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ROBUSTNESS TO INCORRECT PRIORS IN PARTIALLY OBSERVED
STOCHASTIC CONTROL ∗

ALİ DEVRAN KARA AND SERDAR YÜKSEL †

Abstract. We study the continuity properties of optimal solutions to stochastic control problems with respect to
initial probability measures and applications of these to the robustness of optimal control policies applied to systems
with incomplete or incorrect priors. It is shown that for single and multi-stage optimal cost problems, continuity and
robustness cannot be established under weak convergence in general, but that the optimal expected cost is continuous
in the priors under the convergence in total variation under mild conditions. By imposing further assumptions on
the measurement models, robustness and continuity also hold under weak convergence of priors. We thus obtain
robustness results and bounds on the mismatch error that occurs due to the application of a control policy which is
designed for an incorrectly estimated prior as the incorrect prior converges to the true one. Positive and negative
practical implications of these results in empirical learning for stochastic control are presented, where almost surely
weak convergence of i.i.d. empirical measures occurs but stronger notions of convergence, such as total variation
convergence, in general, do not.

AMS subject classifications. 93E20, 93E03, 93E11, 62G35

1. Introduction.

1.1. Preliminaries. We start with the probabilistic setup of the problem. Let X ⊂ Rn,
be a Borel set in which elements of a controlled Markov process {Xt, t ∈ Z+} live. Here
and throughout the paper Z+ denotes the set of non-negative integers and N denotes the
set of positive integers. Let Y ⊂ Rm be a Borel set, and let an observation channel Q
be defined as a stochastic kernel (regular conditional probability) from X to Y, such that
Q( · |x) is a probability measure on the (Borel) σ-algebra B(Y) on Y for every x ∈ X, and
Q(A| · ) : X → [0, 1] is a Borel measurable function for every A ∈ B(Y). Let a decision
maker (DM) be located at the output of an observation channel Q, with inputs Xt and outputs
Yt. Let U, the action space, be a Borel subset of some Euclidean space. An admissible policy

γ is a sequence of control functions {γt, t ∈ Z+} such that γt is measurable with respect to
the σ-algebra generated by the information variables

It = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0}.

where

(1.1) Ut = γt(It), t ∈ Z+

are the U-valued control actions and

Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t− 1}.

We define Γ to be the set of all such admissible policies.
The joint distribution of the state, control, and observation processes is determined by

(1.1) and the following relationships:

Pr
(
(X0, Y0) ∈ B

)
=

∫

B

P (dx0)Q(dy0|x0), B ∈ B(X×Y),

where P is the (prior) distribution of the initial state X0, and

Pr

(
(Xt, Yt) ∈ B

∣∣∣∣ (X,Y, U)[0,t−1] = (x, y, u)[0,t−1]

)
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=

∫

B

T (dxt|xt−1, ut−1)Q(dyt|xt), B ∈ B(X×Y), t ∈ N,

where T (·|x, u) is a stochastic kernel from X×U to X and Q(·|x) is a stochastic kernel from
X to Y.

We let the objective of the agent be the minimization of the cost for the static or single
stage case,

J(P,Q, γ) = EQ,γ
P [c(X0, U0)]

over the set of admissible policies γ ∈ Γ, where c : X×U → R is a Borel-measurable stage-

wise cost function and EQ,γ
P denotes the expectation with initial state probability measure

P and measurement channel Q under policy γ. Note that P ∈ P(X), where we let P(X)
denote the set of probability measures on X.

For the multi-stage case, we will discuss the discounted cost infinite horizon setting, with
the following cost criterion to be minimized.

Jβ(P,Q, γ) = EQ,γ
P

[
∞∑

t=0

βtc(Xt, Ut),

]

for some β ∈ (0, 1).
We define the optimal cost for the single-stage and the discounted infinite horizon as a

function of the priors as

J∗(P,Q) = inf
γ∈Γ

J(P,Q, γ),

J∗
β(P,Q) = inf

γ∈Γ
Jβ(P,Q, γ)

respectively.
Note that for the discounted infinite horizon case, the cost function is also affected by the

transition kernel T . Thus, in the following, we may sometimes use Jβ(P, T , γ) and J∗(P, T )
instead of Jβ(P,Q, γ) and J∗(P,Q) depending on the context.

The focus of the paper will be to address the following problems:
Problem P1: Continuity of J∗(P,Q) and J∗

β(P,Q) on the space of prior distributions.

Suppose {Pn, n ∈ N} is a sequence of priors converging in some sense to P . When does
Pn → P imply J∗(Pn, Q) → J∗(P,Q) or J∗

β(Pn, Q) → J∗
β(P,Q)?

Problem P2: Robustness to incorrect priors A problem of major practical importance is
robustness of an optimal controller to modeling errors. Suppose that an optimal policy is
constructed according to a model which is incorrect: how does the application of the control
to the true model affect the system performance and does the error decrease to zero as the
models become closer to each other? In particular, suppose that γn is an optimal policy
designed for Pn, an incorrect prior model for a true model P . Is it the case that if Pn → P
then J(P,Q, γn) → J∗(P,Q)?
Problem P3: Empirical consistency of optimal costs designed under learned priors. Let
P ∈ P(X) be a fixed initial distribution for some state variable X which is unknown to

a decision maker. Suppose that the decision maker learns P̃n, its estimate of P , from the
collection of empirical observations of realizations from i.i.d. random variables X1, X2, · · ·
distributed with P , and applies an optimal policy for the control problem with initial distri-

bution P̃n (i.e., through a plug-in or separated controller design). Defining for every (fixed)
Borel B ⊂ X, and n ∈ N, the empirical occupation measures

P̃n(B) =
1

n

n∑

i=1

1{Xi∈B},
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do we have that the optimal cost computed for the empirical measures converges to the true
optimal cost (for the case where the true P is known) as n → ∞, almost surely?

Here is a summary of the rest of the paper: In the following two subsections we present
a literature review and some basic properties with regard to the convergences of probability
measures. In Section 2, we study the continuity properties of the optimal cost functions with
respect to prior measures under different convergence notions for both the single-stage and
multi-stage settings. In Section 3, we use the results from Section 2 to obtain robustness
results on control policies designed under incorrect prior estimates. Finally, in Section 4, an
application of the results to control systems where the prior measures are estimated through
empirical measurements is presented.

1.2. Literature review. The H∞ criterion in robust control [54] [1] [55] addresses the
problem of robustness of control policies with respect to unmodeled dynamics. The goal in
robust control is to design control policies that work sufficiently well for systems with model
or disturbance uncertainty.

Researchers have developed robust controllers through a game formulation, where the
minimizer is the controller and the maximizer is the uncertainty, and have established the
equivalence with a risk-sensitive cost minimization for a class of systems [31] [49] [16].
Through such a formulation, and by Legendre-type transforms, the operational use of the
relative entropy methods have come to the literature; see e.g. [37, Eqn. (4)] or [16, Eqns. (2)-
(3)]. Here, one selects a nominal system which satisfies a relative entropy bound between the
actual measure and the nominal measure, solves a risk sensitive optimal control problem, and
this solution provides an upper bound for the original system. As such, a common approach
in robust stochastic control has been to model the stochastic disturbance affecting a system
and consider perturbations which lead to finite deviations according to the Kullback-Leibler
divergence (or relative entropy) between the actual measure and a reference measure, or em-
bed the uncertainty with a penalty term imposed on the cost function under such a distance
measure, see e.g. [16, 10, 36]. Along a similar theme, [32] studies an optimization problem
for the expected cost of an uncontrolled i.i.d. model under relative entropy bounds for the
probability measures on the state variables; this can be considered to be similar to the setup
considered in our paper where the convergence notion is in the relative entropy on the priors,
as the considered process is i.i.d. We note here that the relative entropy is a very restrictive
distance measure (note though that this does not define a metric) and in particular, through
Pinsker’s inequality [22, Lemma 5.2.8], it is stronger than even total variation which has also
been studied in robust stochastic control: [44] has studied a min-max formulation for robust
control where the one-stage transition kernel belongs to a ball under the total variation metric
for each state action pair and develops a dynamic programming based solution for both finite
and discounted cost infinite horizon problems. Further related work with model uncertainty
includes [34, 3], with some further work in the economics literature [25, 21].

The results are also related to the input estimation problem from finitely many samples,
as reviewed in [20] and empirical risk minimization [56], although in our context, we will
investigate robustness in the context of a separated design: An input model is estimated
through empirical data, and an optimal policy is constructed with the assumption that the
estimated model is correct (see e.g. [30] for an application). Can we guarantee empirical
(asymptotic) consistency? We will discuss a number of general results in Section 4 and
observe that in many situations empirical consistency may not hold.

On continuity properties in prior measures, [51] and [50] have studied the special case of
minimum mean-square estimation, that is with c(x, u) = (x− u)2 for a single-stage problem
across additive noisy channels of the form y = x + w, and established conditions leading
to continuity or upper semi-continuity properties under weak convergence and Wasserstein
metrics.

Related work also includes the recent studies [52] and [2]; [52] considers various topolo-
gies on the sets of observation channels and quantizers in partially observed stochastic control
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and provides some supporting results, whereas [2] presents a number of continuity properties
for single-stage stochastic control problems.

The problems we consider are also related to, in the control-free context, the theory and
applications of non-linear filtering with incorrect initial specifications. Here, the problem is
to identify conditions on when an incorrectly initialized non-linear filter asymptotically gets
corrected with the accumulation of additional measurements; these often require strong er-
godicity properties of the Markov process [8, 9, 11] or regularity properties (such as absolute
continuity) of incorrect prior with respect to the true one and conditions on the measurement
processes [24].

1.3. Convergence of probability measures and some supporting results. Three im-
portant notions of convergences for sets of probability measures are weak convergence, set-
wise convergence and convergence under total variation (see, e.g., [29] and [52]). For some
N ∈ N a sequence {µn, n ∈ N} in P(RN) is said to converge to µ ∈ P(RN) weakly if

∫

RN

c(x)µn(dx) →

∫

RN

c(x)µ(dx)(1.2)

for every continuous and bounded c : RN → R. {µn} is said to converge setwise to µ ∈
P(RN ) if (1.2) holds for all measurable and bounded c : RN → R. Setwise convergence
can also be equivalently defined through pointwise convergence on Borel subsets of RN , that
is, µn(A) → µ(A) for all A ∈ B(RN).

For probability measures µ, ν ∈ P(RN ), the total variation metric is given by

‖µ− ν‖TV = 2 sup
B∈B(RN )

|µ(B)− ν(B)|

= sup
f :‖f‖∞≤1

∣∣∣∣
∫

f(x)µ(dx) −

∫
f(x)ν(dx)

∣∣∣∣ ,

where the supremum is taken over all measurable real f such that
‖f‖∞ = supx∈RN |f(x)| ≤ 1. A sequence {µn} is said to converge in total variation to

µ ∈ P(RN ) if ‖µn − µ‖TV → 0.
We next introduce the Wasserstein metric. The Wasserstein metric of order 1 for two

distributions µ, ν ∈ P(X) is defined as

W1(µ, ν) = inf
η∈H(µ,ν)

∫

X×X

η(dx, dy)|x − y|,

where H(µ, ν) denotes the set of probability measures on X × X with first marginal µ and
second marginal ν.

A sequence {µn} is said to converge in W1 to µ ∈ P(RN ) if W1(µn, µ) → 0. For
compact X, the Wasserstein distance of order 1 metrizes the weak topology on the set of
probability measures on X (see [47, Theorem 6.9]). For non-compact X convergence in
the W1 metric implies weak convergence (in particular this metric bounds from above the
Bounded-Lipschitz metric [47, p.109], which metrizes the weak convergence).

The following result shows the relation between convergence of prior measures and con-
vergence of joint measures of channel and initial distribution given a fixed channel Q ∈ Q.

The joint measure PQ is induced on (X × Y,B(X × Y)), for Q ∈ Q and P ∈ P(X)
where Q is a set of communication channels,

PQ(A) =

∫

A

Q(dy|x)P (dx), A ∈ B(X×Y).

The following is a result that will be used later in the paper.
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LEMMA 1.1. Let Q : B(Y)×X → [0, 1] be a stochastic kernel on Y given X.

(i) Assume that Q(dy|x) is weakly continuous in x in the sense that
∫
Q(dy|x)c(y)

is continuous in x for every continuous and bounded c. If {Pn, n ∈ N} in P(X)
converges to P ∈ P(X) weakly then PnQ → PQ weakly.

