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GLOBAL WEAK SOLUTIONS FOR THE COMPRESSIBLE ACTIVE

LIQUID CRYSTAL SYSTEM

GUI-QIANG G. CHEN, APALA MAJUMDAR, DEHUA WANG, AND RONGFANG ZHANG

Abstract. We study the hydrodynamics of compressible flows of active liquid crystals
in the Beris-Edwards hydrodynamics framework, using the Landau-de Gennes Q-tensor
order parameter to describe liquid crystalline ordering. We prove the existence of global
weak solutions for this active system in three space dimensions by the three-level approx-
imations and weak convergence argument. New techniques and estimates are developed
to overcome the difficulties caused by the active terms.

1. Introduction

Nematic liquid crystals are classical examples of complex liquids with long-range ori-
entational order or anisotropic liquids with distinguished directions of average molecular
alignment [26, 70]. Nematic order, often described in terms of the collective alignment of
constituent elongated particles (e.g., molecules), is ubiquitous; we see collective motion
or coordinated motion at all scales ranging from micro-organisms to traffic and flocks of
animals. The phrase active hydrodynamics is often used to describe the collective dy-
namics of particles that are constantly maintained out of equilibrium by internal energy
sources [34, 50]. Active systems are quite generic in nature, including many biophysical
systems such as microtubule bundles [64], dense suspensions of microswimmers [76], bac-
teria [13], among others. Furthermore, the collective oriented motion is often induced by
the elongated shapes of the constituent particles, and hence a large class of active sys-
tems are referred to as active liquid crystals, especially at high concentrations. We refer
to [5,8,14,33,34,36,48,58,59,62] and the references cited therein for more applications and
discussions. Active nematics are fundamentally different from the typical passive nematics
in the sense that there is no notion of equilibrium; the constituent particles continuously
drive the system out of equilibrium leading to striking and novel effects such as the oc-
currence of giant density fluctuations [50,52,61], the spontaneous laminar flow [30,49,71],
unconventional rheological properties [22,32,67], low Reynolds number turbulence [34,76],
and exotic spatial and temporal patterns [9, 27,50,51,63].

Whilst active liquid crystals are popular in the theoretical physics community, a rigorous
mathematical description of active nematics is relatively new. There are phenomenological
models for active liquid crystals in [60], and a common approach is to add phenomenologi-
cal active terms to the hydrodynamic theories for nematic liquid crystals. The mathematics
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of nematic liquid crystals has witnessed a renaissance in recent years, and there are differ-
ent levels of the mathematical description of passive nematic order: molecular variables
describing the orientation and position of each molecule, a Oseen-Frank vector field rep-
resenting the unique direction of preferred molecular alignment, and a Landau-de Gennes
Q-tensor order parameter that can describe primary and secondary directions of nematic
alignment along with variations in the degree of nematic order [42]. More precisely, the
Landau-de Gennes Q-tensor order parameter is a d-dimensional symmetric and traceless
matrix for the d-dimensional case; the isotropic phase is defined by Q = 0. In [10], we
analyzed active hydrodynamics in an incompressible Beris-Edwards framework, which is
defined by two evolution equations – an evolution equation for the velocity/flow field,
and an evolution equation for the Q-tensor anisotropic stresses from the coupling between
flow/order and active stresses. We established the existence of global weak solutions in
two and three space dimensions for the incompressible active Beris-Edwards system. The
mathematical machinery in [10] relies on the technical tools in [56] for the incompressible
Beris-Edwards system and we developed new techniques to overcome additional analytical
difficulties (compared to [56]) owing to the active stresses.

In this paper, we build on the work in [10] to analyze the following system for com-
pressible flows of active nematic liquid crystals [28,33] in a bounded domain O ⊂ R

3:


















∂tc+ (u · ∇)c = D0∆c,

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇P (ρ)− µ∆u− (ν + µ)∇div u = ∇ · τ +∇ · σ,
∂tQ+ (u · ∇)Q+QΩ− ΩQ = ΓH[Q, c],

(1.1)

where c is the concentration of active particles, ρ is the density of the fluid, u ∈ R
3 is the

flow velocity, the nematic tensor order parameter Q is a traceless and symmetric 3 × 3
matrix, P = κργ denotes the pressure with adiabatic constant γ > 1, D0 > 0 is the
diffusion constant, µ > 0 and ν > 0 are the viscosity coefficients, Γ−1 > 0 is the rotational
viscosity, and Ω = 1

2

(

∇u−∇u⊤
)

is the antisymmetric part of the strain tensor. Moreover,
the tensor:

H[Q, c] := K∆Q− k

2
(c− c∗)Q+ b

(

Q2 − tr(Q2)

3
I3
)

− c∗Q tr(Q2)

describes the relaxational dynamics of the nematic phase, which can be obtained from the
Landau-de Gennes free energy, i.e., Hαβ = − δF

δQαβ
with

F =

∫

(k

4
(c− c∗)tr(Q

2)− b

3
tr(Q3) +

c∗

4
|tr(Q2)|2 + K

2
|∇Q|2

)

dA,

where K is the elastic constant for the one-constant elastic energy density, c∗ is the critical
concentration for the isotropic-nematic transition, and k > 0 and b ∈ R are material-
dependent constants. Without loss of generality, we take K = k = 1 in this paper. The
stress tensor σ = (σij) has two contributions:

σij = σijr + σija ,

with

σijr = QikHkj[Q, c]−H ik[Q, c]Qkj ,
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σija = σ∗c
2Qij ,

where σijr is the stress due to the nematic elasticity, and σ
ij
a is the active contribution

which describes contractile (σ∗ > 0) or extensile (σ∗ < 0) stresses exerted by the active
particles along the director field. The symmetric additional stress tensor is denoted by

τ ij = F(Q)δij − ∂jQ
kl∂iQ

kl = F(Q)δij − (∇Q⊙∇Q)ij

with

F(Q) =
1

2
|∇Q|2 + 1

2
tr(Q2) +

c∗

4
tr2(Q2).

Here and elsewhere, we use the Einstein summation convention, i.e., we sum over the
repeated indices.

We rewrite system (1.1) as

∂tc+ (u · ∇)c = D0∆c, (1.2)

∂tρ+∇ · (ρu) = 0, (1.3)

∂t(ρu) +∇ · (ρu⊗ u) +∇ργ = µ∆u+ (ν + µ)∇div u+∇ ·
(

F(Q)I3 −∇Q⊙∇Q
)

+∇ · (Q∆Q−∆QQ) + σ∗∇ · (c2Q), (1.4)

∂tQ+ (u · ∇)Q+QΩ− ΩQ = ΓH[Q, c], (1.5)

with

H[Q, c] = ∆Q− c− c∗

2
Q+ b

(

Q2 − tr(Q2)

3
I3

)

− c∗Qtr(Q2),

and Γ > 0,D0 > 0, µ > 0, ν > 0, c∗ > 0, b, σ∗ ∈ R, γ > 3
2 , (x, t) ∈ O × R

+; subject to the
following initial conditions:

(c, ρ, ρu,Q)|t=0 = (c0, ρ0,m0, Q0)(x) for x ∈ O ⊂ R
3, (1.6)

with

c0 ∈ H1(O), 0 < c ≤ c0 ≤ c <∞,

Q0 ∈ H1(O), Q0 ∈ S3
0 a.e. in O,

and the following boundary conditions on ∂O with unit outward normal ~n:

∇c · ~n|∂O = 0, u|∂O = 0, ∇Q · ~n|∂O = 0, (1.7)

satisfying the following compatibility conditions:

ρ0 ∈ Lγ(O), ρ0 ≥ 0; m0 ∈ L1(O), m0 = 0 if ρ0 = 0;
|m0|2
ρ0

∈ L1(O). (1.8)

The hydrodynamic equations in (1.1), or (1.2)–(1.5), are from [34] with some differences,
primarily for technical reasons. Namely, in the concentration equation, the diffusion con-
stants are assumed to be the same in all directions, and the active current is assumed
to be zero, which is equivalent to setting α1 = 0 in equations (15a)–(15c) in [34]. Fur-
thermore, the flow-aligning parameter λ in [34] is assumed to be zero; this is not a severe
restriction, but just implies that we are in the flow-tumbling regime. Finally, we have also
neglected one of the terms in the passive “nematic” stress which does not feature for the
two-dimensional systems but can play a role for the three-dimensional systems. Despite
these simplifications compared to the successful model presented in [34], our work is a first
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step in the rigorous analysis of initial-boundary value problems for compressible active ne-
matics in two and three space dimensions, and the mathematical approach developed here
is different from the previous approaches in [10,73] and [56].

In the simplified system above, the fluid flow is dictated by the compressible Navier-
Stokes equations; the particle concentration in the fluid and the evolution of the order
parameter Q are governed by the parabolic-type equations, with extra nonlinear coupling
terms as forcing terms. The term, F(Q), is added to close the energy in our compress-
ible system. Since our system reduces to the compressible Navier-Stokes system in the
absence of the concentration c and the Q-tensor, the best result we could expect can not
be better than those in [18–20], in which the existence of finite-energy weak solutions of
the compressible Navier-Stokes system (allowing initial vacuum) was proved for γ > 3

2 . In
this paper, our aim is to prove the existence of global weak solutions of this compressible
coupled system (1.2)−(1.8) in three space dimensions. In our system, owing to the varying
concentration c = c(x, t), we multiply the Q-tensor equation by −

(

∆Q−Q− c∗Qtr(Q2)
)

,
rather than −H[Q, c], to avoid dealing with the interaction terms of the concentration and
the Q-tensor and obtain the dissipation and a priori estimates for the system. Moreover,
the cubic term of the Q-tensor does not appear in the energy with this strategy, so that
a positive total energy for this system can be obtained, unlike in [10] and [73] a specific
positive energy for the system is re-defined by using the property of the Q-tensor, i.e.,
(2.5) in [73]. Furthermore, the highly nonlinear terms in this system cause new math-
ematical difficulties compared to [10]. However, since the maximum principle holds for
the concentration equation (1.2) for c (i.e., c is bounded if the initial condition (3.5) is
satisfied; see Lemma 3.2), the highly nonlinear terms can be dealt with via using some
cancellation rules as in Lemma A.1 and (2.6) in Proposition 2.1. We remark that the
symmetry and tracelessness of the Q-tensor play a key role in the cancellations which are
crucial for the proof of the existence of weak solutions. For example, in order to obtain the
essential compactness results, the force term in the compressible Navier-Stokes equations
should belong to H−1(O) due to Lions [44]. However, the regularity of Q obtained from
the Q-tensor equation is L∞

t H
1
x ∩ L2

tH
2
x, which is not enough to achieve this condition.

Owing to the cancellations, all the higher order nonlinear terms together vanish, so we do
not need to deal with them.

In this paper, we apply the Faedo-Galerkin’s method [68] with three levels of approx-
imations to prove the existence of the solutions of the initial-boundary value problem
(1.2)–(1.8) in a bounded domain O ⊂ R

3. The first level of approximation concerns the
artificial pressure due to the possibility of vanishing density and lower integrability of the
density. Here we lift the density above zero to avoid the vacuum and add the artificial
pressure to increase the integrability of the density. The second level corresponds to the
artificial viscosity, which changes the continuity equation from the hyperbolic to parabolic
type which ensures higher regularity. The last level is the approximation from the finite-
dimensional to infinite-dimensional space. By the weak convergence argument, we obtain
the global existence of finite-energy weak solutions defined as follows:

Definition 1.1. For any T > 0, (c, ρ, u,Q) is a finite-energy weak solution of problem
(1.2)−(1.8) if the following conditions are satisfied:
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(i) c > 0, c ∈ L∞(0, T ;L2(O)) ∩ L2(0, T ;H1(O)); ρ ≥ 0, ρ ∈ L∞(0, T ;Lγ(O));
u ∈ L2(0, T ;H1

0 (O)), Q ∈ L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O)), and Q ∈ S3
0 a.e. in

OT = [0, T ]×O.

(ii) Equations (1.2)−(1.5) are valid in D′

(OT ). Moreover, (1.3) is valid in D′

(0, T ;R3),
if (ρ, u) are extended to be zero on R

3 \ O.

(iii) Energy E(t) is locally integrable on (0, T ) and satisfies the energy inequality:

d

dt
E(t) +

D0

2
‖∇c‖2L2 +

µ

2
‖∇u‖2L2 + (ν + µ)‖div u‖2L2 +

Γ

2
‖∆Q‖2L2 +

c2∗Γ

2
‖Q‖6L6

≤ C
(

‖u‖2L2 + ‖∇Q‖2L2 + ‖Q‖2L2 + ‖Q‖4L4

)

in D′

(0, T ),

where

E(t) :=

∫

O

(1

2
|c|2 + 1

2
ρ|u|2 + ργ

γ − 1
+

1

2
|Q|2 + 1

2
|∇Q|2 + c∗

4
|Q|4

)

dx.

(iv) Equation (1.3) is satisfied in the sense of renormalized solutions; that is, for any
function g ∈ C1(R) with the property:

g′(z) ≡ 0 for all z ≥M for a sufficiently large constant M, (1.9)

then

∂tg(ρ) + div (g(ρ)u) +
(

g′(ρ)ρ− g(ρ)
)

div u = 0 in D′

(0, T ). (1.10)

Our main result reads:

Theorem 1.1. Let γ > 3
2 and O ⊂ R

3 be a bounded domain of the class C2+τ , τ > 0. As-
sume that the initial data function (c0, ρ0,m0, Q0)(x) satisfies the compatibility conditions
(1.8). Then, for any T > 0, problem (1.2)−(1.7) admits a finite-energy weak solution
(c, ρ, u,Q)(t, x) on OT .

We prove Theorem 1.1 by the aforementioned three-level approximations, including the
Faedo-Galerkin approximation, artificial viscosity, artificial pressure, as well as the weak
convergence argument, in the spirit of [19,20]. This approach was used to construct weak
solutions to the compressible Beris-Edwards in [72]. As discussed above, new techniques
are needed to overcome the difficulties arising from the concentration equation and its
coupling with both the fluid and Q-tensor equations. Firstly, by using the Faedo-Galerkin
approximation, for any fixed un in the finite-dimensional space C(0, T ;Xn) (see (3.17)), we
obtain a unique solution (ρ[un], c[un], Q[un]) of the initial-boundary value problem (3.1)–
(3.2) and (3.4). In Lemma 3.2, system (3.13) has complicated interaction terms which
cause difficulties in the proof of both the uniqueness of the solution (c[un], Q[un]) and the
traceless property of Q[un]. The tracelessness of the Q-tensor is an important property
that guarantees the validity of the cancellation rules in order to treat the highly nonlinear
terms caused by the appearance of the concentration and the Q-tensor. In the proof of the
tracelessness, we make the L2-estimate of trQ from an energy inequality, which implies
the tracelessness of Q when combined Gronwall’s inequality and the tracelessness of the
initial condition of Q. As we mentioned before, the highly nonlinear interaction terms
cause difficulties in this procedure. Here we can see that the concentration equation has
the maximum principle, which provides the L∞–bound for the concentration. Moreover,
we show that the solutions to system (3.13) are in L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O)),
which provides sufficient regularity for the interaction terms so that they stay bounded
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and we can prove the uniqueness of the solution and the traceless property of Q[un]. Then,
substituting (ρ[un], c[un], Q[un]) into the variational problem of the momentum equation,
we can construct a contraction map and obtain a local solution (ρn, cn, un, Qn) of the ap-
proximation system (3.1)–(3.4) on the time interval [0, Tn]. Moreover, the global existence
of solutions follows from the uniform energy estimate of the approximation system. In
order to pass to the limit for solutions (ρn, cn, un, Qn) as n → ∞ to obtain a solution
(ρε,δ, cε,δ, uε,δ, Qε,δ) for the approximation system in the infinite space, we need enough
integrability of the solutions. First, the maximum principle satisfied by the concentration
equation provides sufficient integrability for the concentration cn. This, together with the
regularity of (un, Qn) obtained in the uniform energy estimate, gives enough compactness
for the nonlinear interaction terms of cn and Qn in our system. It actually also plays
a crucial role when the artificial viscosity and the artificial pressure tend to zero. With
the above results and the artificial pressure and viscosity in the approximation system,
we have enough regularity and integrability of the density. These integrability and com-
pactness results allow us to pass to the limit as n → ∞ and obtain a solution for the
approximation system in the infinite space. Secondly, we let the artificial viscosity ε tend
to zero to recover the original continuity equation. Here we employ the convergence of the
effective viscous flux sequence to deal with the lack of regularity of the density sequence
to retrieve the compactness results of the solutions. Lastly, we pass to the limit of the
vanishing artificial pressure sequence to obtain a finite-energy weak solution of the original
problem, including the vacuum case. Again, we do not have enough integrability for the
density. Similarly to the vanishing artificial viscosity procedure, the convergence of the
effective viscous flux sequence gives us the much needed higher regularity for the density.
We remark that although the weak convergence argument is similar to that in [19], owing
to the extra terms and difficulties, we will provide most of the details for the sake of
completeness and convenience to the reader.

