used to create
the approximation of the local differential operator and DtN.

The classic discrete approximation of the differential operator on Ωτ is given by

A = −C11D2
x − 2C12DxDy − C22D2

y + C1Dx + C2Dy + C,

where C11 is the diagonal matrix with diagonal entries {c11(xk)}
n2
c
k=1, and the other matrices Cij , Ci,

C are defined analogously. Then the discretized differential equation on the new set of discretization
points is given by [

I 0
Ai,b Ai,i

] [
ub
ui

]
=

[
f̂
0

]
where Ai,i = A(Iτi , I

τ
i ) is a matrix of size (nc − 2)2 × (nc − 2)2, Ai,b = A(Iτi , I

τ
b ) is a matrix of size

(nc− 2)2× (4nc− 8), and f̂ is vector of length 4nc− 8 containing fictitious Dirichlet boundary data.
When the boundary data is known, the approximate solution at the interior points is given by

(4) ui = −A−1
i,i Ai,bub = Ψτub

where the matrix Ψτ is the approximate solution operator. Since the matrix Ai,i is not large (even
for nc = 16), it can be inverted quickly using dense linear algebra.
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Iτi
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︸
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︷

Iw

Figure 2. Illustration of the discretization points for a leaf box τ . The points in
blue are the boundary points with indices Iτb = [Is, Ie, In, Iw]. The points in red are
the interior points with indices Iτi . The points in black are the omitted corner points.

Let L denote the matrix made up of four block row matrices corresponding to taking the normal
derivative of the basis functions on the leaf τ along each of the edges. In terms of the discrete
operators L is given by

L =


Dx(Is, I

τ )
Dy(Ie, I

τ )
Dx(In, I

τ )
Dy(Iw, I

τ )

 .
To construct the approximate DtN operator Tτ , we take the normal derivative of the solution by

applying L to

[
I4nc−8

Ψτ

]
, i.e.

Tτ = L

[
I4nc−8

Ψτ

]
where I4nc−8 denotes the identity matrix of size 4nc − 8.

Remark 1. The classic tensor product discretization can be used to formulate the new discretization
thanks to the separable basis (i.e. the corner points do not contribute the discretized differential
equation). While interpolation along the edges without the corners is less accurate than if the
corners were included, it is stable [28]. Since the discretization is run at high order (typically
nc ≥ 16), a loss in accuracy is not observed in practice.

2.2. Merging two boxes. This section reviews of the procedure for constructing the DtN and
solution matrices for the union of two boxes for which DtN matrices have already been constructed.
More detailed descriptions are presented in [18, 23, 1].

Let Ωτ denote a box with children Ωα and Ωβ so that

Ωτ = Ωα ∪ Ωβ.

For concreteness, let us assume that Ωα and Ωβ share a vertical edge as shown in Figure 3. We
partition the points on ∂Ωα and ∂Ωβ into three sets:

I1 Boundary nodes of Ωα that are not boundary nodes of Ωβ.
I2 Boundary nodes of Ωβ that are not boundary nodes of Ωα.
I3 Boundary nodes of both Ωα and Ωβ that are not boundary nodes of the

union box Ωτ .
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Ωα ΩβI1 I2I3

Figure 3. Notation for the merge operation described in Section 2.2. The rect-
angular domain Ω is formed by two squares Ωα and Ωβ. The sets I1 (blue circles)
and I2 (blue diamonds) form the exterior nodes, while I3 (red circles) consists of the
interior nodes.

The indexing for the points on the interior and boundary of Ωτ are Iτi = I3 and Iτb = [I1, I2],
respectively.

Let u denote a solution to (1), with tabulated potential values u and boundary fluxes v. Ordering
the DtN operators according to the Ik defined in Figure 3 results in the equations

(5)

[
v1

v3

]
=

[
Tα

1,1 Tα
1,3

Tα
3,1 Tα

3,3

] [
u1

u3

]
, and

[
v2

v3

]
=

[
Tβ

2,2 Tβ
2,3

Tβ
3,2 Tβ

3,3

] [
u2

u3

]
where Tα

1,1 = Tα(I1, I1), etc. Noting that v3 and the solution u3 is the same for each box (since the
solution is smooth), the solution operator Ψτ is found by equating the bottom two row equations
of (5);

(6) u3 =
(
Tα

3,3 − Tβ
3,3

)−1[−Tα
3,1

∣∣ Tβ
3,2]

[
u1

u2

]
= Ψτ

[
u1

u2

]
.

The operator Ψτ in (6) maps the solution on the boundary of Ωτ to the solution u3 on the interior
edge. The DtN operator is then constructed by plugging equation (6) into the top row equations
in (5) and combining them to a matrix equation. The result is[

v1

v2

]
= Tτ

[
u1

u2

]
(7)

where

(8) Tτ =

[
Tα

1,1 0

0 Tβ
2,2

]
+

[
Tα

1,3

Tβ
2,3

] (
Tα

3,3 − Tβ
3,3

)−1[−Tα
3,1

∣∣ Tβ
3,2

]
.

3. Adaptive discretization

This section presents an adaptive discretization technique for the boundary value problem (1)
where the coefficient functions, right hand side and boundary data are smooth functions. As with the
uniform discretization technique, the adaptive method produces a direct solver. The approximate
solution obtained from the adaptive procedure is accurate (in the relative error) to a user prescribed
tolerance ε.

