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Abstract. A family of sets satisfies the (p, q) property if among
every p members of it some q intersect. Given a number 0 < r ≤ 1,
a set S ⊂ R2 is called r-fat if there exists a point c ∈ S such that
B(c, r) ⊆ S ⊆ B(c, 1), where B(c, r) ⊂ R2 is a disk of radius r with
center-point c. We prove constant upper bounds C = C(r) on the
piercing numbers in families of r-fat sets in R2 that satisfy the
(2, 2) or the (4, 3) properties. This extends results by Danzer [2]
and Karasev [6] on the piercing numbers in intersecting families of
disks in the plane, as well as a result by Kynčl and Tancer [9] on the
piercing numbers in families of units disks in the plane satisfying
the (4, 3) property.

1. introduction

1.1. The (p, q) problem. A classical theorem of Helly [5] asserts that
if F is a family of convex sets in Rd in which every d + 1 members
intersect, then all the members in F intersect. Helly’s theorem initiated
the broad area of research in discrete geometry, dealing with questions
regarding the number of points needed to pierce families of convex sets
in Rd satisfying certain intersection properties.

Given integers p ≥ q > 1, a family F of sets is said to satisfy the (p, q)
property if among any p elements of F there exist q elements with a non-
empty intersection. We denote by τ(F) the piercing number (also called
in the literature covering number, stubbing number, or hitting number)
of F , namely the minimum size of a set of points in Rd intersecting
every set in F . The matching number of F , namely the maximum
number of pairwise disjoint sets in F , is denoted by ν(F ). Clearly,
ν(F) ≤ τ(F).

If ν(F) = 1 then we say that F is an intersecting family of sets.
Note that F satisfies the (p, 2) property if and only if ν(F) ≤ p − 1,
and in particular, F is intersecting if and only if it satisfies the (2, 2)
property.

Helly’s theorem is that if a family F of convex sets in Rd satisfies the
(d + 1, d + 1) property, then τ(F) = 1. Finding the piercing numbers
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of families of sets in Rd satisfying the (p, q) property has been referred
in the literature as the (p, q) problem.

In 1992 Alon and Kleitman [1] resolved a long standing conjecture
of Hadwiger and Debrunner [4], proving that for every p ≥ q ≥ d + 1
there exists a constant c = c(d; p, q) such that if a family F of convex
sets in Rd satisfies (p, q) property then τ(F) ≤ c.

Alon and Kleitman’s proof is constructive, however, the upper bounds
on c(d; p, q) given by their proof are far from being optimal. For ex-
ample, the Alon-Kleitman proof gives c(2; 4, 3) ≤ 253; however, in [8]
Kleitman, Gyárfás and Tóth proved that at most 13 points are needed
to pierce a family of convex sets in R2 satisfying the (4, 3) property.
Over the last few decades extensive research has been done to improve
the Alon-Kleitman bounds, see e.g., [7, 8, 9] and the references therein.
For an excellent survey on the (p, q) problem we refer the reader to [3].

1.2. The (2, 2) and (4, 3) properties in R2. There does not exist a
general constant upper bound on the piercing number τ(F) when F is
an intersecting family of convex sets in R2, as is exemplified by a family
of lines in the plane in general position, in which the piercing number
is at least half the number of lines. However, in some cases, when F
consists of certain “nice” sets, constant upper bounds on the piercing
numbers in intersecting families can be proved. One such example is
the following result by Danzer [2] on intersecting families of disks.

Theorem 1.1 (Danzer, [2]). An intersecting family of disks in R2 has
τ(F) ≤ 4.

An extension of this result for families of homothets in the plane was
proved by Karasev [6]. Given a centrally symmetric body B ⊂ R2 and
a number 0 < r ≤ 1, a (B, r)-homothet is a set tB+u for some number
r ≤ t ≤ 1 and a point u ∈ R2. Karasev proved the following:

Theorem 1.2 (Karasev, [6]). Let B be a centrally symmetric body in
R2. If F is an intersecting family of (B, 1

2
)-homothets then τ(F) ≤ 3.