The rest of the paper is organized as follows: In §2, we derive the dissipation principle
and a priori estimates. In §3, we employ the Faedo-Galerkin approximation to obtain a
solution of the approximation problem (3.1)–(3.4). In §4, we let the artificial viscosity
ε → 0 to recover the solution to the hyperbolic continuity equation. In §5, we pass the
limit δ → 0 in the artificial pressure to complete the proof of Theorem 1.1. In Appendix A,
we list some important lemmas and state important preliminaries that we use intensively
in the paper.

2. The Dissipation Principle and A Priori Estimates

In this section, we derive the dissipation principle and a priori estimates in Proposition
2.1 for system (1.2)−(1.5).

For the sake of convenience, we first introduce some notations. We denote the Sobolev
space by Hk(O) for integer k ≥ 1, equipped with norm ‖ · ‖Hk

x
, and H−k(O) is the dual

space of Hk
0 (O). Denote by (·, ·) the inner product in L2(O): If a and b are vectors, then

(a, b) =

∫

O
a(x) · b(x) dx;

and if A,B are matrices, then

(A,B) =

∫

O
A : B dx =

∫

O
tr(AB) dx
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with A : B = tr(AB). Denote by S3
0 ⊂ M

3×3 the space of Q-tensors in R
3; that is,

S3
0 :=

{

Q ∈ M
3×3 : Qij = Qji, tr(Q) = 0, i, j = 1, 2, 3

}

.

Define the norm of a matrix by using the Frobenius norm denoted by

|Q|2 := tr(Q2) = QijQij.

With respect to this norm, we define the Sobolev spaces for the Q-tensors:

H1(O, S3
0) :=

{

Q : O → S3
0 :

∫

O

(

|∇Q(x)|2 + |Q(x)|2
)

dx <∞
}

.

Set |∇Q|2 := ∂kQ
ij∂kQ

ij and |∆Q|2 := ∆Qij∆Qij.

Proposition 2.1. Let (c, ρ, u,Q) be a smooth solution of problem (1.3)–(1.8). Then there
exists C > 0 depending only on (D0, b, c∗, σ∗, µ, ν,Γ) and the initial data such that, for a
given T ,

d

dt
E(t) +

D0

2
‖∇c‖2L2 +

µ

2
‖∇u‖2L2 + (ν + µ)‖div u‖2L2 +

Γ

2
‖∆Q‖2L2 +

c2∗Γ

2
‖Q‖6L6

≤ C
(

‖u‖2L2 + ‖∇Q‖2L2 + ‖Q‖2L2 + ‖Q‖4L4

)

for all t ∈ (0, T ).

(2.1)

In addition, if (c0, ρ0,m0, Q0)(x) ∈ L∞ × Lγ × L2 ×H1, then

‖c‖L∞(0,T ;L∞(O)) + ‖c‖L∞(0,T ;L2(O))∩L2(0,T ;H1(O)) ≤ C, (2.2)

‖ρ‖L∞(0,T ;Lγ(O)) ≤ C, (2.3)

‖√ρu‖2L∞(0,T ;L2(O)) +
µ

2
‖∇u‖2L2(0,T ;L2(O)) + (ν + µ)‖div u‖2L2(0,T ;L2(O)) ≤ C, (2.4)

‖Q‖L∞(0,T ;H1(O)∩L4(O))∩L2(0,T ;H2(O))∩L6(0,T ;L6(O)) ≤ C. (2.5)

Proof. The L∞–bound for the concentration c(t, x) follows from the maximum principle
and its initial condition c0 ∈ L∞. Using the continuity equation (1.3) and the boundary
equation (1.7), we have

((ρu)t, u)− (ρu⊗ u,∇u)

=

∫

O
ρt|u|2 dx+

∫

O
ρ∂tu

iui dx−
∫

O
ρuiuj∂ju

i dx

=

∫

O
ρt|u|2 dx+

1

2

∫

O
ρ∂t|u|2 dx+

1

2

∫

O
|u|2div (ρu) dx

=

∫

O
ρt|u|2 dx+

1

2

d

dt

∫

O
ρ|u|2 dx− 1

2

∫

O
ρt|u|2 dx+

1

2

∫

O
|u|2div (ρu) dx

=
1

2

d

dt

∫

O
ρ|u|2 dx+

1

2

∫

O
|u|2

(

ρt + div (ρu)
)

dx

=
1

2

d

dt

∫

O
ρ|u|2 dx,

and

(ργ ,div u) = −
∫

O
ργ−1(ρt +∇ρ · u) dx

= −1

γ

d

dt

∫

O
ργ dx− 1

γ

∫

O
∂iρ

γui dx = −1

γ

d

dt

∫

O
ργ dx+

1

γ

∫

O
ργdiv udx,
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which gives

(ργ ,div u) =
1

1− γ

d

dt

∫

O
ργ dx.

We take the inner product of equation (1.2) with c, equation (1.4) with u, and equation
(1.5) with −

(

∆Q − Q − c∗Q tr(Q2)
)

respectively, sum them up, and then integrate by
parts over O to obtain

d

dt

∫

O

(1

2
|(c,√ρu)|2 + ργ

γ − 1
+

1

2
|(Q,∇Q)|2 + c∗

4
|Q|4

)

dx+D0‖∇c‖2L2

+ µ‖∇u‖2L2 + (ν + µ)‖div u‖2L2 + Γ‖∆Q‖2L2 + Γ‖∇Q‖2L2 + c∗Γ‖Q‖4L4 + c2∗Γ‖Q‖6L6

= −(u · ∇c, c)− (∇ · (∇Q⊙∇Q), u)− (F(Q)I3,∇u) + (∇ · (Q∆Q−∆QQ), u)

− σ∗(c
2Q,∇u) + (u · ∇Q,∆Q)− (u · ∇Q,Q+ c∗Q|Q|2)− (ΩQ−QΩ,∆Q)

+
(

ΩQ−QΩ, Q+ c∗Q|Q|2
)

+ Γ(
c− c∗

2
Q,∆Q−Q− c∗Qtr(Q2))

− bΓ(Q2,∆Q) + bΓ(Q2, Q+ c∗Qtr(Q2)) + 2c∗Γ(Q|Q|2,∆Q)

=

13
∑

i=1

Ii.

First, by Lemma A.1, we have

I4 + I8 = 0.

By simple calculation,

I2 + I3 + I6 + I7 = 0, I9 = 0,

as shown below:

I2 + I6 + I7
= −(∇ · (∇Q⊙∇Q), u) + (u · ∇Q,∆Q)− (u · ∇Q,Q+ c∗Q|Q|2)

= −
∫

O
∂j
(

∂iQ
kl∂jQ

kl
)

ui dx+

∫

O
ui∂iQ

kl∆Qkl dx−
∫

O
ui∂iQ

kl
(

Qkl + c∗Q
kl|Q|2

)

dx

= −
∫

O

(

∂i∂jQ
kl∂jQ

klui + ∂iQ
kl∂j∂jQ

klui
)

dx+

∫

O
ui∂iQ

kl∆Qkl dx

−
∫

O
ui∂i

(1

2
|Q|2 + c∗

4
tr2(Q2)

)

dx

= −
∫

O
∂i∂jQ

kl∂jQ
klui dx+

∫

O

(1

2
|Q|2 + c∗

4
tr2(Q2)

)

div udx

=

∫

O

(1

2
|∇Q|2 + 1

2
|Q|2 + c∗

4
tr2(Q2)

)

div udx = −I3,
(2.6)

and

I9 = (ΩQ−QΩ, Q+ c∗Q|Q|2) = −(ΩQ+QΩ, Q+ c∗Q|Q|2) + 2(ΩQ,Q+ c∗Q|Q|2) = 0,

where we have used the fact that Q is symmetric and Ω is skew-symmetric.
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Moreover, by the Young inequality, we have

|I1| = |(u · ∇c, c)| ≤ C‖u‖L2‖∇c‖L2‖c‖L∞ ≤ D0

4
‖∇c‖2L2 + C‖u‖2L2 ,

|I5| = |σ∗(c2Q,∇u)| ≤ C‖c‖2L∞‖∇u‖L2‖Q‖L2 ≤ µ

4
‖∇u‖2L2 + C‖Q‖2L2 ,

|I10| = Γ
∣

∣(
c− c∗

2
Q,∆Q−Q− c∗Q tr(Q2))

∣

∣ ≤ Γ

8
‖∆Q‖2L2 + C‖Q‖2L2 + C‖Q‖4L4 ,

|I11| = | − bΓ(Q2,∆Q)| ≤ Γ

8
‖∆Q‖2L2 + C‖Q‖4L4 ,

|I12| = |bΓ(Q2, Q+ c∗Q tr(Q2))| =
∣

∣bΓ

∫

O

(

tr(Q)
)3

dx+ bc∗Γ

∫

O

(

tr(Q)
)3|Q|2 dx

∣

∣

≤ c2Γ

2
‖Q‖6L6 + C‖Q‖2L2 + C‖Q‖4L4 ,

I13 = 2c∗Γ(Q|Q|2,∆Q) = 2c∗Γ

∫

O
∂kkQ

ijQijtr(Q2) dx

= −2c∗Γ

∫

O
∂kQ

ij∂kQ
ijtr(Q2) dx− 2c∗Γ

∫

O
∂kQ

ijQij∂ktr(Q
2) dx

= −2c∗Γ

∫

O
|∇Q|2|Q|2 dx− c∗Γ

∫

O
|∇tr(Q2)|2 dx ≤ 0.

Combining all the above estimates, we obtain the desired result. �

Corollary 2.1. For any smooth solution (c, ρ, u,Q) of problem (1.2)–(1.8),

Q ∈ L10(OT ) ∩ L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O)), ∇Q ∈ L
10

3 (OT ).

Proof. From estimate (2.5) and the Gagliardo-Nirenberg inequality in Lemma A.3, we
have

‖Q‖L10(O) ≤ C‖Q‖
4

5

L6(O)
‖∆Q‖

1

5

L2(O)
+ C‖Q‖L6(O),

‖∇Q‖
L

10
3 (O)

≤ C‖∇Q‖
2

5

L2(O)
‖∆Q‖

3

5

L2(O)
+ C‖∇Q‖L2(O).

Then the proof is complete. �

3. The Faedo-Galerkin Approximation

In this section, for fixed δ > 0 and ε > 0, we solve the following approximation problem:

∂tc+ (u · ∇)c = D0∆c, (3.1)

∂tρ+∇ · (ρu) = ε∆ρ, (3.2)

∂t(ρu) +∇ · (ρu⊗ u) +∇ργ + δ∇ρβ + ε(∇ρ · ∇)u

= µ∆u+ (ν + µ)∇div u+∇ · (F(Q)I3 −∇Q⊙∇Q)

+∇ · (Q∆Q−∆QQ) + σ∗∇ · (c2Q), (3.3)

∂tQ+ (u · ∇)Q+QΩ− ΩQ = ΓH[Q, c], (3.4)

complemented with the modified initial conditions:

c|t=0 = c0 ∈ H1(O), 0 < c ≤ c0(x) ≤ c̄, (3.5)
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ρ|t=0 = ρ0 ∈ C3(Ō), 0 < ̺ ≤ ρ0(x) ≤ ¯̺, (3.6)

(ρu)|t=0 = m0(x) ∈ C2(Ō), (3.7)

Q|t=0 = Q0(x) ∈ H1(O), Q0 ∈ S3
0 a.e. in O, (3.8)

and the boundary conditions on ∂O with unit outward normal ~n:

∇c · ~n|∂O = 0, ∇ρ · ~n|∂O = 0, (3.9)

u|∂O = 0,
∂Q

∂~n
|∂O = 0, (3.10)

where c, c̄, ̺, and ¯̺ are positive constants.

Remark 3.1. We now remark on the extra terms in the approximation system. The van-
ishing viscosity ε∆ρ converts equation (1.3) from the hyperbolic to parabolic type and
provides the higher regularity of ρ. The term, δ∇ρβ , is added to obtain the higher inte-
grability of ρ for some constant β > 0. The extra term ε∇ρ · ∇u is needed to cancel some
bad terms that do not vanish in the energy estimates.

3.1. The Neumann problem for the density and Q-tensor. We first state the fol-
lowing existence results, which can be found in [19].

Lemma 3.1. Assume that u ∈ C([0, T ];C2(Ō,R3)) with u|∂O = 0. Then there exists the
following mapping S = S[u]:

S : C([0, T ];C2(Ō,R3)) → C([0, T ];C3(Ō))

such that

(i) ρ = S[u] is the unique classical solution of (3.2), (3.6)–(3.7), and (3.9),
(ii) For all t ≥ 0,

̺ exp
(

−
∫ t

0
‖div u(s)‖L∞(O)ds

)

≤ S[u](t, x) ≤ ¯̺exp
(

∫ t

0
‖div u(s)‖L∞(O)ds

)

,

(iii) For any u1 and u2 in the set:

NN = {v : v ∈ C([0, T ];C2
0 (O,R3)), ‖v‖C([0,T ];C2

0
(Ō,R3)) ≤ N} (3.11)

with some suitable constant N > 0,

‖S[u1]− S[u2]‖C([0,T ];H1(O)) ≤ TC(N,T )‖u1 − u2‖C([0,T ];H1
0
(O)). (3.12)

Lemma 3.2. For each u ∈ C([0, T ];C2
0 (Ō,R3)) with u|∂O = 0, there exists a unique

solution of the following initial-boundary value problem:


























∂tc+ (u · ∇)c = D0∆c,

∂tQ+ (u · ∇)Q+QΩ− ΩQ = ΓH[Q, c],

Q|t=0 = Q0(x) ∈ H1(O), ∇Q · ~n|∂O = 0,

c|t=0 = c0(x) ∈ H1(O), ∇c · ~n|∂O = 0

(3.13)

with 0 < c ≤ c0 ≤ c̄ < ∞ such that Q ∈ L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O)), c ∈
L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O)), and 0 < c ≤ c ≤ c̄ < ∞. Moreover, the above map-
ping u 7→ (c[u], Q[u]) is continuous from NN to

(

L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O))
)

×
(

L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O))
)

, and Q[u] ∈ S3
0 a.e. in OT .
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Proof. We divide the proof into five steps.

1. The existence of a solution (c,Q) can be achieved by the standard parabolic theory
[38]. The boundedness of c is guaranteed by the fact that the maximum principle is valid
for the first equation in system (3.13) and the initial condition of c. Next, we show (c,Q)
belongs to

(

L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O))
)

×
(

L∞(0, T ;H1(O)) ∩ L2(0, T ;H2(O))
)

.

