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THE CASE OF NEUMANN, ROBIN AND PERIODIC LATERAL1

CONDITION FOR THE SEMI INFINITE GENERALIZED GRAETZ2

PROBLEM AND APPLICATIONS.3

VALENTION DEBARNOT, JÉRÔME FEHRENBACH, FRÉDÉRIC DE GOURNAY, LÉO4

MARTIRE ∗
5

Abstract. The Graetz problem is a convection-diffusion equation in a pipe invariant along a di-6

rection. The contribution of the present work is to propose a mathematical analysis of the Neumann,7

Robin and periodic boundary condition on the boundary of a semi-infinite pipe. The solution in the8

3D space of the original problem is reduced to eigenproblems in the 2D section of the pipe. The set of9

solutions is described, its structure depends on the type of boundary condition and of the sign of the10

total flow of the fluid. This analysis is the cornerstone of numerical methods to solve Graetz problem11

in finite pipes, semi infinite pipes and exchangers of arbitrary cross section. Numerical test-cases12

illustrate the capabilities of these methods to provide solutions in various configurations.13

1. Introduction.14

1.1. Context. The seminal work of Graetz in the late 19th century adressed a15

stationnary convection-diffusion problem inside an axi-symmetrical cylindrical pipe16

[5], where the regime was supposed to be convection-dominated which means that17

the longitudinal diffusion was neglected. It was the first contribution to the mod-18

elling of convective transport coupled with diffusion, with important applications19

nowadays as the parallel convective exchangers involved in heating or cooling systems20

[16], haemodialysis [1], and heat exchangers [7]. The first extension to the Graetz21

problem, known as the “extended Graetz problem” takes into account longitudinal22

diffusion [10, 3, 18, 9]. Papoutsakis et al. in [12, 11] introduced a symmetric op-23

erator acting on a two-components space that solves the extended Graetz problem24

in axi-symmetrical configurations. The so-called “conjugated Graetz problem” where25

multiple solid or fluid phases are taken into account was proposed in [13, 14] in the case26

of an axi-symmetrical configuration. These successive models aimed at taking into ac-27

count more and more complex and realistic situations, and when only axi-symmetrical28

configurations were considered the equations boiled down to one-dimensional prob-29

lems. The adaptation to parallel plates heat exchangers of these one-dimensional30

models, together with a parametric study was proposed in [6]. The reader may also31

consult [2] for a review on the conjugated Graetz problem.32

The work on non-axisymmetrical configurations was initiated in [15] where the33

operator was proved to be self-adjoint with compact resolvent when Dirichlet bound-34

ary conditions are applied on the boundary of the domain. In the case of a single fluid35

stream the negative eigenvalues correspond to downstream propagation, and positive36

eigenvalues to upstream propagation. The main novelty was that arbitrary geometries37

were adressed, and a detailed mathematical analysis of the Dirichlet problem was pro-38

posed. The authors of [15] coined this problem as the “generalized Graetz problem”.39

Numerical methods for the approximation of this operator and error estimates where40

provided in [4].41

The objective of the present work is to extend the work of [4] and provide explicit42

methods with general lateral boundary conditions, beyond the Dirichlet case. The43

cross section of the domain has an arbitrary geometry and can incorporate different44
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fluid domains, possibly with opposite signs of the velocity. The lateral boundary45

conditions that we address can be Dirichlet, Neumann, Robin, periodic or a mixture46

of these different cases on different parts of the boundary. The periodic boundary47

conditions with rectangular or hexagonal cell are adapted to the analysis of micro-48

exchangers, where a design pattern is repeated.49

1.2. Setting. In convection-dominated heat or mass transfer, we address the
generalized Graetz problem which occurs in a cylinder of arbitrary section Ω and of
length I, possibly I = R+, see Figure 1.1. The diffusion coefficient is supposed to
be invariant by translation along ez the axis of the cylinder. Similarly, the velocity
vector v is supposed to be oriented in the direction of the axis of the cylinder, that is
v = hez with h ∈ L∞(Ω). The equation for the temperature T inside the domain is
then

c∂zzT + div(σ∇T )− h∂zT = 0 on Ω× I, (E)

with diffusion coefficients c, σ > 0 bounded in Ω with bounded inverse. In (E), it is50

implicitly supposed that the heat capacity C and the density ρ of the fluid satisfy51

ρC = 1. If one has to handle several fluids with different physical properties, the52

choice of an adequate normalization leads to (E). In this case, at each point x ∈ Ω,53

h(x) represents the velocity multiplied by ρ(x)C(x). For simplicity reasons, we refer54

in the sequel to h as the velocity.55

The lateral homogeneous boundary conditions (LBC) may be of Neumann, Dirich-
let, Robin and periodic type, respectively on ΓN ,ΓD,ΓR,Γ] ⊂ ∂Ω given by

σ∇T · n = 0 on ΓN × I: Neumann, and/or

T = 0 on ΓD × I: Dirichlet, and/or

σ∇T · n+ aT = 0 on ΓR × I: Robin, and/or

T is periodic on Γ] × I: periodic

(LBC)

where a > 0 in the Robin condition, and Γ] must be taylored to support periodic
conditions (e.g. Ω is the unit square, Γ] = ({x = 0} ∪ {x = 1}) ∩ ∂Ω and the bound-
ary condition is T (0, y) = T (1, y)). As usual, the Γ’s involved in the definition of
the boundary condition must form a partition of ∂Ω. Note that the Neumann (resp.
Dirichlet) boundary conditions are degenerate cases of the Robin condition corre-
sponding to a = 0 (resp. a = +∞). The Inlet/Outlet boundary condition (I/OBC)
is of Dirichlet and/or of Neumann type and is given by

T = TD on ΩD and ∂zT = SN on ΩN with ΩD ∪ ΩN = Ω× ∂I. (I/OBC)

In the case I = R+, we intentionnally stay vague about the definition of ∂I, it is one56

of the results of this work to determine whether an (I/OBC) is needed on z = +∞.57

A more realistic model in regimes of high velocities takes into account a viscosity58

term, see e.g. [8] where a study in a microchannel including viscous effects and lon-59

gitudinal conduction is performed. Our approach can also account for viscosity, the60

details are presented in Section 2.3.61

1.3. Lax-Milgram. Note that the equation (E) is an elliptic equation with an62

additionnal convective term. It is possible to use Lax-Milgram’s theorem [17] under63

the hypothesis that the Inlet/Outlet boundary condition is Dirichlet in the region64

where the flow is incoming. More precisely:65
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Figure 1.1. The domain Ω× I where the Graetz problem is posed.

Proposition 1. Let I = [z1, z2] and ω± = {x s.t ± h(x) > 0}. If

ω+ × {z1} ⊂ ΩD and ω− × {z2} ⊂ ΩD

and if TD and SN are regular enough, then there exists a unique solution to (E) with66

the boundary conditions (LBC) and (I/OBC).67

The proof is only sketched here for the sake of completness. Denote X the natural
space of elements where the solution is sought, that is

X = {T ∈ H1(Ω× I) s.t. T = 0 on (ΓD × I) ∪ ΩD and T periodic on Γ] × I}.

Non-homogeneous Dirichlet boundary conditions of (I/OBC) are solved using a lift
of TD, still denoted TD that satisfies the lateral boundary conditions (LBC) with
∂zTD = 0 on ΩN and denote

fD = c∂zzTD + div(σ∇TD)− h∂zTD.