As mentioned above, for families satisfying the (4, 3) property we
have the following.

Theorem 1.3 (Kleitman–Gyárfás–Tóth, [8]). If F is a family of con-
vex sets in the plane that satisfies the (4, 3) property, then τ(F) ≤ 13.

It seems that improving the bound in Theorem 1.3 in general is a
hard task. However, bounds on the piercing numbers in families satis-
fying the (4, 3) property can be significantly improved if one considers
only certain restricted such families. For example, Kynĉl and Tancer
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proved in [9] a tight upper bound for families of unit disks satisfying
the (4, 3) property:

Theorem 1.4 (Kynĉl–Tancer, [9]). If F is a family of unit disks in
the plane which satisfies the (4, 3) property then τ(F) ≤ 3, and there
exist families of sets achieving this bound.

Other types of families F satisfying the (4, 3) property that were
proved in [9] to achieve τ(F) ≤ 3 are families of translations of a
triangle in R2 and families of line segments in Rd.

Furthermore, Theorems 1.1 and 1.2 imply the following bounds for
families of disks or homothetes:

Theorem 1.5. If F is a family of disks in R2 satisfying the (4, 3)
property then τ(F) ≤ 5.

Theorem 1.6. If F is a family of (B, 1
2
)-homothets of a centrally sym-

metric body B in R2 and F satisfies the (4, 3) property, then τ(F) ≤ 4.

Both theorems follow from a simple observation:

Observation 1.7. Let C be a collection of convex sets in R2 and let
t ≥ 3. If for every family F ⊂ C that satisfies the (2, 2) property we
have τ(F) ≤ t, then for every family F ⊂ C that satisfy the (4, 3)
property we have τ(F) ≤ t+ 1.

Proof. Let F ⊂ C be a family of sets satisfying the (4, 3) property. If
|F | ≤ 3 the observation is trivial. Thus we may assume F contains at
least 4 sets. Observe that ν(F) ≤ 2, for otherwise a matching of size
3 together with any other set in F is a collection of four sets violating
the (4, 3) property. If ν(F) = 1 then F satisfies the (2, 2) property, and
thus τ(F) ≤ t. Suppose ν(F) = 2 and let A,B be two disjoint sets in
F . We claim that either every set in F\{A,B} intersects A or every set
in F\{A,B} intersects B; indeed, if there exist D,E ∈ F\{A,B} such
that D∩A = E∩B = ∅, then the foursome A,B,D,E violates the (4, 3)
property. Assume without loss of generality that every set in F\{A,B}
intersects B. Then F = FB ∪FAB ∪ {A}, where FB ⊂ F is the family
of sets in F intersecting B and not intersecting A, and FAB ⊂ F is
the family of sets in F intersecting both A and B. Observe that FB

must satisfy the (3, 3) property, for otherwise a non-intersecting triple
of sets in FB together with A constitute a foursome of sets violating the
(4, 3) property. Hence by Helly’s theorem τ(FB) = 1. Furthermore,
FAB ∪ {A} is an intersecting family of sets, since if D,E ∈ FAB are
disjoint then the sets A,B,D,E violate the (4, 3) property. Thus we
have τ(F) ≤ τ(FAB∪{A})+τ(FB) ≤ t+1, proving the observation. �
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1.3. Our results. In this note we further investigate the piercing num-
bers in families of sets in R2 satisfying the (2, 2) or the (4, 3) properties.
To this end we define the notion of fat sets, and prove upper bounds
on the piercing numbers in families of fat sets in the plane satisfying
these intersection properties.

Given a number 0 < r ≤ 1, a set S ⊂ R2 will be called r-fat if there
exists a point c ∈ S such that B(c, r) ⊆ S ⊆ B(c, 1), where B(c, r) is
the disk in R2 of radius r with center-point c. Thus a 1-fat set is a
unit disk, and every disk of radius d ≤ 1 is an r-fat set for every r ≤ d.
Note that for r < 1, an r-fat set is not necessarily convex.