2. Assume that u ∈ NN . First, let us take the sum of the first equation in (3.13) multi-
plied by c−∆c and the second equation in (3.13) multiplied by −

(

∆Q−Q− c∗Qtr(Q2)
)

,
take the trace, and integrate by parts over O to obtain

1

2

d

dt

∫

O

(

|(c,Q,∇c,∇Q)|2 + c∗

2
|Q|4

)

dx

+D0‖(∇c,∆c)‖2L2 + Γ‖(∇Q,∆Q)‖2L2 + c∗Γ‖Q‖4L4 + c2∗Γ‖Q‖6L6

= (u · ∇c,∆c)− (u · ∇c, c) + (u · ∇Q,∆Q)− (u · ∇Q,Q+ c∗Q|Q|2)− (ΩQ−QΩ,∆Q)

+
(

ΩQ−QΩ, Q+ c∗Q|Q|2
)

+
1

2
Γ((c− c∗)Q,∆Q−Q− c∗Q tr(Q2))

− bΓ(Q2,∆Q−Q− c∗Q tr(Q2)) + 2c∗Γ(Q|Q|2,∆Q)

≤ D0

2
‖∆c‖2L2 +

Γ

2
‖∆Q‖2L2 +

c2∗Γ

2
‖Q‖6L6 + C

(

‖(c,Q,∇c,∇Q)‖2L2 + ‖Q‖4L4

)

.

By the Gronwall inequality, we obtain

‖(c,Q)‖L∞(0,T ;H1(O)) + ‖(c,Q)‖L2(0,T ;H2(O)) ≤ C,

where C > 0 depends on N, b, c∗,Γ, T, ‖Q0‖H1(O), and ‖c0‖H1(O).

3. For the uniqueness, we denote (c̃, Q̃) = (c1 − c2, Q1 − Q2) for any two solutions

(c1, Q1) and (c2, Q2) of (3.13). Then (c̃, Q̃) satisfies














∂tc̃+ u · ∇c̃ = D0∆c̃,

∂tQ̃+ u · ∇Q̃− ΩQ̃+ Q̃Ω− Γ∆Q̃+ 1
2Γc̃Q1 +

1
2ΓQ̃(c2 − c∗)

= Γ
(

b
(

Q̃(Q1 +Q2)− 1
3tr(Q̃(Q1 +Q2))I3

)

− c∗Q̃ trQ2
1 − c∗Q2 tr(Q̃(Q1 +Q2))

)

(3.14)

with (c̃, Q̃)|t=0 = (0, 0), ∇Q̃ ·~n|∂O = 0, and ∇c̃ ·~n|∂O = 0. We sum up the first equation in

(3.14) multiplied by c̃ and the second equation in (3.14) multiplied by Q̃, take the trace,
and integrate by parts over O to obtain

1

2

d

dt
‖(c̃, Q̃)‖2L2 +D0‖∇c̃‖2L2 + Γ‖∇Q̃‖2L2

= −(u · ∇c̃, c̃)− (u · ∇Q̃, Q̃) + (ΩQ̃− Q̃Ω, Q̃)− Γ

2
(c̃Q1, Q̃)− Γ

2
((c2 − c∗)Q̃, Q̃)

+ Γ(b(Q̃(Q1 +Q2)−
1

3
tr(Q̃(Q1 +Q2))I3)− c∗Q̃ trQ2

1 − c∗Q2 tr(Q̃(Q1 +Q2)), Q̃)

≤ D0

2
‖∇c̃‖2L2 +C

(

‖(c̃, Q̃)‖2L2 + ‖Q̃‖L2‖Q̃‖L6(‖Q1 +Q2‖L3 + ‖(Q1, Q2)‖2L6) + ‖∇Q̃‖L2‖Q̃‖L2)

≤ D0

2
‖∇c̃‖2L2 +

Γ

2
‖∇Q̃‖2L2 + C‖(c̃, Q̃)‖2L2 ,
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where C depends on b, c∗,Γ, N , and ‖Q0‖H1 , and we have also used Sobolev’s embedding
inequality, Poincaré inequality, and Young’s inequality in the last step. Therefore, applying
the Gronwall inequality, we obtain the desired uniqueness result.

4. Now we show that the map: u 7→ (c[u], Q[u]) is continuous. Let {un} be a bounded
sequence in NN with

lim
n→∞

‖un − u‖C(0,T ;C2
0
(Ō)) = 0

for some u ∈ C(0, T ;C2
0 (Ō)). Denote (cn, Qn) = (c[un], Q[un]), (c,Q) = (c[u], Q[u]), and

(c̃n, Q̃n) = (cn − c,Qn − Q). Taking the difference of the equations satisfied by (cn, Qn)

and (c,Q), multiplying the resulting equations by (−∆c̃n,−∆Q̃n), taking the trace, and
integrating by parts over O, we have

1

2

d

dt
‖(∇c̃n,∇Q̃n)‖2L2 +D0‖∆c̃n‖2L2 + Γ‖∆Q̃n‖2L2

= (un · ∇c̃n + (un − u) · ∇c,∆c̃n) + (un · ∇Q̃n + (un − u) · ∇Q,∆Q̃n)

− (ΩnQ̃n + (Ωn − Ω)Q,∆Q̃n) + (Q̃nΩn +Q(Ωn − Ω),∆Q̃n)

+
Γ

2
(c̃nQn + (c− c∗)Q̃n,∆Q̃n)−

1

3
bΓ(3Q̃n(Qn +Q) + tr(Q̃n(Qn +Q))I3,∆Q̃n)

+ c∗Γ(|Qn|2Q̃n +Q(|Qn|2 − |Q|2),∆Q̃n)

=

7
∑

i=1

Ii.

In the following, we estimate all the terms on the right-hand side of the above equation:

|I1| = |(un · ∇c̃n + (un − u) · ∇c,∆c̃n)|
≤ C

(

‖un‖L∞‖∇c̃n‖L2 + ‖un − u‖L∞‖∇c‖L2

)

‖∆c̃n‖L2

≤ D0

2
‖∆c̃n‖2L2 +C‖∇c̃n‖2L2 + C‖un − u‖2L∞ ,

|I2| = |(un · ∇Q̃n + (un − u) · ∇Q,∆Q̃n)|
≤ C

(

‖un‖L∞‖∇Q̃n‖L2 + ‖un − u‖L∞‖∇Q‖L2

)

‖∆Q̃n‖L2

≤ Γ

12
‖∆Q̃n‖2L2 +C‖∇Q̃n‖2L2 + C‖un − u‖2L∞ ,

|I3| = |(ΩnQ̃n + (Ωn − Ω)Q,∆Q̃n)|
≤ C‖Ωn‖L∞‖Q̃n‖L2‖∆Q̃n‖L2 + ‖∇un −∇u‖L∞‖Q‖L2‖∆Q̃n‖L2

≤ Γ

12
‖∆Q̃n‖2L2 + C‖Q̃n‖2L2 + C‖∇un −∇u‖2L∞

≤ Γ

12
‖∆Q̃n‖2L2 + C‖∇Q̃n‖2L2 + C‖∇un −∇u‖2L∞ ,

|I4| = |(Q̃nΩn +Q(Ωn − Ω),∆Q̃n)|
≤ C‖Q̃n‖L2‖Ωn‖L∞‖∆Q̃n‖L2 + ‖Q‖L2‖Ωn − Ω‖L∞‖∆Q̃n‖L2
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≤ Γ

12
‖∆Q̃n‖2L2 + C‖Q̃n‖2L2 + C‖∇un −∇u‖2L∞

≤ Γ

12
‖∆Q̃n‖2L2 + C‖∇Q̃n‖2L2 + C‖∇un −∇u‖2L∞ ,

|I5| =
Γ

2
|(c̃nQn + (c− c∗)Q̃n,∆Q̃n)| ≤ C

(

‖c̃n‖L4‖Qn‖L4 + ‖c− c∗‖L∞‖Q̃n‖L2

)

‖∆Q̃n‖L2

≤ Γ

12
‖∆Q̃n‖2L2 + C‖∇c̃n‖2L2 +C‖Q̃n‖2L2 ,

|I6| =
1

3
bΓ|(3Q̃n(Qn +Q) + tr(Q̃n(Qn +Q))I3,∆Q̃n)| ≤ C‖Q̃n‖L3‖Qn +Q‖L6‖∆Q̃n‖L2

≤ Γ

12
‖∆Q̃n‖2L2 + C‖∇Q̃n‖2L2 ,

and

|I7| = c∗Γ|(|Qn|2Q̃n +Q(|Qn|2 − |Q|2),∆Q̃n)|
≤ CΓ

(

‖Qn‖2L6 + ‖Qn‖L6‖Q‖L6 + ‖Q‖2L6

)

‖Q̃n‖L6‖∆Q̃n‖L2

≤ Γ

12
‖∆Q̃n‖2L2 + C‖∇Q̃n‖2L2 .

Combining all the above estimates, we conclude

1

2

d

dt
‖(∇c̃n,∇Q̃n)‖2L2 +

D0

2
‖∆c̃n‖2L2 +

Γ

2
‖∆Q̃n‖2L2

≤ C‖un − u‖2C2
0
(O) + C‖(∇c̃n,∇Q̃n)‖2L2 .

Then, by the Gronwall inequality, we have

‖(∇c̃n(t, ·),∇Q̃n(t, ·))‖2L2 + Γ

∫ t

0
‖(∆c̃n(s, ·),∆Q̃n(s, ·))‖2L2 ds

≤ CTeCT‖un − u‖2L∞(0,T ;C2
0
(O)).

(3.15)

As n→ ∞, we conclude

lim
n→∞

(

‖(c̃n, Q̃n)‖L∞(0,T ;H1) + ‖(c̃n, Q̃n)‖L2(0,T ;H2)

)

= 0.

5. Finally, we show that Q ∈ S3
0 , i.e., Q

⊤ = Q and trQ = 0 a.e. in OT . It is clear that,
if Q is a solution of problem (3.13), so is Q⊤. Then, by the uniqueness of the solution we
know Q⊤ = Q.

Then the only thing left is to show that trQ = 0. We take the trace on both sides of
the second equation in (3.13) to obtain

∂t(trQ) + u · ∇trQ = Γ
(

∆trQ− 1

2
(c− c∗)trQ− c∗trQ trQ2

)

, (3.16)

with trQ|t=0 = trQ0 = 0 and ∇trQ ·~n|∂O = 0, where we have used the fact that Q⊤ = Q,
Ω⊤ = −Ω, and tr(QΩ) = tr(ΩQ). Then we multiply equation (3.16) by trQ and integrate
by parts over O to obtain

1

2

d

dt
‖trQ‖2L2 + Γ‖∇trQ‖2L2
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= −1

2
Γ((c− c∗)trQ, trQ)− c∗Γ

∫

O
|trQ|2 trQ2dx−

∫

O
u · ∇(trQ) trQ dx

≤ C‖trQ‖2L2 + C‖Q‖2L6‖trQ‖L6‖trQ‖L2 + C‖∇trQ‖L2‖trQ‖L2

≤ C‖trQ‖2L2 + C‖∇trQ‖L2‖trQ‖L2 + C‖∇trQ‖L2‖trQ‖L2

≤ Γ

2
‖∇trQ‖2L2 + C‖trQ‖2L2 .

Applying the Gronwall inequality again, we complete the proof. �

3.2. The Faedo-Galerkin approximation scheme. In this section, we proceed to solve
(3.3) by the Faedo-Galerkin approximation scheme. Let {ψn} be a family of smooth
eigenfunctions of the Laplacian operator:

−∆ψn = λnψn on O,
ψn|∂O = 0,

where 0 < λ1 ≤ λ2 ≤ · · · are eigenvalues. We know that the eigenfunctions {ψn}∞n=1 form
an orthogonal basis of H1

0 (O).
Now, consider a sequence of finite-dimensional spaces:

Xn = span{ψ1, ψ2, · · · , ψn}, n = 1, 2, · · · , (3.17)

and look for solutions un ∈ C(0, T ;Xn) to the following variational approximation prob-
lem:
∫

O
ρ(t, x)un(t, x) · ψ(x) dx−

∫

O
m0(x) · ψ(x) dx

=

∫ t

0

∫

O

(

µ∆un + (µ+ ν)∇div un − div (ρun ⊗ un)−∇(ργ + δρβ)− ε∇ρ · ∇un
)

· ψ dxds

+

∫ t

0

∫

O
∇ ·

(

F(Q)I3 −∇Q⊙∇Q+Q∆Q−∆QQ+ σ∗c
2Q

)

· ψ dxds

(3.18)

for any t ∈ [0, T ], and ψ ∈ Xn.
Next we introduce a family of operators, as in [19]:

M[ρ] : Xn 7→ X∗
n, (M[ρ]v,w) =

∫

O
ρv · w dx for any v,w ∈ Xn,

The map:

ρ 7→ M−1[ρ]

from Nη = {ρ ∈ L1(O) : infx∈Ω ρ ≥ η > 0} into L(X∗
n,Xn) has the following property:

‖M−1[ρ1]−M−1[ρ2]‖L(X∗

n,Xn) ≤ C(n, η)‖ρ1 − ρ2‖L1(O). (3.19)

Using Theorems 3.1–3.2 with ρn = S[un], cn = c[un], and Qn = Q[un], we can rewrite the
variational problem (3.18) as

un(t) = M−1[ρn]

(

m∗ +

∫ t

0
N [cn(s), ρn(s), un(s), Qn(s)]ds

)
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with

(m∗, ψ) =

∫

O
m0 · ψ dx,

(N [cn, ρn, un, Qn], ψ)

=

∫

O

(

µ∆un + (µ + ν)∇div un − div (ρnun ⊗ un)−∇(ργn + δρβn)
)

· ψ dx

− ε

∫

O
(∇ρn · ∇)un · ψ dx+

∫

O
∇ ·

(

−∇Qn ⊙∇Qn + F(Qn)I3
)

· ψ dx

+

∫

O
∇ ·

(

Qn∆Qn −∆QnQn + σ∗c
2
nQn

)

· ψ dx

for any t ∈ [0, T ] and ψ ∈ Xn. Therefore, combining (3.12), (3.15), and (3.19), we
achieve a local solution (cn, ρn, un, Qn) of problem (3.1)–(3.2), (3.4), and (3.18), with
initial-boundary data (3.6)–(3.10) on a short time interval [0, Tn], Tn ≤ T , by using the
standard fixed point theorem on C(0, T ;Xn). In order to extend the existence time Tn
to T for any n = 1, 2, · · · , we need to prove that un stays bounded in Xn for the whole
interval [0, Tn]. Hence, in the following, we establish an energy inequality as in Proposition
2.1.

Differentiate (3.18) with respect to t and take ψ = un as a test function to obtain

d

dt

∫

O

(1

2
ρn|un|2 +

ρ
γ
n

γ − 1
+

δρ
β
n

β − 1

)

dx+ µ‖∇un‖2L2 + (ν + µ)‖div un‖2L2

+ ε

∫

O
(γργ−2

n + δβρβ−2
n )|∇ρn|2 dx

=

∫

O
∇ ·

(

−∇Qn ⊙∇Qn + F(Qn)I3 +Qn∆Qn −∆QnQn + σ∗c
2
nQn

)

· un dx,

(3.20)

where we have used the following equalities as in Proposition 2.1,
∫

O
∂t(ρnun) · un dx+

∫

O
div (ρnun ⊗ un) · un dx

=
1

2

d

dt

∫

O
ρn|un|2 dx− ε

∫

O
(∇ρn · ∇)un · un dx,

∫

O
∇ργn · un dx =

d

dt

∫

O

ρ
γ
n

γ − 1
dx+ εγ

∫

O
ργ−2
n |∇ρn|2 dx,

∫

O
δ∇ρβn · un dx =

d

dt

∫

O

δρ
β
n

β − 1
dx+ εδβ

∫

O
ρβ−2
n |∇ρn|2 dx.