The change of unknown T̃ = T − TD where T solves (E) and (LBC), leads to the

following variational formulation: find T̃ ∈ X such that for every φ ∈ X :∫
Ω×I

c∂zT̃ ∂zφ+ σ∇T̃ · ∇φ+ h∂zT̃ φ+

∫
ΓR

aT̃φ︸ ︷︷ ︸
b(T̃ ,φ)

+

∫
ΩN

SNφ−
∫

Ω×I
fDφ︸ ︷︷ ︸

`(φ)

= 0.

The term b(T, φ) is bilinear in (T, φ) and continuous for the standard norm of X ,
the term `(φ) is linear continuous if TD and SN are regular enough. It remains to
study the coercivity of b.

b(T, T ) =

∫
Ω×I

c∂zT.∂zT + σ∇T · ∇T + h∂zT.T =

∫
Ω×I
‖∇3DT‖2κ +

1

2

∫
Ω×I

h∂z(T
2),

where κ is a positive matrix with diagonal entries (σ, σ, c) in the basis (ex, ey, ez). The
first term is coercive. The second term is

1

2

∫
Ω

hT 2|z=z2z=z1 =
1

2

∫
Ω×{z2}

hT 2 − 1

2

∫
Ω×{z1}

hT 2.

It is nonnegative for all T ∈ X if and only if the Inlet/Outlet condition is of Dirichlet68

type at the boundary where the flow is entering the domain (z = z1 if h > 0, and69

z = z2 if h < 0).70
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1.4. Presentation of the paper. The objective of the present paper is to71

provide a general framework that allows to solve (E) with any type of boundary72

condition beyond the case where Lax-Milgram’s theorem can be used. Section 273

details the notation and the main properties of the operator involved in the solution,74

as well as the modifications required to take into account a viscosity term. The main75

results, namely Theorems 4 and 5, are detailed in Section 3, their proof is postponed76

to the Appendix. In Section 4 we solve the problem in a semi-inifinite domain and77

show that depending on the case the temperature at infinity T∞ can either be a78

free parameter of the problem or be imposed by the other condition. In Section 5 we79

adress the case of a domain of finite length, and numerical strategies are detailed in the80

different cases depending on the lateral boundary condition and on the Inlet/Outlet81

condition. Test cases are presented in Section 6.82

2. State of the art and position of the problem. The equation (E) may be
interpreted as an evolution equation in the variable z if it is cast into

∂z

(
∂zT
T

)
= A

(
∂zT
T

)
on Ω× I, with A

(
u
s

)
=

(
hc−1u− c−1 div σ∇s

u

)
. (2.1)

The goal of this section is to guide the reader to the analysis of (2.1) that was proposed83

in [4], to enlarge the frame to Neumann and periodic lateral boundary condition, and84

to define the notation and state the results that will be used in the sequel. Since A85

is a symmetric operator with a compact resolvent, classical eigendecomposition leads86

to an explicit representation of the solution of (2.1) in the basis of eigenvectors (see87

e.g. [17]).88

Definition 2. We say that “the constants are not controlled” when ΓD∪ΓR = ∅,89

in other words when there is no Dirichlet or Robin condition on the lateral part of90

the boundary of the domain. The case where the constants are not controlled and in91

addition
∫

Ω
h = 0 is called the “balanced case”.92

From the engineering point of view, the balanced case is a special instance of93

counter-current configuration, where the integral of the velocities in the 2 directions94

have the same magnitude and the boundary of the domain Ω is perfectly insulating or95

periodic. As we prove in this section, the case where the constants are not controlled96

is a case where the constants are a solution of (E) and the balanced case is a case97

where A admits a non-trivial kernel.98

2.1. Study of the operator A. In this section we detail the Hilbert space, the99

scalar product, the kernel, range and pseudo-inverse of the symmetric operator A.100

Hilbert space and scalar product. First, introduce the space H that encodes
the lateral boundary condition. When the constants are controlled define:

H = {s ∈ H1(Ω), such that s = 0 on ΓD and s periodic on Γ]}.

If there is no Dirichlet or Robin boundary condition, hence no control on the constants,
quotient by the constants and define:

H = {s ∈ H1(Ω)/R, such that s periodic on Γ]}.

Then, define the Hilbert space H as

H = {(u, s) |u ∈ L2(Ω), s ∈ H}
4



which is endowed with the scalar product:((
u, s
)
|
(
u′, s′

))
H =

∫
Ω

cuu′ + σ∇s · ∇s′ +
∫

ΓR

ass′.

The crucial step in showing thatH is a Hilbert space is to show that the scalar product101

is definite. Setting
((
u, s
)
|
(
u, s
))
H = 0 immediatly gives u = 0 and ∇s = 0, hence s102

is a constant. If the constants are controlled, then ΓD ∪ ΓR 6= ∅ and s = 0, whereas103

if the constants are not controlled then s is a constant and s = 0 in H.104

The domain of the operator A is:

D(A) = {(u, s) ∈ H, u ∈ H1(Ω),div(σ∇s) ∈ L2(Ω) + boundary conditions (LBC)},

where the boundary conditions are u ∈ H, and σ∇s · n is equal to 0 on ΓN , is equal105

to −as on ΓR and is periodic on Γ]. On D(A), the operator is symmetric as we prove106

now. Let φ = (u, s) and φ′ = (u′, s′) ∈ D(A):107

(Aφ|φ′)H =

∫
Ω

(hu− div σ∇s)u′ + σ∇u · ∇s′ +
∫

ΓR

aus′

=

∫
Ω

huu′ + σ∇u · ∇s′ + σ∇u′ · ∇s+

∫
∂Ω

(−σ∇s · n)u′ +

∫
ΓR

aus′︸ ︷︷ ︸
(1)

,

and the term (1) is symmetric thanks to (LBC) on D(A).108

Inverse of the Laplacian Define the inverse of the Laplace operator as:

u = ∆−1
σ f iff

 div(σ∇u) = f, and
u ∈ H
+ boundary conditions,

where the boundary conditions are σ∇u · n = 0 on ΓN and σ∇u · n+ au = 0 on ΓR.109

If the constants are controlled, then ∆−1
σ is well defined on L2(Ω), whereas if there110

is only Neumann or periodic boundary conditions (no control of the constants), the111

operator ∆−1
σ is only defined if f ∈ L2

m(Ω), the subspace of L2(Ω) with null average.112

Kernel of A Following from the definition of A in (2.1), the kernel of A is the
set of (u, s) in D(A) such that

u = 0 in H and hu− div(σ∇s) = 0.

When the constants are controlled, both u and s are then equal to 0. When the
constants are not controlled, since u is a constant, then s = u∆−1

σ h in Ω which
admits a solution if and only if

∫
Ω
h = 0. To summarize the kernel of A is:

K(A) =

{
V ect(φ0 = (1,∆−1

σ h)) in the balanced case ,

{0} in the other cases

Range and inverse of A The range of A, denoted R(A), is defined as the
orthogonal of K(A) in H and the inverse of A is an operator from R(A) to D(A),
defined as follows:

∀φ = (u, s) ∈ R(A),A−1φ =

{
(s,∆−1

σ (hs− cu)) if the constants are controlled

(s+ k,∆−1
σ (hs− cu+ hk)), k ∈ R if not.

.
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When the constants are not controlled, the constant k ∈ R is chosen so that{∫
Ω
hs− cu+ hk = 0 in the non-balanced case,

(A−1φ, φ0)H = 0 in the balanced case.

It is easily checked that for all φ ∈ R(A), A−1φ ∈ D(A) and that AA−1φ = φ. The
operator A−1 is then symmetric (as a consequence of the symmetry of A). Note also
that in the balanced case, one can also write:

∀φ = (u, s) ∈ R(A), A−1φ = (s,∆−1
σ (hs− cu)) + kφ0.