At a high level, the idea stems from the fact that the discretization on a leaf can be accurate
enough to capture the solution locally if it was given correct boundary data. The indicator for
further refinement we propose in this section determines if the local basis is good enough to capture
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Algorithm 1 (build solution operators)

This algorithm builds the global Dirichlet-to-Neumann operator for (1).
It also builds all the solution matrices Ψτ required for constructing an
approximation to u at any interior point.
It is assumed that if node τ is a parent of node σ, then τ < σ.

(1) for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
(2) if (τ is a leaf)
(3) Construct Tτ and Ψτ via the process described in Section 2.1.
(4) else
(5) Let σ1 and σ2 be the children of τ .
(6) Split Iσ1b and Iσ2b into vectors I1, I2, and I3 as shown in Figure 3.

(7) Ψτ =
(
Tσ1

3,3 − Tσ2
3,3

)−1[−Tσ1
3,1

∣∣ Tσ2
3,2

]
(8) Tτ =

[
Tσ1

1,1 0
0 Tσ2

2,2

]
+

[
Tσ1

1,3

Tσ2
2,3

]
Ψτ .

(9) Delete Tσ1 and Tσ2 .
(10) end if
(11) end for

Algorithm 2 (solve BVP once solution operator has been built)

This program constructs an approximation u to the solution u of (1).
It assumes that all matrices Ψτ have already been constructed in a pre-
computation.

(1) u(k) = f(xk) for all k ∈ I1
b.

(2) for τ = 1, 2, 3, . . . , Nboxes

(3) u(Iτi ) = Ψτ u(Iτb ).
(4) end for

the solution locally. The stopping criterion for the adaptive procedure is based on the relative
convergence error. This ensures that each leaf is given accurate boundary data. Starting such an
adaptive technique with a global discretization of Ω would be computationally prohibitive. Instead,
we initialize the mesh by utilizing the fact that the basis on a leaf should be able to represent the
coefficient functions and the right hand side in (1) to the user prescribed ε.

Remark 2. In practice, one could likely get away with asking for less accuracy of the adaptive
interpolation scheme. Since the interpolation is inexpensive compared to the cost of building the
discretization and direct solver, we choose to be cautious.

The algorithm can be broken into seven steps.

Step 1: Use the adaptive interpolation technique from section 3.1 applied to the coefficient functions
and the right hand side of equation (1). This yields an initial mesh.

Step 2: Construct an HPS solver for the non-uniform mesh resulting from the adaptive interpolation
scheme via the techniques presented in section 3.2.
Let uτ,old denote the approximate solution on leaf box τ .

Step 3: Use indicator presented in section 3.3 to determine which boxes need additional refinement.
Step 4: If a leaf box τ has been marked for refinement, split into into four boxes (α1, α2, α3 and

α4).
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Step 5: Discretize the new leaf boxes and update the direct solver. Since the discretization is local-
ized and the direct solver is naturally domain decomposing, the direct solver can efficiently
be updated without touching the entire geometry (see section 3.4).
Let uτ,new denote the solution on leaf box τ obtained with the new mesh.

Step 6: Check the relative convergence error by sweeping over all the leaf boxes on the old tree.
If leaf box τ was not refined, the relative convergence error for that box is defined to be

Eτrel =
‖uτ,old − uτ,new‖2
‖uτ,old + uτ,new‖2

.

If leaf box τ was refined with grandchildren α1, α2, α3 and α4 then the relative convergence
error is defined as

Eτrel =
‖uτ,old − Luτfine‖2
‖uτ,old + Luτfine‖2

where uτfine =


uα1,new

uα2,new

uα3,new

uα4,new

, and L is a matrix that interpolates functions from the fine dis-

cretization points to the coarse discretization points.

Step 7: If the average relative Erel = 1
nτ

∑
τ E

τ
rel > ε where τ is a leaf box on the old tree and nτ is

the number of leaf boxes in the old tree, the algorithm terminates. Otherwise, the vectors
uτ,new get the label old and return to Step 3.

3.1. Adaptive interpolation. In order to keep the cost of the adaptive discretization as low as
possible, we first create a mesh which allows for the smooth functions in (1) to be approximated
with the local bases to the user prescribed tolerance ε. For simplicity of presentation, we describe
the technique for interpolating a general smooth function f(x) on Ω.

First, given nc, a tensor product grid of n2
c Chebychev points is placed on Ω and each of its

four grandchildren boxes (boxes 4, 5, 6 and 7 in Figure 1). Let XΩ = {xΩ
l }

nc2

l=1 denote the set of

interpolation points defined on box Ω. Likewise, let Xj = {xjl }
nc2

l=1 for j = 4, 5, 6, and 7 denote the

set of interpolation points in box j. Set Xgrand =
7⋃
j=4

Xj . Figure 4 illustrates the interpolation

points on Ω and the four grandchildren when nc = 16 and Ω = [0, 1]2.
Let fΩ denote the vector whose entries correspond to f(x) evaluated at the points in XΩ and Letk

denote the interpolation operator which maps data from XΩ to Xgrand. (The notation etk stands
for “elder to kids.”) Then fapp = LetkfΩ is the approximate value of f(x) at the points in Xgrand

interpolated from the values of f(x) at the points in XΩ. Let fkids denote the vector whose entries
correspond to f(x) evaluated at the points in Xgrand. Let

Einterp =
‖fkids − fapp‖2
‖fkids‖2

denote the relative interpolation error. If Einterp > ε, Ω is split into the four grandchildren boxes.
The process is repeated for each of these smaller boxes. The process terminates when Einterp ≤ ε.