Then we take the inner product of (3.1) with cn, (3.4) with −
(

∆Qn −Qn − c∗Qntr(Q
2
n)
)

,
add the resulting equations to (3.20) and integrate by parts over O to obtain

d

dt
En

δ (t) +D0‖∇cn‖2L2 + µ‖∇un‖2L2 + (µ+ ν)‖div un‖2L2 + Γ‖(∇Qn,∆Qn)‖2L2

+ c∗Γ‖Qn‖4L4 + c2∗Γ‖Qn‖6L6 + ε

∫

O
(γργ−2

n + δβρβ−2
n )|∇ρn|2 dx
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=

∫

O
∇ ·

(

−∇Qn ⊙∇Qn + F(Qn)I3 +Qn∆Qn −∆QnQn + σ∗c
2
nQn

)

· un dx

+ (un · ∇Qn,∆Qn)− (un · ∇Qn, Qn + c∗Qn|Qn|2)− (ΩnQn −QnΩn,∆Qn)

+
(

ΩnQn −QnΩn, Qn + c∗Qn|Qn|2
)

+
1

2
Γ((cn − c∗)Qn,∆Qn −Qn − c∗Qntr(Q

2
n))

− bΓ(Q2
n,∆Qn −Qn − c∗Qntr(Q

2
n)) + 2c∗Γ(Qn|Qn|2,∆Qn)− (un · ∇cn, cn)

≤ D0

2
‖∇cn‖2L2 +

µ

2
‖∇un‖2L2 +

Γ

2
‖∆Qn‖2L2 +

c∗Γ

2
‖Qn‖6L6 + C

(

‖(un, Qn)‖2L2 + ‖Qn‖4L4

)

where C is independent of n and ε, and

En
δ (t) =

∫

O

(1

2
|cn|2 +

1

2
ρn|un|2 +

ρ
γ
n

γ − 1
+

δρ
β
n

β − 1
+ F(Qn)

)

dx.

This implies

d

dt
En

δ (t) +
D0

2
‖∇cn‖2L2 +

µ

2
‖∇un‖2L2 + (µ+ ν)‖div un‖2L2 + Γ‖∇Qn‖2L2

+
Γ

2
‖∆Qn‖2L2 +

c2∗Γ

2
‖Qn‖6L6 + ε

∫

O

(

γργ−2
n + δβρβ−2

n

)

|∇ρn|2dx

≤ C
(

‖(un, Qn)‖2L2 + ‖Qn‖4L4

)

,

(3.21)

The above inequality yields

µ

∫ Tn

0
‖∇un‖2L2 dt ≤ C, (3.22)

sup
t∈[0,Tn]

∫

O
ρn|un|2 dx ≤ C, (3.23)

where C is a constant independent of n. Since Xn is a finite-dimension space, we can
deduce from Lemma 3.1 that there exists a constant C = C(n, c0, ρ0,m0, Q0, b,O) such
that

0 < C ≤ ρn(t, x) ≤
1

C
for all t ∈ (0, Tn) and x ∈ O, (3.24)

which, combined with (3.23) and the fact that the L∞ and L2 norms are equivalent on
Xn, yields

sup
t∈[0,Tn]

‖(un,∇un)(t, ·)‖L∞(O) ≤ C(n,En
δ (0), N,O).

Then we can extend the existence time-interval [0, Tn] of (cn, ρn, un, Qn) to [0, T ].
We summarize the results in this subsection in the following lemma.

Lemma 3.3. Let β ≥ 4. Then there exists a solution (cn, ρn, un, Qn) of problem (3.1)–
(3.2), (3.4), and (3.18) with the corresponding initial-boundary data (3.5)–(3.10). More-
over, the following estimates hold:

0 < c ≤ cn(t, x) ≤ c̄, ‖cn‖L∞(0,T ;L2(O))∩L2(0,T ;H1(O)) ≤ C, (3.25)

sup
t∈[0,T ]

‖ρn(t, ·)‖γLγ (O) ≤ C, (3.26)

δ sup
t∈[0,T ]

‖ρn(t, ·)‖βLβ (O)
≤ C, (3.27)
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ε‖∇ρ
γ
2
n ‖2L2(0,T ;L2(O)) + εδ‖∇ρ

β
2
n ‖2L2(0,T ;L2(O)) ≤ C, (3.28)

sup
t∈[0,T ]

‖√ρn(t, ·)un(t, ·)‖2L2(O) ≤ C, (3.29)

‖un‖L2(0,T ;H1
0
(O)) ≤ C, (3.30)

‖ρn‖Lβ+1(OT ) ≤ C, (3.31)

ε‖∇ρn‖2L2(0,T ;L2(O)) ≤ C, (3.32)

‖Qn‖L∞(0,T ;H1(O)∩L4(O))∩L2(0,T ;H2(O)∩L6(O)) ≤ C, (3.33)

‖Qn‖L10(OT ) ≤ C, (3.34)

‖∇Qn‖
L

10
3 (OT )

≤ C, (3.35)

where C is a constant independent of n and ε.

Proof. Estimates (3.25)−(3.30) and (3.33) follow from the energy estimate (3.21). More-
over, we can use similar methods to obtain (3.34)–(3.35) as in Corollary 2.1. We only need
to show (3.31)–(3.32).

From (3.28), ρ
β/2
n ∈ L2

tH
1
x. This, together with the embedding: H1(O) ⊂ L6(O), yields

‖ρβn‖L1
tL

3
x
≤ C (3.36)

with C independent of n. Combining (3.27), (3.36), and the interpolation (pp. 623, [17]):

‖ρβn‖L2
x
≤ C‖ρβn‖

1

4

L1
x
‖ρβn‖

3

4

L3
x
,

we have

‖ρβn‖
4

3

L
4
3
t L2

x

≤ C

∫ T

0
‖ρβn‖

1

3

L1
x
‖ρβn‖L3

x
dt ≤ C‖ρβn‖

1

3

L∞

t L1
x
‖ρβn‖L1

tL
3
x
≤ C,

which implies that ρn ∈ L
4

3
β(0, T ;L2β(O)). Moreover, this, together with the following

interpolation:

‖ρn‖
L

4
3
β

x

≤ C‖ρn‖
1

2

Lβ
x

‖ρn‖
1

2

L2β
x

,

gives

‖ρn‖
4β
3

L
4
3
β

t,x

≤ C

∫ T

0
‖ρn‖

2

3
β

Lβ
x

‖ρn‖
2

3
β

L2β
x

dt ≤ C(δ),

i.e., ρn ∈ L
4

3
β(OT ). Then, if β ≥ 3 (⇔ 4

3β ≥ β + 1), we have

‖ρn‖Lβ+1(OT ) ≤ C(δ).

Regarding (3.32), we multiply (3.2) by ρn and integrate by parts over O to obtain

1

2

d

dt
‖ρn‖2L2

x
+ ε‖∇ρn‖2L2

x
= −1

2

∫

O
div un ρ

2
n dx ≤ C‖div un‖L2

x
‖ρn‖2L4

x
,

which yields

ε‖∇ρn‖2L2(OT ) ≤
1

2

(

‖ρ0‖2L2
x
+

√
T‖ρn‖2L∞

t L4
x
‖div un‖L2

t,x

)

.
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Therefore, (3.32) follows from (3.27) and (3.30), provided β ≥ 4. �

3.3. The existence of the first level approximate solutions. In this subsection,
we obtain a solution (c, ρ, u,Q) of problem (3.1)−(3.10), by letting n → ∞. We do not
distinguish between the sequence convergence and the subsequence convergence for the
sake of convenience. Assume that β > 4 and γ > 3

2 . It follows from [19] that as n→ ∞,

ρn → ρ in L4(OT ), (3.37)

ργn → ργ , ρβn → ρβ in L1(OT ) if β > γ, (3.38)

un ⇀ u in L2(0, T ;H1
0 (O)). (3.39)

Moreover, we can infer that ∂tcn ∈ L1(0, T ;H−1(O)) from (3.25), (3.30), and that ∂tc
satisfies equation (3.1). Applying the Aubin-Lions lemma, we have

cn ⇀ c in L2(0, T ;H1(O)), cn → c in L2(0, T ;L2(O)). (3.40)

Thus, we know that the limit function c is a weak solution to (3.1). Similarly, estimates
(3.25), (3.30), and (3.33), along with the fact that ∂tQn satisfies (3.4), yield that ∂tQn ∈
L2(0, T ;L

3

2 (O)). In fact,

‖(un · ∇)Qn‖
L2
tL

3
2
x

≤ C
(

∫ T

0
‖un‖2L6

x
‖∇Qn‖2L2

x
dt
)

1

2 ≤ C‖un‖L2
t (H

1
0
)x‖∇Qn‖L∞

t L2
x
≤ C,

‖QnΩn − ΩnQn‖
L2
tL

3
2
x

≤ C
(

∫ T

0
‖Qn‖2L6

x
‖∇un‖2L2

x
dt
)

1

2 ≤ C‖Qn‖L∞

t H1
x
‖∇un‖L2(OT ) ≤ C,

‖ΓH[Qn, cn]‖
L2
tL

3
2
x

= Γ‖∆Qn − cn − c∗

2
Qn + b[Q2

n − tr(Q2
n)

3
Id]− c∗Qn|Qn|2‖

L2
tL

3
2
x

≤ C
(

‖(Qn,∆Qn)‖L2(OT ) + (‖cn‖L2
tH

1
x
+ ‖Qn‖L2

tH
2
x
)(‖Qn‖L∞

t H1
x
+ ‖Qn‖2L∞

t H1
x
)
)

≤ C.

Then, by the Aubin-Lions lemma, we have

Qn ⇀ Q in L2(0, T ;H2(O)), Qn → Q in L2(0, T ;H1(O)). (3.41)

This ensures that we can pass to the limit in equation (3.4) in D′

(OT ) as n→ ∞, i.e., Q
is a weak solution of (3.4).

Furthermore, we also see that ρnun is bounded in L∞(0, T ;L
2γ
γ+1 (O)) with 2γ

γ+1 > 6
5

(since γ > 3
2), by using (3.26) and (3.29)–(3.30). In fact,

‖ρnun‖
L

2γ
γ+1
x

≤ C‖ρn‖
1

2

Lγ
x
‖√ρnun‖L2

x
. (3.42)

This, together with (3.37) and (3.39), yields

ρnun
∗
⇀ ρu in L∞(0, T ;L

2γ
γ+1 (O)).

Then we can conclude that ρ is a weak solution of (3.2) and we can pass to the limit in
(3.2) as n→ ∞.

In the following, we show that the limit function u satisfies equation (3.18), by using
Corollary A.1 in Appendix A. Then we need to establish convergence results for the terms:
ρnun⊗ un and ∇ρn · ∇un, which require more estimates for the density. From Lemma 2.4
in [19], we know that (3.2) holds in the following strong sense:
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Lemma 3.4. There exist r > 1 and q > 2 such that

∂tρn,∆ρn are bounded in Lr(OT ),

∇ρn is bounded in Lq(0, T ;L2(O)),

independently with respect to n. Consequently, the limit function ρ belongs to the same
class and satisfies equation (3.2) almost everywhere on OT and the boundary conditions
(3.9) in the sense of traces.

To continue the proof we first show that
∫

O ρnun · ψ dx is equi-continuous in t, for any
fixed test function ψ ∈ Xn in (3.18). Using Lemmas 3.3–3.4, we see that, for any 0 < ξ < 1,

∫ t+ξ

t

∫

O
(µ∆un + (µ+ ν)∇div un) · ψ dxds ≤ C

∫ t+ξ

t
‖∇un‖L2

x
‖∇ψ‖L2

x
ds ≤ C

√

ξ,

∫ t+ξ

t

∫

O
div (ρnun ⊗ un) · ψ dxds ≤

∫ t+ξ

t
‖√ρnun‖2L2

x
‖∇ψ‖L∞

x
ds ≤ Cξ,

∫ t+ξ

t

∫

O
∇(ργn + δρβn) · ψ dxds ≤

∫ t+ξ

t

(

‖ρn‖γLγ
x
+ δ‖ρn‖β

Lβ
x

)

‖divψ‖L∞

x
ds ≤ Cξ,

ε

∫ t+ξ

t

∫

O
∇ρn · ∇un · ψ dxds ≤ Cε‖∇ρn‖Lq

tL
2
x
‖∇un‖L2

tL
2
x
ξ

1

2
− 1

q ≤ Cεξ
1

2
− 1

q for q > 2,

∫ t+ξ

t

∫

O
∇ · F(Qn)I3 · ψ dxds = −1

2

∫ t+ξ

0

∫

O

(

|(Qn,∇Qn)|2 +
c∗

2
|Qn|4

)

divψ dxds

≤ C

∫ t+ξ

t

(

‖(Qn,∇Qn)‖2L2
x
+ ‖Qn‖4L4

x

)

‖divψ‖L∞
x
ds ≤ Cξ,

∫ t+ξ

t

∫

O
∇ ·

(

−∇Qn ⊙∇Qn +Qn∆Qn −∆QnQn + σ∗c
2
nQn

)

· ψ dxds

≤ C

∫ t+ξ

t

(

(‖∇Qn‖2L2
x
+ ‖Qn‖L2

x
‖∆Qn‖L2

x
)‖∇ψ‖L∞

x
+ ‖cn‖2L∞‖Qn‖L2

x
‖∇ψ‖L2

x

)

ds

≤ C
(

ξ +
√

ξ
)

.

Together with the fact that ρnun is uniformly bounded in L∞(0, T ;L
2γ
γ+1 (O)) with respect

to n and Xn is dense in L
γ−1

2γ (O), we conclude by Corollary A.1 that

ρnun → ρu in C([0, T ];L
2γ
γ+1

weak(O)) as n→ ∞. (3.43)

Since 2γ
γ+1 >

6
5 (γ > 3

2), by Proposition A.1, (3.43) yields

ρnun → ρu in C([0, T ];H−1(O)).

This, combined with (3.39), yields

ρnun ⊗ un → ρu⊗ u in D′

(OT ). (3.44)
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Next, let us elaborate on the convergence result for the term: ∇un · ∇ρn. We multiply
(3.2) by ρn and integrate by parts to obtain

‖ρn(t, ·)‖2L2
x
+ 2ε

∫ t

0
‖∇ρn(t, ·)‖2L2

x
ds = −

∫ t

0

∫

O
div un |ρn|2 dxds+ ‖ρ0‖2L2

x
. (3.45)

By Lemma 3.4, we know that the limit function ρ also satisfies (3.2). Applying the same
argument to ρ as above, we have

‖ρ(t, ·)‖2L2
x
+ 2ε

∫ t

0
‖∇ρ(t, ·)‖2L2

x
ds = −

∫ t

0

∫

O
div u|ρ|2 dxds+ ‖ρ0‖2L2

x
. (3.46)

Differentiating (3.45) with respect to t, we use (3.27), (3.30), and Lemma 3.4 to obtain

d

dt
‖ρn(t, ·)‖2L2

x
= −2ε‖∇ρn(t, ·)‖2L2

x
−

∫

O
div un|ρn|2 dx+ ‖ρ0‖2L2

x
∈ Lq(0, T ), 1 < q < 2,

which implies that ‖ρn(t, ·)‖2L2
x
is equi-continuous. Then we conclude that ‖ρn(t, ·)‖2L2

x

converges in C([0, T ]) by the Arzela-Ascoli theorem. Moreover, from (3.37), (3.39), (3.45)–
(3.46), and Lemma 3.4, we have

‖ρn(t, ·)‖L2
x
→ ‖ρ(t, ·)‖L2

x
for any t,

‖∇ρn‖L2(OT ) → ‖∇ρ‖L2(OT ).