Eigenvalue decomposition of A The operator A−1 is a compact self-adjoint
operator on R(A). To prove this let φn = (un, sn) be a bounded sequence in H. Then
up to a subsequence it is a weakly convergent sequence and sn converges strongly in
L2(Ω). Using the fact that ∆−1

σ is a compact operator from L2 to H finishes the proof.
We denote by λi the non-zero ordered eigenvalues of A and by φi = (Ui, λ

−1
i Ui) the

corresponding eigenvectors. By convention, λi is of the sign of i so that

−∞← λ−n ≤ λ−n−1 ≤ · · · ≤ λ−1 < 0 < λ1 ≤ · · · ≤ λn−1 ≤ λn → +∞.

In the balanced case, we add to the family (φi)i the vector φ0 = (1,∆−1
σ h), so113

that the Hilbert space H is the space spanned by the eigenvectors (φi)i∈Z.114

2.2. Solution of the evolution equation. The diagonalization of the operator
A allows to solve the evolution equation (E):

c∂zzT + div(σ∇T )− h∂zT = 0 on Ω× I. (E)

Let T ∈ C1(I, L2(Ω)) ∩ C0(I,H) be a solution of this equation with corresponding
lateral boundary conditions (LBC). If we denote φ : z 7→ (∂zT (z), T (z)) in C0(H),
then the equation (E) is equivalent to ∂zφ = Aφ, and the solution φ is given by

φ(z) =
∑
i∈Z

(φ(0)|φi)H
‖φi‖2H

eλizφi. (2.2)

One can either identify the first coordinate and integrate w.r.t. z or identify the
second coordinate and denote

ψ =
∑
i∈Z∗

λ−1
i

(φ(0)|φi)H
‖φi‖2H

φi,

to obtain115

T (z) =
∑
i∈Z∗

(ψ|φi)HUieλiz if the constants are controlled, i.e.ΓD ∪ ΓR 6= ∅,

T (z) =
∑
i∈Z∗

(ψ|φi)HUieλiz + a0 with a0 ∈ R if ΓD ∪ ΓR = ∅ and

∫
Ω

h 6= 0,

T (z) =
∑
i∈Z∗

(ψ|φi)HUieλiz + a0 + a1(z + ∆−1
σ h) in the balanced case

with a0 ∈ R and a1 =
(φ(0)|φ0)H
‖φ0‖2

.
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If ∂zT and T are given at z = 0 such that φ(0) = (∂zT (0), T (0)) belongs to H,116

then ψ is uniquely determined. Moreover the constant a0 is also determined by T|z=0117

(and also a1 in the balanced case). We stress that this solution may not be defined118

everywhere, indeed the series on the right-hand side of (2.2) has to be convergent in119

some sense and the convergence of the series for z = 0 is not sufficient to ensure the120

convergence for z 6= 0 due to the multiplication by eλiz for non-zero λi’s. The set of121

initial datum φ that allows this series to exist is known as the set of compatible initial122

condition for the Cauchy problem.123

2.3. Including a viscous term. Let us consider the following modification of
the equation (E) where a viscous term is added:

c∂zzT + div(σ∇T )− h∂zT = µ|∇h|2. (2.3)

Proposition 3. Let T be the solution of the Graetz equation with viscosity (2.3).124

Then there exists an explicit change of unknown function that transforms the problem125

with viscosity into a problem without viscosity of the form (E). Therefore the solution126

of the problem (2.3) reduces to the solution of the original problem (E).127

Proof. Once a particular solution T̃ is found, the change of variable T̂ = T − T̃128

transforms by linearity the problem with viscosity (2.3) into the problem without129

viscosity. We distinguish different cases, depending on if the constants are controlled130

or not, and in the case the constants are not controlled we treat separately the non-131

balanced and the balanced case. In each case we provide an explicit particular solution132

T̃ .133

a) If the constants are controlled, a particular solution is given by

T̃ = ∆−1
σ (µ|∇h|2).

b) If the constants are not controlled, in the non-balanced case

T̃ = αz + ∆−1
σ (µ|∇h|2 + αh),

where α ∈ R satisfies ∫
Ω

(
µ|∇h|2 + αh

)
= 0.

c) If the constants are not controlled, in the balanced case, the particular solu-

tion is given by T̃ = α(
z2

2
+ z∆−1

σ h) + ∆−1
σ γ, with α ∈ R and γ ∈ L2(Ω) such

that:  α

(∫
Ω

c− h∆−1
σ h

)
=

∫
Ω

µ|∇h|2

γ = µ|∇h|2 − α(c− h∆−1
σ h)

(2.4)

The choice of α ensures that γ has zero average so that ∆−1
σ γ is well defined.

Note that α is well defined since∫
Ω

c− h∆−1
σ h =

∫
Ω

c+

∫
Ω

σ|∇h|2 > 0.

Note that the last term is equal to ‖φ0‖2H.2134
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3. Main decomposition theorem. In this section, the decomposition of a135

temperature field on the non-positive eigenspace is studied. The result stated in136

Theorem 5 considers different cases depending on the control of constants and the137

sign of the total flow.138

3.1. Notation and statement of the problem. The D(Aα) norm or “α-
norm” in short is defined by

‖φ‖2α =
∑
i∈Z

λ2α
i

(φi|φ)2
H

‖φi‖2H
∀φ ∈ H.

The space D(Aα) is the set of φ ∈ R(A) whose α-norm is < +∞. It is easy to check
that D(A1)=D(A) and that D(A0)=R(A). Define P an orthogonal projection on H
as:

∀φ = (u, s) ∈ H, Pφ = (u, 0). (3.1)

For any I subset of Z define πI the orthogonal projection

πIφ =
∑
i∈I

(φi|φ)H
‖φi‖2H

φi (3.2)

We denote π+ = πN∗ , π− = π−N∗ , π0 = π{0} and R(πI) = πI(H).139

The problem of decomposition of a temperature field on the non-positive eigenspace140

is stated as follows:141

For any φ ∈ H, find ψ such that

Pψ = Pφ and π+ψ = 0. (3.3)

A similar problem of decomposition on the non-negative eigenspace is obtained by142

replacing π+ by π−. All the results of the present section have a counterpart obtained143

by changing the sign of z.144

3.2. Necessary and sufficient condition. In order to tackle problem (3.3),
we first consider the following related problem:

Find ψ ∈ R(π−) such that π−Pπ−ψ = π−Pφ. (3.4)

Indeed if ψ solves (3.3), then multiplying the equation by π− and assuming that the145

kernel of A is reduced to the nullspace (which is true except in the balanced case),146

one derives equation (3.4). Such a problem admits a unique solution, given by the147

following theorem:148

Theorem 4. The operator π−Pπ− is invertible on R(π−). Define B− the self-
adjoint operator of H as

B−φ = π−(π−Pπ−)−1π−φ.

Moreover it holds

‖B−φ‖H ≤ C‖π−φ‖H and ‖B−φ‖1/2 ≤ C‖π−φ‖1/2.

One can similarly define an operator B+, obtained by replacing π− by π+.149

The result is proved in [4] for the full-Dirichlet case, that is ΓD = ∂Ω. The proof150

can be adapted without major changes to the case in consideration. It is reproduced151
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h+

h−

Figure 4.1. Example of a semi-infinite cylinder, with two fluid domains.

in Appendix B for the convenience of the reader. Problem (3.3) is then solved in the152

next theorem.153

Theorem 5. Let φ ∈ H, define Φ = (1, 0) ∈ H and consider problem (3.3) of
finding ψ a solution of

Pψ = Pφ and π+ψ = 0. (3.3)

• If the constants are not controlled and
∫

Ω
h > 0, there exists a solution if and

only if

(Φ− PB−Φ|φ)H = 0.