(ii) If {Pn, n ∈ N} in P(X) converges to P ∈ P(X) setwise then PnQ → PQ setwise.

(iii) If {Pn, n ∈ N} in P(X) converges to P ∈ P(X) in total variation then PnQ →
PQ in total variation. In particular, ‖PnQ − PQ‖TV = ‖Pn − P‖TV .

Proof. (i) The sequence {fn} is said to converge continuously to f when
limn→∞ fn(xn) = f(x) for any xn → x.
First we show that under the given assumptions, and with any continuous and
bounded c : X × Y → R,

∫
Y
c(x, y)Q(dy|x) is continuous in x. Let xn → x

in X, then c(xn, y) → c(x, y) for all y ∈ Y by continuity of c. In particular, with
cn(y) := c(xn, y) and c(y) := c(x, y), it follows that as yn → y, cn(yn) → c(y);
that is, cn(·) continuously converges to c(·) as (xn, yn) → (x, y) by [43, Theo-
rem 3.3] or [33, Theorem 3.5], it follows that the continuity property

lim
n→∞

∫

Y

c(xn, y)Q(dy|xn) =

∫

Y

c(x, y)Q(dy|x)

holds.
Then, we have,

lim
n→∞

∫

X×Y

c(x, y)PnQ(dx, dy)

= lim
n→∞

∫

X

(∫

Y

c(x, y)Q(dy|x)

)
Pn(dx)

=

∫

X

(∫

Y

c(x, y)Q(dy|x)

)
P (dx)

=

∫

X×Y

c(x, y)PQ(dx, dy)(1.3)

where we have applied Fubini’s theorem and the fact that
∫
Y
c(x, y)Q(dy|x) is a

bounded and continuous function in x under the given assumptions.
(ii) Given any measurable and bounded c : X×Y → R we have

lim
n→∞

∫

X×Y

c(x, y)PnQ(dx, dy) = lim
n→∞

∫

X

(∫

Y

c(x, y)Q(dy|x)

)
Pn(dx)

=

∫

X

(∫

Y

c(x, y)Q(dy|x)

)
P (dx)

=

∫

X×Y

c(x, y)PQ(dx, dy)

where we have applied Fubini’s theorem and the fact that
∫
Y
c(x, y)Q(dy|x) is a

bounded and measurable function of x under the given assumptions (see Proposition
7.29 in [4]).

(iii) Observe the following,

‖PnQ− PQ‖TV

= sup
f :‖f‖∞≤1

∣∣∣∣
∫

X×Y

f(x, y)PnQ(dx, dy)−

∫

X×Y

f(x, y)PQ(dx, dy)

∣∣∣∣ ,
5



= sup
f :‖f‖∞≤1

∣∣∣∣
∫

X

(∫

Y

f(x, y)Q(dy|x)

)
Pn(dx) −

∫

X

(∫

Y

f(x, y)Q(dy|x)

)
P (dx)

∣∣∣∣

≤ sup
f̄ :‖f̄‖∞≤1

∣∣∣∣
∫

X

f̄(x)Pn(dx)−

∫

X

f̄(x)P (dx)

∣∣∣∣

= ‖Pn − P‖TV

where we used the fact that
∣∣f̄(x)

∣∣ :=
∣∣∫

Y
f(x, y)Q(dy|x)

∣∣ ≤ 1 for every x ∈ X.

In addition, as P (B) = PQ(B ×Y) for any Borel B and any P ∈ P(X), then we
have,

‖Pn − P‖TV = 2 sup
B∈B(X)

|Pn(B)− P (B)|

= 2 sup
B∈B(X)

|PnQ(B ×Y)− PQ(B ×Y)|

≤ 2 sup
A∈B(X×Y)

|PnQ(A)− PQ(A)|

= ‖PnQ− PQ‖TV .

Therefore ‖PnQ− PQ‖TV = ‖Pn − P‖TV → 0.

2. Continuity of Optimal Cost with respect to Convergence of Prior Probability

Measures. In this section, we study the continuity in the priors.

2.1. Single-stage setup. First, we consider a single-stage setup. The initial measure
will be denoted by P ∈ P(X), the measurement channel will be Q ∈ Q and the control
action will be from the admissible control policies, Γ. Here, Γ is just the set of functions
from Y to U that are measurable with respect to the σ-algebra generated by I0 = {Y0}.

The optimal single stage cost will be defined as,

J∗(P,Q) = inf
γ∈Γ

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx).

The following is a useful result, to be used throughout the paper.

THEOREM 2.1. [52, Theorem 3.1] Let c be continuous in u for every x, and U are com-

pact. Then, for the static problem, there exists an optimal control policy for any channel

Q.

For the rest of the paper, we will use optimal policies whenever they exist otherwise we will
use ǫ-optimal policies.

2.1.1. Weak convergence. We will first observe that J∗(P,Q) is not always continuous
in initial measures under weak convergence, then we will present an upper semi-continuity
result and some sufficiency continuity conditions for weak convergence of prior measures.

THEOREM 2.2. Let a channel Q ∈ Q be given. J∗(P,Q) is not necessarily continuous

in P under weak convergence. This holds even when X, Y, and U are compact and when c
is bounded and continuous on X×U.

Proof. We prove the result with a counter example. Let X = U = Y = [0, 1] and
c(x, u) = (x − u)2. The optimal policy for this cost function is γ∗(y) = E[X |Y = y]. The
measurement channel is given in the following form,

Q(·|x) =
1

2
δx(·) +

1

2
δ0(·).

6



Let the prior distributions P and Pn are given by

P =
1

2
δ0 +

1

2
δ1

Pn =
1

2
δ 1

n

+
1

2
δ1

Note that Pn → P weakly as n → ∞. Now, we calculate the optimal control actions for
prior model P .

γ∗(0) = E[X |Y = 0] = Pr(X = 1|Y = 0) = Pr(Y = 0|X = 1)
Pr(X = 1)

Pr(Y = 0)
=

1

3

γ∗(1) = E[X |Y = 1] = Pr(X = 1|Y = 1) = Pr(Y = 1|X = 1)
Pr(X = 1)

Pr(Y = 1)
= 1.

Thus, the optimal cost for P can be calculated as

J∗(P,Q) = E[(X − γ∗(Y ))2]

= Pr(X = 0)Pr(Y = 0|X = 0)(0−
1

3
)2 + Pr(X = 1)Pr(Y = 0|X = 1)(1−

1

3
)2

+ Pr(X = 0)Pr(Y = 1|X = 0)(0− 1)2 + Pr(X = 1)Pr(Y = 1|X = 1)(1− 1)2

=
1

18
+

1

9
=

1

6

The optimal control actions for Pn can be calculated as

γ∗
n(0) = En[X |Y = 0] =

1

n
Pr(X = 1/n|Y = 0) + 1Pr(X = 1|Y = 0)

=
1

n

Pr(Y = 0|X = 1/n)Pr(X = 1/n)

Pr(Y = 0)
+

Pr(Y = 0|X = 1)Pr(X = 1)

Pr(Y = 0)

=
n+ 1

2n

γ∗
n(1) = En[X |Y = 1] =

1

n
Pr(X = 1/n|Y = 1) + 1Pr(X = 1|Y = 1)

=
1

n

Pr(Y = 1|X = 1/n)Pr(X = 1/n)

Pr(Y = 1)
+

Pr(Y = 1|X = 1)Pr(X = 1)

Pr(Y = 1)

= 1

γ∗
n(1/n) = En[X |Y = 1/n] =

1

n
Pr(X = 1/n|Y = 1/n) + 1Pr(X = 1|Y = 1/n)

=
1

n

Pr(Y = 1/n|X = 1/n)Pr(X = 1/n)

Pr(Y = 1/n)
+

Pr(Y = 1/n|X = 1)Pr(X = 1)

Pr(Y = 1/n)

=
1

n
.

Using the optimal control actions, we can calculate the optimal cost for Pn.

J∗(Pn, Q) = En[(X − γ∗(Y ))2]

= Pr(X = 0)Pr(Y = 0|X = 0)(0−
n+ 1

2n
)2

+ Pr(X = 1)Pr(Y = 0|X = 1)(1−
n− 1

2n
)2

7



=
1

2
(
n+ 1

2n
)2 +

1

4
(
n− 1

2n
)2 =

3n2 + 2n+ 3

16n2
.

We can see that as n → ∞, J∗(Pn, Q) → 3
16 6= 1

6 = J∗(P,Q).

The channel model in the example is a channel which either sends full information across
the channel without error, or it provides no information and this is an infinite-capacity erasure
channel: This channel has a practical significance as in practice we may have package drops
during the transmission of the state variable which causes controller not to get any data from
the system at random times.

We now provide another example which may have further practical significance. Quan-
tizer channels are used often in practice (see [52, Section 5]). In the following example, we
show that continuity may not hold for quantizer channels either.

Before the example we define quantizers: An M -cell vector quantizer, q, is a (Borel)
measurable mapping from X = Rn to the finite set {1, 2, ...,M}, characterized by a measur-
able partition {B1, B2, ..., BM} such that Bi = {x : q(x) = i} for i = 1, . . . ,M . The Bi

are called the cells (or bins) of q
A quantizer q with cells {B1, . . . , BM}, however, can also be characterized as a stochas-

tic kernel Q from X to {1, ...,M} defined by

Q(i|x) = 1x∈Bi
, i = 1, . . . ,M,

so that q(x) =
∑M

i=1 Q(i|x).

EXAMPLE 2.1. Assume the prior distributions are given by

P (·) =
1

2
δ 1

2
(·) +

1

2
δ1(·)

Pn(·) =
1

2
δ 1

2
− 1

n

(·) +
1

2
δ1(·)

and the channel is a quantizer with B1 = [0, 1
2 ) and B2 = [ 12 , 1] where the range of the

quantizer is {0, 1} i.e.

Q(0|x) = 1x∈[0, 1
2
), Q(1|x) = 1x∈[ 1

2
,1].

If the cost function is given by c(x, u) = (x− u)2 then the optimal controls are

γ∗(0) = 0 γ∗(1) = 3/4

γ∗
n(0) =

1

2
−

1

n
γ∗
n(1) = 1

under this setup the value functions can be calculated as

J∗(Pn, Q) = 0

J∗(P,Q) = P (X = 1/2)(1/2− 3/4)2 + P (X = 1)(1− 3/4)2 = 1/16

which shows that the optimal cost is not continuous under the weak convergence of priors

when the channel is a quantization channel. ⋄

Now we show that the optimal cost is upper semi-continuous under weak convergence
of priors. The next lemma, building on [52], shows that the optimal cost is unchanged when
γ is restricted to the class of continuous policies. A brief proof is presented in the appendix.

LEMMA 2.3. Let µ be an arbitrary probability measure on (X×Y,B(X×Y)) and let

C be the set of continuous functions from Y to U. If U is convex and c(x, u) is non-negative,

measurable and bounded in X×U then

8



inf
γ∈Γ

∫
c(x, γ(y))µ(dx, dy) = inf

γ∈C

∫
c(x, γ(y))µ(dx, dy)

We now show that the optimal cost J∗(P,Q) is upper semi-continuous under weak con-
vergence on the space of initial distributions. The following theorem is related to Theorem 3
of Wu and Verdú [51].

THEOREM 2.4. Let a channel Q ∈ Q be given. If Q(dy|x) is weakly continuous in x in

the sense that
∫
Q(dy|x)c(y) is continuous in x for every continuous and bounded c, and if

U is convex and c(x, u) is non-negative, continuous and bounded in X×U then J∗(P,Q) is

upper semi-continuous on P(X) under weak convergence.

Proof. Recall from the statement of Lemma 2.3 that C denotes the set of all continuous
functions from Y to U. Let Pn → P in P(X) weakly. Then

lim sup
n→∞

inf
γ∈Γ

∫

X×Y

c(x, γ(y))PnQ(dx, dy)

= lim sup
n→∞

inf
γ∈C

∫

X×Y

c(x, γ(y))PnQ(dx, dy)

≤ inf
γ∈C

lim sup
n→∞

∫

X×Y

c(x, γ(y))PnQ(dx, dy)

= inf
γ∈C

∫

X×Y

c(x, γ(y))PQ(dx, dy)

= inf
γ∈Γ

∫

X×Y

c(x, γ(y))PQ(dx, dy),

where the first and last equality rely on Lemma 2.3 and the second-to-last equality holds as
c(x, γ(y)) is bounded and continuous for γ ∈ C.

The following result shows us that if we put some continuity restrictions on the mea-
surement channel then we can guarantee the continuity of optimal single stage cost function
under weak convergence of prior measures.