3.2. Non-uniform HPS solver. The mesh that results from the adaptive interpolation scheme is
likely to be highly non-uniform. While the leaf level operations of the HPS method can remain the
same as for the uniform mesh, the merge operation needs to be modified. Specifically, the boundary
operators on the shared interface I3 in Figure 6 need to “align.” We chose to align the operator via
interpolation.
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Figure 4. Illustration of the interpolation points on (a) Ω = [0, 1]2 and (b) its four grandchildren.

Interpolating a super fine mesh to a coarse mesh can be unstable. One approach to avoid
stability problems is to use nested interpolation operators that recursively map two panels worth
of interpolation points to one panels worth of interpolation points. Alternatively, a level restricted
tree which requires all neighboring boxes be no more than two times bigger than each other is also
stable. For two dimensional problems, we found the constant pre-factors favorable toward the latter
approach. For three dimensional problems, the nested interpolation will likely be more efficient.
Figure 5 illustrates the mesh resulting from the adaptive interpolation scheme with and without
level restriction.
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(b)
Figure 5. Illustration of the mesh resulting from adaptive interpolation applied

to f(x) = f(x, y) = e−(1000(x−0.11)2+100(y−0.27)2) (a) without and (b) with level re-
striction. The tolerance was set to ε = 1e− 6 and nc = 16.

The process of merging two boxes on different levels is straight forward. For simplicity of presen-
tation, we present the technique for merging a leaf box α with a box β whose grandchildren are leaf
boxes. In this situation, Ωβ has twice as many points on its boundary as Ωα. Likewise, the DtN
matrix Tβ is twice the size of Tα. Figure 6 illustrates discretization points on the two boxes. The
points in I3 from box α do not match the points in I3 from box β. In order to merge the two boxes,
we use interpolation. Let L2t1 and L1t2 denote the interpolation operators that map two panels to
one panel on the same interval and vice versa. Since there are nc − 2 points on each panel, the
interpolation operators are nc− 3 order. Then the solution and DtN matrices on Ωτ = Ωα ∪Ωβ are
given by inserting the interpolation operators into the appropriate locations in equations (6) and
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Ωα ΩβI1 I2I3

Figure 6. Notation for the merge operation when boxes are on different levels as
described in Section 3.2. The rectangular domain Ω is formed by two squares Ωα

and Ωβ. The points on the boundary of Ωα are solid black dots while the points on
the boundary of the children of Ωβ are blue hollow dots.

(7);

Ψτ =
(
Tα

3,3 − L2t1Tβ
3,3L1t2

)−1[−Tα
3,1

∣∣ L2t1Tβ
3,2]

and

Tτ =

[
Tα

1,1 0

0 Tβ
2,2

]
+

[
Tα

1,3

Tβ
2,3L1t2

]
Ψτ .

Remark 3. Merging two boxes on different levels was also presented in [1]. There the DtN operator

Tβ is interpolated to a corresponding operator so that the number of points per edge matches the
operator on box α. The method presented in this paper does not take this approach since the coarse
sampling of boundary data on Ω1 = Ω may not be sufficient resulting in a loss of accuracy.

3.3. Indicator for refinement. This section presents a technique for identifying which leaf boxes
need further refinement. The technique utilizes the fact that the local problem can be fully resolved
even though the error is large due to incorrect boundary data. To determine if the local problem
is fully resolved, the method we propose looks at the tail coefficients of the approximate solution
written in a Chebychev expansion on the leaf boxes. This technique is inspired by [21] where a decay
condition on the local Chebychev expansion coefficients was used to build an adaptive discretization
technique for one dimensional integral equations.

Since each leaf box has a modified tensor product basis, the approximate solution uapp at any
discretization point can be written as the product of two Lagrange polynomials Φ(x) and Ψ(y) with x
and y interpolation nodes respectively. Thus we will look at the directional Chebychev coefficients to
build a refinement criterion. Recall that for one dimensional interpolation the Lagrange interpolant
through Chebychev points can be expressed as a partial Chebychev expansion with coefficients that
can be found via the Fast Fourier Transform (FFT)[7]. If the basis is sufficient to capture the
solution locally, the series will be convergent and thus we can approximate the contributions from
the remainder of the series by looking at the last few coefficients of the local expansions [21].