We extend the results mentioned above by establishing constant up-
per bounds, depending only on r, on the piercing numbers in intersect-
ing families of r-fat sets in the plane, or in families of convex r-fat sets
in the plane that satisfy the (4, 3) property. We consider only such
families whose union is compact. We prove the following.

Theorem 1.8. Let F be a family of (not necessarily convex) r-fat sets
in the plane satisfying the (2, 2) property.

(1) If
√

8− 2 ≤ r ≤ 1 then τ(F) ≤ 4.
(2) If 0.68 ≤ r ≤ 1 then τ(F) ≤ 5.

(3) For every 0 < r ≤ 1 we have τ(F) ≤ (d
√
2
r
e)2, and in particular,

if r ≥ 0.5 then τ(F) ≤ 9.

Theorem 1.9. Let F be a family of convex r-fat sets in the plane
satisfying the (4, 3) property.

(1) If
√

8− 2 ≤ r ≤ 1 then τ(F) ≤ 4.
(2) If 0.68 ≤ r ≤ 1 then τ(F) ≤ 5.

(3) For every 0 < r ≤ 1 we have τ(F) ≤ (d
√
2
r
e)2 + 1, and in

particular, if r ≥ 0.5 then τ(F) ≤ 10.

Our proof methods rely on bounding the piercing numbers τ(F) by
the number of disks of radius r needed to cover certain bounded regions
in the plane. In Section 2 we establish preliminary lemmas needed for
the proofs of Theorems 1.8 and 1.9, and the proofs are then given in
Section 3.

2. Seven lemmas

Let dist denote the Euclidean distance in R2.

Lemma 2.1. Let r > 0, and suppose that D is a family of disks in R2,
each of them of radius at least r. Let C(D) be the set of all center-points
of disks in D. If there exists a point c ∈ R2 such that C(D) ⊂ B(c, r),
then

⋂
D 6= ∅.
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Proof. We have dist(c, p) ≤ r for every p ∈ C(D), implying c ∈ D for
every D ∈ D. �

For an r-fat set S ⊂ R2 let cS ∈ S be a point in R2 for which
B(cS, r) ⊆ S ⊆ B(cS, 1).

Let F be a family of r-fat sets in R2 satisfying the conditions of
Theorems 1.8 or 1.9. We may assume that |F| ≥ 4, for otherwise both
theorems are trivial.

Fix A,B ∈ F such that dist(cA, cB) = maxF,F ′∈F dist(cF , cF ′), and
write d = dist(cA, cB). By rotating and translating F we may assume
that cB is the point (

√
8, 0), and cA is to the left of cB, that is, cA is

the point (
√

8 − d, 0). We make this choice in order to simplify the
computations in the sequel.

Lemma 2.2. For every D,E ∈ F \ {A,B} we have dist(cD, cE) ≤ 2.

Proof. The lemma is trivial if d ≤ 2. If d > 2 then F is non-intersecting,
thus it must satisfy the (4, 3) property, and moreover, A ∩ B = ∅. If
in addition D ∩ E = ∅ for some D,E ∈ F \ {A,B}, then the sets
A,B,D,E violate the (4, 3) property. Therefore D,E intersect, imply-
ing dist(cD, cE) ≤ 2. �

By the same arguments as in the proof of Observation 1.7 we have:

Lemma 2.3. If A,B ∈ F are disjoint then ν(F) = 2. Moreover, either
A intersects every disk in F\{B} or B intersects every disk in F\{A}.

From now on we will assume without loss of generality that B inter-
sects every set in F \ {A}. Thus if F is non-intersecting then A,B are
disjoint and F = FB ∪ FAB ∪ {A}, where FB and FAB are defined as
before.