Since ∇ρn ⇀ ∇ρ, it yields
∇ρn → ∇ρ in L2(OT ).

Then we have
∇ρn · ∇un → ∇ρ · ∇u in D′

(OT ).

In addition, by (3.40)–(3.41), we have
∫ t

0

∫

O
∇ ·

(

F(Qn)I3 −∇Qn ⊙∇Qn +Qn∆Qn −∆QnQn + σ∗c
2
nQn

)

· ψ dxds

→
∫ t

0

∫

O
∇ ·

(

F(Q)I3 −∇Q⊙∇Q+Q∆Q−∆QQ+ σ∗c
2Q

)

· ψ dxds.

Then we can pass to the limit in equation (3.18) as n → ∞. We deduce that the limit
function (c, ρ, u,Q) is a weak solution of problem (3.1)−(3.10). Finally, let us summarize
the results in this section in the following:

Proposition 3.1. Suppose β > max{4, γ}. Then there exists a weak solution (c, ρ, u,Q)
of problem (3.1)−(3.10) with the same estimates as in Lemma 3.3 and Q ∈ S3

0 a.e. in OT .
Moreover, the energy inequality (3.21) and estimates (3.25)−(3.35) hold for (c, ρ, u,Q).
Finally, we can find r > 1 such that ρt,∆ρ ∈ Lr(OT ), and equation (3.2) is satisfied a.e.
in OT .

4. The Vanishing Artificial Viscosity Limit

In this section, we let ε → 0 in (3.1)−(3.4). We denote (cε, ρε, uε, Qε) the solution of
problem (3.1)−(3.10), which we have obtained in Proposition 3.1. However, unlike the
previous step, we do not have the higher integrability of the density as in Lemma 3.4. The

boundedness of ρε in L
∞(0, T ;Lγ(O)∩Lβ(O)) can guarantee only that ρβε converges to a

Radon measure as ε → 0, which is not easy to deal with. Thus, it is essential to obtain
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the strong compactness of ρε in L
1(OT ). First, we introduce the useful operator B related

to the equation: div v = f . See [6,7,25] for the construction and the proof of the following
properties of the operator B: For the problem

div v = f, v|∂O = 0, (4.1)

there exists a linear operator B = [B1, B2, B3] with the following properties:

(i) B : {f ∈ Lp(O) :
∫

O f dx = 0} 7→
(

W
1,p
0 (O)

)3
is a bounded linear operator such

that, for any 1 < p <∞,

‖B[f ]‖
W 1,p

0
(O)

≤ C(p)‖f‖Lp(O); (4.2)

(ii) v = B[f ] is a solution of problem (4.1);

(iii) If there is a vector function g ∈
(

Lr(O)
)3

with g · ~n|∂O = 0, then

‖B[div g]‖Lr(O) ≤ C(p)‖g‖Lr(O), (4.3)

where r ∈ (1,∞) is arbitrary.

4.1. Estimates of the density independent of ǫ. We take the quantities:

ψ(t)B[ρε − m̄], (4.4)

with ψ ∈ D(0, T ), 0 ≤ ψ ≤ 1, and m̄ = 1
|O|

∫

O ρ0(x)dx, as test functions for (3.3). Note

that m̄ is a constant such that this test function is well defined. We have the following
result.

Lemma 4.1. Assume that (cε, ρε, uε, Qε) is the solution of problem (3.1)−(3.10) con-
structed in Proposition 3.1. Then

‖ρε‖γ+1
Lγ+1(OT )

+ δ‖ρε‖β+1
Lβ+1(OT )

≤ C,

with C independent of ε.

Proof. The proof is similar to Lemma 3.1 in [19]. Let us apply the test function (4.4) to
(3.3). Then, by a direct calculation, we have

∫ T

0

∫

O
ψ
(

ργ+1
ε + δρβ+1

ε

)

dxdt

= m̄

∫ T

0
ψ

∫

O
(ργε + δρβε ) dxdt+ (µ+ ν)

∫ T

0
ψ

∫

O
(ρε − m̄)div uε dxdt

−
∫ T

0
ψt

∫

O
ρεuε · B[ρε − m̄] dxdt+ µ

∫ T

0
ψ

∫

O
∂ju

i
ε∂jBi[ρε − m̄] dxdt

−
∫ T

0
ψ

∫

O
ρεu

i
εu

j
ε∂jBi[ρε − m̄] dxdt− ε

∫ T

0
ψ

∫

O
ρεuε · B(∆ρε) dxdt

+

∫ T

0
ψ

∫

O
ρεuε · B[div (ρεuε)] dxdt+ ε

∫ T

0
ψ

∫

O
∂ju

i
ε∂jρεBi[ρε − m̄] dxdt

+

∫ T

0
ψ

∫

O
∇ · (∇Qε ⊗∇Qε − F(Qε)I3) · B[ρε − m̄] dxdt

+ σ∗

∫ T

0
ψ

∫

O
c2εQε : ∇B[ρε − m̄] dxdt
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−
∫ T

0
ψ

∫

O
∇ · (Qε∆Qε −∆QεQε) · B[ρε − m̄] dxdt

=

11
∑

i=1

Ii. (4.5)

Next, we estimate the terms on the right-hand side of the above equality by using the
boundedness of solution (cε, ρε, uε, Qε) obtained in Proposition 3.1, in which the universal
constant C > 0 is independent of ε:

|I1| =
∣

∣

∣
m̄

∫ T

0
ψ

∫

O
(ργε + δρβε ) dxdt

∣

∣

∣
≤ C

(

‖ρε‖γL∞

t Lγ
x
+ δ‖ρε‖β

L∞

t Lβ
x

)

≤ C.

|I2| = (µ+ ν)
∣

∣

∫ T

0
ψ

∫

O
(ρε − m̄)div uε dxdt

∣

∣

≤ C
√
T
(

‖ρε‖L∞

t L2
x
+ m̄|O| 12

)

‖div uε‖L2
t,x

≤ C.

|I3| =
∣

∣

∣

∫ T

0
ψt

∫

O
ρεuε · B[ρε − m̄] dxdt

∣

∣

∣
≤ C

∫ T

0
‖√ρε‖L4

x
‖√ρεuε‖L2

x
‖B[ρε − m̄]‖L4

x
dt

≤ C

∫ T

0
‖ρε‖

1

2

L2
x
‖√ρεuε‖L2

x
‖ρε − m̄‖L4

x
dt ≤ C(δ, T ).

|I4| = µ
∣

∣

∣

∫ T

0
ψ

∫

O
∂ju

i
ε∂jBi[ρε − m̄] dxdt

∣

∣

∣
≤ µ

∫ T

0
‖∇uε‖L2

x
‖∇B[ρε − m̄]‖L2

x
dt

≤ µ

∫ T

0
‖∇uε‖L2

x
‖ρε − m̄‖L2

x
dt ≤ C.

|I5| =
∣

∣

∣

∫ T

0
ψ

∫

O
ρεu

i
εu

j
ε∂jBi[ρε − m̄] dxdt

∣

∣

∣
≤ C

∫ T

0
‖ρε‖L3

x
‖uε‖2L6

x
‖∇B[ρε − m̄]‖L3

x
dt

≤ C

∫ T

0
‖ρε‖L3

x
‖uε‖2L6

x
‖ρε − m̄‖L3

x
dt ≤ C.

|I6| = ε
∣

∣

∣

∫ T

0
ψ

∫

O
ρεuε · B[∆ρε] dxdt

∣

∣

∣
≤ ε

∫ T

0
‖ρε‖L3

x
‖uε‖L6

x
‖B[∆ρε]‖L2

x
dt

≤ Cε

∫ T

0
‖ρε‖L3

x
‖uε‖L6

x
‖∇ρε‖L2

x
dt ≤ C for ε < 1.

|I7| =
∣

∣

∣

∫ T

0
ψ

∫

O
ρεuε · B[div (ρεuε)] dxdt

∣

∣

∣
≤

∫ T

0
‖ρε‖L3

x
‖uε‖L6

x
‖B[div (ρεuε)]‖L2

x
dt

≤
∫ T

0
‖ρε‖L3

x
‖uε‖L6

x
‖ρεuε‖L2

x
dt ≤ C

∫ T

0
‖ρε‖2L3

x
‖uε‖2L6

x
dt ≤ C.

Since β > 4, by using the Sobolev embedding (Lemma A.3 in Appendix A), we have

‖B[ρε − m̄]‖L∞

x
≤ C1‖∇B[ρε − m̄]‖

3

β

Lβ
x

‖B[ρε − m̄]‖1−
3

β

Lβ
x

+ C2‖B[ρε − m̄]‖
Lβ
x

≤ C‖ρε − m̄‖
Lβ
x
.

(4.6)
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Then we have

|I8| = ε
∣

∣

∣

∫ T

0
ψ

∫

O
∇uε · B[ρε − m̄]∇ρε dxdt

∣

∣

∣
≤ ε

∫ T

0
‖∇uε‖L2

x
‖∇ρε‖L2

x
‖B[ρε − m̄]‖L∞

x
dt

≤ ε

∫ T

0
‖∇uε‖L2

x
‖∇ρε‖L2

x
‖ρε − m̄‖

Lβ
x
dt ≤ C,

|I9| =
∣

∣

∣

∫ T

0
ψ

∫

O
∇ · (∇Qε ⊗∇Qε − F(Qε)I3) · B[ρε − m̄] dxdt

∣

∣

∣

≤ C

∫ T

0

(

‖∇Qε‖2
L

10
3

x

‖∇B[ρε − m̄]‖
L

5
2
x

+ |
∫

O
F(Qε)divB[ρε − m̄] dx|

)

dt

≤ C

∫ T

0

(

‖∇Qε‖2
L

10
3

x

‖∇B[ρε − m̄]‖
L

5
2
x

+ |
∫

O
F(Qε)(ρε − m̄)dx|

)

dt

≤ C

∫ T

0

(

‖∇Qε‖2
L

10
3

x

‖ρε − m̄‖
L

5
2
x

+ (‖Qε‖2L5
x
+ ‖Qε‖4L10

x
)‖ρε − m̄‖

L
5
3
x

)

dt ≤ C,

|I10| = σ∗

∣

∣

∣

∫ T

0
ψ

∫

O
c2εQε · ∇B[ρε − m̄] dxdt

∣

∣

∣

≤ C‖cε‖2L∞

t,x

∫ T

0
‖Qε‖L2

x
‖∇B[ρε − m̄]‖L2

x
dt ≤ C,

|I11| =
∣

∣

∣

∫ T

0
ψ

∫

O
∇ · (Qε∆Qε −∆QεQε) · B[ρε − m̄] dxdt

∣

∣

∣

≤ C

∫ T

0
‖Qε‖L4

x
‖∆Qε‖L2

x
‖∇B[ρε − m̄]‖L4

x
dt

≤ C

∫ T

0
‖Qε‖L4

x
‖∆Qε‖L2

x
‖ρε − m̄‖L4

x
dt ≤ C.

Combining all the above estimates together, we obtain our desired result. �

Remark 4.1. Lemma 4.1 implies that ρε has higher integrability, which provides the weak

convergence result for the pressure, i.e., Pε = ρ
γ
ε + δρ

β
ε ⇀ p in L

β+1

β (OT ).

4.2. Limit passage of ε → 0. In this subsection, we fix parameter δ, and pass to the
limit ε→ 0 in equations (3.1)−(3.4). To begin with, similarly to (3.40)–(3.41) in §3.3, we
have

cε ⇀ c in L2(0, T ;H1(O)), cε → c in L2(0, T ;L2(O)), (4.7)

Qε ⇀ Q in L2(0, T ;H2(O)), Qε → Q in L2(0, T ;H1(O)). (4.8)

From the boundedness of ρε in L
β+1(OT ),

√
ε∇ρε in L2(OT ), and uε in L

2(0, T ;H1
0 (O)),

we know that

ρε ⇀ ρ in Lβ+1(OT ), (4.9)

uε ⇀ u in L2(0, T ;H1
0 (O)), (4.10)

ε∇ρε · ∇uε → 0 in L1(OT ), (4.11)
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ε∆ρε → 0 in L2(0, T ;H−1(O)). (4.12)

Moreover, we can also obtain the following convergence results as in §3.3:
ρε → ρ in C([0, T ];Lβ

weak(O)), (4.13)

ρε → ρ in C([0, T ];Lγ
weak(O)), (4.14)

ρεuε → ρu in C([0, T ];L
2γ
γ+1

weak(O)), (4.15)

ρεuε ⊗ uε → ρu⊗ u in D′

(OT ). (4.16)

Finally, we conclude that the limit vector function (c, ρ, u,Q) satisfies the following

equations in D′

(OT ):

∂tc+ u · ∇c = D0c, (4.17)

∂tρ+∇ · (ρu) = 0, (4.18)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = µ∆u+ (ν + µ)∇div u+∇ · (F(Q)I3 −∇Q⊙∇Q) (4.19)

+∇ · (Q∆Q−∆QQ) + σ∗∇ · (c2Q), (4.20)

∂tQ+ (u · ∇)Q+QΩ− ΩQ = ΓH[Q, c], (4.21)

along with the initial–boundary conditions (3.6)−(3.10), with

Pε = ργε + δρβε ⇀ p in L
β+1

β (OT ), (4.22)

for β > max{4, γ}.
In the next step, we show that p = ργ+δρβ, which is equivalent to the strong convergence

of ρε in L1(OT ).

4.3. The effective viscous flux. The quantity, Eε := ρ
γ
ε + δρ

β
ε − (ν + 2µ)div uε, is

usually called the effective viscous flux, and its corresponding weak convergence limit is
E := p − (ν + 2µ)div u . The properties of Eε (cf. [31, 45, 65]) play an important role in
our problem. We introduce the following operator A = (A1,A2,A3) : R

3 → R
3:

Aj[v] = ∂j∆
−1v

with the Fourier transform:

F(Aj)(ξ) = − iξj

|ξ|2 ,

and enjoying the following properties:

divA[v] = v, ∆Ai[v] = ∂iv, (4.23)

‖Ai[v]‖W 1,p(O) ≤ C(p,O)‖v‖Lp(R3) for 1 < p <∞, (4.24)

‖Ai[v]‖Lq(O) ≤ C(p, q,O)‖v‖Lp(R3) if p <∞ and
1

q
≥ 1

p
− 1

3
, (4.25)

‖Ai[v]‖L∞(O) ≤ C(p,O)‖v‖Lp(R3) for all p > 3. (4.26)

Lemma 4.2. Let (cε, ρε, uε, Qε) be a sequence of solutions constructed in Proposition 3.1,
and let (c, ρ, u,Q, p) be the limits satisfying (4.17)−(4.22). Then

lim
ε→0+

∫ T

0
ψ

∫

O
φEερε dxdt =

∫ T

0
ψ

∫

O
φEρdxdt
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for any ψ ∈ D(0, T ) and φ ∈ D(O).