Specifically, for a leaf box Ωτ , let {xj}ncj=1 and {yj}ncj=1 denote the one dimensional Chebychev
interpolation points that the x and y coordinates of any discretization point. For a fixed xj ,
j = 2, . . . , nc−1, let the vector Bj of length nc denote the Chebychev coefficients in the y−direction
of the approximate solution along the line x = xj for y ∈ [y1, yn]; i.e. the entries in Bj correspond
to the coefficients of Ψ(y) written in terms of Chebychev polynomials along the line x = xj in Ωτ .
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We define

Sy = max
j=2,...,nc−1

(|Bj(nc − 1)|+ |Bj(nc)− Bj(nc − 2)|)

be the indicator of the decay of the coefficients in the y−direction. Likewise for a fixed yj ,
j = 2, . . . , nc − 1, let Cj denote vector of length nc containing the Chebychev coefficients of the
approximate solution along the line y = yj in Ωτ (i.e. the x−direction coefficients) and define

Sx = max
j=2,...,nc−1

(|Cj(nc − 1)|+ |Cj(nc)− Cj(nc − 2)|)

to be the indicator of the decay of the coefficients in the x−direction. Then, for each leaf box τ ,
we define Sτ = max{Sx, Sy}. This yields a measure for how well the local basis is able capture
solutions to the partial differential equation restricted to Ωτ . Let

Sdiv =
1

4
max

leaf boxes τ
Sτ .

This gives a measure for how accurate we should hope the tail of the local expansions should be.
Any leaf box that does not meet this requirement, i.e. Sτ > Sdiv, is marked for further refinement.
Algorithm 3 presents a pseudocode for determining which leaf boxes need refinement.

Algorithm 3 (Refinement indicator)

This algorithm presents the technique for determining which leaf boxes
need additional refinement. It assumes a tree structured mesh and the
corresponding direct solver are given.

(1) for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
(2) if (τ is a leaf)
(3) for j = 2, . . . , nc − 1
(4) Compute the y-directional Chebychev coefficients Bj of the

approximate solution on τ .
(5) end for
(6) Let Sy = max

j=2,...,nc−1
(|Bj(nc − 1)|+ |Bj(nc)− Bj(nc − 2)|)

(7) for j = 2, . . . , nc − 1
(8) Compute the x-directional Chebychev coefficients Cj of the

approximate solution on τ .
(9) end for
(10) Let Sx = max

j=2,...,nc−1
(|Cj(nc − 1)|+ |Cj(nc)− Cj(nc − 2)|)

(11) Let Sτ = max{Sx, Sy}
(12) end if
(13) end for

(14) Let Sdiv = 1
4

(
max

leaf boxes τ
Sτ

)
.

(15) for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
(16) if (τ is a leaf)
(17) if Sτ > Sdiv

(18) Add τ to the refinement list.
(19) end if
(20) end for
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3.4. Updating the solver. Once the list of leaf boxes marked for refinement is made, we need to
solve (1) with the refined grid to determine if the mesh gives the desired accuracy. Constructing
the direct solver from scratch is computationally expensive and unnecessary when the refinement is
localized. This section presents a technique for building the solver for the refined mesh while making
use of the existing solver. The key observation is the fact that the solution technique is naturally
domain decomposing. This means that the only parts of the solver that need to be modified are
the parts that touch the refined regions.

The first step in this process is to make a list of all boxes affected by the local refinement. To
do this, starting from the list of boxes refined, we sweep the binary tree making note of all the
ancestors affected. For example, if boxes 16, and 18 were the only boxes marked for refinement in
Figure 1, the solver would need to update the operators for boxes 1, 2, 4, 8 and 9. The operators
for the other boxes need not be touched.

Next DtN and solution matrices are constructed by moving through the list of effected boxes
starting from the bottom of the tree (i.e. first processing the leaf boxes then its ancestors in order
of ancestry).

Remark 4. Further acceleration can be gained by creating new tree structures based on the re-
finement regions. For the example where boxes 16 and 18 in Figure 1 require refinement, DtN and
solution matrices can be constructed for the union of boxes 5, 6, 7, 17 and 19. Then the computation
is limited to the boxes 16, 18, their union and gluing the union with the remainder of the geometry.
For the problems under consideration in this manuscript, this technique was not employed.

4. Numerical results

This section illustrates the ability of the adaptive discretization technique to solve a collection
of problems. First, in section 4.1, three problems suggested in [24] to test adaptive discretization
techniques for elliptic PDEs are considered. For each of these problems the solution is known but
each poses a different challenge for adaptive discretization techniques. Section 4.2 considers two
Helmholtz problems: a low- to mid-frequency constant coefficient problem with a source and a high
frequency variable coefficient problem. The globally oscillatory nature of the solution adds to the
challenge of accurately discretizing these problems.

The following quantities are reported.
nc: the choice of discretization order
Ni: the number of leaf boxes after adaptive interpolation
Nf : the number of leaf boxes after adaptive discretization
Ti: the time in seconds for the adaptive interpolation step
Tf : the time in seconds for the adaptive discretization step
Ts: the time in seconds to apply the resulting solver
R: the memory in GB for storing the direct solver
For all experiments, the uniform discretization technique is applied for comparison purposes. Tpre

is used to report the time in seconds for discretizing the PDE and building the direct solver.
To report on the accuracy of the solution techniques, we report

Erel =
1

Nf

∑
leaf boxesτ

Eτrel

where

Eτrel =
‖uτapp − uτref‖2
‖uτref‖2

for leaf box τ , uτapp is the approximate solution at the discretization points on τ , and uτref is the
reference solution evaluated at the discretization points on τ . For the problems where the solution
is known, the reference solution is the exact solution. For problems where the solution is unknown,
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the reference solution is given by an approximate solution obtained by running the uniform HPS
method until convergence.