In this case, the solution is unique and given by ψ = B−Pφ.154

• If the constants are not controlled and
∫

Ω
h = 0 (balanced case), then (Φ −

PB−Φ|Φ)H 6= 0 and there exists a unique solution given by

ψ = B−Pφ+
(Φ− PB−Φ|φ)H
(Φ− PB−Φ|Φ)H

(B−Φ− φ0).

• In every other case then ψ = B−Pφ is the unique solution.155

The proof of this result is given in Appendix C.156

4. Resolution of the semi-infinite problem. In the semi-infinite problem,
the equation is set on the cylinder Ω×R+, see Figure 4.1. The equation (E) becomes:

∂zzT + ∆T + h∂zT = 0 on Ω× R+.

In this section we address different cases depending on the type of the Inlet/Oulet157

condition, namely either Dirichlet or Neumann.158

In order to ensure uniqueness of the solution, we add the extra hypothesis that159

the temperature does not grow exponentially. We will say that the temperature has160

subexponential growth if and only if for every λ > 0, then T (z) = o(eλz) as z goes to161

+∞.162

4.1. Semi-infinite problem, Dirichlet Inlet/Outlet Condition. We con-
sider the Dirichlet (I/OBC) condition:

T|z=0 = T0 on Ω. (4.1)

Denote φD = (T0, 0) ∈ H.163

Proposition 6. Consider the Graetz problem (E) on the semi-infinite cylinder164

Ω× [0,+∞), with subexponential growth together with Dirichlet Inlet/Outlet condition165

(4.1).166

9



a) If the constants are controlled, then there exists a unique solution given by

T =
∑
i<0

eλiz(B−φD|φi)HUi.

In this case the temperature at infinity is 0.167

b) If the constants are not controlled and
∫

Ω
h 6= 0, then there exists a unique

solution given by

T =
∑
i<0

eλiz(B−(φD − T∞Φ)|φi)HUi + T∞,

where T∞ is an arbitrary constant in the case
∫

Ω
h < 0 and T∞ = (Φ −168

PB−Φ|φD)H(Φ− PB−Φ|Φ)−1
H in the case

∫
Ω
h > 0. In this case the temper-169

ature at infinity is the constant T∞. Note that if
∫

Ω
h > 0, the temperature170

at infinity is determined by φD whereas in the case
∫

Ω
h < 0, it is a free171

parameter of the problem.172

c) In the balanced case, the set of solutions is given by:

T (z) =
∑
i<0

(B−(φD − c1Φ− c2(∆−1
σ h, 0))|φi)HUieλiz + c1 + c2(z + ∆−1

σ h),

where c2 is an arbitrary constant and

c1 = (Φ− PB−Φ|φD − c2(∆−1
σ h, 0))H(Φ− PB−Φ|Φ)−1

H .

In this case the temperature at infinity has the linear growth rate T (z) '173

c2z + (c2∆−1
σ h + c1) + o(z). If the temperature is not allowed to have a174

linear growth rate, then c2 = 0 and the temperature at infinity is c1 which is175

determined by the initial conditions.176

Proof. We use the result of Section 2.2 on the solution of the evolution equation,
that is T solves (E) if and only if there exists ψ ∈ R(A) and constants c1 and c2 such
that:

T (z) =
∑
i∈Z∗

(ψ|φi)HUieλiz + c1 + c2(z + ∆−1
σ h),

where c1 = c2 = 0 if the constants are controlled and c2 = 0 in the non-balanced
case. The subexponential growth condition ensures that π+ψ = 0. The condition
(T (z = 0), 0) = φD yields

PφD = Pψ + c1Φ + c2(∆−1
σ h, 0). (4.2)

Using Theorem 5 leads to distinguishing the following cases:
a) If the constants are controlled then c1 = c2 = 0 and the equation PφD = Pψ with
π+ψ = 0 has the unique solution ψ = B−φD.
b) In the non-balanced case, c2 = 0 and P (φD − c1Φ) = Pψ together with π+ψ = 0
implies ψ = B−(φD − c1Φ) without any additionnal assumption in the case

∫
Ω
h < 0.

In the case where
∫

Ω
h > 0 the compatibility condition is

(Φ− PB−Φ|φD − c1Φ) = 0, which gives c1 = (Φ− PB−Φ|φD)(Φ− PB−Φ|Φ)−1.

10



c) Finally, in the balanced case, let us fix an arbitrary value c2. The conditions

ψ ∈ R(A) and π+ψ = 0 are equivalent to ψ ∈ R(π−). Denoting Φ̃ = (∆−1
σ h, 0) we

re-cast (4.2) into

PφD = Pψ + c1Φ + c2Φ̃, ψ ∈ R(π−)

or equivalently

P (φD − c2Φ̃) = P (ψ + c1φ0), ψ ∈ R(π−).

In view of Theorem 5 with φ = φD − c2Φ̃, there is a unique solution to the above
equation given by

c1 = (Φ− PB−Φ|φD − c2Φ̃)H(Φ− PB−Φ|Φ)−1
H , ψ = B−(φD − c1Φ− c2Φ̃).

2177

4.2. Semi-infinite problem, Neumann Inlet/Outlet Condition. We con-
sider the Neumann (I/OBC) condition:

∂zT|z=0 = S0. (4.3)

Denote φN = (S0, 0) ∈ H.178

Proposition 7. Consider the Graetz problem (E) on the semi-infinite cylinder179

Ω×[0,+∞), with subexponential growth together with Neumann Inlet/Outlet condition180

(4.3).181

a) If the constants are controlled, then there exists a unique solution given by

T =
∑
i<0

eλiz(A−1B−φN |φi)HUi.

In this case the temperature at infinity is 0.182

b) If the constants are not controlled and
∫

Ω
h 6= 0. If

∫
Ω
h > 0 there always

exists a solution, if
∫

Ω
h < 0, there exists a solution if and only if

(Φ− PB−Φ|φN ) = 0.

When the solution exists, it is of the form

T =
∑
i<0

eλiz(A−1B−(φN − T∞Φ)|φi)HUi + T∞,

where the temperature at infinity T∞ is a free parameter of the problem.183

c) In the balanced case, the set of solutions is given by

T (z) =
∑
i<0

(A−1B−(φN + c2Φ)|φi)HUieλiz + c1 + c2(z + ∆−1
σ h),

where c1 is an arbitrary constant and c2 is given by:

c2 = −(Φ− PB−Φ|φN )(Φ− PB−Φ|Φ)−1.

In this case the temperature at infinity has the linear growth rate T (z) '184

c2z + (c2∆−1
σ h+ c1) + o(z).185
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Proof. We proceed as in the previous section. It follows from the result of Sec-
tion 2.2 on the solution of the evolution equation that T solves (E) if and only if there
exists ψ ∈ R(A) and constants c1 and c2 such that:

T (z) =
∑
i∈Z∗

(ψ|φi)HUieλiz + c1 + c2(z + ∆−1
σ h),

where c1 = c2 = 0 if the constants are controlled and c2 = 0 in the non-balanced case.
Derivating w.r.t. z one finds

PφN = PAψ + c2Φ, π+ψ = 0. (4.4)

Using Theorem 5 leads to distinguishing the following cases:
a) If the constants are controlled then c1 = c2 = 0 and equation (4.4) admits a unique
solution Aψ = B−φN . The invertibility of A gives the result.
b) If the constants are not controlled then c2 = 0. If

∫
Ω
h > 0 there is always a

solution Aψ to equation (4.4) and the operator A is invertible, hence there exists a
unique solution ψ to (4.4) given by ψ = A−1B−φN . The constant c1 is then a free
parameter of the problem. If

∫
Ω
h < 0 then the condition for equation (4.4) to admit

a solution is:

(Φ− PB−Φ|φN ) = 0.