Proof. We prove this lemma based on the div-curl lemma of compensated compactness. By
Proposition 3.1, we know that (ρε, uε) satisfies (3.2) a.e. on OT with boundary condition
(3.9). If (ρε, uε) are extended to be zero outside O, then it satisfies

∂tρε +∇ · (ρεuε) = εdiv (1O∇ρε) in D′

((0, T ) × R
3),

with 1O the characteristic function on O. Consider the following test function to (3.3) as

ϕε(t, x) = ψ(t)φ(x)A[ρε], (4.27)

with ψ ∈ D(0, T ) and φ ∈ D(O). Similarly to (4.5), we apply the test function (4.27) to
(3.3). By a direct calculation, we have
∫ T

0
ψ

∫

O
φ
(

ργ+1
ε + δρβ+1

ε − (ν + 2µ)div uε
)

ρε dxdt

= −
∫ T

0
ψ

∫

O
(ργε + δρβε )∂iφAi[ρε] dxdt+ (µ + ν)

∫ T

0
ψ

∫

O
div uε ∂iφAi[ρε] dxdt

+ µ

∫ T

0
ψ

∫

O
∂ju

i
ε∂jφAi[ρε] dxdt− µ

∫ T

0
ψ

∫

O
uiε∂jφ∂jAi[ρε] dxdt

+ µ

∫ T

0
ψ

∫

O
uiε∂iφρε dxdt− ε

∫ T

0
ψ

∫

O
φρεu

i
εAi div (1Ω∇ρε) dxdt

+

∫ T

0
ψ

∫

O
φρεu

i
ε

(

Ai[div(ρεuε)]− ujε∂jAi[ρε]
)

dxdt

−
∫ T

0
ψt

∫

O
φρεu

i
εAi[ρε] dxdt−

∫ T

0
ψ

∫

O
ρεu

i
εu

j
ε∂jφAi[ρε] dxdt

+ ε

∫ T

0
ψ

∫

O
∂ju

i
ε∂jρεφAi[ρε] dxdt+ σ∗

∫ T

0
ψ

∫

O
c2εQ

ij
ε

(

∂jφAi[ρε] + φ∂jAi[ρε]
)

dxdt

−
∫ T

0
ψ

∫

O

(

∂iQ
kl
ε ∂jQ

kl
ε − F(Qε)δij

)

∂jφAi[ρε] dxdt

−
∫ T

0
ψ

∫

O

(

∂iQ
kl
ε ∂jQ

kl
ε − F(Qε)δij

)

φ∂jAi[ρε] dxdt

+

∫ T

0
ψ

∫

O

(

Qik
ε ∆Qkj

ε −∆Qik
ε Q

kj
ε

)(

∂jφAi[ρε] + φ∂jAi[ρε]
)

dxdt

=
14
∑

i=1

Ii. (4.28)

Remark 4.2. The function ρε extended by zero outside O admits the time derivative as

∂tρε =

{

ε∆ρε − div(ρεuε) in O,
0 in R

3 \ O.
Since uε|∂O = 0, we have

div(ρεuε) = 0 on R
3 \ O.
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Moreover, since ∇ρε · ~n|∂O = 0 and ∆ρε ∈ Lr(OT ) for some r > 1, we have

div(1O∇ρε) =
{

∆ρε in O,
0 in R

3 \ O.

Next, we do the zero extension to the limit function ρ to R
3, and repeat the same

procedure above. This step is guaranteed by the following results from [19]:

Lemma 4.3. Assume (ρ, u) ∈ L2(OT )×L2(0, T ;H1
0 (O)) is a solution of (4.18) in D′

(OT ).

Then, extending (ρ, u) to be zero in R
3 \ O, equation (4.18) still holds in D′

((0, T )×R
3).

Here, let us apply the test function ϕ = ψ(t)φ(x)A[ρ] to (4.20). By a similar calculation
as before, we have

∫ T

0
ψ

∫

O
φ
(

p− (ν + 2µ)div u
)

ρdxdt

= −
∫ T

0
ψ

∫

O
p∂iφAi[ρ] dxdt+ (µ+ ν)

∫ T

0
ψ

∫

O
div u∂iφAi[ρ] dxdt

+ µ

∫ T

0
ψ

∫

O
∂ju

i∂jφAi[ρ] dxdt− µ

∫ T

0
ψ

∫

O
ui∂jφ∂jAi[ρ] dxdt

+ µ

∫ T

0
ψ

∫

O
ui∂iφρdxdt+

∫ T

0
ψ

∫

O
φρui

(

Ai[div(ρu)]− uj∂jAi[ρ]
)

dxdt

−
∫ T

0
ψt

∫

O
φρuiAi[ρ] dxdt−

∫ T

0
ψ

∫

O
ρuiuj∂jφAi[ρ] dxdt

+ σ∗

∫ T

0
ψ

∫

O
c2Qij

(

∂jφAi[ρ] + φ∂jAi[ρ]
)

dxdt

−
∫ T

0
ψ

∫

O

(

∂iQ
kl∂jQ

kl − F(Q)δij
)

∂jφAi[ρ] dxdt

−
∫ T

0
ψ

∫

O

(

∂iQ
kl∂jQ

kl − F(Q)δij
)

φ∂jAi[ρ] dxdt

+

∫ T

0
ψ

∫

O

(

Qik∆Qkj −∆QikQkj
)(

∂jφAi[ρ] + φ∂jAi[ρ]
)

dxdt

=

12
∑

j=1

Ji. (4.29)

Next, in order to prove Lemma 4.2, we need to show that the right-hand side of (4.28) con-
verges to the right-hand side of (4.29). First, by the uniform bound of ρε in L

∞(0, T ;Lβ(O)),
similarly to (3.43), we have

ρε → ρ in C([0, T ];Lβ
weak(O)) as ε→ 0.

Then, for any φ ∈ (Lβ(O))∗, we extend φ by zero outside of O to obtain

(∂jAi[ρε], φ)Lβ (O)×(Lβ(O))∗ =

∫

R3

∂jAi[ρε]φdx =

∫

R3

ρ̂εξiξj

|ξ|2 φ̂dξ
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=

∫

R3

ρε∂jAi[φ] dx = (ρε, ∂jAi[φ])Lβ(O)×(Lβ (O))∗

−→ (ρ, ∂jAi[φ])Lβ(O)×(Lβ (O))∗ = (∂jAi[ρ], φ)Lβ (O)×(Lβ(O))∗ as ε→ 0,

from which we infer

A[ρε] → A[ρ] in C([0, T ],W 1,β
weak(O)).

This, combining with Proposition A.1 (β > 6
5) and the compact imbedding W 1,β(O) ⋐

C(Ō), gives

∇A[ρε] → ∇A[ρ] in C([0, T ];H−1(O)), (4.30)

A[ρε] → A[ρ] in C(OT ). (4.31)

From (4.10) and (4.31), we see that, as ε→ 0,

I2 → J2, I3 → J3.

By (4.15) and (4.31), we find that, as ε→ 0,

I8 → J7.

From (4.10) and (4.15), we have

‖ρεuε ⊗ uε‖
L

6γ
3+4γ
x

≤ C‖ρεuε‖
L

2γ
γ+1
x

‖uε‖L6
x
,

which, combined with (4.16), gives

ρεuε ⊗ uε ⇀ ρu⊗ u in L2(0, T ;L
6γ

3+4γ (O)).

Thus, together with (4.31), we see that, if β > 6γ
2γ−3 ,

I9 → J8 as ε→ 0.

Combining (4.10) with (4.30), we obtain that, as ε→ 0,

I4 → J4.

In the same way as above, since β > 4, we know

I5 → J5.

It follows from the boundedness of ρε in Lβ(O), ρεuε in L
2γ
γ+1 (O), and (4.24) that

‖ρε∂jAi[ρεu
j
ε]− ρεu

j
ε∂jAi[ρε]‖Lα

x

≤ ‖ρε‖Lβ
x
‖∂jAi[ρεu

j
ε]‖

L
2γ
γ+1
x

+ ‖ρεuε‖
L

2γ
γ+1
x

‖∂jAi[ρε]‖Lβ
x

≤ ‖ρε‖Lβ
x
‖ρεuε‖

L
2γ
γ+1
x

≤ C,

where 1
α = γ+1

2γ + 1
β <

5
6 , if β >

6γ
2γ−3 . Then we conclude

ρε∂jAi[ρεu
j
ε]− ρεu

j
ε∂jAi[ρε] ∈ L∞(0, T ;Lα(O)).

From Lemma 3.4 in [19] and the compact embedding of Lα(O) in H−1(O), we infer that

ρε∂jAi[ρεu
j
ε]− ρεu

j
ε∂jAi[ρε] → ρ∂jAi[ρu

j ]− ρuj∂jAi[ρ] in H−1(O).
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Then, after applying Lebesgue convergence theorem, we obtain

ρε∂jAi[ρεu
j
ε]− ρεu

j
ε∂jAi[ρε] → ρ∂jAi[ρu

j ]− ρuj∂jAi[ρ] in L2(0, T ;H−1(O)),

which, combined with (4.10), yields

I7 → J6 as ε→ 0.

Moreover, we have

|I6| = ε
∣

∣

∣

∫ T

0
ψ

∫

O
φρεu

i
εAi[div(1Ω∇ρε)] dxdt

∣

∣

∣

≤ Cε

∫ T

0
‖ρε‖L3

x
‖uε‖L6

x
‖Ai[div(1Ω∇ρε)]‖L2

x
dt

≤ Cε

∫ T

0
‖ρε‖L3

x
‖uε‖L6

x
‖∇ρε‖L2

x
dt

≤ Cε‖ρε‖L∞

t L3
x
‖uε‖L2

tL
6
x
‖∇ρε‖L2

tL
2
x
≤ C

√
ε→ 0 as ε→ 0.

Since β > 3, we have

|I10| = ε
∣

∣

∣

∫ T

0
ψ

∫

O
∂ju

i
ε∂jρεφAi[ρε] dxdt

∣

∣

∣

≤ Cε

∫ T

0
‖∇uε‖L2

x
‖∇ρε‖L2

x
‖Ai[ρε]‖L∞

x
dt

≤ Cε

∫ T

0
‖∇uε‖L2

x
‖∇ρε‖L2

x
‖ρε‖Lβ

x
dt

≤ Cε‖∇uε‖L2
tL

2
x
‖∇ρε‖L2

tL
2
x
‖ρε‖L∞

t Lβ
x
≤ C

√
ε→ 0 as ε→ 0.

From (4.7)–(4.8) and (4.30)–(4.31), we have

I11 = σ∗

∫ T

0
ψ

∫

O
c2εQ

ij
ε

(

∂jφAi[ρε] + φ∂jAi[ρε]
)

dxdt→ J9.

From (4.8), (4.31), and the boundedness of Qε in L2(0, T ;H2(O)), we have

I12 =
∫ T

0
ψ

∫

O

(

∂iQ
kl
ε ∂jQ

kl
ε − F(Qε)δij

)

∂jφAi[ρε] dxdt→ J10,

I13 =
∫ T

0
ψ

∫

O

(

∂iQ
kl
ε ∂jQ

kl
ε − F(Qε)δij

)

φ∂jAi[ρε] dxdt→ J11,

and

I14 = −
∫ T

0
ψ

∫

O

(

Qik
ε ∆Qkj

ε −∆Qik
ε Q

kj
ε

)(

∂jφAi[ρε] + φ∂jAi[ρε]
)

dxdt→ J12.

Next, following the same argument as in Subsection 3.5 in [18], we obtain the strong
convergence of the density sequence ρε in L1(OT ), i.e.

p = ργ + δρβ . (4.32)

�

Then we have the following proposition:
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Proposition 4.1. Let β > max{ 6γ
2γ−3 , γ, 4}. Then, for any given T > 0 and δ > 0, there

exists a finite-energy weak solution (c, ρ, u,Q) of the problem:

∂tc+ u · ∇c = D0∆c, (4.33)

∂tρ+ div(ρu) = 0, (4.34)

∂t(ρu) +∇ · (ρu⊗ u) +∇(ργ + δρβ) = µ∆u+ (ν + µ)∇div u+∇ · (Q∆Q−∆QQ)

+∇ · (F(Q)I3 −∇Q⊙∇Q) + σ∗∇ · (c2Q),
(4.35)

∂tQ+ (u · ∇)Q+QΩ− ΩQ = ΓH[Q, c], (4.36)

with initial-boundary conditions (3.5)−(3.10). Moreover, equation (4.34) holds in the sense

of renormalized solutions on D′

((0, T ) × R
3), provided that (ρ, u) are extended to be zero

on R
3 \ O. In addition, the following estimates are valid:

0 < c ≤ c(x, t) ≤ c̄, ‖c‖L∞(0,T ;L2(O))∩L2(0,T ;H1(O)) ≤ C, (4.37)

sup
t∈[0,T ]

‖ρ(t, ·)‖γLγ (O) ≤ C, (4.38)

δ sup
t∈[0,T ]

‖ρ(t, ·)‖β
Lβ (O)

≤ C, (4.39)

sup
t∈[0,T ]

‖√ρ(t, ·)u(t, ·)‖2L2(O) ≤ C, (4.40)

‖u‖L2(0,T ;H1
0
(O)) ≤ C, (4.41)

‖Q‖L∞(0,T ;H1(O)∩L4(O))∩L2(0,T ;H2(O)∩L6(O)) ≤ C, (4.42)

‖Q‖L10(OT ) ≤ C, (4.43)

‖∇Q‖
L

10
3 (OT )

≤ C, (4.44)

where C is a constant independent of ε.

Remark 4.3. The initial conditions (3.6)−(3.8) are satisfied in the weak sense, since

ρε → ρ in C([0, T ];Lβ
weak(O)), ρεuε → ρu in C([0, T ];L

2γ
γ+1

weak(O))

from (4.9)–(4.10).

5. Passing to the Limit in the Artificial Pressure

We denote by (cδ, ρδ, uδ , Qδ) the approximate solutions constructed in Proposition 4.1.
In this section, we let δ → 0 in (4.33)−(4.36) to obtain the solution of the original problem
(1.2)−(1.5).

In order for solution (ρδ, uδ) to satisfy the initial condition (3.6)–(3.7) in Proposition
4.1, we first modify the general initial data (ρ0,m0) to satisfy the compatibility condition
(1.8). As in [19], it is easy to find a sequence ρ̃δ ∈ C3

0 (O) with the property:

0 ≤ ρ̃δ(x) ≤
1

2
δ
− 1

β , ‖ρ̃δ − ρ0‖L2(O) < δ.
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Take ρ0,δ = ρ̃δ + δ. From (3.6)–(3.7), we have

0 < δ ≤ ρ0,δ(x) ≤ δ
− 1

β , ∇ρ0,δ · ~n|∂O = 0, (5.1)

with

ρ0,δ → ρ0 in Lγ(O) as δ → 0. (5.2)

Set

q̃δ(x) =

{

m0(x)
√

ρ0,δ
ρ0

if ρ0(x) > 0,

0 if ρ0(x) = 0.

Then it follows from (1.8) that |q̃δ|
2

ρ0,δ
is uniformly bounded in L1(O). It is also direct to

find hδ ∈ C2(Ō) such that

∥

∥

q̃δ√
ρ0,δ

− hδ
∥

∥

L2(O)
< δ.

Taking m0,δ = hδ
√
ρ0,δ, we can check that

|m0,δ|2
ρ0,δ

is uniformly bounded in L1(O) with respect to δ > 0, (5.3)

and

m0,δ → m0 in L1(O) as δ → 0. (5.4)

From now on, we deal with the sequence of approximate solutions (cδ , ρδ, uδ, Qδ) of
problem (4.33)−(4.36) with the initial data (c0, ρ0,δ,m0,δ, Q0). The existence of such a
solution is provided by Proposition 4.1. We notice that all the corresponding estimates in
Proposition 4.1 are independent of δ, by virtue of (5.1) and (5.3).

5.1. On the integrability of the density. Now we provide some pressure estimates
independent of δ > 0. From (4.38), ρδ ∈ L∞(0, T ;Lγ(Ω)) uniformly in δ yields that
ρ
γ
δ ⇀ µ by measure, as δ → 0. Hence, we need the higher integrability of ρδ. The

technique is similar to that in §4.1.
Since the continuity equation (4.34) is satisfied in the sense of renormalized solutions

in D′

((0, T ) × R
3), we can apply the standard mollifying operator on both sides of (4.34)

to obtain

∂tSm[g(ρδ)] + div(Sm[g(ρδ)uδ]) + Sm[(g′(ρδ)ρδ − g(ρδ))div uδ] = rm,

with

rm → 0 in L2(0, T ;L2(R3)) as m→ ∞.