4.1. Problems with known solutions. This section reports the performance of the solution
techniques for three problems where the solution is known and the partial differential equation has
smooth coefficients on the domain Ω = (0, 1)2. The problems under consideration are the following:
Boundary layer: The Dirichlet boundary value problem

−α∇2u+ 2
∂u

∂x
+
∂u

∂y
= f(x, y),

where the solution is given by

u(x, y) = (1− e−(1−x)/α)(1− e−(1−y)/α) cos(π(x+ y))

and the parameter α = 10−3 determines the steepness of the boundary layer.
Locally oscillatory solution: The Dirichlet boundary value problem

−∇2u− 1

(α+
√
x2 + y2)4

u = f(x, y),

where the solution is given by

u(x, y) = sin

(
1

α+
√
x2 + y2

)
and the parameter α = 1

10π determines the number of oscillations in the solution. The oscillations
are clustered near the origin.
Wave front: The Poisson Dirichlet boundary value problem where the solution is given by

u(x, y) = tan−1(50(
√

(x+ 0.05)2 + (y + 0.05)2 − 0.7)).

Figure 7 illustrates the solutions to each of these problems. Table 1 reports the performance of
the method for each of these problems with the stopping tolerance set to ε = 10−5 and different
discretization orders nc = 8, 16 and 32. For all of the experiments the adaptive algorithm achieves
the desired tolerance. In fact, for most of the experiments the discretization technique achieves
better than the desired tolerance. The results also indicate that since the solutions to the boundary
layer and locally oscillatory problem are “nicer” than the coefficients of the partial differential
equation, the mesh achieved via the adaptive interpolation technique is more than sufficient for
resolving the problem. For the wave front problem discretized with the low order basis, the adaptive
discretization technique is needed to achieve the user specified tolerance. For all the experiments, it
is computationally beneficial (less expensive to achieve the same or better accuracy) to use a higher
order discretization. The timing results re-enforce the benefit of using the high order basis.

Figure 8 illustrates the mesh overlayed on the solution for each experiment. The mesh shows
that the method is finding the areas where refinement is necessary. The denseness of the leaf boxes
visualize the additional cost of using a low order method.

Tables 2-4 report the time in seconds for applying the uniform discretization technique to the three
partial differential equations Tf and applying the direct solver Ts for different orders of discretization
nc and numbers of leaf boxes Nf . The memory R for storing the direct solver and the relative error
Erel are also reported. The cost for building the direct solver is more expensive for the adaptive
discretization technique than for the uniform discretization. This is the case for most adaptive
discretization techniques. The cost of applying the direct solver from the adaptive discretization
is less expensive than applying the solver from the uniform discretization. To achieve the same
accuracy as the adaptive discretization, the uniform discretization requires more leaf boxes and is
more expensive (measured by adding the cost testing the finer grids).
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(a) Boundary layer (b) Locally oscillatory

(c) Wave front

Figure 7. Illustration of the solutions to the problems under consideration in
section 4.1: (a) Boundary layer problem, (b) Problem with a locally oscillatory
solution, and (c) Problem where the solution is a wavefront.

Problem nc Ni Nf Ti Tf Ts R Erel

Boundary layer
8 66610 66610 3.58e+03 1.99e+02 1.01e+01 33.4 5.39e−09
16 2194 2194 1.60e+01 3.18e+01 1.29e+00 2.99 7.27e−10
32 316 316 2.42e+01 5.70e+01 4.97e−01 3.46 3.52e−13

Locally oscillatory
8 21247 21247 5.08e+02 4.24e+01 3.18e+00 5.57 1.35e−08
16 487 487 4.43e+00 5.97e+00 2.21e−01 0.78 1.93e−08
32 232 232 7.05e+00 2.14e+01 3.06e−01 3.15 4.06e−09

Wave front
8 44392 148087 1.28e+03 7.24e+03 2.34e+01 56.0 5.43e−04
16 1405 1405 1.42e+01 1.56e+01 4.96e−01 1.39 4.36e−11
32 349 349 1.60e+01 1.40e+02 4.60e−01 3.74 5.20e−12

Table 1. Timing, memory and error results for applying the adaptive technique
to each of the experiments in section 4.1 with different orders of discretization nc.

4.2. Helmholtz problems. This section illustrates the performance of the discretization tech-
niques when applied two Helmholtz problems of the form

−∆u− ω2c(x)u = f(x, y)

on a square geometry Ω with an incident wave boundary condition u(x) = eiωd·x where d = (1, 0).
Two choices of geometry, coefficient function c(x) = c(x, y) and body load f(x, y) are considered:

Constant coefficient: For this experiment, Ω = (−1, 1)2 is twenty wavelengths in size (ω = 20π),
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(a) Boundary layer with nc = 8 (b) Boundary layer with nc = 16

(c) Oscillatory solution with nc = 8 (d) Oscillatory solution with nc = 16

(e) Wave front solution with nc = 8 (f) Wave front solution with nc = 16

Figure 8. Illustration of the mesh generated by the adaptive discretization tech-
nique (overlayed on the solution) with nc = 8 and 16 for the problems in section
4.1.

c(x) = 1 and

f(x, y) =
1√

2π 0.005
e
−x2+(y−0.875)2

2(0.005)2 .