ASSUMPTION 2.1. Q is continuous in total variation in the sense that as xn → x,

‖Q(dy|xn)−Q(dy|x)‖TV → 0.

THEOREM 2.5. Let a cost function c : X × U → R be given and let Assumption 2.1

holds, c(x, u) be bounded and continuous on X ×U and U be compact. If Pn → P weakly

then J∗(Pn, Q) → J∗(P,Q).

Proof. We first show that under the stated assumptions, the following holds.

lim
k→∞

sup
γ

∣∣∣∣
∫

Q(dy|xk)c(xk, γ(y))−

∫
Q(dy|x)c(x, γ(y))

∣∣∣∣ = 0(2.1)

for xk → x. To see this, write

lim
k→∞

sup
γ

∣∣∣∣
∫

Q(dy|xk)c(xk, γ(y))−

∫
Q(dy|x)c(x, γ(y))

∣∣∣∣

≤ lim
k→∞

sup
γ

∣∣∣∣
∫

Q(dy|xk)c(xk, γ(y))−

∫
Q(dy|x)c(xk, γ(y))

∣∣∣∣(2.2)

+ lim
k→∞

sup
γ

∣∣∣∣
∫

Q(dy|x)c(xk, γ(y))−

∫
Q(dy|x)c(x, γ(y))

∣∣∣∣(2.3)
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The term in (2.2) converges to 0 by Assumption (2.1). Since we have,

lim
k→∞

sup
γ

∣∣∣∣
∫

Q(dy|xk)c(xk, γ(y))−

∫
Q(dy|x)c(xk, γ(y))

∣∣∣∣

≤ lim
k→∞

‖Q(.|xk)−Q(.|x)‖TV

= 0

By assumption the action space U is compact. Therefore, c(xk, u) → c(x, u) uniformly on
U . Thus, (2.3) also goes to 0.

Let the optimal policies be given by γ∗
n and γ∗ for initial distributions Pn and P respec-

tively. We now consider two cases:
Firstly, if J∗(Pn, Q) < J∗(P,Q) then

J∗(P,Q)− J∗(Pn, Q) ≤ J(P,Q, γ∗
n)− J(Pn, Q, γ∗

n).(2.4)

Secondly, if J∗(P,Q) < J∗(Pn, Q) then

J∗(Pn, Q)− J∗(P,Q) ≤ J(Pn, Q, γ∗)− J(P,Q, γ∗).(2.5)

Inequalities (2.4) and (2.5) are combined to give

|J∗(P,Q)− J∗(Pn, Q)|

≤ max(J(P,Q, γ∗
n)− J(Pn, Q, γ∗

n), J(Pn, Q, γ∗)− J(P,Q, γ∗)).
(2.6)

Observe the following:

|J∗(Pn, Q)− J∗(P,Q)|

≤ max

( ∣∣∣∣
∫
(Pn − P )(dx)

∫
Q(dy|x)c(x, γ∗

n(y))

∣∣∣∣ ,
∣∣∣∣
∫
(Pn − P )(dx)

∫
Q(dy|x)c(x, γ∗(y))

∣∣∣∣
)
,(2.7)

For continuity, we need (2.7) to tend to 0 as n → ∞.
Let F be a family of functions from normed linear spaces S to T. The family F is said

to be equicontinuous at a point x0 ∈ S if, for every ǫ > 0, there exists a δ > 0 such that
|f(x) − f(x0)| ≤ ǫ for all f ∈ F and for every x such that |x − x0| ≤ δ. The family F
is said to be equicontinuous if it is equicontinuous at each x ∈ S. A consequence of weak
convergence is that (see, e.g. Lemma C.1 in [23]) if fn is an equicontinuous family, then,
Pn → P weakly, implies that

∫
(Pn − P )(dx)fn(x) → 0. Condition (2.1) ensures that

the sequence of functions
∫
Q(dy|xk)c(xk, γn(y)) is equicontinuous as it gives us a uniform

continuity over family of all admissible policies. and the result follows.

EXAMPLE 2.2. Consider the following additive noisy channel:

y = x+ w,

where w ∼ µ with µ admitting a density, η, which is continuous. An example is the Gaussian

density. Suppose that U is compact and c(x, u) is continuous and bounded in X × U. For

xk → x we have that

lim
k→∞

sup
γ

∣∣∣∣
∫

η(y − xk)c(xk, γ(y))dy −

∫
η(y − x)c(x, γ(y))dy

∣∣∣∣

≤ lim
k→∞

sup
γ

∣∣∣∣
∫
(η(y − xk)− η(y − x))c(xk , γ(y))dy + . . .

10



+

∫
η(y − x) (c(xk, γ(y))− c(x, γ(y))) dy

∣∣∣∣
≤ ‖η(· − xk)− η(· − x)‖TV · ‖c‖∞ + . . .(2.8)

+ lim
k→∞

sup
γ

∣∣∣∣
∫

η(y − x) (c(xk, γ(y))− c(x, γ(y))) dy

∣∣∣∣(2.9)

= 0,

where ‖c‖∞ denotes the supremum norm of c. We note that the term in (2.8) tends to zero since

η(·−xk) converges to η(·−x) pointwise and therefore by Scheffé’s theorem it converges in L1

and thus in total variation. Additionally, the term in (2.9) tends to zero since c is uniformly

continuous by assumptions. Therefore Assumption 2.1 is satisfied and Theorem 2.5 holds.

Thus, for a special but practically important class of channels weak convergence of priors

is sufficient for continuity if further c(x, u) is bounded and continuous on X × U and U is

compact. ⋄

We note here that a related result due to Wu and Verdú [51] establishes continuity of the
MMSE error (that is with c(x, u) = ‖x − u‖2) under weak convergence when the channel
is additive, the additive noise has a finite variance and it admits a continuous and bounded
density function. In general, however, the following example shows that the boundedness
condition cannot be relaxed even when the channel is non-informative, which can be viewed
as an extreme form of regularity.

EXAMPLE 2.3. Let X = U = R, Y = [0, 1], and c(x, u) = (x−u)2. With the given cost

function this is a mean-square error problem; therefore, the optimal policy is γ∗(y) = E[x|y].
We let the channel be distributed uniformly on [0, 1], that is, Q ∼ U([0, 1]). Note that this

channel is non-informative. Let Pn be the following discrete distribution,

Pn =

(
1

2
−

1

n

)
· δ 1

n

+

(
1

2
−

1

n

)
· δ− 1

n

+
1

2n
· δan

+
1

2n
· δ−an

where δs is the delta measure at point s, that is,

δs(A) = 1{s∈A}

for any Borel set A, and an is the sequence of numbers in N defined by

an =

√

n−

(
1

n
+

2

n2

)
.

Clearly Pn → δ0 weakly as for any bounded and continuous function f we have

∫

R

f(x)Pn(dx) =

(
1

2
−

1

n

)
· f

(
1

n

)
+

(
1

2
−

1

n

)
· f

(
−
1

n

)
+

1

2n
· f(an) +

1

2n
· f(−an)

→ f(0) =

∫

R

f(x)δ0(dx)

by boundedness and continuity. By symmetry and the non-informative nature of Q, the opti-

mal policy is γ∗(y) = E[X |Y ] = 0 for all Pn and for P = δ0. With initial distribution P ,

we have

J∗(P,Q) = EQ,γ∗

P [(X − U)2]

11



= EQ,γ∗

P [(X − γ∗(Y ))2]

= EQ,γ∗

P [(X)2] = 0.

Whereas for all n ∈ N we have

J∗(Pn, Q) = EQ,γ∗

Pn
[(X)2]

=

(
1

2
−

1

n

)
·
1

n2
+

(
1

2
−

1

n

)
·
1

n2
+

1

2n
· a2n +

1

2n
· a2n

=

(
1−

2

n

)
·
1

n2
+

1

n
·

(
n−

(
1

n
+

2

n2

))

= 1,

so J∗(Pn, Q) 6→ J∗(P,Q) as n → ∞. ⋄

Now we present a result for continuity under the Wasserstein metric.

ASSUMPTION 2.2. There exists a measurable non-negative function f so that for some

probability measure PQ, the following (absolute continuity condition) holds:

Q(Y ∈ A|x) =

∫

A

f(x, y)PQ(dy)

Furthermore, c̃(x, y, u) := c(x, u)f(x, y) is such that

|c̃(x′, y, u)− c̃(x, y, u)| ≤ α|x′ − x|

for all y ∈ Y, u ∈ U and for some α ∈ R+.

THEOREM 2.6. Under Assumption 2.2,

|J∗(Pn, Q)− J∗(P,Q)| ≤ αW1(Pn, P ),

and thus, as W1(Pn, P ) → 0, J∗(Pn, Q) → J∗(P,Q).

Proof. We first use the bound in (2.6) such that

|J∗(P,Q)− J∗(Pn, Q)|

≤ max(J(P,Q, γ∗
n)− J(Pn, Q, γ∗

n), J(Pn, Q, γ∗)− J(P,Q, γ∗)).

Let Pn denote a product measure on the space X × X such that its first marginal is P
and the second marginal is Pn. Then, for any γ ∈ Γ we have

∫
Pn(dx, dx

′)

(∫
Q(dy|x)c(x, γ(y)) −

∫
Q(dy|x′)c(x′, γ(y))

)

=

∫
Pn(dx, dx

′)

(∫
PQ(dy)f(x, y)c(x, γ(y)) −

∫
PQ(dy)f(x

′, y)c(x′, γ(y))

)

=

∫
Pn(dx, dx

′)

∫
PQ(dy) (f(x, y)c(x, γ(y)) − f(x′, y)c(x′, γ(y)))

≤

∫
Pn(dx, dx

′)

∫
PQ(dy)α|x

′ − x|

≤

∫
Pn(dx, dx

′)α|x′ − x|.

Optimizing over all such couplings Pn completes the proof.
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2.1.2. Setwise convergence.

THEOREM 2.7. Let a channel Q ∈ Q be given. J∗(P,Q) is not necessarily continuous

in P under setwise convergence. This holds even when X, Y, and U are compact and when

c is bounded and continuous in both x and u.

Proof. We present the following counterexample, building on [52]: Let X = Y = U =
[0, 1] and let c(x, u) = (x− u)2. For n ∈ N and k = 1, . . . , n, we define

Ln,k =

[
2k − 2

2n
,
2k − 1

2n

)
, Rn,k =

[
2k − 1

2n
,
k

n

)
.

For ease of notation, we shall let L = {y ∈ ∪n
k=1Ln,k} and R = {y ∈ ∪n

k=1Rn,k}. Next, we
define the square-wave function by

hn(t) = 1{t∈L} − 1{t∈R}.

As
∫ 1

0
hn(t)dt = 0 and |hn(t)| ≤ 1, the function

fn(t) = (1 + hn(t))1{t∈[0,1]}

is a probability density function.
By the proof of the Riemann-Lebesgue lemma (for example, see Theorem 12.21 in [48]),

we have

lim
n→∞

∫ 1

0

hn(t)g(t)dt = 0 for all g ∈ L1 ([0, 1],R) ,

therefore

lim
n→∞

∫ 1

0

fn(t)g(t)dt =

∫ 1

0

g(t) for all g ∈ L1 ([0, 1],R) .

So if we let Pn ∼ fn for n ∈ N, we have that Pn → P ∼ U([0, 1]) setwise. Next we let the
channel be

Q(·|x) ∼
1

2
· δx +

1

2
· U([0, 1]).

For initial distribution P , the optimal policy is

γ∗
P (y) = E[X |Y ] =

1

2

(
1

2
+ y

)
.

This gives

J∗(P,Q) =
1

16
.

By tedious calculations (see Section B.1), the optimal policy for initial distribution Pn is

γ∗
Pn

(y) =

{
1
2 − 1

4n if y ∈ ∪n
k=1Rn,k

1
3 ·
(
1
2 − 1

4n

)
+ 2

3y if y ∈ ∪n
k=1Ln,k

.

This gives

J∗(Pn, Q) =
1

18
−

1

24n2
.

So we have J∗(Pn, Q) → 1
18 6= 1

16 as n → ∞, and we see that the optimal cost is clearly not
continuous on the space of initial distributions under setwise convergence.
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The next result shows that the optimal cost is upper semi-continuous under setwise con-
vergence too.

THEOREM 2.8. Let a channel Q be given. If c(x, u) is non-negative, measurable and

bounded in X×U, then J∗(P,Q) is upper semi-continuous on P(X) under setwise conver-

gence.