As in §4.1, we use operator B to construct the test function as

φ(t, x) = ψ(t)B
[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)] dy

]

, (5.5)

with

ψ ∈ D(0, T ), –

∫

O
Sm[g(ρδ)] dy :=

1

|O|

∫

O
Sm[g(ρδ)] dy.
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Since φ|∂O = 0, φ ∈ L∞(0, T ;H1
0 (O)), and ∂tφ ∈ L2(0, T ;H1

0 (O)), we know that φ can be
used as a test function for (4.35). We approximate the function: g(z) = zθ, 0 < θ ≤ 1, by
a sequence of functions {zθχn(z)}∞n=1, where {χn(z)}∞n=1 are cutoff functions with

χn(z) =

{

1 if z ∈ [0, n],

0 if z > 2n.

Then, from (4.37)−(4.44), we employ the same techniques as in Lemma 4.1 to obtain

Lemma 5.1. If γ > 3
2 , there exists a constant θ, depending only on γ, such that

∫ T

0

∫

O

(

ρ
γ+θ
δ + δρ

β+θ
δ

)

dxdt ≤ C (5.6)

where C is independent of δ, and 0 < θ < min{1
4 ,

2γ
3 − 1}.

Proof. Applying the test function (5.5) to (4.35), we have
∫ T

0
ψ(t)

∫

O

(

ρ
γ
δ + δρ

β
δ

)

Sm[g(ρδ)] dxdt

=

∫ T

0
ψ(t)

∫

O

(

ρ
γ
δ + δρ

β
δ

)

dx –

∫

O
Sm[g(ρδ)] dydt+ (µ+ ν)

∫ T

0
ψ

∫

O
div uδSm[g(ρδ)] dxdt

−
∫ T

0
ψt

∫

O
ρδuδ · B

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]

dxdt

+ µ

∫ T

0
ψ

∫

O
∂ju

i
δ∂jBi

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]

dxdt

−
∫ T

0
ψ

∫

O
ρδu

i
δu

j
δ∂jBi

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]

dxdt

−
∫ T

0
ψ

∫

O
ρδuδ · B

[

rm − –

∫

O
rmdy

]

dxdt

−
∫ T

0
ψ

∫

O
ρδuδ · B

[

Sm[(g′(ρδ)ρδ − g(ρδ))div uδ]

− –

∫

O
Sm[(g′(ρδ)ρδ − g(ρδ))div uδ]dy

]

dxdt

+

∫ T

0
ψ

∫

O
ρδuδ · B[div (Sm[g(ρδ)]uδ)] dxdt

−
∫ T

0
ψ

∫

O

(

∇Qδ ⊗∇Qδ − F(Qδ)I3
)

: ∇B
[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]

dxdt

+ σ∗

∫ T

0
ψ

∫

O
c2δQδ : ∇B

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]

dxdt

−
∫ T

0
ψ

∫

O
∇ ·

(

Qδ∆Qδ −∆QδQδ

)

· B
[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]

dxdt

=

11
∑

i=1

Ii. (5.7)
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By the estimates in Proposition 4.1, we can pass to the limit in (5.7) as m→ ∞ to obtain
∫ T

0
ψ(t)

∫

O

(

ρ
γ
δ + δρ

β
δ

)

g(ρδ) dxdt

=

∫ T

0
ψ(t)

∫

O

(

ρ
γ
δ + δρ

β
δ

)

dx –

∫

O
g(ρδ) dydt+ (µ+ ν)

∫ T

0
ψ

∫

O
div uδ g(ρδ) dxdt

−
∫ T

0
ψt

∫

O
ρδuδ · B

[

g(ρδ)− –

∫

O
g(ρδ)dy

]

dxdt

+ µ

∫ T

0
ψ

∫

O
∂ju

i
δ∂jBi

[

g(ρδ)− –

∫

O
g(ρδ)dy

]

dxdt

−
∫ T

0
ψ

∫

O
ρδu

i
δu

j
δ∂jBi

[

g(ρδ)− –

∫

O
g(ρδ)dy

]

dxdt

−
∫ T

0
ψ

∫

O
ρδuδ · B

[

(g′(ρδ)ρδ − g(ρδ))div uδ − –

∫

O
(g′(ρδ)ρδ − g(ρδ))div uδdy

]

dxdt

+

∫ T

0
ψ

∫

O
ρδuδ · B

[

div (g(ρδ)uδ)
]

dxdt

−
∫ T

0
ψ

∫

O

(

∇Qδ ⊗∇Qδ − F(Qδ)I3
)

: ∇B
[

g(ρδ)− –

∫

O
g(ρδ)dy

]

dxdt

+ σ∗

∫ T

0
ψ

∫

O
c2δQδ : ∇B

[

g(ρδ)− –

∫

O
g(ρδ)dy

]

dxdt

−
∫ T

0
ψ

∫

O
∇ ·

(

Qδ∆Qδ −∆QδQδ

)

· B
[

g(ρδ)− –

∫

O
g(ρδ)dy

]

dxdt

=
10
∑

j=1

Jj. (5.8)

For example, we have the following estimates: Since ρδ ∈ Lβ+1(OT ) and g′(z) = 0 for
sufficiently large z, we have

∣

∣

∣

∫ T

0
ψ

∫

O
ρ
β
δ

(

Sm[g(ρδ)]− g(ρδ)
)

dxdt
∣

∣

∣

≤ C‖ρδ‖β
Lβ+1

t,x

‖Sm[g(ρδ)]− g(ρδ)‖Lβ+1

t,x

≤ C(δ)‖Sm[g(ρδ)]− g(ρδ)‖Lβ+1

t,x
→ 0 as m→ ∞.

By the property of B in (4.2), we have

∥

∥∂jBi

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]
∥

∥

L∞

t L3
x
≤ C‖Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dx‖L∞

t L3
x

≤ C‖g(ρδ)‖L∞

t L3
x
≤ C(δ),

where C(δ) is independent of m. This shows that

∂jBi

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

] ∗
⇀ G weak-star in L∞

t L
3
x.
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On the other hand, since
∥

∥∂jBi

[

Sm[g(ρδ)]− g(ρδ)− –

∫

O
(Sm[g(ρδ)]− g(ρδ)) dx

]
∥

∥

L2
tL

2
x

≤ C‖Sm[g(ρδ)]− g(ρδ)− –

∫

O

(

Sm[g(ρδ)]− g(ρδ)
)

dx‖L2
tL

2
x

≤ C‖Sm[g(ρδ)]− g(ρδ)‖L2
tL

2
x
→ 0,

we have

∂jBi

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

] ∗
⇀ ∂jBi

[

g(ρδ)− –

∫

O
g(ρδ)dy

]

weak-star in L∞
t L

3
x.

Then

I5 =
∫ T

0
ψ

∫

O
ρδu

i
δu

j
δ∂jBi

[

Sm[g(ρδ)]− –

∫

O
Sm[g(ρδ)]dy

]

dxdt

→
∫ T

0
ψ

∫

O
ρδu

i
δu

j
δ∂jBi

[

g(ρδ)− –

∫

O
g(ρδ)dy

]

dxdt = J5.

By (4.3), we have

B
[

div (Sm[g(ρδ)]uδ)
]

→ B
[

div (g(ρδ)uδ)
]

strongly in L
3

2

t L
2
x,

B
[

div (Sm[g(ρδ)]uδ)
]

⇀ G weakly in L2(QT ).

Thus, we obtain

B
[

div (Sm[g(ρδ)]uδ)
]

⇀ B
[

div (g(ρδ)uδ)
]

weakly in L2(QT ).

Moreover, since ψρδuδ ∈ L2(QT ), we have

I8 =
∫ T

0

∫

O
ψρδuδ · B

[

div (Sm[g(ρδ)]uδ)
]

dxdt→
∫ T

0

∫

O
ψρδuδ · B

[

div (g(ρδ)uδ)
]

dxdt = J7

as m→ ∞. Then, as we mentioned before, we can use a sequence of functions {zθχn(z)}
to approximate g(z) = zθ to obtain

∫ T

0

∫

O
ψ
(

ρ
γ+θ
δ + δρ

β+θ
δ

)

dxdt =

10
∑

i=1

Ji, (5.9)

where g(z) is substituted by zθ in every Ji, i = 1, 2, · · · , 10.
Next, we estimate the terms on the right-hand side of (5.9) to obtain the condition for

θ, for which the universal constant C is independent of δ:

|J1| =
∣

∣

∣

∫ T

0
ψ

∫

O
(ργδ + δρ

β
δ ) dx –

∫

O
ρθδ dxdt

∣

∣

∣
≤ C

(

‖ρδ‖γL∞

t Lγ
x
+ δ‖ρδ‖β

L∞

t Lβ
x

)

‖ρδ‖θL∞

t Lθ
x
≤ C.

|J2| = (µ+ ν)
∣

∣

∣

∫ T

0
ψ

∫

O
ρθδdiv uδ dxdt

∣

∣

∣
≤ C‖∇uδ‖L2(QT )‖ρθδ‖L∞

t L2
x
≤ C if θ ≤ γ

2 .

|J3| =
∣

∣

∣

∫ T

0
ψt

∫

O
ρδuδ · B

[

ρθδ − –

∫

O
ρθδdy

]

dxdt
∣

∣

∣

≤ C

∫ T

0
‖√ρδ‖L2γ

x
‖√ρδuδ‖L2

x

∥

∥B
[

ρθδ − –

∫

O
ρθδdy

]∥

∥

L
2γ
γ−1
x

dt
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≤ C

∫ T

0
‖ρδ‖

1

2

Lγ
x
‖√ρδuδ‖L2

x

∥

∥ρθδ − –

∫

O
ρθδdy

∥

∥

L
2γ
γ−1
x

dt

≤ CT‖ρδ‖
1

2

L∞

t Lγ
x
‖√ρδuδ‖L∞

t L2
x
‖ρδ‖θ

L∞

t L
2γ
γ−1

θ

x

≤ C(T ) if θ ≤ γ−1
2 .

|J4| = µ
∣

∣

∣

∫ T

0
ψ

∫

O
∂ju

i
δ∂jBi

[

ρθδ − –

∫

O
ρθδdy

]

dxdt
∣

∣

∣

≤ µ

∫ T

0
‖∇uδ‖L2

x

∥

∥∇B
[

ρθδ − –

∫

O
ρθδdy

]
∥

∥

L2
x
dt

≤ µ

∫ T

0
‖∇uδ‖L2

x
‖ρθδ − –

∫

O
ρθδdy‖L2

x
dt ≤ C if θ ≤ γ

2 .

|J5| =
∣

∣

∣

∫ T

0
ψ

∫

O
ρδu

i
δu

j
δ∂jBi

[

ρθδ − –

∫

O
ρθδdy

]

dxdt
∣

∣

∣

≤ C

∫ T

0
‖ρδ‖Lγ

x
‖uδ‖2L6

x

∥

∥∇B
[

ρθδ − –

∫

O
ρθδdy

]
∥

∥

L
3γ

2γ−3
x

dt

≤ C

∫ T

0
‖ρδ‖Lγ

x
‖uδ‖2L6

x
‖ρθδ‖

L
3γ

2γ−3
x

dt ≤ C if θ ≤ 2γ
3 − 1.

|J6| = (1− θ)
∣

∣

∣

∫ T

0
ψ

∫

O
ρδuδ · B

[

ρθδdiv uδ − –

∫

O
ρθδdiv uδdy

]

dxdt
∣

∣

∣

≤ C

∫ T

0
‖ρδ‖Lγ

x
‖uδ‖L6

x

∥

∥B
[

ρθδdiv uδ − –

∫

O
ρθδdiv uδdy

]∥

∥

L
6γ

5γ−6
x

dt

≤ C

∫ T

0
‖uδ‖L6

x

∥

∥B
[

ρθδdiv uδ − –

∫

O
ρθδdiv uδdy

]∥

∥

W 1,p
x

dt

≤ C

∫ T

0
‖uδ‖L6

x
‖ρθδdiv uδ‖Lp

x
dt

≤ C

∫ T

0
‖uδ‖L6

x
‖∇uδ‖L2

x
‖ρθδ‖Lq

x
dt

≤ C

∫ T

0
‖uδ‖2H1

x
‖ρδ‖Lγ

x
dt ≤ C,

where p = 6γ
7γ−6 if γ < 6, p = 3

2 if γ ≥ 6; q = 3γ
2γ−3 if γ < 6, p = 6 if γ ≥ 6; θ ≤ 2

3γ − 1

and θ ≤ 1.

|J7| =
∣

∣

∣

∫ T

0
ψ

∫

O
ρδuδ · B

[

div(ρθδuδ)
]

dxdt
∣

∣

∣
≤

∫ T

0
‖ρδ‖Lγ

x
‖uδ‖L6

x

∥

∥B[div(ρθδuδ)]
∥

∥

L
6γ

5γ−6
x

dt

≤
∫ T

0
‖uδ‖L6

x
‖ρθδuδ‖

L
6γ

5γ−6
x

dt ≤
∫ T

0
‖uδ‖2L6

x
‖ρθδ‖

L
3γ

2γ−3
x

dt ≤ C‖uδ‖2L2
tH

1
x
‖ρδ‖θL∞

t Lγ
x

≤ C if θ ≤ 2γ−3
3 .
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Similarly to (4.6), we have

∥

∥B[ρθδ − –

∫

O
ρθδ dy]

∥

∥

L∞

x

≤ C1

∥

∥∇B
[

ρθδ − –

∫

O
ρθδ dy

]
∥

∥

3

γ

Lγ
x

∥

∥B
[

ρθδ − –

∫

O
ρθδ dy

]
∥

∥

1− 3

γ

Lγ
x

+ C2

∥

∥B
[

ρθδ − –

∫

O
ρθδ dy

]
∥

∥

Lγ
x

≤ C‖ρθδ‖Lγ
x
.

Then we have

|J8| =
∣

∣

∣

∫ T

0
ψ

∫

O

(

∇Qδ ⊗∇Qδ − F(Qδ)I3
)

: ∇B
[

ρθδ − –

∫

O
ρθδdy

]

dxdt
∣

∣

∣

≤ C

∫ T

0

(

‖∇Qδ‖2
L

10
3

x

∥

∥∇B
[

ρθδ − –

∫

O
ρθδdy

]∥

∥

L
5
2
x

+
∣

∣

∫

O
F(Qδ)divB

[

ρθδ − –

∫

O
ρθδdy

]

dx
∣

∣

)

dt

≤ C

∫ T

0

(

‖∇Qδ‖2
L

10
3

x

∥

∥∇B
[

ρθδ − –

∫

O
ρθδdy

]
∥

∥

L
5
2
x

+
∣

∣

∫

O
F(Qδ)(ρ

θ
δ − –

∫

O
ρθδdy)dx

∣

∣

)

dt

≤ C

∫ T

0

(

‖∇Qδ‖2
L

10
3

x

∥

∥ρθδ − –

∫

O
ρθδdy

∥

∥

L
5
2
x

+
(

‖Qδ‖2L5
x
+ ‖Qδ‖4L10

x

)
∥

∥ρθδ − –

∫

O
ρθδdy

∥

∥

L
5
3
x

)

dt

≤ C if θ ≤ 2
5 .

|I9| = σ∗

∣

∣

∣

∫ T

0
ψ

∫

O
c2δQδ · ∇B

[

ρθδ − –

∫

O
ρθδdy

]

dxdt
∣

∣

∣

≤ C‖cδ‖2L∞

t,x

∫ T

0
‖Qδ‖L2

x

∥

∥∇B
[

ρθδ − –

∫

O
ρθδdy

]∥

∥

L2
x
dt

≤ C

∫ T

0
‖Qδ‖L2

x
‖ρθδ‖L2

x
dt ≤ C if θ ≤ γ

2 .

|I10| =
∣

∣

∣

∫ T

0
ψ

∫

O
∇ ·

(

Qδ∆Qδ −∆QδQδ

)

· B
[

ρθδ − –

∫

O
ρθδ dy

]

dxdt
∣

∣

∣

≤
∫ T

0
‖Qδ‖L4

x
‖∆Qδ‖L2

x

∥

∥∇B
[

ρθδ − –

∫

O
ρθδ dy

]∥

∥

L4
x
dt

≤
∫ T

0
‖Qδ‖L4

x
‖∆Qδ‖L2

x
‖ρθδ‖L4

x
dt ≤ C if θ ≤ 1

4 .