Variable medium: For this experiment, Ω = (−0.5, 0.5)2, ω = 150, f(x) = 0, and

c(x) = c(x, y) = 4(y − 0.2)[1− erf(25(|x| − 0.3))].

Figure 9 illustrates the real part of the solutions to these problems. A reference solution generated
by applying the uniform discretization scheme until the the relative convergence error was less than
the stopping tolerance ε was used to generate the reference solution.

Table 5 reports on the performance of the adaptive discretization technique applied to the
Helmholtz problems. Figure 10 illustrates the mesh resulting from the adaptive procedure. For
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nc Nf Tpre Ts R Erel

16

4 9.84e−02 4.07e−02 0.003 9.46e−01
16 2.14e−01 2.01e−02 0.01 2.63e−01
64 4.39e−01 2.95e−02 0.06 4.21e−02

256 1.40e+00 1.24e−01 0.24 2.19e−03
1024 5.83e+00 5.45e−01 1.05 2.79e−05
4096 2.49e+01 3.93e+00 4.52 5.40e−08

16384 1.19e+02 1.76e+01 19.3 1.93e−11

32

4 3.69e−01 3.93e−02 0.04 7.92e−02
16 1.21e+00 3.61e−02 0.16 5.15e−03
64 3.89e+00 1.32e−01 0.67 4.72e−05

256 1.51e+01 1.60e+00 2.76 1.74e−08
1024 1.01e+02 6.36e+00 11.4 1.22e−13

Table 2. Timing, memory and error results for applying the uniform discetization
technique to the boundary layer problem with different orders of discretization nc.

nc Nf Tpre Ts R Erel

16

4 1.25e−01 2.79e−02 0.003 4.78e−01
16 2.20e−01 1.82e−02 0.01 6.44e−01
64 5.12e−01 3.39e−02 0.06 5.97e−01

256 1.63e+00 9.50e−02 0.24 1.11e−01
1024 6.03e+00 3.78e−01 1.05 6.16e−04
4096 2.32e+01 2.52e+00 4.52 2.55e−05

16384 1.00e+02 1.50e+01 19.3 3.25e−06
65536 4.27e+02 6.51e+01 82.4 4.09e−07

32

4 4.05e−01 3.57e−02 0.04 4.88e−01
16 1.07e+00 3.61e−02 0.16 6.93e−03
64 3.27e+00 7.04e−02 0.67 5.35e−04

256 1.41e+01 3.06e+00 2.76 1.64e−05
1024 5.65e+01 1.30e+01 11.4 2.24e−06
4096 2.34e+02 4.73e+01 47.0 3.10e−07

16384 1.00e+03 1.68e+02 194.0 4.36e−08
Table 3. Timing, memory and error results for applying the uniform discetization
technique to the locally oscillatory problem with different orders of discretization nc.

the constant coefficient case, the Gaussian body load is not located close to the nc = 8 discretiza-
tion points on Ω1 = Ω, thus the adaptive procedure was not able to capture it. To rectify this,
we started the adaptive procedure with an initialized 16 × 16 uniform mesh. Since high order
discretization techniques are better suited for high frequency problems, we only consider nc = 16
and nc = 32 for the variable coefficient problem. The results for both problems indicate there is
no benefit in running the adaptive discretization technique with a really high order discretization
(nc = 32). The choice of nc = 16 is faster in the precomputation plus the solve time and memory
are comparable.

Tables 6 and 7 report on the performance of the uniform HPS discretization for the constant
coefficient and variable coefficient problems, respectively, with nc = 16 and 32. Notice that the
adaptive method not only requires a smaller number of discretization points, it is also faster for
both the precomputation and apply stages than the uniform method to achieve the same accuracy.
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nc Nf Tpre Ts R Erel

16

4 1.52e−01 3.35e−02 0.003 1.24e−01
16 3.73e−01 1.97e−02 0.01 5.50e−03
64 9.55e−01 1.94e−02 0.06 1.08e−04

256 3.85e+00 7.24e−02 0.24 1.95e−06
1024 1.47e+01 4.40e−01 1.05 1.93e−09
4096 4.83e+01 2.21e+00 4.52 1.84e−11

32

4 8.79e−01 3.61e−02 0.04 3.20e−03
16 1.12e+00 2.72e−02 0.16 9.22e−05
64 3.75e+00 2.14e−01 0.67 8.69e−08

256 1.49e+01 2.46e+00 2.76 2.07e−11
1024 5.65e+01 1.33e+01 11.4 1.66e−11
4096 2.30e+02 4.78e+01 47.0 6.71e−11

Table 4. Timing, memory and error results for applying the uniform discetization
technique to the wave front problem with different orders of discretization nc.
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Figure 9. Illustration of the real part of the solutions to the problems under
consideration in section 4.2: (a) constant coefficient and (b) variable coefficient.

Problem nc Ni Nf Ti Tf Ts R Erel

Constant
8 1576 14470 2.54e+00 3.04e+02 2.91e+00 5.242 1.02e−05
16 1 460 4.09e−02 1.71e+01 2.44e−01 1.081 8.06e−06
32 1 64 1.68e−01 3.45e+01 1.31e−01 1.504 9.33e−07

Variable
16 64 610 7.37e−01 2.06e+01 3.10e−01 1.434 4.60e−06
32 16 61 2.71e+00 4.31e+01 1.54e−01 1.431 1.06e−05

Table 5. Timing, memory and error results for applying the adaptive technique
to the Helmholtz problems in section 4.2.