For a subfamily F ′ ⊆ F let C(F ′) = {cF | F ∈ F ′}. For any two
real numbers a ≥ b let H(a, b) = {(x, y) ∈ R2 | b ≤ y ≤ a}. Define

L(d) =

{(
B(cA, d) ∩B(cB, 2)

)
∪ {cA} d ≤

√
8

B(cA, 2) ∩B(cB, 2) d >
√

8
.

By the maximality of d we have C(F) ⊂ B(cA, d). Moreover, by our
assumption, B intersects every set in F \ {A}, and therefore we have
also C(F \ {A}) ⊂ B(cB, 2). Thus if d ≤

√
8 then C(F) ⊂ L(d), and

if d >
√

8, then C(FAB) ⊂ L(d) by definition.
Let m denote the maximum y-coordinate of a point in C(F) in the

case d ≤
√

8, or in C(FAB) otherwise. By computing the maximum of
the function y in the domains

{(d, x, y) | (x− (
√

8−d))2 +y2 ≤ d2, (
√

8−x)2 +y2 ≤ 4, 0 ≤ d ≤
√

8},



6 SHILIANG GAO AND SHIRA ZERBIB

or

{(d, x, y) | (x− (
√

8− d))2 + y2 ≤ 4, (
√

8− x)2 + y2 ≤ 4, d ≥ 0},
we obtain

Lemma 2.4. m ≤
√

3.5.

The following three lemmas will be the key tool in our proofs:

Lemma 2.5. Suppose that the set L(d)∩H(m,m− 2) is contained in
the union of at most k disks of radius r. then

τ(F) ≤

{
k d ≤

√
8

k + 2 d >
√

8

Proof. If d ≤
√

8, then Lemma 2.2 implies C(F) ⊂ H(m,m − 2),
and by the arguments above, C(F) ⊂ L(d) ∩H(m,m− 2). Therefore
the conditions of the lemma imply that there exist k disks of radius r
containing C(F) in their union. By Lemma 2.1 this means that F can
be pierced by the center-points of these k disks.

If d >
√

8, then A,B are disjoint, and as in the proof of Observation
1.7, FB is a family of convex sets satisfying the (3, 3) property, which
entails by Helly’s theorem, τ(FB) ≤ 1. Furthermore, Lemma 2.2 im-
plies C(FAB) ⊂ L(d) ∩ H(m,m − 2), and thus C(FAB) is contained
in the union of k disks of radius r. It follows from Lemma 2.1 that
τ(FAB) ≤ k, implying τ(F) ≤ τ(FAB) + τ(FB) + τ({A}) ≤ k + 2. �

Define a (possibly empty) rectangle R ⊂ R2 as follows.

R =

{{
(x, y) |

√
8− 2 ≤ x ≤

√
8, −1 ≤ y ≤ 0

}
d ≤
√

8{
(x, y) |

√
8− 2 ≤ x ≤

√
8− d+ 2, −1 ≤ y ≤ 0

}
d >
√

8
.

Lemma 2.6. If the set
(
(L(d) \ {cA})∩H(1,−1)

)
∪R is contained in

the union of k disks of radius r, then so is (L(d) \ {cA})∩H(a, a− 2),
for any real number a.

Proof. We first claim that it is enough to prove the lemma for 1 ≤ a ≤√
3.5. Indeed, if a < 1 we reflect the set (L(d)\{cA})∩H(a, a−2) about

the x-axis, and prove the lemma for the reflected set, and if a >
√

3.5
then by Lemma 2.4 we have

(L(d) \ {cA}) ∩H(a, a− 2) ⊆ (L(d) \ {cA}) ∩H(
√

3.5,
√

3.5− 2),

proving the claim.
So let 1 ≤ a ≤

√
3.5. We claim that if

(
(L(d)\{cA})∩H(1,−1)

)
∪R

is contained in
⋃k

i=1B((xi, yi), r), then (L(d) \ {cA}) ∩ H(a, a − 2) is

contained in
⋃k

i=1B((xi, yi + a− 1), r).
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To prove this, we show that if (x, y) ∈ (L(d) \ {cA}) ∩ H(a, a − 2)
then

(1) (x, y − (a− 1)) ∈
(
(L(d) \ {cA}) ∩H(1,−1)

)
∪R.

