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Abstract. In this paper, we consider a class of finite-sum convex optimization problems defined over a distributed multiagent
network with m agents connected to a central server. In particular, the objective function consists of the average of m (≥ 1)
smooth components associated with each network agent together with a strongly convex term. Our major contribution is to
develop a new randomized incremental gradient algorithm, namely random gradient extrapolation method (RGEM), which does
not require any exact gradient evaluation even for the initial point, but can achieve the optimal O(log(1/ε)) complexity bound
in terms of the total number of gradient evaluations of component functions to solve the finite-sum problems. Furthermore,
we demonstrate that for stochastic finite-sum optimization problems, RGEM maintains the optimal O(1/ε) complexity (up to a
certain logarithmic factor) in terms of the number of stochastic gradient computations, but attains an O(log(1/ε)) complexity in
terms of communication rounds (each round involves only one agent). It is worth noting that the former bound is independent of
the number of agents m, while the latter one only linearly depends on m or even

√
m for ill-conditioned problems. To the best of

our knowledge, this is the first time that these complexity bounds have been obtained for distributed and stochastic optimization
problems. Moreover, our algorithms were developed based on a novel dual perspective of Nesterov’s accelerated gradient method.

Keywords: finite-sum optimization, gradient extrapolation, randomized method, distributed machine learning, stochastic opti-
mization.

1. Introduction. The main problem of interest in this paper is the finite-sum convex programming (CP)
problem given in the form of

ψ∗ := min
x∈X

{
ψ(x) := 1

m

∑m
i=1fi(x) + µw(x)

}
. (1.1)

Here, X ⊆ Rn is a closed convex set, fi : X → R, i = 1, . . . ,m, are smooth convex functions with Lipschitz
continuous gradients over X, i.e., ∃Li ≥ 0 such that

‖∇fi(x1)−∇fi(x2)‖∗ ≤ Li‖x1 − x2‖, ∀x1, x2 ∈ X, (1.2)

w : X → R is a strongly convex function with modulus 1 w.r.t. a norm ‖ · ‖, i.e.,

w(x1)− w(x2)− 〈w′(x2), x1 − x2〉 ≥ 1
2‖x1 − x2‖2, ∀x1, x2 ∈ X, (1.3)

where w′(·) denotes any subgradient (or gradient) of w(·) and µ ≥ 0 is a given constant. Hence, the objective
function ψ is strongly convex whenever µ > 0. For notational convenience, we also denote f(x) ≡ 1

m

∑m
i=1fi(x),

L ≡ 1
m

∑m
i=1Li, and L̂ = maxi=1,...,m Li. It is easy to see that for some Lf ≥ 0,

‖∇f(x1)−∇f(x2)‖∗ ≤ Lf‖x1 − x2‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ X. (1.4)

We also consider a class of stochastic finite-sum optimization problems given by

ψ∗ := min
x∈X

{
ψ(x) := 1

m

∑m
i=1Eξi [Fi(x, ξi)] + µw(x)

}
, (1.5)

where ξi’s are random variables with support Ξi ⊆ Rd. It can be easily seen that (1.5) is a special case of
(1.1) with fi(x) = Eξi [Fi(x, ξi)], i = 1, . . . ,m. However, different from deterministic finite-sum optimization
problems, only noisy gradient information of each component function fi can be accessed for the stochastic
finite-sum optimization problem in (1.5).

The deterministic finite-sum problem (1.1) can model the empirical risk minimization in machine learning
and statistical inferences, and hence has become the subject of intensive studies during the past few years.
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Our study on finite-sum problems (1.1) and (1.5) has also been motivated by the emerging need for distributed
optimization and machine learning. Under such settings, each component function fi is associated with an
agent i, i = 1, . . . ,m, which are connected through a distributed network. While different topologies can
be considered for distributed optimization (see, e.g., Figure 1.1 and 1.2), in this paper, we focus on the star
network where m agents are connected to one central server, and all agents only communicate with the server
(see Figure 1.1). These types of distributed optimization problems have several unique features. Firstly,
they allow for data privacy, since no local data is stored in the server. Secondly, network agents behave
independently and they may not be responsive at the same time. Thirdly, the communication between the
server and agent can be expensive and has high latency. Finally, by considering the stochastic finite-sum
optimization problem, we are interested in not only the deterministic empirical risk minimization, but also
the generalization risk for distributed machine learning. Moreover, we allow the private data for each agent to
be collected in an online (steaming) fashion. One typical example of the aforementioned distributed problems
is Federated Learning recently introduced by Google in [25]. As a particular example, in the `2-regularized
logistic regression problem, we have

fi(x) = li(x) := 1
Ni

∑Ni
j=1 log(1 + exp(−bijaij

T
x)), i = 1, . . . ,m, w(x) = R(x) := 1

2‖x‖
2
2,

provided that fi is the loss function of agent i with training data {aij , bij}
Ni
j=1 ∈ Rn×{−1, 1}, and µ := λ is the

penalty parameter. For minimization of the generalized risk, fi’s are given in the form of expectation, i.e.,

fi(x) = li(x) := Eξi [log(1 + exp(−ξTi x))], i = 1, . . . ,m,

where the random variable ξi models the underlying distribution for training dataset of agent i. Note that

Fig. 1.1. A distributed network with 5 agents and one server Fig. 1.2. An example of the decentralized network

another type of topology for distributed optimization is the multi-agent network without a central server,
namely the decentralized setting, as shown in Figure 1.2, where the agents can only communicate with their
neighbors to update information, please refer to [21, 32, 23] and reference therein for decentralized algorithms.