If this condition is met, by the invertibility of A, ψ = A−1B−φN is the unique solution
to (4.4) and c1 is a free parameter of the problem.
c) In the balanced case let c2 be an arbitrary constant. It follows from Theorem 5
that Aψ satisfies (4.4) if and only if

Aψ = B−Pφ+
(Φ− PB−Φ|φ)H
(Φ− PB−Φ|Φ)H

(B−Φ− φ0)H where φ = φN + c2Φ. (4.5)

For ψ to exist, the right hand side must belong to the range of A, i.e. be orthogonal
to φ0. Performing the scalar product of the left hand side of (4.5) with φ0 and
recalling that the range of B− is orthogonal to K(A) we obtain the following necessary
condition:

(Φ− PB−Φ|φN + c2Φ)H = 0,

which is equivalent to:

c2 = −(Φ− PB−Φ|φN )(Φ− PB−Φ|Φ)−1.

Conversely, if the above condition is met, then equation (4.5) admits a unique inverse186

in R(A) and c1 is a free parameter of the problem. 2187

5. Resolution of the problem in a finite domain. We aim to solve Graetz
equation in a domain of finite length Ω× [−L,L]: c∂zzT + div σ∇T − h∂zT = 0 Ω× [−L,L],

(LBC) (∂Ω)× [−L,L],
Inlet/Outlet condition Ω× {−L,L},

(5.1)

where the I/O conditions can be of Neumann or Dirichlet type. According to Sec-
tion 2.2, the solutions may be sought in the form

T (z) =
∑
i<0

(ψ|φi)eλi(z+L)Ui +
∑
i>0

(ψ|φi)eλi(z−L)Ui + c1 + c2(z + ∆−1
σ h),
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with c1 = c2 = 0 if the constants are controlled and c2 = 0 in the non-balanced case.188

The unknowns in this equation are (ψ|φi) for i < 0 and i > 0, plus possibly189

(depending on the case) c1 and c2. Note that
∑
i<0(ψ|φi)Ui = Pπ−ψ, and therefore190

if Pπ−ψ is known it suffices to decompose this vector on the basis of L2(Ω) given by191

(Ui)i<0 to obtain the desired coefficients for i < 0. Similarly the coefficients (ψ|φi) for192

i > 0 are obtained by considering the coefficients of Pπ+ψ on the basis composed of193

the (Ui)i>0. Therefore the unknowns to be determined are Pπ−ψ, Pπ+ψ plus possibly194

c1 and c2.195

Let X be the vector composed of all the unknowns. Then satisfying the I/O196

conditions amounts to solving a linear system for X. In the rest of this section we197

detail the linear system in each case, but beforehand we focus on a linear operator198

involved in the system.199

5.1. Study of the linear operator M . We define and study a linear operator200

that will be involved in the solution of the problem in a cylinder of length 2L.201

Proposition 8. Let M± be the operators from R(P ) to R(P ) and M be given
by:

M± = Pe∓2LAB± and M =

(
0 M+

M− 0

)
.

Then202

a) there exists a constant C such that

‖M‖ ≤ Ce−2λL, where λ = min(λ1,−λ−1).

As a consequence ‖M‖ < 1 for sufficiently large L.203

b) If the constants are controlled, then for L positive sufficiently small, ‖M2‖ <204

1.205

c) It follows that Id+M is invertible on R(P )×R(P ) for large L and for small206

positive L.207

Proof.208

a) Since M+ = Pe−2LAB+ we have

‖M+‖ ≤ ‖B+‖e−2Lλ1 .

A similar upper bound for M− gives the result.209

b) Define

J(L) = sup
‖(φ1,φ2)‖=1

‖M2(φ1, φ2)‖ < 1

Since J(0) = 1, it is sufficient to prove that J ′(0) < 0. Note that

M2 =

(
M+M− 0

0 M−M+

)
.

Let us fix φ ∈ R(P ), and define j(L) = ‖M+(L)M−(L)φ‖2. Then j(0) = ‖φ‖2 and it210

remains to prove that j′(0) ≤ −C‖φ‖2 with a positive constant C independent of φ.211

The derivative of j is:212

j′(L) = (M ′+(L)M−(L)φ+M+(L)M ′−(L)φ|M+(L)M−(L)φ)

= (−2PAe−2LAB+Pe
2LAB−φ+ 2Pe−2LAB+PAe2LAB−φ|Pe−2LAB+Pe

2LAB−φ)

13



hence213

j′(0) = −2(PAB+φ|φ) + 2(PAB−φ|φ).

But since Pφ = φ, PB+P = P and PA = A+ PAP −AP we have214

(PAB+φ|φ) = (PAB+φ|B+φ)

= ((A+ PAP −AP )B+φ|B+φ)

= (AB+φ|B+φ) + (PAPB+φ|B+φ)− (APB+φ|B+φ)

= (AB+φ|B+φ) + (Aφ|φ)− (Aφ|B+φ).

This proves that

(PAB+φ|φ) = (Aφ|B+φ) =
1

2
((AB+φ|B+φ) + (Aφ|φ)) .

Similarly we obtain that

(PAB−φ|φ) =
1

2
((AB−φ|B−φ) + (Aφ|φ)) .

As a summary we find that

j′(0) = −(AB+φ|B+φ)+(AB−φ|B−φ) < λ−1‖B−φ‖2−λ1‖B+φ‖2 < (λ−1−λ1)‖φ‖2.

c) The operator Id+M is invertible for large L by a). Note that M± as endomorphism215

of R(P ) are compact for L > 0 and equal to identity for L = 0. As a result Id + M216

is invertible for small L > 0 if and only if there is no eigenvector associated to the217

value −1. A sufficient condition for invertibility is then that M2 does not admit 1 as218

eigenvalue, which is proved in b) for L sufficiently small. 2219

5.2. The Dirichlet case. The different cases for Dirichlet I/O condition are220

summarized in the following221

Proposition 9. The Dirichlet I/O condition T |z=−L = T−L and T |z=L = T+L

are equivalent to the following linear system

ZX = b,

where Z, X and b are defined depending of the (LBC) and given in the table below.222

constants controlled constants not controlled
unbalanced (

∫
Ω
h > 0) balanced

Z

(
Id M+

M− Id

)  Id M+ Φ
M− Id Φ

0 M?
+u

T
− (Φ|u−)




Id M+ Φ −LΦ + Φ̃

M− Id Φ LΦ + Φ̃

0 M?
+u

T
− (Φ|u−) (−LΦ + Φ̃|u−)

M?
−u

T
+ 0 (Φ|u+) (LΦ + Φ̃|u+)


X

(
Pπ−ψ
Pπ+ψ

) Pπ−ψPπ+ψ
c1



Pπ−ψ
Pπ+ψ
c1
c2


b

(
φ−L
φ+L

)  φ−L
φ+L

(φ−L|u−)




φ−L
φ+L

(φ−L|u−)
(φL|u+)



223
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where we recall that Φ̃ = (∆−1
σ h, 0) and we define φ±L = (T±, 0), u− = Φ − PB−Φ224

and u+ = Φ− PB+Φ.225

Moreover, for sufficiently large L this system is invertible.226

Note 1: Thanks to the Lax-Milgram theorem in 3D (see Section 1.3), we know227

before hand that there exists a unique solution to the system ZX = b.228

Note 2: In the case when the constants are not controlled and
∫

Ω
h < 0 it suffices229

to change the sign of z, or equivalently to remplace the − by +.230

Proof. The (I/OBC) are equivalent to the following{
Pπ−ψ = Pθ− with θ− = φ−L − e−2LAπ+ψ − c1Φ− c2(−LΦ + Φ̃),