To see that (1) holds, note that if a−2 ≤ y ≤ a−1 then (x, y−(a−1)) ∈
R, and for a− 1 < y ≤ a we have both

(x− (
√

8− d))2 + (y − (a− 1))2 < (x− (
√

8− d))2 + y2 ≤ d2

and
(
√

8− x)2 + (y − (a− 1))2 < (
√

8− x)2 + y2 ≤ 4,

implying (x, y − (a − 1)) ∈ L(d) \ {cA}. Moreover, y ≤ a entails
y − (a− 1) ≤ 1, and therefore (1) is true. �

Let R′ = R1 ∪R2 be a union of rectangles, where

R1 =
{

(x, y) |
√

8− d ≤ x ≤
√

8− 2, 1−
√

3.5 ≤ y ≤ 0
}

and

R2 =
{

(x, y) |
√

8− 2 ≤ x ≤
√

8, −1 ≤ y ≤ 0
}
.

Applying similar arguments to those in the proof of Lemma 2.6 we
obtain:

Lemma 2.7. For d ≤
√

8, if
(
L(d) ∩ H(1,−1)

)
∪ R′ is contained in

the union of k disks of radius r, then so is L(d) ∩H(a, a− 2), for any
real number a.

3. Proof of Theorems 1.8 and 1.9

For any number a ∈ R let H+(a) = {(x, y) ∈ R2 | y ≥ a} and
H−(a) = {(x, y) ∈ R2 | y ≤ a}. Note that for two real numbers a ≥ b
we have H(a, b) = H−(a) ∩H+(b).

Let A, B, d, L(d), m, R, R′ be defined as in the previous section.
If A,B intersect then d ≤ 2, and thus C(F) ⊂ B(cA, 2) ∩ B(cB, 2). If
A,B are disjoint then, as before, we assume that B intersects every set
in F \ {A,B}, and therefore, C(F \ {A,B}) ⊂ B(cA, d) ∩B(cB, 2).

3.1. The case
√

8− 2 ≤ r ≤ 1. we distinct three subcases.

Case 3.1.1. d ≤
√

8 and there exists F ∈ F such that cF ∈ H+(1.1).
In this case, by Lemma 2.2, C(F \ {A,B}) ⊂ H+(−0.9). This implies

C(F) ⊆ L(d) ∩H+(−0.9).

Observe that L(d) ∩H+(−0.9) is contained in the union of four disks⋃4
i=1B(pi,

√
8−2), where p1 = ((

√
8−2) cos(0.24π), (

√
8−2) sin(0.24π)),

p2 = (2.01, 1.053), p3 = (2.4972,−0.115) and p4 = (1.64,−0.33) (see
Figure 1). Lemma 2.1 thus implies τ(F) ≤ 4.
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Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. L(d) ∩ H+(−0.9) is contained in the union
of four disks of radius

√
8− 2 in Case 3.1.1.

Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. L(d) ∩H−(1.1) is contained in the union of
four disks of radius

√
8− 2 in Case 3.1.2.

Case 3.1.2. d ≤
√

8 and C(F) ⊂ H−(1.1). In this case we have

C(F) ⊂ L(d) ∩H−(1.1) ⊂
4⋃

i=1

B(qi,
√

8− 2),

where q1 is the point ((
√

8 − 2) cos(0.24π), (
√

8 − 2) sin(0.24π)), q2 =
(1.5739,−0.6133), q3 = (2.5357,−0.204), and q4 = (1.95, 0.7) (see Fig-
ure 2). Thus again, by Lemma 2.1 we have τ(F) ≤ 4, and in particular
Assertion (1) in Theorem 1.8 is proved.
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Figure 3 

 

Figure 3. L(d) is contained in the union of two disks
of radius

√
8− 2 in Case 3.1.3.