Proof. Given a fixed channel Q ∈ Q, let Pn → P in P(X) setwise. Then

lim sup
n→∞

inf
γ∈Γ

∫

X×Y

c(x, γ(y))Q(dy|x)Pn(dx)

≤ inf
γ∈Γ

lim sup
n→∞

∫

X×Y

c(x, γ(y))Q(dy|x)Pn(dx)

= inf
γ∈Γ

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx),

where for the last equality we used Lemma 1.1 and the fact that c is bounded and measurable.

2.1.3. Continuity under total variation. The proof of the following result builds on
[52, Theorem 3.4].

THEOREM 2.9. The optimal cost J∗(P,Q) is continuous on the set of input distributions,

P(X), under the topology of total variation. In other words, if ‖Pn − P‖TV → 0, then

|J∗(Pn, Q)− J∗(P,Q)| → 0.

Proof. Let Pn → P in total variation with a fixed channel Q. Recall from Section 1 that

J(P ′, Q, γ′) = EQ,γ′

P ′ [c(x, u)], that is, the expected cost with initial distribution P ′ ∈ P(X)
and control policy γ′ ∈ Γ. Let the optimal (ε-optimal) policies are given by γ∗

n and γ∗ for
initial distributions Pn and P respectively. Using the bound in 2.6 we write

|J∗(Pn, Q)−J∗(P,Q)|

≤ max(J(P,Q, γ∗
n)− J(Pn, Q, γ∗

n), J(Pn, Q, γ∗)− J(P,Q, γ∗)).

As c is bounded it follows that for any γ′ ∈ Γ,

|J(Pn, Q,γ′)− J(P,Q, γ′)|

=

∣∣∣∣
∫

c(x, γ′(y))PnQ(dx, dy)−

∫
c(x, γ′(y))PQ(dx, dy)

∣∣∣∣
≤ ‖c‖∞‖PnQ− PQ‖TV = ‖c‖∞‖Pn − P‖TV ,

(2.10)

where we have used Lemma 1.1 for the last equality. Inequalities (2.6) and (2.10) together
imply that |J∗(P,Q)− J∗(Pn, Q)| ≤ ‖c‖∞‖Pn −P‖TV . Since ‖Pn −P‖TV → 0 we have
that J∗(Pn, Q) → J∗(P,Q).

REMARK 1. In this paper we only focus on the case where the channel is known by the

controller. That is the true channel model Q is available to the controller. For the case where

this is no longer true, some further analysis is required. If prior model P and the channel

Q are not known, controller can have an estimating sequence PnQn ∈ P(X × Y) for the

true joint measure PQ ∈ P(X×Y). Now, the question becomes analyzing the convergence

of PnQn → PQ. This joint convergence might require different set of assumptions on Pn

and Qn(·|x) which we do not discuss on this paper. However, Lemma 1.1 might give an idea

on this joint convergence where we consider the convergence of joint measure PnQ to PQ.

In [52], similar joint convergence is studied for convergence of measurement channels and

fixed prior distributions. The reader can also refer to [52, Lemma 2.2] for the analysis on

convergence of PQn → PQ.
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2.2. Multi-stage and infinite-horizon discounted setup. We now consider continuity
problems for the multi stage case. For this case, our focus will be on the infinite stage dis-
counted cost setting. Clearly, the lack of continuity for single-stage problems implies the lack
of continuity of multi-stage problems. In the following, the emphasis will be on developing
setups where continuity can be established.

In particular, if we put further restrictions on the system model and the measurement
channel, we will establish sufficient conditions for continuity under weak convergence of the
priors. This will be studied in the following.

2.2.1. Weak convergence. Consider a partially observed Markov decision process
(POMDP), with state space X, action space A, and observation space Y, all Borel spaces.
Define the history spaces Ht = (Y × U)t × Y, t = 0, 1, 2, . . . endowed with their product
Borel σ-algebras generated by B(Y) and B(U). A policy π = {πt} is a sequence of stochas-
tic kernels on U given Ht. We denote by Π the set of all policies. For any initial distribution
µ and policy π we can think of the POMDP as a stochastic process

{
Xt, Yt, Ut

}
t≥0

defined

on the probability space
(
Ω,B(Ω), P π

µ

)
, where Ω = H∞×X∞, the Xt are X-valued random

variables, the Yt are Y-valued random variables, the Ut are U-valued random variables.
It is known that any POMDP can be reduced to a (completely observable) MDP [53],

[39], whose states are the posterior state distributions or ”beliefs” of the observer; that is, the
state at time t is

Zt( · ) := Pr{Xt ∈ · |Y0, . . . , Yt, U0, . . . , Ut−1} ∈ P(X).

We call this equivalent MDP the belief-MDP . The belief-MDP has state space Z = P(X)
and action space U. Recall that Z is equipped with the Borel σ-algebra generated by the
topology of weak convergence [5]. Since X is a Borel space, Z is metrizable with the
Prokhorov metric which makes Z into a Borel space [35]. The transition probability η of
the belief-MDP can be constructed as follows (see also [26]). If we define the measurable
function F (z, a, y) := Pr{Xt+1 ∈ · |Zt = z, Ut = u, Yt+1 = y} from Z×A×Y to Z and
the stochastic kernel H( · |z, u) := Pr{Yt+1 ∈ · |Zt = z, Ut = u} on Y given Z ×U, then
η can be written as

η( · |z, u) =

∫

Y

1{F (z,u,y)∈ · }H(dy|z, u).

The one-stage cost function c of the belief-MDP is given by

c̃(z, u) :=

∫

X

c(x, u)z(dx).(2.11)

Hence, the belief-MDP is a Markov decision process with the components (Z,U, η, c̃).
It is a standard result that an optimal control policy will use the belief zt as a sufficient

statistic for optimal policies (see [53], [39]).

ASSUMPTION 2.3. (a) The stochastic kernel T (dx1|x0 = x, u0 = u) is weakly

continuous in (x, u).
(b) Assumption 2.1 holds; that is the observation channelQ(dy|x) is continuous in total

variation.

(c) The stage-wise cost function c(x, u) is non-negative, bounded and continuous on

X×U.

(d) U is compact.

By [4, Proposition 7.30], the one stage cost function c̃ of the belief-MDP, which is defined
in (2.11), is continuous and bounded, that is in Cb(Z × U), under Assumption 2.3-(a),(b).
The following theorem is from [19, Theorem 3.7, Example 4.1] and [41, Example 2.1].

15



THEOREM 2.10. (i) Under Assumption 2.3, the stochastic kernel η for belief-MDP

is weakly continuous in (z, u).
(ii) If we relax the continuity in total variation of the observation channel to weak con-

tinuity, then η may not be weakly continuous even if the transition probability p of

POMDP is continuous in total variation.

(iii) η may not be setwise continuous in u even if the observation channel is continuous

in total variation.

For an infinite horizon discounted cost problem with bounded costs, an optimal policy
can be computed through the iterated use of the discounted cost optimality operator to be
introduced below. Note that under Assumption 2.3(c), by an application of the dominated
convergence theorem c̃ is continuous and bounded. Now, for a MDP with weakly continuous
transition probabilities and compact action spaces, it follows that an optimal control policy
exists and that the optimal cost is continuous in the initial state (or probability measure in the
context here): This follows because the discounted cost optimality operator T : Cb(Z) →
Cb(Z) (see e.g. [28, Chapter 8.5]):

(
T (v)

)
(z) = min

u

(
c̃(z, u) + βE[v(z1)|z0 = z, u0 = u]

)

is a contraction from Cb(Z) to itself under the supremum norm. As a result, there exists a
fixed point, which is continuous. This fixed point is the value function.

This argument shows that the value function is continuous in the belief state, z0(Y )(x ∈
·) = P (x ∈ ·|Y ), which is the posterior distribution of the state variable given the obser-
vations. However, convergence of the distribution of the priors may not always imply the
convergence of the posteriors: For the single stage case, with the cost function of the belief
process c̃ defined as in (2.11), the value function is given by J∗(z) = infu∈U c̃(z, u). It can
be seen that the value function is again continuous in the belief state z if c is continuous in x
and U is compact (by an application of the dominated convergence theorem). However, as we
have seen in the counterexample used to prove Theorem 2.2; even though Pn → P weakly,
value functions do not converge. The next theorem shows that with further conditions, con-
vergence of the posteriors (belief states) can also be guaranteed. Before the main result we
first present a key lemma.

LEMMA 2.11. Under Assumption 2.3, as Pn → P weakly,

sup
γ∈Γ

∣∣EP

[
c(Xk, γ(Y[0,k]))

]
− EPn

[
c(Xk, γ(Y[0,k]))

]∣∣→ 0

for any time stage k < ∞.

Proof. The proof can be found in the Appendix A.1.

THEOREM 2.12. Suppose that Assumption 2.3 holds. Then, as Pn → P weakly

|J∗
β(Pn, T )− J∗

β(P, T )| → 0.

Proof. We start with the following bound;

|J∗
β(P, T )− J∗

β(Pn, T )|

≤ max(Jβ(P, T , γ∗
n)− J(Pn, T , γ∗

n), Jβ(Pn, T , γ∗)− J(P, T , γ∗)).
(2.12)

Now, we try to show that under Assumption 2.3, as Pn → P weakly,

sup
γ∈Γ

|Jβ(Pn, T , γ)− Jβ(P, T , γ)| → 0.(2.13)

To prove (2.13) we start with the following inequality:

sup
γ∈Γ

|Jβ(Pn, T , γ)− Jβ(P, T , γ)|
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≤ sup
γ∈Γ

T∑

k=0

βk

∣∣∣∣EP

[
c(Xk, γ(Y[0,k]))

]
− EPn

[
c(Xk, γ(Y[0,k]))

]∣∣∣∣+
∞∑

k=T

βk2‖c‖∞.

First we fix ǫ > 0 and find a Tǫ such that
∑∞

k=Tǫ
βk2‖c‖∞ ≤ ǫ/2. Now, we claim that we

can find an N such that for every n > N

sup
γ∈Γ

Tǫ−1∑

k=0

∣∣∣∣EPn

[
c(Xk, γ(Y[0,k]))

]
− EP

[
c(Xk, γ(Y[0,k]))

]∣∣∣∣

≤

Tǫ−1∑

k=0

sup
γ∈Γ

∣∣∣∣EPn

[
c(Xk, γ(Y[0,k]))

]
− EP

[
c(Xk, γ(Y[0,k]))

]∣∣∣∣ ≤ ǫ/2.

Lemma 2.11 implies that for every time stage k < Tǫ, supγ∈Γ

∣∣∣∣EP

[
c(Xk, γ(Y[0,k]))

]
−

EPn

[
c(Xk, γ(Y[0,k]))

]∣∣∣∣ can be made less than ǫ/2Tǫ for all n > N for some N < ∞. Since

Tǫ < ∞, we can find a common N for all time stages k < Tǫ. So we can write

sup
γ∈Γ

Tǫ−1∑

k=0

βk

∣∣∣∣EP

[
c(Xk, γ(Y[0,k]))

]
− EPn

[
c(Xk, γ(Y[0,k]))

]∣∣∣∣ < ǫ/2

Combining the results, we have

sup
γ∈Γ

|Jβ(Pn, T , γ)− Jβ(P, T , γ)| ≤

Tǫ−1∑

k=0

βk

∣∣∣∣EP

[
c(Xk, γ(Y[0,k]))

]
− EPn

[
c(Xk, γ(Y[0,k]))

]∣∣∣∣

+
∞∑

k=Tǫ

βk2‖c‖∞

< ǫ

for all n > N for some N < ∞ for every given ǫ > 0, which proves (2.13).
Now looking at the term in (2.12):

max(Jβ(P, T , γ∗
n)− J(Pn, T , γ∗

n), Jβ(Pn, T , γ∗)− J(P, T , γ∗)),

we can see that both terms go to zero using (2.13).

In the following we give a weaker result, which holds with no restrictions, however.