5. Concluding remarks

This manuscript presents an high order adaptive discretization technique that comes with an
efficient direct solver. The HPS method presented here uses a new local pseudospectral discretization
that does not involve corner points. By removing the corner points, the leaf computations are less
expensive and more stable than the previous version of the method.

The adaptive discretization technique utilizes the modified local tensor product basis to look
at convergence of the directional Chebychev expansions to determine which regions of the domain
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nc Nf Tf Ts R Erel

16

4 1.43e−01 2.30e−02 0.007 2.50e−01
16 4.23e−01 4.25e−02 0.031 7.02e+00
64 1.31e+00 3.33e−02 0.136 2.21e−01

256 5.13e+00 1.09e−01 0.591 1.40e−03
1024 2.00e+01 5.13e−01 2.554 1.20e−04
4096 7.75e+01 6.73e+00 10.98 2.02e−06

16384 3.12e+02 3.57e+01 46.98 1.91e−09

32

4 1.09e+00 3.14e−02 0.087 5.35e−01
16 3.71e+00 8.50e−02 0.362 1.04e−01
64 1.40e+01 3.07e−01 1.505 2.75e−02

256 5.61e+01 3.23e+00 6.238 2.20e−07
1024 2.35e+02 1.84e+01 25.83 4.05e−09

Table 6. Timing, memory and error results solving the constant coefficient
Helmholtz problem in section 4.2 with a uniform discretization.

nc Nf Tf Ts R Eref

16

4 1.69e−01 2.34e−02 0.007 2.35e−01
16 5.00e−01 1.58e−02 0.031 2.89e−01
64 1.49e+00 2.63e−02 0.136 1.89e−01

256 5.91e+00 1.01e−01 0.591 7.76e−04
1024 2.43e+01 8.95e−01 2.554 7.47e−08
4096 9.04e+01 8.98e+00 10.98 1.24e−10

16384 3.21e+02 3.77e+01 46.98 7.78e−10

32

4 1.21e+00 3.20e−02 0.087 2.64e−01
16 4.45e+00 3.67e−02 0.362 1.54e−01
64 1.63e+01 2.85e−01 1.505 2.29e−06

256 6.19e+01 3.72e+00 6.238 9.24e−11
1024 2.76e+02 1.71e+01 25.83 6.23e−10

Table 7. Timing, memory and error results solving the variable coefficient
Helmholtz problem in section 4.2 with a uniform discretization.

Ω need refinement. Since a discretization is based on decomposing the domain, updating the
accompanying direct solver after refinement is inexpensive. The numerical results show that method
is able to achieve the user prescribed accuracy and refines only of regions where it is necessary. For all
problems the cost of applying and storing the direct solver resulting from the adaptive discretization
technique is less than using a uniform discretization. For problems where the solution is globally
oscillatory the cost of adaptive discretization technique is less than a uniform discretization.
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7. Appendix

Consider the variable coefficient Helmholtz impedance boundary value problem

(9)
−∆u− ω2c(x)u = s(x, y) x ∈ Ω

∂u

∂ν
+ iηu = t(x, y) x ∈ ∂Ω = Γ.

where ν denotes the outward facing normal vector, c(x) is a smooth function, ω ∈ R, and η ∈ C.
This section presents the technique for solving variable coefficient Helmholtz problems such as

(9) using the HPS method. This technique uses impedance-to-impedance (ItI) operators instead of
the DtN operators used in the body of the paper.
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Definition 7.1 (impedance-to-impedance map). Fix η ∈ C, and Reη 6= 0. Let

f := un + iηu|Γ(10)

g := un − iηu|Γ(11)

be Robin traces of u. We refer to f and g as the “incoming” and “outgoing” (respectively) impedance
data. For any ω > 0, the ItI operator R : L2(Γ)→ L2(Γ) is defined by

(12) Rf = g

for f and g the Robin traces of u the solution of (9), for all f ∈ L2(Γ).

To make the solution technique useful for different choices of s(x, y), we choose to represent the
solution u as a superposition of the homogeneous solution w and the particular solution z; i.e.
u = w + z where z is the solution of the following boundary value problem

−∆z − ω2c(x)z = s(x, y) x ∈ Ω

∂z

∂ν
+ iηz = 0 x ∈ ∂Ω = Γ

and w is the solution of

−∆w − ω2c(x)w = 0 x ∈ Ω

∂w

∂ν
+ iηw = t(x, y) x ∈ ∂Ω = Γ.

Section 7.1 presents the leaf computation and section 7.2 presents the technique for merging two
boxes. Throughout the notation is kept consistent with that of section 2. When there is no body
load (i.e. s(x, y) = 0), the method from [17] is recovered.

7.1. Leaf computation. This section presents the construction of the homogeneous and particular
solutions to (9) using the modified spectral collocation method from section 2.1. Additionally, a
matrix R approximating the ItI operator for the homogeneous boundary value problem and the
impedance boundary data generated by the particular solution are constructed.