Combining the above estimates, we obtain the desired result. �

5.2. The limit passage and the effective viscous flux. We infer from the uniform
estimates (4.37)−(4.44) in Proposition 4.1 and Lemma 5.1 that as δ → 0,

cδ ⇀ c in L2(0, T ;H1(O)),

ρδ → ρ in C([0, T ];Lγ
weak(O)),

uδ ⇀ u in L2(0, T ;H1
0 (O)),

ρδuδ → ρu in C([0, T ];L
2γ
γ+1

weak(O)),
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Qδ ⇀ Q in L2(0, T ;H2(O)),

Qδ → Q in L2(0, T ;H1(O)),

ρ
γ
δ → ργ in L

γ+θ
γ (OT ).

Moreover, we have

ρδuδ ⊗ uδ → ρu⊗ u in D′

(OT ),

F(Qδ)I3 −∇Qδ ⊙∇Qδ + (Qδ∆Qδ −∆QδQδ) + σ∗c
2
δQδ

→ F(Q)I3 −∇Q⊙∇Q+ (Q∆Q−∆QQ) + σ∗c
2Q,

δρ
β
δ → 0 in L1(OT ).

Then the limit functions (c, ρ, u,Q) satisfy

ct + u · ∇c = D0∆c, (5.10)

∂tρ+∇ · (ρu) = 0, (5.11)

(ρu)t +∇ · (ρu⊗ u) +∇ργ = µ∆u+ (ν + µ)∇div u+∇ · (Q∆Q−∆QQ) (5.12)

+∇ ·
(

F(Q)I3 −∇Q⊙∇Q
)

+ σ∗∇ · (c2Q), (5.13)

∂tQ+ (u · ∇)Q+QΩ− ΩQ = ΓH[Q, c] (5.14)

in D′

(OT ), with the initial-boundary conditions (1.6)−(1.8), due to (5.2) and (5.4).

Next, in order to prove that (c, ρ, u,Q) is a weak solution of (1.2)−(1.8), we only need
to show that ργ = ργ a.e. in OT , or equivalently, the strong convergence of ρδ in L1(O).
As in §4, we need to show that (ρ, u) is a renormalized solution of (5.11). From Lemma

5.1, the best estimate is ρ ∈ Lγ+ 2

3
γ−1(OT ). Then γ >

3
2 is not enough to guarantee that ρ

is square integrable, and that (ρ, u) is a renormalized solution by Lemma A.4 in Appendix
A. In order to deal with this difficulty, we introduce the cut-off function Tk(z) = kT ( zk )
for z ∈ R, k = 1, 2, · · · , where T is a smooth and concave function satisfying

T (z) =

{

z if z ≤ 1,

2 if z ≥ 3.

Since (ρδ, uδ) is a renormalized solution of (4.34), taking g(z) = Tk(z), we obtain

∂t
(

Tk(ρδ)
)

+ div
(

Tk(ρδ)uδ
)

+
(

T ′
k(ρδ)− Tk(ρδ)

)

div uδ = 0 in D′

((0, T ) ×R
3), (5.15)

where Tk(ρδ) ∈ L∞(OT ) for any fixed k. Then

Tk(ρδ)
∗
⇀ Tk(ρ) in L∞(OT ).

Moreover, since ∂tTk(ρδ) satisfies (5.15), as before, we have

Tk(ρδ) → Tk(ρ) in C([0, T ];Lp
weak(O)), ∀ 1 ≤ p <∞.

Letting δ → 0, it yields

∂tTk(ρ) + div
(

Tk(ρ)u
)

+ (T ′
k(ρ)− Tk(ρ))divu = 0 in D′

(OT ),

where
(

T ′
k(ρδ)− Tk(ρδ)

)

divuδ ⇀
(

T ′
k(ρ)− Tk(ρ)

)

divu in L2(OT ).
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5.3. The effective viscous flux. Similarly to Lemma 4.2, we define the effective viscous
flux as Ẽδ := ρ

γ
δ − (ν + 2µ)div uδ, and its correspondingly weak convergence limit Ẽ :=

ργ − (ν + 2µ)div u. Then we have

Lemma 5.2. Assume (ρδ , uδ) is a family of the approximate solutions constructed in
Proposition 4.1. Then

lim
δ→0+

∫ T

0
ψ
(

∫

O
φẼδTk(ρδ) dx

)

dt =

∫ T

0
ψ
(

∫

O
φẼTk(ρ) dx

)

dt

for any ψ ∈ D(0, T ) and φ ∈ D(O).

5.4. Renormalized solutions. The following lemma implies that Tk(ρ)−Tk(ρ) ∈ L2(OT ),
which helps us establish that the limit function (ρ, u) is a renormalized solution.

Lemma 5.3 (The amplitude of oscillations). There exists a constant C, independent of
k, such that

lim sup
δ→0

‖Tk(ρδ)− Tk(ρ)‖Lγ+1(OT ) ≤ C. (5.16)

The proof of this lemma is the same as that for Lemma 4.3 of Subsection 4.4 in [19].

Remark 5.1. By the concavity of the norm, we know from Lemma 5.3 that

‖Tk(ρ)− Tk(ρ)‖Lγ+1(OT ) ≤ C. (5.17)

From the proof of Lemma 5.3, we have

0 ≤ lim sup
δ→0

‖Tk(ρδ)− Tk(ρ)‖γ+1
Lγ+1(OT )

≤ lim
δ→0

∫ T

0

∫

OT

(

ρ
γ
δTk(ρδ)− ργ Tk(ρ)

)

dxdt. (5.18)

Based on the uniform estimate of the amplitude of oscillations in Lemma 5.3, we see
that the limit function (ρ, u) satisfies (5.11) in the renormalized sense.

Lemma 5.4. The limit function (ρ, u) is a renormalized solution to (5.11); that is,

∂tg(ρ) + div(g(ρ)u) +
(

g′(ρ)ρ− g(ρ)
)

div u = 0 in D′

((0, T ) × R
3) (5.19)

for any g ∈ C1(R) with the property g′(z) ≡ 0 when z ≥ M for sufficiently large constant
M , provided (ρ, u) are prolonged zero outside O.

The detailed proof can be found in Subsection 4.5 of [19] for Lemma 4.4 there.

5.5. Strong convergence of density ρδ. We now give an outline of the proof for the

strong convergence of density ρδ, i.e., ργ = ργ , where ργδ → ργ in L
γ+θ
γ (OT ) for the

completeness of the proof of Theorem 1.1.
Introduce a family of function in C1(R+) ∩ C[0,∞):

Lk(z) =

{

z log z for 0 ≤ z < k,

z log k + z
∫ z
k

Tk(s)
s2

ds for z ≥ k.

By the construction of Lk, we know that Lk is a linear function for large z. In particular,
we see that, for z ≥ 3k,

Lk(z) = βkz − 2k
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with

βk = log k +

∫ 3k

k

Tk(s)

s2
ds+

2

3
.

Then, if gk(z) := Lk(z) − βkz, we obtain that gk(z) ∈ C1(R+) ∩ C[0,∞), g′k(z) = 0 for z
is sufficiently large, and

g′k(z)z − gk(z) = Tk(z).

By Proposition 4.1 and Lemma 5.4, we know that (ρδ, uδ) and (ρ, u) are renormalized
solutions to (5.11). Then we substitute function g by gk in the definition of renormalized
solutions and take the difference of these two equations to obtain

∂t
(

Lk(ρδ)− Lk(ρ)
)

+ div
(

Lk(ρδ)uδ − Lk(ρ)u
)

+ Tk(ρδ)divuδ − Tk(ρ)div u = 0 (5.20)

in D′

((0, T ) × R
3).

Since Lk is linear when z is large, Lk(ρδ) is uniformly bounded with respect to δ in
L∞(0, T ;Lγ(O)) so that

Lk(ρδ)
∗
⇀ Lk(ρ) in L∞

t L
γ
x as δ → 0.

Moreover, since Lk(ρδ) is a renormalized solution, similarly as before, we have

Lk(ρδ) → Lk(ρ) in C([0, T ], Lγ
weak(O)) ∩ C([0, T ];H−1(O)) as δ → 0. (5.21)

Now, using function φ(x) ∈ D(O) to test (5.20) and then integrate over (0, t), we have
∫

O

(

Lk(ρδ)− Lk(ρ)
)

(t, x)φ(x) dx

=

∫

O

(

Lk(ρ0,δ)− Lk(ρ0)
)

φdx+

∫ t

0

∫

O

(

Lk(ρδ)uδ − Lk(ρ)u
)

· ∇φdxds

−
∫ t

0

∫

O

(

Tk(ρδ)divuδ − Tk(ρ)div u
)

φdxds.

Sending δ → 0, we have
∫

O

(

Lk(ρ)− Lk(ρ)
)

(t, x)φ(x) dx

=

∫ t

0

∫

O

(

Lk(ρ)− Lk(ρ)
)

u · ∇φdxds− lim
δ→0

∫ t

0

∫

O

(

Tk(ρδ)divuδ − Tk(ρ)div u
)

φdxds.

Taking φ = φm with φm(z) → 1O(z) in the above equation and sending m→ ∞, we have

∫

O

(

Lk(ρ)−Lk(ρ)
)

(t) dx =

∫ t

0

∫

O
Tk(ρ) div udxds− lim

δ→0

∫ t

0

∫

O
Tk(ρδ)divuδ dxds. (5.22)

Then, using Lemmas 5.2–5.3, we find that the right-hand side of the above equation is
non-positive, which yields

lim
k→∞

∫

O

(

Lk(ρ)− Lk(ρ)
)

(t) dx ≤ 0 for t ∈ [0, T ]. (5.23)
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Moreover, by the definition of Lk and the absolution continuity of ρ log ρ ∈ L1(OT ), we
have

‖Lk(ρ)− ρ log ρ‖L1(OT ) ≤
∫ ∫

{ρ≥k}
|Lk(ρ)− ρ log ρ|dxdt

≤ C

∫ ∫

{ρ≥k}
|ρ log ρ|dxdt→ 0 as k → ∞.

(5.24)

Similarly, we have

‖Lk(ρδ)− ρδ log ρδ‖L1(OT ) ≤
∫ ∫

{ρδ≥k}
|Lk(ρδ)− ρδ log ρδ|dxdt

≤
∫ ∫

{ρδ≥k}

log k +
∫ ρδ
k

Tk(s)
s2

ds+ log ρδ

ρ
γ−1
δ

ρ
γ
δ dxdt

≤ C(ε)k1+ε−γ

∫ ∫

{ρδ≥k}
ρ
γ
δ dxdt→ 0 as k → ∞.

This, together with the lower-semicontinuity of the norm, we have

‖Lk(ρ)− ρ log ρ‖L1(OT ) ≤ lim inf
δ→0

‖Lk(ρδ)− ρδ log ρδ‖L1(OT ) → 0, as k → ∞. (5.25)

Finally, combining (5.23)−(5.25), we have
∫

O

(

ρ log ρ− ρ log ρ
)

(t)dx ≤ 0.

Moreover, since ρ log ρ ≥ ρ log ρ, we see that ρ log ρ = ρ log ρ for a.e. (t, x) ∈ OT . In
addition, by the restrict concavity of function z log z, we have

ρδ → ρ in Lp(OT ) for any p ∈ [1, γ + θ).

Then we conclude

ργ = ργ , a.e.

Therefore, we complete the proof of Theorem 1.1.

Appendix A. Preliminaries

In this appendix, we collect some important theories and lemmas that we use extensively
in this paper.

In order to deal with the highest derivatives of u in (1.4) (and the corresponding ones
in the approximation systems) and the highest derivatives of Q in (1.5) (and the corre-
sponding ones in the approximation systems), we need the following lemma whose proof
can be found in the proof of Lemma A.1 in [10].

Lemma A.1. Let Q and Q′ be two 3×3 symmetric matrices, and let Ω = 1
2

(

∇u−(∇u)⊤
)

be the vorticity with (∇u)αβ = ∂βuα. Then

(ΩQ′ −Q′Ω,∆Q)− (∇ · (Q′∆Q−∆QQ′), u) = 0.
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Lemma A.2 (Aubin-Lions lemma [1]). Let X0,X, and X1 be three Banach spaces with
X0 ⊆ X ⊆ X1, X0 compactly embedded in X, and X continuously embedded in X1. For
1 ≤ p, q ≤ ∞, let

W = {u ∈ Lp(0, T ;X0) : u̇ ∈ Lq(0, T ;X1)}.
Then

(i) If p <∞, then the embedding of W into Lp(0, T ;X) is compact;
(ii) If p = ∞ and q > 1, then the embedding of W into C(0, T ;X) is compact.

Lemma A.3 (Gagliardo-Nirenberg interpolation inequality [53]). Let 1 ≤ q, r ≤ ∞ and
0 ≤ j < m. Then the following inequalities hold:

‖Dju‖Lp ≤ C1‖Dmu‖aLr‖u‖1−a
Lq + C2‖u‖Ls

for any function u : O → R defined on a bounded Lipschitz domain O ⊆ R
3, where

1

p
=
j

3
+ a(

1

r
− m

3
) + (1− a)

1

q
,

j

m
≤ a ≤ 1,

s > 0 is arbitrary, and C1 and C2 depend only on O and m.

Next, we introduce a sufficient condition for a solution (ρ, u) to be a renormalized
solution.

Lemma A.4. Let O ⊆ R
3 be a bounded domain, and let ρ ∈ L2(OT ) and u ∈ L2(0, T ;H1(O))

such that
∂tρ+∇ · (ρu) = 0 in D′

(OT ).

Then
∂tg(ρ) + div(g(ρ)u) +

(

g′(ρ)ρ− g(ρ)
)

div u = 0 in D′

(OT ) (A.1)

for any g ∈ C1(R) with the property: g′(z) ≡ 0, when z ≥M for sufficiently large constant
M , i.e., (ρ, u) is a renormalized solution.

Definition A.1. The metric space C([0, T ];X∗
weak) contains all the functions v : [0, T ] 7→

X∗ which are continuous with respect to the weak topology. We say

vn → v in C([0, T ];X∗
weak),

if (vn(t), φ) → (v(t), φ) uniformly with respect to t ∈ [0, T ] for any φ ∈ X.

In the following corollary, we introduce a sufficient condition for a family of functions
to converge in C([0, T ];X∗

weak) (see Corollary 2.1 in [20]).

Corollary A.1. Let X be a separable Banach space. Assume that vn : [0, T ] → X∗,
n = 1, 2, · · ·, is a sequence of measurable functions such that

ess sup
t∈[0,T ]

‖vn(t)‖X∗ ≤M, uniformly in n = 1, 2, · · ·.

Moreover, let the family of functions:

(vn, φ) : t 7→ (vn(t), φ), t ∈ [0, T ], n = 1, 2, · · ·,
be equi-continuous for any fixed φ belonging to a dense subset in X.

Then vn ∈ C([0, T ];X∗
weak) for any n = 1, 2, · · ·, and there exist v ∈ C([0, T ];X∗

weak)
and a subsequence (still denoted) vn such that

vn → v in C([0, T ];X∗
weak) as n→ ∞.
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Proposition A.1. Let O be a bounded domain in R
3. If vn ∈ L∞(0, T ;Lp(O)) for p > 6

5 ,

and vn → v in C([0, T ], Lp
weak(O)), then vn → v in C([0, T ],H−1(O)).
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