Pπ+ψ = Pθ+ with θ+ = φ+L − e2LAπ−ψ − c1Φ− c2(LΦ + Φ̃).
(5.2)

Combining

Pe−2LAπ+ψ = Pe−2LAB+Pπ+ψ = M+Pπ+ψ,

and the similar version when the roles of + and− are interchanged with equations (5.2)231

we obtain the first two rows of the matrix Z.232

a) when the constants are controlled, c1 = c2 = 0 and (5.2) reads ZX = b.233

b) when the constants are not controlled and
∫

Ω
h > 0 then c2 = 0. Theorem

5 requires an additional compatibility condition to solve the first equation. This
condition reads

(Φ− PB−Φ|θ−) = 0,

which is the additional equation in the system ZX = b.234

c) In the balanced case, after the change of variable ψ̃ = π−ψ the first equation
in (5.2) Pπ−ψ = Pθ− is equivalent to{

Pψ̃ = Pθ−

π+ψ̃ = 0
and (ψ̃|φ0) = 0.

Theorem 5 gives an explicit expression for the solution of the system on the left, and235

the condition on the right becomes (θ−|Φ−PB−Φ) = 0, which is the third row of the236

system ZX = b. The last row is obtained using the second equation in (5.2).237

When L becomes large, M+ and M− are exponentially small and in each case238

the matrix Z is asymptotic to an invertible matrix. The sole non-obvious case is the239

balanced case, where one can observe that the 2×2 lower right block is asymptotically240

equivalent to

(
(Φ|u−) (−LΦ|u−)
(Φ|u+) (LΦ|u+)

)
which has a determinant 2L(Φ|u−)(Φ|u+) 6= 0.241

When L is large, Z can be rewritten as Z = A+B with B small and A easily inverted.242

One can use a Neumann series strategy to solve Zx = b. 2243

5.3. The Neumann Inlet/Outlet case. The different cases for Neumann I/O244

condition are summarized in the following245

Proposition 10. The Neumann I/O condition ∂zT |z=−L = S−L and ∂zT |z=L =
S+L are equivalent to the following linear system

ZX = b,
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where Z, X and b are defined depending of the (LBC) and given in the table below.246

constants controlled constants not controlled
unbalanced (

∫
Ω
h > 0) balanced

Z

(
Id M+

M− Id

)  Id M+

M− Id
0 M?

+u
T
−




Id M+ Φ
M− Id Φ

0 M?
+u

T
− (Φ|u−)

M?
−u

T
+ 0 (Φ|u+)


X

(
PAπ−ψ
PAπ+ψ

) (
PAπ−ψ
PAπ+ψ

) PAπ−ψPAπ+ψ
c2


b

(
φ−L
φ+L

)  φ−L
φ+L

(φ−L|u−)




φ−L
φ+L

(φ−L|u−)
(φL|u+)



247

where we define φ±L = (S±, 0), u− = Φ− PB−Φ and u+ = Φ− PB+Φ.248

Note 1: when the constants are not controlled the value of c1 is arbitrary. In these249

cases the linear systems are rectangular and the existence of the solution depends on250

a compatibility conditions that expresses that b is in the range of Z.251

Note 2: once the quantities PAπ±ψ are known, then the (Aψ|φi) for i > 0 and252

i < 0 can be computed as explained above, and (ψ|φi) is obtained by dividing by λi.253

Proof. The (I/OBC) are equivalent to the following{
PAπ−ψ = Pθ− with θ− = φ−L − e−2LAAπ+ψ − c1Φ− c2(−LΦ + Φ̃),

PAπ+ψ = Pθ+ with θ+ = φ+L − e2LAAπ−ψ − c1Φ− c2(LΦ + Φ̃).
(5.3)

A discussion similar to the Dirichlet case leads to the result.2254

6. Numerical tests.255

6.1. First test case: a domain of finite length. The section of the domain256

of the first test-case is the square Ω = [−5, 5]2 with a circular fluid subdomain of257

radius 2 centered at the origin. The velocity and eigenvalues of the operator A are258

computed with P1 finite element methods on the mesh of Figure 6.1 . The velocity has

maillage.jpg

Figure 6.1. The mesh for the first test case is composed of 13589 vertices and 26776 triangles.
The solid domain is in white and the fluid domain in grey.
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259

a parabolic profile (Poiseuille flow) with prescribed total flow Q ∈ {1, 10, 100, 1000}.260

The lateral boundary conditions are of Robin type with parameter a. The thermal261

conductivities are equal to c = σ = 1. In total 100 eigenvalues / eigenvectors of A are262

computed.263
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Figure 6.2. On the left: Evolution of the eigenvalues of A of smallest magnitude for varying
parameter of the Robin lateral boundary condition. Eigenvalues for the Neumann (resp. Dirichlet)
boundary conditions are shown as bullet on the left (resp. right) of the curves. On the right:
relative L2 difference between the eigenvector with largest negative eigenvalue and its mean as the
Robin parameter varies.

We first set Q = 10 and vary the Robin parameter a. When a = 0, one retrieves264

the Neumann case and when a = +∞, one retrieves the Dirichlet case. In order to265

emphasize this fact we plot in Figure 6.2 (left) the eigenvalues of smallest magnitude266

for different values of a. We also plot with dots the eigenvalues associated to the267

Neumann problem (on the left of the curves) and the one associated to the Dirichlet268

case (on the right of the curves). The smooth transition from Neumann to Dirichlet269

as the Robin parameter varies is striking except from the fact that there exists an270

eigenvalue that goes to zero as a goes to zero even if the Neumann problem does not271

have zero as eigenvalue. We claim that this behavior is consistent with theory. First272

0 is not an eigenvalue of the Neumann case since the total flow is non-zero (hence273

we are not in a balanced case even if the constants are not controlled). Second, we274

remark that the zero eigenvalue is the limit of a negative eigenvalue. Remember from275

Proposition 6 that it is always possible to decompose a temperature field on the set276

of negative eigenvectors in the Robin case (part a), but for the Neumann case it277

is necessary to add a constant (part b). In other words, in the Neumann case the278

constant must be added to the negative eigenvectors to obtain a Hilbert basis of H,279

while the set of positive eigenvectors form a Hilbert basis on their own. This explains280

why the constant emerges as the limit of a negative eigenvector, see Figure 6.2 (right)281

where the convergence of the eigenvector to the constant is numerically demonstrated.282

In a second parametric study, we fix a = 1 and we let both Q and L vary.
First we plot the spectral radius of the matrix M defined in Proposition 8 versus
the exchanger length L for the different values of the total flow Q in Figure 6.3
(left). Figure 6.3 (center) shows the evolution of the 5 smallest positive and 5 largest
negative eigenvalues of M for a fixed total flow Q = 20. This test-case shows that,
apart from the case L = 0, the spectral radius of the matrix M is always smaller than
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Figure 6.3. Eigenvalues of M for a Robin test case with a = 1. Left: evolution of the spectral
radius for different values of the total flow Q. Center: the evolution of the five largest positive and
first smallest negative eigenvalue for a total flow of Q = 20. Right: eigenvalues in the complex plane
for L = 1 and Q = 20.

one, so that the matrix Id+M is indeed always invertible. The exponential decrease
for large L and the decrease at the origin follows from Proposition 8. Moreover, since
the spectral radius of M is strictly smaller than one, a Neumann series strategy to
solve

(Id+M)−1b =
∑
k

(−M)kb

is legitimate. In Figure 6.3 (right), the whole spectrum of M is shown in the complex283

plane. Although the spectrum seems real, we do not have mathematical proof of this284

fact.285

signvelocities.png

3dview1.png

Figure 6.4. Geometry of the periodic exchanger. On the left, a cut inside the exchanger with
the sign of the fluid velocities. On the right, a 3D representation of the exchanger. The tubes where
the temperature is set at ∞ are colored accordingly to their temperature.