2.2.2. Continuity under total variation and strategic measures. For stochastic con-
trol problems, strategic measures are defined (see Schäl [42], also [17, 18]) as the set of
probability measures induced on the product spaces of the state and action pairs by measur-
able control policies: Given an initial distribution on the state, and a policy, one can uniquely
define a probability measure on the infinite product space consistent with finite dimensional
distributions, by Ionescu Tulcea theorem [27]. Now, define a strategic measure under a policy
γn = {γn

0 , γ
n
1 , · · · , γ

n
k , · · · } as a probability measure defined on B(X×Y ×U)Z+ by:

P γn

Pn
(d(x0, y0, u0), d(x1, y1, u1), · · · )

= Pn(dx0)Q(dy0|x0)1{γn(y0)∈du0}T (dx1|x0, u0)Q(dy1|x1)1{γn(y0,y1)∈du1} · · ·

Under a strategic measure P γn

Pn
we define,

J∗
β(Pn, T ) = inf

γn
Eγn

Pn

[
∑

k

βkc(xk, γ
n
k (y[0,k]))

]

17



THEOREM 2.13. If c(x, u) is a non-negative, measurable and bounded function in X×U

then

|J∗
β(Pn, T )− J∗

β(P, T )| ≤ ‖Pn(x0 ∈ ·)− P (x0 ∈ ·)‖TV
1

1− β
‖c‖∞.

Proof. From inequalities (2.4), (2.5) and (2.6) we have that |J∗
β(Pn, T ) − J∗

β(P, T )| is
upper bounded as follows,

|J∗
β(Pn, T )− J∗

β(P, T )|

≤ max

(∑

k

βk‖P γn

P (xk ∈ ·, y[0,k] ∈ ·)− P γn

Pn
(xk ∈ ·, y[0,k] ∈ ·)‖TV sup c(x, γn(y[0,k])),

∑

k

βk‖P γ
Pn

(xk ∈ ·, y[0,k] ∈ ·)− P γ
P (xk ∈ ·, y[0,k] ∈ ·)‖TV sup c(x, γ(y[0,k])

)

For any γ ∈ Γ, we have,

∑

k

βk‖P γ
Pn

(xk ∈ ·, y[0,k] ∈ ·)− P γ
P (xk ∈ ·, y[0,k] ∈ ·)‖TV sup c(x, γ(y[0,k]))

=
∑

k

βk‖P γ
P (xk ∈ ·, y[0,k] ∈ ·)− P γ

Pn
(xk ∈ ·, y[0,k] ∈ ·)‖TV ‖c‖∞

≤
1

1− β
‖c‖∞‖Pn(x0 ∈ ·)− P (x0 ∈ ·)‖TV .(2.14)

Here, we use the property that

‖P γ
Pn

(xk ∈ ·, y[0,k] ∈ ·)− P γ
P (xk ∈ ·, y[0,k] ∈ ·)‖TV

≤ ‖P γ
Pn

((x, y, u)[0,∞) ∈ ·)− P γ
P ((x, y, u)[0,∞) ∈ ·)‖TV = ‖Pn(x0 ∈ ·)− P (x0 ∈ ·)‖TV ,

similar to the derivation in Lemma 1.1.

2.3. Some remarks on the infinite horizon average cost setup. In this section, we
show that the conditions presented earlier may not lead to continuity for the infinite horizon
setup but alternative conditions will likely be useful. Consider an infinite horizon average
cost setup with the objective function given by

J∞(P, T , γ) = lim sup
T→∞

1

T
EQ,γ

P

[
T−1∑

t=0

c(Xt, Ut)

]
.

The optimal cost is given by

J∗
∞(P, T ) = inf

γ∈Γ
J∞(P, T , γ).

Given an optimal stationary policy, whose existence follows from the conditions given
in Assumption 2.3, say through the convex analytic method (see Borkar [7]), the process
process πk becomes Markovian. It is known that (see [29, Theorems 2.3.4-2.3.5]) if this
belief Markov process admits a unique invariant measure then

1

N
Eπ0

[N−1∑

k=0

c(πk)
]
→ c

almost surely for all initial conditions (that is: ’priors’) for some constant c. Thus, if the
belief process has a unique invariant measure, the continuity in priors holds immediately as
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the average cost does not depend on the prior measure provided that the initial prior belongs
to the support set of the invariant measure. However, checking ergodicity is a challenging
problem for the controlled setup; this is a subject of current research.

On the other hand, we show in the following that Assumption 2.3 does not alone guaran-
tee continuity.

EXAMPLE 2.4. Let X = R, U = [−1, 1], Y = [−1, 1]. Suppose we are given two initial

distributions, the transition kernel and the measurement channel as

P (·) = δ0(·)

Pn(·) =
1

2
δ1/n(·) +

1

2
δ−1/n(·)

T (·|x, u) = δ2x(·)

Q(·|x) = U [−1, 1].

Notice that the transition kernel is weakly continuous in (x, u), the measurement channel is

continuous in total variation and Pn → P weakly.

The stage-wise cost function is defined by as follows.

c(x, u) =

{
(x+ u)2 if |x| ≤ 1

(1 + u)2 if |x| > 1

So the cost is always bounded. The optimal control actions for both initial distributions at

any time k ≥ 0 are γ(y[0,k]) = 0 and γn(y[0,k]) = 0.

It is easy to see that the optimal cost for P is 0. The optimal cost for Pn can be calculated

as follows.

J∗
∞(Pn, T ) = lim

N→∞

1

N

( log2 n∑

k=0

(2k
n

)2
+

N∑

k=log2 n+1

(1)2
)

= lim
N→∞

1

N

(
4(n2)

3
−

1

3
+N − log2 n+ 1

)
= 1 6= 0

A more complete treatment for the average cost case will be reported in future work.

3. Robustness.

3.1. Robustness to incorrect priors and mismatch bounds for single stage problems.

First, for this subsection, we will consider the single stage stochastic control problem with
cost function c, initial distribution P . We shall denote this problem by Ξ = (c, P ). Consider

the following problem: let P̃ be another initial distribution. Decision maker DM computes

an optimal policy, γ̃∗, for the problem Ξ̃ = (c, P̃ ) and applies it to Ξ. Can we approximate the
loss in performance, that is, can we find a bound on J(P,Q, γ̃∗)− J∗(P,Q)? This situation

naturally arises when the initial distribution, P , is uncertain and DM has a prior belief, P̃ ,
which is perhaps based on an incorrect initial model.

PROPOSITION 3.1. Assume that c : X × U → R is nonnegative, measurable, and

bounded. Let γ̃∗ be an optimal (or ε-optimal) control policy for the single stage stochas-

tic control problem Ξ̃ = (c, P̃ , Q), where c is a cost function, P̃ is an initial distribution,

and Q is a measurement channel. Let P be another probability distribution on X. Then

|J(P,Q, γ̃)− J∗(P,Q)| ≤ 2‖c‖∞‖P − P̃‖TV .

Proof. Let γ∗ denote an optimal (or ε-optimal) policy for the problem Ξ = (c, P,Q).
We have,

|J(P,Q, γ̃∗)− J∗(P,Q)| = |J(P,Q, γ̃∗)− J(P̃ , Q, γ̃∗) + J(P̃ , Q, γ̃∗)− J(P,Q, γ∗)|
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≤ |J(P,Q, γ̃∗)− J(P̃ , Q, γ̃∗)|+ |J∗(P̃ , Q)− J∗(P,Q)| (+2ε)

≤ 2‖c‖∞‖P − P̃‖TV ,

where we have used Equation (2.10) for the final inequality.

Similar to the continuity section, for the weak convergence of priors we have a negative
result. The following result says that the mismatch error may not diminish even if our belief
model converges weakly to the true model.

PROPOSITION 3.2. Let an initial distribution P ∈ P(X), and a cost function c : X ×
U → R be given. Assume that Pn → P weakly and let γ∗

Pn
be an optimal (or ε-optimal) pol-

icy for the control problem Ξn = (c, Pn). It does not follow that J(P,Q, γ∗
Pn

) → J∗(P,Q)
as n → ∞. This result holds even if c is bounded and continuous in both x and u.

Proof. We use an extension of the proof from Theorem 2.7. Let X = Y = U = [0, 1]
and let c(x, u) = (x − u)2. We let Pn ∼ fn for n ∈ N as in the proof of Theorem 2.7. We
have that Pn → P ∼ U([0, 1]) setwise. We let the channel be

Q(·|x) ∼
1

2
· δx +

1

2
· U([0, 1]).

As presented in the proof of Theorem 2.7, the optimal policy for the control problem Ξn =
(c, Pn, Q) is given by,

γ∗
Pn

(y) =

{
1
2 − 1

4n if y ∈ ∪n
k=1Rn,k

1
3 ·
(
1
2 − 1

4n

)
+ 2

3y if y ∈ ∪n
k=1Ln,k

.

If the decision maker applies γ∗
Pn

to the control problem Ξ = (c, P,Q), this results in the
following cost (the calculations can be found in B.2):

J(P,Q, γ∗
Pn

) =
2

27
+

5

72n2
.

We notice that as n → ∞, |J(P,Q, γ̃∗)− J∗(P,Q)| → 2
27 − 1

16 = 5
432 6= 0.

We now present a positive result for weak convergence.

THEOREM 3.1. Suppose that c(x, u) is bounded, U is compact and Assumption 2.1

holds. Then, as Pn → P weakly limn→∞ |J(P,Q, γ∗
Pn

) − J∗(P,Q)| → 0, that is the

system is robust to errors in the priors under weak convergence.

Proof.

lim
n→∞

|J(P,Q, γ∗
Pn

)− J∗(P,Q)|

≤ lim
n→∞

|J(P,Q, γ∗
Pn

)− J(Pn, Q, γ∗
Pn

)|+ lim
n→∞

|J(Pn, Q, γ∗
Pn

)− J(P,Q)|(3.1)

= 0.

We note that the first term goes to 0 with the same argument used in 2.7 and the second terms
goes to zero by Theorem 2.5. We conclude that under the given assumptions, the control
problem is robust under weak convergence.

3.2. Robustness to incorrect priors for multi stage problems. The following result
holds in generality.

THEOREM 3.2. If c(x, u) is a non-negative, measurable and bounded function in X×U

then

|Jβ(P,Q, γ∗
Pn

)− J∗
β(P,Q)| ≤ 2‖Pn(dx0)− P (dx0)‖TV

1

1− β
‖c‖∞.
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Proof. We use that

Jβ(P,Q, γ∗
Pn

)−J∗
β(P,Q) = Jβ(P,Q, γ∗

Pn
)−Jβ(Pn, Q, γ∗

Pn
)+Jβ(Pn, Q, γ∗

Pn
)−J∗

β(P,Q).

From inequalities (2.4), (2.5) and (2.6) we have that |Jβ(P,Q, γ∗
Pn

) − Jβ(Pn, Q, γ∗
Pn

)| is

upper bounded as ‖Pn(dx0)−P (dx0)‖TV
1

1−β‖c‖∞. The analysis is then complete by con-

sidering Theorem 2.13.

We now develop a robustness result under weak convergence of priors for multi-stage
case. First, we give a lemma showing that for any multi-stage setting with a controlled
Markov chain satisfying Assumption 2.3, the cost at any time stage is continuous in priors
under weak convergence.

THEOREM 3.3. Under Assumption 2.3, as Pn → P weakly, we have,

|Jβ(P, T , γ∗
Pn

)− J∗
β(P, T )| → 0

Proof. We use the following bound again,

|Jβ(P, T , γ∗
Pn

)−J∗
β(P, T )| ≤ |Jβ(P, T , γ∗

Pn
)−Jβ(Pn, T , γ∗

Pn
)|+|Jβ(Pn, T , γ∗

Pn
)−J∗

β(P, T )|.

Here, γ∗
Pn

is optimal for prior Pn, the existence of γ∗
Pn

, and an optimal policy γ for prior P
follows from Theorem 2.12. The second term goes to zero by Theorem 2.12. The first term
goes to zero by (2.13) which states that

sup
γ∈Γ

|Jβ(Pn, T , γ)− Jβ(P, T , γ)| → 0.

4. Implications for Empirical Learning Methods in Stochastic Control. In engineer-
ing practice, when one does not know the probability measure for a random variable one typ-
ically attempts to learn it via test inputs or empirical observations. Let {(Xi), i ∈ N} be an
X-valued i.i.d random variable sequence generated according to some distribution µ.

Defining for every (fixed) Borel B ⊂ X, and n ∈ N, the empirical occupation measures

µn(B) =
1

n

n∑

i=1

1{Xi∈B},

one has µn(B) → µ(B) almost surely (a.s.) by the strong law of large numbers. Also,
µn → µ weakly with probability one ([14], Theorem 11.4.1).

However, µn can not converge to µ in total variation, in general. On the other hand, if
we know that µ admits a density, we can find estimators to estimate µ under total variation
[12].

As discussed above, the empirical averages converge almost surely. By a similar reason-
ing, for a given bounded measurable function f ,

∫
µn(dx)f(x) converges to

∫
µ(dx)f(x).