During the past few years, randomized incremental gradient (RIG) methods have emerged as an important
class of first-order methods for finite-sum optimization (e.g.,[4, 16, 35, 8, 29, 22, 1, 14, 24]). For solving
nonsmooth finite-sum problems, Nemirovski et al. [26, 27] showed that stochastic subgradient (mirror) descent
methods can possibly save up to O(

√
m) subgradient evaluations. By utilizing the smoothness properties of the

objective, Lan [18] showed that one can separate the impact of variance from other deterministic components
for stochastic gradient descent and presented a new class of accelerated stochastic gradient descent methods
to further improve these complexity bounds. However, the overall rate of convergence of these stochastic
methods is still sublinear even for smooth and strongly finite-sum problems (see [11, 12]). Inspired by these
works and the success of the incremental aggregated gradient method by Blatt et al.[4], Schimidt et al. [29]
presented a stochastic average gradient (SAG) method, which uses randomized sampling of fi to update the
gradients, and can achieve a linear rate of convergence, i.e., an O{m+ (mL/µ) log(1/ε)} complexity bound, to
solve unconstrained finite-sum problems (1.1). Johnson and Zhang later in [16] presented a stochastic variance
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reduced gradient (SVRG) method, which computes an estimator of ∇f by iteratively updating the gradient
of one randomly selected fi of the current exact gradient information and re-evaluating the exact gradient
from time to time. Xiao and Zhang [35] later extended SVRG to solve proximal finite-sum problems (1.1).
All these methods exhibit an improved O{(m+ L/µ) log(1/ε)} complexity bound, and Defazio et al. [8] also
presented an improved SAG method, called SAGA, that can achieve such a complexity result. Comparing to
the class of stochastic dual methods (e.g., [31, 30, 36]), each iteration of the RIG methods only involves the
computation ∇fi, rather than solving a more complicated subproblem

argmin{〈g, y〉+ f∗i (y) + ‖y‖2∗},

which may not have explicit solutions [31].
Noting that most of these RIG methods are not optimal even for m = 1, much recent research effort

has been directed to the acceleration of RIG methods. In 2015, Lan and Zhou in [22] proposed a RIG
method, namely randomized primal-dual gradient (RPDG) method, and show that its total number of gradient
computations of fi can be bounded by

O
{(
m+

√
mL
µ

)
log 1

ε

}
. (1.6)

The RPDG method utilizes a direct acceleration without even using the concept of variance reduction, evolving
from the randomized primal-dual methods developed in [36, 7] for solving saddle-point problems. Lan and
Zhou [22] also established a lower complexity bound for the RIG methods by showing that the number of
gradient evaluations of fi required by any RIG methods to find an ε-solution of (1.1), i.e., a point x̄ ∈ X s.t.
E[‖x̄− x∗‖22] ≤ ε, cannot be smaller than

Ω
((
m+

√
mL
µ

)
log 1

ε

)
, (1.7)

whenever the dimension

n ≥ (k +m/2)/ log(1/q),

where k is the total number of iterations and q = 1 + 2/(
√
L/((m+ 1)µ)− 1). Simultaneously, Lin et al. [24]

presented a catalyst scheme which utilizes a restarting technique to accelerate the SAG method in [29] (or
other “non-accelerated” first-order methods) and thus can possibly improve the complexity bounds obtained by
SVRG and SAGA to (1.6) (under the Euclidean setting). Allen-Zhu [1] later showed that one can also directly
accelerate SVRG to achieve the optimal rate of convergence (1.6). All these accelerated RIG methods can
save up to O(

√
m) in the number of gradient evaluations of fi comparing to optimal deterministic first-order

methods when L/µ ≥ m.
It should be noted that most existing RIG methods were inspired by empirical risk minimization on a

single server (or cluster) in machine learning rather than on a set of agents distributed over a network. Under
the distributed setting, methods requiring full gradient computation and/or restarting from time to time may
incur extra communication and synchronization costs. As a consequence, methods which require fewer full
gradient computations (e.g. SAG, SAGA and RPDG) seem to be more advantageous in this regard. An
interesting but yet unresolved question in stochastic optimization is whether there exists a method which
does not require the computation of any full gradients (even at the initial point), but can still achieve the
optimal rate of convergence in (1.6). Moreover, little attention in the study of RIG methods has been paid to
the stochastic finite-sum problem in (1.5), which is important for generalization risk minimization in machine
learning. Very recently, there are some progresses on stochastic primal-dual type methods for solving problem
(1.5). For example, Lan, Lee and Zhou [21] proposed a stochastic decentralized communication sliding method
that can achieve the optimal sampling complexity of O(1/ε) and best-known O(1/