6.2. Second test-case: a periodic exchanger. The second test case consists286

of a heat exchanger with periodic boundary conditions. The whole device consists of287

one solid exchanger through which pass four tubes containing fluids. A cut along the288

middle of the exchanger is shown in Figure 6.4 (left) where the sign of the velocity of289

the fluid in the inner tubes is displayed. The fluids are assumed to obey a Poiseuille290
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Figure 6.5. Four different solutions of the periodic exchanger, with different length and total
flow. The length of the exchanger is set to L = 10 on top and L = 20 on bottom. The total flow is
set to to Q = 10 on left and Q = 30 on right.

flow, the velocities are then quadratic in the radial coordinates of their corresponding291

tubes. The length of the exchanger is denoted L, the section of the exchanger is the292

square [−4, 4]2, the radii of the inner tubes are fixed to 1 and the distance of the293

center of the inner tubes to the center of the exchanger is
√

22 + 22. The conductivity294

in both the fluid and solid part is set to 1. The temperature is fixed for the four295

tubes with incoming flow (two at each side) on the exchanger, the warm temperature296

is set to +1 and the cold temperature to −1, see Figure 6.4 (left). In what follows,297

Q denotes the total flow of fluid in one tube. We glue together the different Graetz298

problems using the methodology developped in [4].299

In Figure 6.5, four solutions are shown for different values of the length L and300

the flow Q.301

Figure 6.6 displays the efficiency and the total exchange for different values of302

Q and L. For a tube containing fluid whose velocity is positive (resp. negative), the303

temperature at −∞ (resp. +∞) is set to 1 (resp −1), the efficiency of the exchanger304

is then defined by −T+∞/T−∞ (resp −T−∞/T+∞), where T±∞ is the temperature at305

infinity. This efficiency is between −1 and 1. The exchange is simply the total amount306

of heat exchanged and is equal to Q times the efficiency. The aim of this test-case is307
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Figure 6.6. Values of the efficiency (left) and the exchange (right) for different values of the
length L and the total flow Q of the periodic exchanger. L ranges from 0.5 to 13 and Q ranges from
1 to 30. Each direction has been sampled 50 times for a total of 2500 exchanger computations.

to document the fact that our method is able to deal with any boundary conditions308

and type of exchanger. It is well suited for parametric studies.309

7. Conclusion. In the present work we have proposed a general framework ded-310

icated to the resolution of the generalized Graetz problem in arbitrary geometry, in-311

volving any type of boundary conditions. The main novelty is the introduction of312

insulating boundary condition (Neumann or periodic) that allow to model realistic313

heat exchangers. Our study highlighted a special case that we call the balanced case,314

when
∫

Ω
h = 0 (together with Neumann or periodic boundary condition) where the315

solution is different than in the general case. We have also proposed a number of316

numerical illustration in various test cases.317

Appendix A. Technical lemmas. We prove here results that will be used in318

the sequel.319

Lemma 11. For each φ = (u, s) ∈ D(A), φ̃ = (ũ, s̃) ∈ H, we have320

(Id− P )A(Id− P )φ = 0. (A.1)

(PAPφ|φ̃)H =

∫
Ω

huũ ≤ ‖h‖L∞(Ω)‖Pφ‖H‖Pφ̃‖H. (A.2)

321

Proof. This results from elementary calculations using the definition of A (2.1),322

and the definition of P (3.1). 2323

Lemma 12. Let Φ = (1, 0) ∈ H. Let φ ∈ D(A−1/2) such that Pφ = φ, then324

(A−1φ|φ)H =

(∫
Ω

h

)−1

(φ|Φ)2
H in the non-balanced case

(A−1φ|φ)H = 0 in the “balanced” or “constant controlled” case

325

Proof. The expression of A−1 is given in section 2.1 for the various cases. Let
φ ∈ D(A−1/2) such that Pφ = φ, hence there exists u ∈ L2(Ω) such that φ = (u, 0).
If the constants are controlled then A−1φ = (0,∆−1

σ (−cu)) and (A−1φ|φ)H = 0. If
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the constants are not controlled and
∫

Ω
h 6= 0, then

A−1φ = (k,∆−1
σ (−cu+ hk)) with k

∫
Ω

h =

∫
Ω

cu,

hence

(A−1φ|φ)H =

∫
Ω

cku = (

∫
Ω

h)−1(

∫
Ω

cu)2.

Finally, in the balanced case, since φ ∈ D(A−1/2), then (φ|φ0)H = 0 and A−1φ =326

(0,∆−1
σ (−cu)) + kφ0 exists and (A−1φ|φ)H = 0.2327

Lemma 13. In the balanced case,

(Φ− PB−Φ|Φ)H 6= 0.

328

Proof. Suppose the contrary and set θ = Φ − PB−Φ, we have Pθ = θ and by329

definition of B−, we have π−θ = 0. Moreover, we have330

(θ|φ0)H = (Φ− PB−Φ|φ0)H = (PΦ− PB−Φ|φ0)H = (Φ−B−Φ|Pφ0)H

= (Φ−B−Φ|PΦ)H = (Φ− PB−Φ|Φ)H = 0

Lemma 12 ensures that A−1θ exists and that

(A−1θ|θ)H = 0

Since θ belongs to R(π+) and all the eigenvalues of A are positive on this space, this
implies that θ = 0 and then Φ = PB−Φ. Hence there exists s such that B−Φ =

(
1, s
)

and

(AB−Φ|B−Φ)H = (
(
h−∆σs, 0

)
|
(
1, s
)
)H = 0.

But B−Φ belongs to R(π−) and since all the eigenvalues of A are negative on R(π−),331

(AB−Φ|B−Φ)H = 0 implies that B−Φ = 0 which is in violation of Φ = PB−Φ. Hence332

(Φ−B−Φ|Φ)H 6= 0.2333

Appendix B. Proof of Theorem 4. Let M ∈ N∗ and denote for short π =
π[[−M,−1]]. The operator πPπ is a symmetric operator on a finite-dimensional space,
hence it is diagonalisable in an orthonormal basis. The first step is to prove that this
operator is definite positive with a lower bound on its eigenvalues that is independent
of M . Let ρ be an eigenvalue of πPπ and v an associated normalized eigenvector:
πPπv = ρv, (v|v)H = 1 and πv = v. Since

ρ = (πPπv|v)H = (Pπv|πv)H = (Pπv|Pπv)H = ‖Pv‖2H ≤ ‖v‖2H = 1,

then 0 ≤ ρ ≤ 1. Using (A.2) gives

|(PAPv|v)H| ≤ ‖h‖L∞(Ω)‖Pv‖2H.