This then also holds for any finite collection of functions, f1, · · · , fn for some n ∈ N. A
relevant question is the following: Can one ensure uniform convergence (over a family of
functions) with arbitrary precision by only guaranteeing convergence for a finite collection of
functions. This entails the problem of covering a family of functions with arbitrarily small
neighborhoods of finitely many functions under an appropriate distance metric. The answer to
this question is studied by the theory of empirical risk minimization: In the learning theoretic
context when one tries to estimate the source distribution, the convergence of optimal costs
under µn to the cost optimal for µ is called the consistency of empirical risk minimization

[46].
In particular, if the following uniform convergence holds,

lim
n→∞

sup
f∈F

∣∣∣∣
∫

f(x)µn(dx) −

∫
f(x)µ(dx)

∣∣∣∣ = 0,(4.1)
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for a class of measurable functions F , then F is called a µ-Glivenko-Cantelli class [15]. If
the class F is µ-Glivenko-Cantelli for every µ, it is called a universal Glivenko-Cantelli class.
One example of a universal Glivenko-Cantelli family of real functions on R

N is the family

{f : ‖f‖BL ≤ M} for some 0 < M < ∞, where ‖f‖BL = ‖f‖∞+supx1 6=x2

|f(x1)−f(x2)|
|x1−x2|

( [15]). For related characterizations and further examples, see [38] [45] [13].
In another direction, if (4.1) holds for any sequence of measures {µn} converging weakly

to µ (rather than only empirical models), then F is called a µ-uniform class. For a subset, B,
of X, the oscillation of F on B is defined as

wF (B) = sup{|f(x)− f(y)|, f ∈ F , x, y ∈ B},

in the case where F consists of a single function f we use the notation wf (B) or wfB.
Then a characterization for uniformity classes is given by the following [6]: a necessary and
sufficient condition for F to be a P -uniformity class is that

wF (X) < ∞

and

lim
δ→0

sup
f∈F

P{x : wfS(x, δ) > ǫ} = 0

for any ǫ > 0, whereS(x, δ) is the ball around x with radius δ. It can be seen that one example
of a uniformity class on RN is again the family {f : ‖f‖BL ≤ M} for some 0 < M < ∞.
For a detailed discussion and characterization of these classes see [6].

4.1. Application to robustness to incorrect priors.

THEOREM 4.1. Suppose that the prior model of the system is estimated with the i.i.d.

measurements such that for every (fixed) Borel B ⊂ X, and n ∈ N, the empirical occupation

measures

Pn(B) =
1

n

n∑

i=1

1{Xi∈B},(4.2)

then under one of the following conditions,

(i) if the stage-wise cost function c(x, u) is non-negative, bounded and continuous on

X × U, the action space U is compact and the measurement channel Q(·|x) is

continuous in total variation,

(ii) If we restrict the class of policies to G = {γ :
∫
Q(dy|x)c(x, γ(y)) ∈ E}, where E

is a class of P -Glivenko-Cantelli family of functions,

(iii) if we restrict the class of policies to G = {γ : c(x, γ(y)) ∈ E}, where E is a class of

PQ-uniformity family of functions and if the measurement channel Q(·|x) is weakly

continuous in x,

as n → ∞, with probability 1, we have, J∗(Pn, Q) → J∗(P,Q) and J(P,Q, γ∗
n) →

J∗(P,Q), where γ∗
n is the optimal policy designed for the estimated model Pn. That is the

optimal cost function and the optimal policies are consistent under empirical estimation.

Proof. (i) The result follows from Theorem 2.5 and Theorem 3.1.
(ii) We write

lim
n→∞

sup
γ∈Γ

∣∣
∫

Pn(dx)

∫
Q(dy|x)c(x, γ(y))−

∫
P (dx)

∫
Q(dy|x)c(x, γ(y))

∣∣.

The results follows from the discussion made for (4.1).
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(iii) We make the following argument. Similar to the above discussion, if optimal poli-
cies are assumed to be from the restricted class of policies G, a sufficient condition
for the convergence of optimal costs is the following form of uniform weak conver-
gence:

lim
n→∞

sup
γ∈G

∣∣∣∣
∫

X×Y

c(x, γ(y))PnQ(dx, dy)

−

∫

X×Y

c(x, γ(y))PQ(dx, dy)

∣∣∣∣ = 0.

The above argument holds when G = {γ : c(x, γ(y)) ∈ E}, where E is a class
of PQ-uniformity family of functions and when the joint measure PnQ converges
weakly to PQ. We have that the empirical measures Pn converges weakly to P with
probability 1. Thus, the result follows from Lemma 1.1(i).

Conditions (ii) and (iii) might be difficult to check in general. Therefore, we analyze
these conditions from a practical point of view. Condition (ii) requires

∫
Q(dy|x)c(x, γ(y))

to be a P -Glivenko-Cantelli class of functions. There are various characterizations of such
class of functions (see [46]) One example of Glivenko-Cantelli class of functions is bounded
Lipschitz functions. Thus, if

∫
Q(dy|x)c(x, γ(y)) is bounded and Lipschitz in x, the condi-

tion (ii) is satisfied. This requirement is met under the following set of restrictions
• ‖Q(·|x) − Q(·|x′)‖TV ≤ α|x − x′| for some α < ∞ and |c(x, u) − c(x′, u)| ≤
β|x− x′| for all u ∈ U for some β < ∞.

The above condition is stronger than condition (i).
Condition (iii) requires c(x, γ(y)) to be a PQ-uniformity class of functions and Q(·|x)

to be weakly continuous. One example of uniformity class of functions is again bounded
Lipchitz functions. Thus, if c(x, γ(y)) is bounded and Lipschitz in x and y and if Q is
weakly continuous, the condition (iii) is satisfied. The following is sufficient:

• |c(x, u)− c(x′, u′)| ≤ α|x− x′|+ β|u − u′| for some α < ∞ and β < ∞.
• Γ is restricted to be the space of Lipschitz functions such that for any γ ∈ Γ we have
|γ(y)− γ(y′)| ≤ η|y − y′|.

• Q(·|x) is weakly continuous.
This set assumptions weakens the restrictions on the channel. However, putting assumptions
on the space of policies is artificial as there is usually no guarantee that the optimal policy is
Lipschitz.

We next consider the multi-stage case.

THEOREM 4.2. Suppose that the prior model of the system is estimated with the i.i.d.

measurements as in (4.2). Under Assumption 2.3, as n → ∞ we have almost surely,

J∗
β(Pn, T ) → J∗

β(P, T ) and Jβ(P, T , γ∗
n) → J∗

β(P, T ), where γ∗
n is the optimal policy

designed for the estimated model Pn. That is, the optimal cost function and the optimal

policies are consistent under empirical estimation for the multi stage problem.

Proof. Given that Pn → P weakly (almost surely), the result follows from Theorem
2.12 and Theorem 3.3.

5. Conclusion. We studied the topological properties of single and multi stage opti-
mization problems in stochastic control on the space of initial probability measures, and ap-
plications of these to robustness of the control policies applied to systems with incomplete
models. We made the observation that while weak convergence is in general too weak for
continuity and robustness, channel and transition kernel regularities often allow for continu-
ity and robustness under weak convergence. This is a practically very important result since
often in engineering applications, system models are learned through training data which only
guarantees weak convergence to the true model in general.
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Appendix A. Technical Proofs.

Here, we include some additional, mainly numerical, derivations utilized in the paper.
The numerical derivations may or may not be included in the final version of the paper.

A.1. Proof of Lemma 2.11.

Proof. Our goal is to show that for a given ǫ the term can be bounded by ǫ for n > N
for a sufficiently large N . For the ease of notation we will first study the case where k = 2,
then we will look at the general case.

In the following, to economize the notation, we write γ(Y[0,t]) to denote
{γk(Y0, · · · , Yk;U0, · · · , Uk−1), k ≤ t}.

sup
γ∈Γ

∣∣∣∣EP

[
c(X2, γ(Y[0,2]))

]
− EPn

[
c(X2, γ(Y[0,2]))

]∣∣∣∣

= sup
γ∈Γ

∣∣∣∣
∫

P (dx0)Q(dy0|x0)T (dx1|x0, γ(y0))Q(dy1|x1)×

(
E[c(X2, γ(Y[0,2]))|x0, x1, y0, y1]

)

−

∫
Pn(dx0)Q(dy0|x0))T (dx1|x0, γ(y0))Q(dy1|x1)×

(
E[c(X2, γ(Y[0,2]))|x0, x1, y0, y1]

)∣∣∣∣

= sup
γ∈Γ

∣∣∣∣
∫

P (dx0)Q(dy0|x0)T (dx1|x0, γ(y0))Q(dy1|x1)×

(
E[c(X2, γ(Y[0,2]))|x1, y0, y1]

)

−

∫
Pn(dx0)Q(dy0|x0))T (dx1|x0, γ(y0))Q(dy1|x1)×

(
E[c(X2, γ(Y[0,2]))|x1, y0, y1]

)∣∣∣∣

In the last equality, we used the fact that conditioned on all observations and most recent
state variable, we can take out the conditioning on the earlier state variables using the Markov
properties of the system. This follows from:

P γ(dx2, dy0, dy1, dy2|x0, x1, y0, y1)

= P (dy2|x2)P
γ(dx2, dy0, dy1|x0, x1, y0, y1)

= P (dy2|x2)P (dx2|x1, γ(y0, y1))P (dy0, dy1|y0, y1)

= P (dy2|x2)P
γ(dx2|x1, y0, y1)P (dy0, dy1|y0, y1)

= P γ(dx2, dy0, dy1, dy2|x1, y0, y1),

where P γ denote the induced probability measure on the state and the measurement variables
given a policy γ ∈ Γ.

Now, if we can show that the term
∫
Q(dy0|x0)T (dx1|x0, γ(y0))Q(dy1|x1) ×(

E[c(X2, γ(Y[0,2]))|x1, y0, y1]

)
is a continuous and bounded function of x0 uniformly for

all γ ∈ Γ, we can make the difference less than ǫ since Pn → P weakly. To show the
continuity observe the following

lim
x′

0
→x0

sup
γ∈Γ

∣∣∣∣
∫

Q(dy0|x0)T (dx1|x0, γ(y0))Q(dy1|x1)E[c(X2, γ(Y[0,2]))|y0, x1, y1)]

−

∫
Q(dy0|x

′
0)T (dx1|x

′
0, γ(y0))Q(dy1|x1)E[c(X2, γ(Y[0,2]))|y0, x1, y1]

∣∣∣∣
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≤ lim
x′

0
→x0

sup
γ∈Γ

∣∣∣∣
∫

Q(dy0|x0)

∫
T (dx1|x

′
0, γ(y0))Q(dy1|x1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

−

∫
Q(dy0|x

′
0)

∫
T (dx1|x

′
0, γ(y0))Q(dy1|x1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

∣∣∣∣

+ lim
x′

0
→x0

sup
γ∈Γ

∫
Q(dy0|x0)

∣∣∣∣
∫

T (dx1|x0, γ(y0))

∫
Q(dy1|x1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

−

∫
T (dx1|x

′
0, γ(y0))

∫
Q(dy1|x1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

∣∣∣∣.

(A.1)

In (A.1), the first term goes to 0 by Assumption 2.3(b) with the following argument,

lim
x′

0
→x0

sup
γ∈Γ

∣∣∣∣
∫

Q(dy0|x0)T (dx1|x
′
0, γ(y0))Q(dy1|x1)E[c(X2, γ(Y[0,2]))|y0, x1, y1]

−

∫
Q(dy0|x

′
0)T (dx1|x

′
0, γ(y0))Q(dy1|x1)E[c(X2, γ(Y[0,2]))|y0, x1, y1]

∣∣∣∣

≤ lim
x′

0
→x0

‖c‖∞‖Q(y0 ∈ ·|x0)−Q(y0 ∈ ·|x′
0)‖TV = 0.