Case 3.1.3. d >
√

8. In this case A,B are disjoint, and we as-
sume that B intersects every set in F \ {A,B}. Let FB and FAB as
before. Then we have τ(FB ∪{A}) ≤ 2. Furthermore, we observe that
C(FAB) ⊂ L(d) and

L(d) ⊂ B((
√

2, 2−
√

2),
√

8− 2) ∪B((
√

2,
√

2− 2),
√

8− 2)

(see Figure 3). Therefore, by Lemma 2.1 we have τ(FAB) ≤ 2, implying
τ(F) ≤ 4. This completes the proof of Assertion (1) in Theorem 1.9.

3.2. The case 0.68 ≤ r <
√

8− 2. Here we consider two subcases.

Case 3.2.1. d ≤
√

8. In this case, by Lemma 2.5, in order to
prove Assertions (2) in Theorems 1.8 and 1.9 it suffices to show that
the set L(d) ∩ H(m,m − 2) is contained in the union of five disks of
radius 0.68. Moreover, by Lemma 2.7, this will follow if show that
the set

(
L(d) ∩ H(1,−1)

)
∪ R′ is contained in the union of five disks

of radius 0.68. Now observe that the union of disks of radius 0.68
with center-points p1 = (0.49,−0.465), p2 = (1.477, 0.6262), p3 =
(2.445,−0.456), p4 = (1.435, 0.435) and p5 = (2.3162, 0.55), contains(
L(d) ∩ H(1,−1)

)
∪ R′ (see Figure 4). In particular Assertion (2) in

Theorem 1.8 is proved.

Case 3.2.2. d >
√

8. By Lemma 2.5, it is enough to show that
L(d) ∩ H(m,m − 2) is contained in the union of 3 disks of radius
0.68. Since L(d) = L(d) \ {cA} when d >

√
8, this will follow from

Lemma 2.6 if we show that the set
(
(L(d) \ {cA}) ∩ H(1,−1)

)
∪ R

is contained in the union of 3 disks of radius 0.68. Indeed, the set(
(L(d) \ {cA}) ∩H(1,−1)

)
∪R is contained in

⋃3
i=1B(qi, 0.68), where
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Figure 4. L(d)∩H(1,−1) is contained in the union of
five disks of radius 0.68 in Case 3.2.1.

Figure 5. L(d)∩H(1,−1) is contained in the union of
three disks of radius 0.68 in Case 3.2.2.

q1 = (
√

2, 0.43), q2 = (1.1,−0.5), and q3 = (1.7,−0.5) (see Figure 5).
This concludes the proof of Assertion (2) in Theorem 1.9.

3.3. Proof of the third assertions in Theorems 1.8 and 1.9.
Suppose first that F satisfies the (2, 2) property. Then d ≤ 2, and by
Lemmas 2.5 and 2.7 it suffices to show that

(
L(d) ∩H(1,−1)

)
∪ R′ is

contained in the union of (d
√
2
r
e)2 disks of radius r.
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Note that
(
(L(d)) ∩ H(1,−1)

)
∪ R′ is contained in the rectangle

{(x, y) |
√

8 − 2 ≤ x ≤
√

8,−1 ≤ y ≤ 1}, and this rectangle can be

covered by (d
√
2
r
e)2 squares of edge length

√
2r. To conclude the proof

of Theorem 1.8, observe that the union of k squares with edge length√
2r is contained in the union of k disks of radius r.
If F is a family of convex r-fat sets satisfying the (4, 3) property,

then we apply Assertion (3) in Theorem 1.8 together with Observation

1.7, to conclude τ(F) ≤ (d
√
2
r
e)2 + 1. Thus Theorem 1.9 is proved.
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