It follows from (A.1) that ((Id− P )A(Id− P )v|v)H = 0 and πA = Aπ, we have

(PAPv|v)H = (2ρ− 1)(Av|v)H
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Since |(Av|v)H| = |
∑
i∈I λi

(v|φi)
2
H

‖φi‖2H
| ≥ |λ−1|‖v‖2H = |λ−1|, we have

|λ−1(2ρ− 1)| ≤ ‖h‖L∞(Ω)‖Pv‖2H = ‖h‖L∞(Ω)ρ. (B.1)

This in turn implies that ρ ≥ |λ−1|
2|λ−1|+ ‖h‖L∞(Ω)

, hence there exists C independent

of M such that

(πPπφ|φ)H ≥ C‖πφ‖H ∀φ ∈ H(A). (B.2)

Since π−φ is the strong H-limit of πφ as M goes to infinity and the constant C does334

not depend on M . Passing to the limit, we recover equation (B.2) with π replaced by335

π−. The Lax-Milgram theorem applies and π−Pπ− is a bijection from R(π−) onto336

R(π−) with a continuous inverse bounded by a constant in H-norm.337

We turn our interest to the bound in 1/2 norm of B−. Let φ ∈ D(A1/2), for any
M ∈ N∗ denote π = π[[−M,−1]], and let v = πB−φ. We have πv = v and v ∈ D(A).
Recalling (A.1) and πA = Aπ, , we have

(PAPv|v)H = ((AP + PA−A)v|v)H = 2(Pv,Av)H − (Av,v)H.

Hence, since πv = v and π is a projection on negative eigenvalues of A only, then
‖v‖21/2 = −(Av|v)H and

‖v‖21/2 = (PAPv|v)H − 2(Pv|Av)H ≤ ‖h‖L∞(Ω)‖v‖2H + 2‖πPv‖1/2‖v‖1/2 (B.3)

Using the bound on the H-norm of B−, we have

‖v‖H = ‖πB−φ‖H ≤ C‖π−φ‖H ≤ C‖π−φ‖1/2. (B.4)

We infer from (B.3) and (B.4) that ‖v‖1/2 ≤ C(‖π−φ‖1/2 + ‖πPv‖1/2). We let
M go to infinity, then πPv = πPπB−φ goes to π−φ and v goes to B−φ, we obtain:

‖B−φ‖1/2 ≤ C‖π−φ‖1/2,

which finishes the proof.338

Appendix C. Proof of Theorem 5.339

First case: K(A) = {0}, i.e. every case but the balanced case340

In this case the condition π+ψ = 0 is then equivalent to ψ = π−ψ.341

After multiplication of (3.3) by B−π−, one obtains the following necessary con-
dition for (3.3) to hold, which proves uniqueness:

ψ = B−Pφ.

Denote θ = PB−Pφ− Pφ, the question of the existence of the solution is reduced to342

studying under which condition θ = 0.343

We have Pθ = θ and Theorem 4 states that π−θ = 0. This implies that θ ∈ R(π+).344

The operator A−1 is symmetric definite positive on R(π+), and induces the scalar345

product of the −1/2-norm. Lemma 12 states that, if the constants are controlled we346

have (A−1θ|θ)H = 0, and it follows that θ = 0. This proves the result when the347

constants are controlled.348
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Assume now that ΓD ∪ ΓR = ∅ and
∫

Ω
h 6= 0, Lemma 12 states that

‖θ‖2−1/2 = (A−1θ|θ)H =

(∫
Ω

h

)−1

(θ|Φ)2
H. (C.1)

If
∫

Ω
h < 0, the two terms have opposite signs, hence both are zero. Then θ = 0 and349

this proves the result for the case ΓD ∪ ΓR = ∅ and
∫

Ω
h < 0.350

Let us assume now that
∫

Ω
h > 0. Since changing the sign of λ amounts to study

the same problem where h is replaced by −h, we deduce from the case
∫

Ω
h < 0 with

φ = Φ and the relation PΦ = Φ that PB+Φ = Φ. Since Φ ∈ D(A1/2), it follows from
Theorem 4 that B+Φ ∈ D(A1/2). Hence there exists a s? ∈ H such that B+Φ = (1, s?)
and we have AB+Φ = (c−1h− c−1 div σ∇s?, 0). This proves

PAB+Φ = AB+Φ,

and a simple calculation proves that

(AB+Φ|Φ)H = (AB+Φ|B+Φ)H =

∫
Ω

h (C.2)

We then compute

(Φ−PB−Φ|AB+Φ)H = (Φ−B−Φ|PAB+Φ)H = (Φ−B−Φ|AB+Φ)H =︸︷︷︸
(1)

(Φ|AB+Φ)H 6= 0,

where the equality (1) is obtained by remarking that AB+Φ ∈ R(π+) and B−Φ ∈351

R(π−) which are orthogonal spaces. We then obtain Φ− PB−Φ 6= 0.352

It follows from (C.1) that353

‖θ‖2−1/2 = (

∫
Ω

h)−1(θ|Φ)2
H = (

∫
Ω

h)−1(θ|PB+Φ)2
H

= (

∫
Ω

h)−1(Pθ|B+Φ)2
H = (

∫
Ω

h)−1(θ|B+Φ)2
H.

Using that θ and B+Φ belong to R(π+) on which all the eigenvalues of A−1 are
positive, the above equation implies

‖θ‖2−1/2 = (

∫
Ω

h)−1(θ|AB+Φ)2
−1/2.

We recall that ‖AB+Φ‖2−1/2 = (AB+Φ|B+Φ)H =
∫

Ω
h, and we obtain

‖θ‖2−1/2‖AB+Φ‖2−1/2 = (θ|AB+Φ)2
−1/2

which is an equality case in Cauchy-Schwarz inequality. This implies that θ and
AB+Φ are colinear. Hence there exists some constant t such that

θ = tAB+Φ.

Performing the scalar product with Φ and using the fact that (AB+Φ|Φ) 6= 0354

which follows from (C.2), we conclude that t = 0 (hence θ = 0) if and only if (θ|Φ) = 0,355

which reads (φ|Φ− PB−Φ)H = 0.356

Second case: K(A) 6= {0}, which is the balanced case.357
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In the balanced case the kernel of A is Rφ0, where we recall from section 2.1 that
Pφ0 = Φ. The condition π+ψ = 0 is equivalent to the existence of α ∈ R such that
ψ = π−ψ + αφ0. The condition Pψ = Pφ is thus equivalent to

Pφ = Pπ−ψ + αΦ. (C.3)

Necessary condition:358

After multiplying Equation (C.3) by B− one obtains:

π−ψ = B−Pφ− αB−Φ.

Replacing the expression of π−ψ in (C.3) yields the following necessary condition:

PB−Pφ+ αΦ− αPB−Φ = Pφ,

which reads

α(Φ− PB−Φ) = Pφ− PB−Pφ.

It follows from lemma 13 that (Φ− PB−Φ|Φ)H 6= 0, then it is necessary that

α =
(Φ− PB−Φ|φ)H
(Φ− PB−Φ|Φ)H

.

ψ is uniquely determined by

ψ = B−Pφ+
(Φ− PB−Φ|φ)H
(Φ− PB−Φ|Φ)H

(φ0 −B−Φ) (C.4)

Conversely, if ψ is defined by (C.4), it is clear that π+ψ = 0. Let θ = Pψ − Pψ:359

it suffices to prove that θ = 0 to ensure that ψ solves the problem.360

(θ|φ0)H = (θ|Φ)H = 0

by choice of α. A simple calculation shows that

π−θ = 0.

This proves that θ ∈ R(π+), where A−1 is a symmetric positive definite operator. It361

follows from lemma 12 that (A−1θ|θ)H = 0 and hence θ = 0. This finishes the proof.362
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[15] C. Pierre and F. Plouraboué. Numerical analysis of a new mixed-formulation for eigenvalue397

convection-diffusion problems. SIAM Appl. Math., 70(3):658–676, 2009.398
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