Before analyzing the second term, we claim the following: For a family of functions,
{f(γ, xk)} which is uniformly bounded, and equicontinuous over γ ∈ Γ,

lim
x′

k−1
→xk−1

sup
γ∈Γ

∣∣∣∣
∫
T (dxk|xk−1, γ(y[0,k−1]))f(γ, xk)

−

∫
T (dxk|x

′
k−1, γ(y[0,k−1]))f(γ, xk)

∣∣∣∣ = 0.(A.2)

To see this, observe the following: By the Arzela-Ascoli Theorem, for any given compact set
K , and η > 0 there is a finite family of continuous functions F := {f1, . . . , fN} such that
for any γ, we can find an fi ∈ F with supxk∈K |f(γ, xk)− fi(xk)| ≤ η. Furthermore, since
T (dxk|xk−1, uk−1) is continuous, for any r > 0, the set {T (dxk|x

′
k−1, uk−1), |x

′
k−1 −

xk−1| ≤ r, uk−1 ∈ U} as a continuous image of a compact set is itself weakly com-
pact, and thus tight, and hence, for every ǫ > 0, there exists a compact set Kǫ such that∫
Kǫ

T (dxk|x
′
k−1, γ(y[0,k−1])) ≥ 1− ǫ for all |x′

k−1 − xk−1| ≤ r and γ ∈ Γ.

Now, we fix an ǫ > 0, choose an r > 0 and a compact set Kǫ according to
above discussion and fix a finite family of continuous functions F := {f1, . . . , fN} such
that for any γ, we can find an fi ∈ F with supxk∈K |f(γ, xk) − fi(xk)| ≤ ǫ. We

also choose a 0 < δ ≤ r such that supγ∈Γ |
∫
Kǫ

T (dxk|xk−1, γ(y[0,k−1]))fi(xk) −∫
Kǫ

T (dxk|x
′
k−1, γ(y[0,k−1]))fi(xk)

∣∣ ≤ ǫ for |x′
k−1 − xk−1| ≤ δ and for all fi ∈ F, which

we can do since T (·|x, u) is weakly continuous in x uniformly for u ∈ U and there are
finitely many fi. With this setup, let us look at (A.2) again for {x′

k−1 : |x′
k−1 − xk−1| ≤ δ}.

sup
γ∈Γ

∣∣
∫

T (dxk|xk−1, γ(y[0,k−1])f(γ, xk)−

∫
T (dxk|x

′
k−1, γ(y[0,k−1]))f(γ, xk)

∣∣

≤ sup
γ∈Γ

∣∣
∫

X\Kǫ

T (dxk|xk−1, γ(y[0,k−1]))f(γ, xk)−

∫

X\Kǫ

T (dxk|x
′
k−1, γ(y[0,k−1]))f(γ, xk)

∣∣

+ sup
γ∈Γ

∣∣
∫

Kǫ

T (dxk|xk−1, γ(y[0,k−1]))f(γ, xk)−

∫

Kǫ

T (dxk|x
′
k−1, γ(y[0,k−1])f(γ, xk)

∣∣
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≤ 2ǫ‖c‖∞ + sup
γ∈Γ

∣∣
∫

Kǫ

T (dxk|xk−1, γ(y[0,k−1]))
(
f(γ, xk)− fi(xk)

)

+

∫

Kǫ

T (dxk|xk−1, γ(y[0,k−1]))fi(xk)−

∫

Kǫ

T (dxk|x
′
k−1, γ(y[0,k−1]))fi(xk)

+

∫

Kǫ

T (dxk|x
′
k−1, γ(y[0,k−1]))

(
fi(xk)− f(γ, xk)

)∣∣

≤ 2ǫ‖c‖∞ + sup
γ∈Γ

∫

Kǫ

T (dxk|xk−1, γ(y[0,k−1]))fi(xk)

−

∫

Kǫ

T (dxk|x
′
k−1, γ(y[0,k−1]))fi(xk)

∣∣+ 2ǫ

≤ 2ǫ‖c‖∞ + 3ǫ

where fi(xk) is chosen according to the discussion above such that fi is ǫ close to f(γ, xk).
As ǫ is arbitrary, (A.2) holds true.

Now we return to (A.1) again. To show that the second term also goes to 0, we use (A.2)
with the claim that

f(γ, x1) :=

∫
Q(dy1|x1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

is a continuous and bounded function of x1 uniformly for all γ ∈ Γ. To see this, we write

lim
x′

1
→x1

sup
γ∈Γ

(∫
Q(dy1|x1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

−

∫
Q(dy1|x

′
1)× E[c(X2, γ(Y[0,2]))|x

′
1, y0, y1]

)

≤ lim
x′

1
→x1

sup
γ∈Γ

∣∣∣∣
∫

Q(dy1|x1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

−

∫
Q(dy1|x

′
1)× E[c(X2, γ(Y[0,2]))|x1, y0, y1]

∣∣∣∣

+ lim
x′

1
→x1

sup
γ∈Γ

∫
Q(dy1|x1)×

∣∣∣∣E[c(X2, γ(Y[0,2]))|x1, y0, y1]− E[c(X2, γ(Y[0,2]))|x
′
1, y0, y1]

∣∣∣∣

= 0.

Above, for the first term we used Assumption 2.3(b), and for the second term we have
the following

lim
x′

1
→x1

sup
γ∈Γ

∣∣E[c(X2, γ(Y[0,2]))|x1, y0, y1]− E[c(X2, γ(Y[0,2]))|x
′
1, y0, y1]

∣∣

= lim
x′

1
→x1

sup
γ∈Γ

∣∣
∫

T (dx2|x1, γ(y[0,1]))Q(dy2|x2)c(x2, γ(y[0,2]))

−

∫
T (dx2|x

′
1, γ(y[0,1]))Q(dy2|x2)c(x2, γ(y[0,2]))

∣∣.(A.3)

For the last term, we used (A.2) with f(γ, x2) =
∫
Q(dy2|x2)c(x2, γ(y[0,2])). To see

that f(γ, x2) is a uniformly bounded, equicontinuous family of functions over γ ∈ Γ, observe
the following;

lim
x′

2
→x2

sup
γ∈Γ

∣∣
∫

Q(dy2|x
′
2)c(x

′
2, γ(y[0,2]))−

∫
Q(dy2|x2)c(x2, γ(y[0,2]))

∣∣
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≤ lim
x′

2
→x2

sup
γ∈Γ

∣∣
∫

Q(dy2|x
′
2)c(x

′
2, γ(y[0,2]))−

∫
Q(dy2|x2)c(x

′
2, γ(y[0,2]))

∣∣

+ lim
x′

2
→x2

sup
γ∈Γ

∣∣
∫

Q(dy2|x2)
(
c(x′

2, γ(y[0,2]))− c(x2, γ(y[0,2]))
)∣∣

= 0.

For the first term we used that the channelQ is continuous in total variation and for the second
term we used that c(x2, γ(y[0,2])) is continuous in x2 uniformly for all γ ∈ Γ, because for
every γ, γ(y[0,2]) corresponds to a control action u ∈ U and U is compact.

Thus, we can find an N such that for all n > N ,

sup
γ∈Γ

∣∣∣∣EP

[
c(X2, γ(Y[0,2]))

]
− EPn

[
c(X2, γ(Y[0,2]))

]∣∣∣∣ < ǫ.

Now, we generalize the argument for any time stage k ≥ 0,

sup
γ∈Γ

∣∣∣∣EP

[
c(Xk, γ(Y[0,k]))

]
− EPn

[
c(Xk, γ(Y[0,k]))

]∣∣∣∣

= sup
γ∈Γ

∣∣∣∣
∫

P (dx0)Q(dy0|x0)T (dx1|x0, γ(y0))Q(dy1|x1) . . . T (dxk−1|xk−2, γ(y[0,k−2]))

Q(dyk−1|xk−1)×

(
E[c(Xk, γ(Y[0,k]))|x0, x1, . . . xk−1, y0, . . . , yk−1]

)

−

∫
Pn(dx0)Q(dy0|x0))T (dx1|x0, γ(y0)) . . . T (dxk−1|xk−2, γ(y[0,k−2]))Q(dyk−1|xk−1)

×

(
E[c(Xk, γ(Y[0,k]))|x0, x1, . . . xk−1, y0, . . . , yk−1]

)∣∣∣∣

= sup
γ∈Γ

∣∣∣∣
∫

P (dx0)Q(dy0|x0)T (dx1|x0, γ(y0))Q(dy1|x1) . . . T (dxk−1|xk−2, γ(y[0,k−2]))

Q(dyk−1|xk−1)×

(
E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

)

−

∫
Pn(dx0)Q(dy0|x0))T (dx1|x0, γ(y0)) . . . T (dxk−1|xk−2, γ(y[0,k−2]))Q(dyk−1|xk−1)

×

(
E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

)∣∣∣∣

the last equality follows from the Markov property of the system as we do not depend on the
past state variables given all the past observations and most recent state variable. We again
need to show the continuity in x0.

lim
x′

0
→x0

sup
γ∈Γ

[ ∫
Q(dy0|x0) . . . T (dxk−1|xk−2, γ(y[0,k−2]))E[c(Xk, γ(Y[0,k]))|xk−1, y0 . . . yk−1]

−

∫
Q(dy0|x

′
0) . . . T (dxk−1|xk−2, γ(y[0,k−2])E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

]

≤ lim
x′

0
→x0

sup
γ∈Γ

∣∣∣∣
∫

Q(dy0|x0)

∫
T (dx1|x

′
0, γ(y0)) . . . T (dxk−1|xk−2, γ(y[0,k−2]))Q(dyk−1|xk−1)

×E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

−

∫
Q(dy0|x

′
0)

∫
T (dx1|x

′
0, γ(y0)) . . . T (dxk−1|xk−2, γ(y[0,k−2]))Q(dyk−1|xk−1)
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×E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

∣∣∣∣

+ lim
x′

0
→x0

sup
γ∈Γ

∫
Q(dy0|x0)

∣∣∣∣
∫

T (dx1|x0, γ(y0)) . . . T (dxk−1|xk−2, γ(y[0,k−2]))

Q(dyk−1|xk−1)× E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

−

∫
T (dx1|x

′
0, γ(y0)) . . . T (dxk−1|xk−2, γ(y[0,k−2]))

Q(dyk−1|xk−1)× E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

∣∣∣∣
= 0. (A.4)

Similar to the special case where k = 2, at (A.4), for the first term we used Assumption
2.3(b).

For the second term, we used the fact that the term,

∫
Q(dy1|x1) . . . T (dxk−1|xk−2, γ(y[0,k−2]))Q(dyk−1|xk−1)E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

is a continuous and bounded function of x1 uniformly for all γ ∈ Γ. For this, it is necessary
to show that,

∫
Q(dy2|x2) . . . T (dxk−1|xk−2, γ(y[0,k−2]))Q(dyk−1|xk−1)E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1]

is a continuous function of x2 uniformly over Γ. Then, inductively, the last step is to show
that

E[c(Xk, γ(Y[0,k]))|xk−1, y0, . . . , yk−1] =

∫
c(xk, γ(y[0,k]))T (dxk|xk−1, γ(y[0,k−1]))Q(dyk|xk)

is a continuous function of xk−1 uniformly over Γ, which holds since
T (dxk|xk−1, γ(y[0,k−1])) is weakly continuous in xk−1 and the continuity is uniform
on Γ since for every γ ∈ Γ, γ(y[0,k−1]) corresponds to a control action from U and U is
compact. The fact that Q(dyk|xk) is continuous in total variation in xk and c(xk, γ(y[0,k]))
is continuous in xk uniformly over Γ completes the proof.

A.2. Proof of Lemma 2.3. The proof is adapted from the proof of Theorem 3.2 in [52].

Proof. Let µY satisfy µY(A) = µ(X × A) for A ∈ B(Y). By Lusin’s theorem ([40,
Theorem 2.24]), for all γ ∈ Γ and ε > 0, there is a continuous function f : U → Y such that

µY{y : f(y) 6= γ(y)} < ε.

For convenience of notation we let B = {y : f(y) 6= γ(y)}. Observe the following

∫
|c(x, γ(y))− c(x, f(y))| µ(dx, dy) =

∫

X×B

|c(x, γ(y)) − c(x, f(y))|µ(dx, dy)

< ε · ‖c‖∞

where ‖c‖∞ denotes the supremum norm of c, which is finite by assumption. We have that

∫
c(x, f(y))µ(dx, dy) <

∫
c(x, g(y))µ(dx, dy) + ε · ‖c‖∞.(A.5)
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Define

j(µ, C) = inf
γ∈C

∫
c(x, γ(y))µ(dx, dy), and j(µ,Γ) = inf

γ∈Γ

∫
c(x, γ(y))µ(dx, dy).

Note that j(µ, C) ≥ j(µ,Γ) as C ⊂ Γ. From (A.5) we have j(µ, C) ≤ j(µ,Γ) + ε · ‖c‖∞,
which gives j(µ, C) ≤ j(µ,Γ) as ε was arbitrary. Hence j(µ, C) = j(µ,Γ).