Let N denote the matrix that takes normal derivatives of the basis functions. Then N is given by

N =


−Dx(Is, I

τ )
Dy(Ie, I

τ )
Dx(In, I

τ )
−Dy(Iw, I

τ )

 .
Then the matrix for creating the incoming impedance data is

F = N + iηIn2
c
(Ib, I

τ )

and the matrix for creating the outgoing impedance data is

G = N− iηIn2
c
(Ib, I

τ )

where In2
c

is the identity matrix of size n2
c .

Then the discretized body load problem to find the approximation to z at the collocation points
takes the form

(13) B

[
zb
zi

]
=

[
F

A(i, b) A(i, i)

]
z =

[
0
s

]
where z is the vector with the approximate values of z at the collocation points, and s is s(x, y)
evaluated at the interior points.
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So the solution operator Y which gives the approximate particular solution is the solution to

BY =

[
04nc−4×(nc−2)2

I(nc−2)2

]
.

Likewise the solution operator Ψ which give the approximate solution to the homogeneous prob-
lem is the solution to

BΨ =

[
I4nc−4

0(nc−2)2×4nc−4

]
.

To construct the outgoing impedance data from the particular solution h, the matrix G needs to
be applied to the solution of (13); i.e.

h = GY

[
0
s

]
= W

[
0
s

]
.

The approximate ItI operator is constructed in the same manner as in [17]. That is

R = GΨ.

Putting these together, we find that the outgoing impedance data from the box is given by

g = Rt + h

where t is the evaluation of the incoming boundary data function t(x, y) at the points on the
boundary.

7.2. Merge two boxes. This section presents the technique for merging two boxes Ωτ = Ωα ∪Ωβ

for which the ItI matrices and outgoing impedance data from the particular solution has already
been computed. In other words, the matrices Rα and Rβ along with the vectors hα and hβ are
available. For consistency, we used the same notation as in [17]. In this section, it is important
to remember that the unlike the DtN version of the algorithm, the normal derivatives are always
pointing exterior to the region they are defined on.

Using the same ordering as in section 2.2, the outgoing impedance data for boxes α and β are
given by

[
gα1
gα3

]
=

[
Rα

11 Rα
13

Rα
31 Rα

33

] [
tα1
tα3

]
+

[
hα1
hα3

]
;

[
gβ2
gβ3

]
=

[
Rβ

22 Rβ
23

Rβ
32 Rβ

33

][
tβ2
tβ3

]
+

[
hβ2
hβ3

]

where

[
hα1
hα3

]
and

[
hβ2
hβ3

]
are the outgoing impedance data due to the particular solutions on

each box.
Since the normal vectors are opposite in each box, we know tα3 = −gβ3 and gα3 = −tβ3 . Using this

information in the bottom row equations, tα3 and tβ3 can found in terms of tα1 , tβ2 , h3
α, and h3

β. They
are given by

(14) tα3 = W−1
[
Rβ

33Rα
31| − Rβ

32

] [ tα1
tβ2

]
+ W−1

(
Rβ

33hα3 − hβ3

)
and

(15) tβ3 =
[
−Rα

31 − Rα
33W−1Rβ

33Rα
31|Rα

33W−1Rβ
32

] [ tα1
tβ2

]
−
(

I + Rα
33W−1Rβ

33

)
hα3 + Rα

33W−1hβ3

where W = I− Rβ
33Rα

33.
Plugging (14) and (15) into the top row equations results in the following expression for the

outgoing impedance data for the box Ωα ∪ Ωβ
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[
gα1
gβ2

]
=

[
Rα

11 + Rα
13W−1Rβ

33Rα
31 −Rα

13W−1Rβ
32

−Rβ
23

(
Rα

31 + Rα
33W−1Rβ

33Rα
31

)
Rβ

22 + Rβ
23Rα

33W−1Rβ
32

] [
tα1
tβ2

]

+

[
hα1
hβ2

]
+

 Rα
13W−1

(
Rα

33hα3 − hβ3

)
−Rβ

23

(
I + Rα

33W−1Rβ
33

)
hα3 + Rβ

23Rα
33W−1hβ3


= Rτ

[
tα1
tβ2

]
+

[
ĥ
α

1

ĥ
β

2

]
(16)

7.3. The full algorithm. As with the homogeneous DtN solution technique, the solver can be
broken into the precomputation and the solve phase. The precomputation for a leaf box τ is similar
to before except now a solution operator Yτ yielding the particular solution on τ and a matrix W
giving the outgoing particular impedance data are constructed. Also, instead of a DtN matrix, an
ItI matrix is constructed. The precomputation for a box τ with children α and β is more intense. A
collection of operators giving the incoming impedance data on the shared edge are constructed from
the incoming impedance data from τ and the outgoing impedance particular solution data (which is
not yet computed) on that edge from both α and β. Thus a collection of operators for constructing
the outgoing particular solution on the shared edge are constructed as well as the operators needed
to construct the outgoing impedance particular solution data on the boundary of τ . Notice looking
the formulas (14), (15) and (16) there is significant overlap in computation thus keeping the cost
and memory of the precomputation in check.

The solve step sweeps the tree twice (instead of once as in the homogeneous solver). First,
starting from the leaf boxes moving up the tree to Ω1, the outgoing impedance particular solution
data are constructed. Then using this information along with the boundary condition on Ω, the
incoming impedance boundary data is propagated from the top of the tree down to the leaf boxes.
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