Appendix B. Additional Proofs.

B.1. Calculations for Proof of Theorem 2.7. In the following, p will denote the density
of the corresponding probability measure.

B.1.1. Computing γ∗
P .

γ∗
P = E[X |Y = y] =

∫ 1

0

xp(x|y)dx =

∫ 1

0

x
p(y|x)

∫ 1

0
p(y|x)p(x)dx

dx

by Bayes’ Rule. We now compute the term in the denominator,

∫ 1

0

p(y|x)✟
✟✟✯

1
p(x)dx =

∫ 1

0

(
1

2
+

1

2
δx(y)

)
dx = 1.

This gives

γ∗
P =

∫ 1

0

xp(y|x)dx =

∫ 1

0

x

(
1

2
+

1

2
δx(y)

)
dx =

∫ 1

0

1

2
xdx+

1

2
y

=
1

4
+

1

2
y =

1

2

(
1

2
+ y

)

as desired.

B.1.2. Computing J∗(P,Q).

J∗(P,Q) = E[c(x, γ∗
P (y))] = E[(x− γ∗

P (y))
2]

=

∫ 1

0

∫ 1

0

(
x−

1

4
−

1

2
y

)2

Q(dy|x)P (dx).

We now compute the inner integral for some fixed x,

∫ 1

0

(
x−

1

4
−

1

2
y

)2

Q(dy|x)

=
1

2

∫ 1

0

(
x−

1

4
−

1

2
y

)2

dy +
1

2

∫ 1

0

(
x−

1

4
−

1

2
y

)2

δx(y)dy

=
1

2

(
13

48
− x+ x2

)
+

1

2

(
1

16
−

x

4
+

x2

4

)

=
1

6
−

5x

8
+

5x2

8
.

This gives

J∗(P,Q) =

∫ 1

0

(
1

6
−

5x

8
+

5x2

8

)
dx =

1

16
.
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B.1.3. Computing γ∗
Pn

. Let n ∈ N. If y ∈ R then we have,

p(y) =

∫ 1

0

p(y|x)fn(x)dx =

∫

L

1

2
(2)dx =

∫

L

dx

= λ(L) =
1

2
,

where λ is the Lebesgue measure. We now compute E[X |Y = y],

E[X |Y = y] =

∫ 1

0

xp(x|y)dx

=

∫ 1

0

x
p(y|x)fn(x)∫ 1

0
p(y|x)P (x)dx

dx

=

∫

L

x
1/2 · 2

1/2
dx

=

n∑

k=1

x2
∣∣ 2k−1

2n
2k−2

2n

=

n∑

k=1

((
2k − 1

2n

)2

−

(
2k − 2

2n

)2
)

=

n∑

k=1

4k − 3

4n2
=

1

n2

n∑

k=1

k −
1

n2

n∑

k=1

3

4

=
1

n2
·
n(n+ 1)

2
−

1

n2
·
3n

4
=

1

2
−

1

4n
,(B.1)

where we have used Bayes’ Rule to establish the second equality. Now we consider the case
where y ∈ L. We calculate p(y),

p(y) =

∫ 1

0

p(y|x)fn(x)dx =

∫

L

1

2
(2)dx+

1

2
· 2 =

∫

L

dx+ 1

= λ(L) + 1 =
3

2
.

This gives,

E[X |Y = y] =

∫ 1

0

xp(x|y)dx

=

∫ 1

0

x
p(y|x)fn(x)∫ 1

0 p(y|x)p(x)dx
dx

=

∫

L

x
1/2 · 2

3/2
dx+

∫

L

x
1/2 · 2

3/2
δx(y)dx

=
1

3
·

(
1

2
−

1

4n

)
+

2

3
y,

where we use (B.1) to give the last equality. We see that the optimal policy is

γ∗
Pn

(y) = E[X |Y = y] =

{
1
2 − 1

4n if y ∈ R
1
3 ·
(
1
2 − 1

4n

)
+ 2

3y if y ∈ L
.
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B.1.4. Computing J∗(Pn, Q). Let n ∈ N.

J∗(Pn, Q) = E[c(x, γ∗
Pn

(y))]

= E[(x− γ∗
Pn

(y))2]

=

∫ 1

0

(∫ 1

0

(x − γ∗
Pn

(y))2Q(dy|x)

)
Pn(dx)

= 2

∫

L




∫

L

(x − γ∗
Pn

(y))2Q(dy|x)

︸ ︷︷ ︸
(i)

+

∫

R

(x− γ∗
Pn

(y))2Q(dy|x)

︸ ︷︷ ︸
(ii)


dx

We now compute term (i) for x ∈ L:

∫

L

(x− γ∗
Pn

(y))2Q(dy|x) =

∫

L

(
x−

1

3

(
1

2
−

1

4n

)
−

2

3
y

)2

Q(dy|x)

=
1

2

(
x−

1

3

(
1

2
−

1

4n

)
−

2

3
x

)2

+ . . .

+

∫

L

1

2

(
x−

1

3

(
1

2
−

1

4n

)
−

2

3
y

)2

dy

=
1

72
+

1

288n2
−

1

72n
+

(
−

1

18
+

1

36n

)
x+

x2

18
+ . . .

+

∫

L

(
1

72
+

1

288n2
−

1

72n
+

(
−
1

6
+

1

12n

)
x+ . . .

+
x2

2
+

(
1

9
−

1

18n
−

2

3
x

)
y +

2y2

9

)
dy

=
1

72
+

1

288n2
−

1

72n
+

(
−

1

18
+

1

36n

)
x+

x2

18
+ . . .

+

(
1

72
+

1

288n2
−

1

72n
+

(
−
1

6
+

1

12n

)
x+

x2

2

)∫

L

dy + . . .

+

(
1

9
−

1

18n
−

2

3
x

)∫

L

ydy +
2

9

∫

L

y2dy

For ease we compute the integrals in the above step separately. Some are familiar from
Section B.1.3.

∫

L

dy = λ(L) =
1

2
,

∫

L

ydy =
1

2

n∑

k=1

y2
∣∣ 2k−1

2n
2k−2

2n

=
1

2

(
1

2
−

1

4n

)
(by (B.1)),

∫

L

y2dy =
1

3

n∑

k=1

y3
∣∣ 2k−1

2n
2k−2

2n

=
1

3

(
n∑

k=1

((
2k − 1

2n

)3

−

(
2k − 2

2n

)3
))
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=
1

3

(
n∑

k=1

7− 18k + 12k2

8n3

)

=
1

3

(
7

8n3

n∑

k=1

1−
9

4n3

n∑

k=1

k +
3

2n3

n∑

k=1

k2

)

=
7

24n3
(n)−

3

4n3

(
n2 + n

2

)
+

1

2n3

(
2n3 + 3n2 + n

6

)

=
1

6
−

1

8n
.

These combine with the above to give (after some simplification),

∫

L

(x− γ∗
Pn

(y))2Q(dy|x) =
37

432
+

7

576n2
−

11

144n
+

(
−
11

36
+

11

72n

)
x+

11

36
x2.

Next we compute term (ii) for x ∈ L:

∫

R

(x − γ∗
Pn

(y))2Q(dy|x) =
1

2

∫

R

(
x−

1

2
+

1

4n

)2

dy =
1

4

(
x−

1

2
+

1

4n

)2

=
1

16
+

1

64n2
−

1

16n
+

(
−
1

4
+

1

8n

)
x+

x2

4
.

For x ∈ L we compute (i)+(ii),

(i) + (ii) =
4

27
+

1

36n2
−

5

36n
+

(
−
5

9
+

5

18n

)
x+

5

9
x2.

This gives,

J(Pn, Q) =

∫ 1

0

(
c(x, γ∗

Pn
(y)
)2

Pn(dx)

= 2

∫

L

(
4

27
+

1

36n2
−

5

36n
+

(
−
5

9
+

5

18n

)
x+

5

9
x2

)
dx

= 2

(
4

27
+

1

36n2
−

5

36n

)∫

L

dx+ 2

(
−
5

9
+

5

18n

)∫

L

xdx + 2

(
5

9

)∫

L

x2dx

=
1

18
−

1

24n2
.

B.2. Calculations for Proof of Proposition 3.2. Let n ∈ N. From Section B.1.3 we
know that

γ∗
Pn

(y) = E[X |Y = y] =

{
1
2 − 1

4n if y ∈ R
1
3 ·
(
1
2 − 1

4n

)
+ 2

3y if y ∈ L
.

With P ∼ U([0, 1]) we have,

J(P,Q, γ∗
Pn

) = E[c(x, γ∗
Pn

(y))] = E[(x− γ∗
Pn

(y))2]

=

∫ 1

0

(∫ 1

0

(x − γ∗
Pn

(y))2Q(dy|x)

)
P (dx)

=

∫

L

(∫ 1

0

(x− γ∗
Pn

(y))2Q(dy|x)

)
dx+

∫

R

(∫ 1

0

(x− γ∗
Pn

(y))2Q(dy|x)

)
dx
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=
1

2
J∗(Pn, Q) +

∫

R

(∫

L

(x− γ∗
Pn

(y))2Q(dy|x) +

∫

R

(x− γ∗
Pn

(y))2Q(dy|x)

)
dx

=
1

36
−

1

48n2
+

∫

R




∫

L

(x− γ∗
Pn

(y))2Q(dy|x)

︸ ︷︷ ︸
(iii)

+

∫

R

(x− γ∗
Pn

(y))2Q(dy|x)

︸ ︷︷ ︸
(iv)


dx,

where we have used the computation from Section B.1.4 for J∗(Pn, Q). For x ∈ R we
compute (iii):

∫

L

(x− γ∗
Pn

(y))2Q(dy|x) =

∫

L

(
x−

1

3

(
1

2
−

1

4n

)
−

2

3
y

)2

Q(dy|x)

=

∫

L

1

2

(
x−

1

3

(
1

2
−

1

4n

)
−

2

3
y

)2

dy

=

(
1

72
+

1

288n2
−

1

72n
+

(
−
1

6
+

1

12n

)
x+

x2

2

)∫

L

dy + . . .

+

(
1

9
−

1

18n
−

2

3
x

)∫

L

ydy +
2

9

∫

L

y2dy,

where the last line follows from the computation of (i) in Section B.1.4. After some simplifi-
cation we arrive at:

∫

L

(x− γ∗
Pn

(y))2Q(dy|x) =
31

432
+

5

576n2
−

1

16n
+

(
−
1

4
+

1

8n

)
x+

x2

4
.

For x ∈ R we compute term (iv):

∫

R

(x− γ∗
Pn

(y))2Q(dy|x) =

∫

R

(
x−

1

2
+

1

4n

)2

Q(dy|x)

=
1

2

(
x−

1

2
+

1

4n

)2

+
1

2

∫

R

(
x−

1

2
+

1

4n

)2

dy

=
3

4

(
x−

1

2
+

1

4n

)2

=
3

16
+

3

64n2
−

3

16n
+

(
−
3

4
+

3

8n

)
x+

3

4
x2.

For x ∈ R we have,

(iii) + (iv) =
7

27
+

1

18n2
−

1

4n
+

(
−1 +

1

2n

)
x+ x2.

This gives

∫

R

(∫ 1

0

(x− γ∗
Pn

(y))2Q(dy|x)

)
dx =

∫

R

(
7

27
+

1

18n2
−

1

4n
+

(
−1 +

1

2n

)
x+ x2

)
dx

=

(
7

27
+

1

18n2
−

1

4n

)∫

R

dx+

(
−1 +

1

2n

)∫

R

xdx+

∫

R

x2dx.

We compute the integrals in the previous step separately:
∫

R

dx = λ(R) =
1

2
,
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∫

R

xdx =

∫ 1

0

xdx −

∫

L

xdx =
1

2
−

(
1

4
−

1

8n

)
=

1

4
+

1

8n
,

∫

R

x2dx =

∫ 1

0

x2dx−

∫

L

x2dx =
1

3
−

(
1

6
−

1

8n

)
=

1

6
+

1

8n
.

With the above, this gives (after some simplification):

∫

R

(∫ 1

0

(x− γ∗
Pn

(y))2Q(dy|x)

)
dx =

5

108
+

13

144n2
.

Therefore, J(P,Q, γ∗
Pn

) = 2
27 + 5

72n2 .
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[50] Y. WU AND S. VERDÚ, Witsenhausen’s Counterexample: A View from Optimal Transport Theory, Proc.

IEEE Conference on Decision and Control, 2016, pp. 5732–5737.
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