√
ε) complexity bounds for

communication rounds for solving stochastic decentralized strongly convex problems. For the distributed
setting with a central sever, by using mini-batch technique to collect gradient information and any stochastic
gradient based algorithm as a black box to update iterates, Dekel et al. [9] presented a distributed mini-
batch algorithm with a batch size of o(m1/2) that can obtain O(1/ε) sampling complexity (i.e., number of
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stochastic gradients) for stochastic strongly convex problems, and hence implies at least O(1/
√
ε) bound for

communication complexity. An asynchronous version was later proposed by Feyzmahdavian et al. in [10]
that maintained the above convergence rate for regularized stochastic strongly convex problems. It should
be pointed out that these mini-batch based distributed algorithms require sampling from all network agents
iteratively and hence leads to at least O(m/

√
ε) rate of convergence in terms of communication costs among

server and agents. It is unknown whether there exists an algorithm which only requires a significantly smaller
communication rounds (e.g. O(log 1/ε)), but can achieve the optimal O(1/ε) sampling complexity for solving
the stochastic finite-sum problem in (1.5).

The main contribution of this paper is to introduce a new randomized incremental gradient type method
to solve (1.1) and (1.5). Firstly, we develop a random gradient extrapolation method (RGEM) for solving
(1.1) that does not require any exact gradient evaluations of f . For strongly convex problems, we demonstrate
that RGEM can still achieve the optimal rate of convergence (1.6) under the assumption that the average of
gradients of fi at the initial point x0 is bounded by σ2

0 . To the best of our knowledge, this is the first time
that such an optimal RIG methods without any exact gradient evaluations has been presented for solving
(1.1) in the literature. In fact, without any full gradient computation, RGEM possesses iteration costs as
low as pure stochastic gradient descent (SGD) methods, but achieves a much faster and optimal linear rate
of convergence for solving deterministic finite-sum problems. In comparison with the well-known randomized
Kaczmarz method [33], which can be viewed as an enhanced version of SGD, but can achieve a linear rate
of convergence for solving linear systems, RGEM has a better convergence rate in terms of the dependence
on the condition number L/µ. Secondly, we develop a stochastic version of RGEM and establish its optimal
convergence properties for solving stochastic finite-sum problems (1.5). More specifically, we assume that only
noisy first-order information of one randomly selected component function fi can be accessed via a stochastic
first-order (SFO) oracle iteratively. In other words, at each iteration only one randomly selected network agent
needs to compute an estimator of its gradient by sampling from its local data using a SFO oracle instead of
performing exact gradient evaluation of its component function fi. Note that for these problems, it is difficult
to compute the exact gradients even at the initial point. Under standard assumptions for centralized stochastic
optimization, i.e., the gradient estimators computed by the SFO oracle are unbiased and have bounded variance
σ2, the number of stochastic gradient evaluations performed by RGEM to solve (1.5) can be bounded by1

Õ
{
σ2
0/m+σ2

µ2ε +
µ‖x0−x∗‖22+ψ(x0)−ψ∗

µε

}
, (1.8)

for finding a point x̄ ∈ X s.t. E[‖x̄− x∗‖22] ≤ ε. Moreover, by utilizing the mini-batch technique, RGEM can
achieve an

O
{(

m+
√

mL̂
µ

)
log 1

ε

}
, (1.9)

complexity bound in terms of the number of communication rounds, and each round only involves the commu-
nication between the server and a randomly selected agent. This bound seems to be optimal, since it matches
the lower complexity bound for RIG methods to solve deterministic finite-sum problems. It is worth noting
that the former bound (1.8) is independent of the number of agents m, while the latter one (1.9) only linearly
depends on m or even

√
m for ill-conditioned problems. To the best of our knowledge, this is the first time that

such a RIG type method has been developed for solving stochastic finite-sum problems (1.5) that can achieve
the optimal communication complexity and nearly optimal (up to a logarithmic factor) sampling complexity
in the literature.

RGEM is developed based on a novel algorithmic framework, namely gradient extrapolation method
(GEM), that we introduce in this paper for solving black-box convex optimization (i.e., m = 1). The develop-
ment of GEM was inspired by our recent studies on the relation between accelerated gradient methods and the
primal-dual gradient methods. In particular, it is observed in [22] that Nesterov’s accelerated gradient method
is a special primal-dual gradient (PDG) method where the extrapolation step is performed in the primal space.

1Õ indicates the rate of convergence is up to a logarithmic factor - log(1/ε).
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Such a primal extrapolation step, however, might result in a search point outside the feasible region under
the randomized setting in the RPDG method mentioned above. In view of this deficiency of PDG and RPDG
methods, we propose to switch the primal and dual spaces for primal-dual gradient methods, and to perform
the extrapolation step in the dual (gradient) space. The resulting new first-order method, i.e., GEM, can be
viewed as a dual version of Nesterov’s accelerated gradient method, and we show that it can also achieve the
optimal rate of convergence for black-box convex optimization.

RGEM is a randomized version of GEM which only computes the gradient of a randomly selected com-
ponent function fi at each iteration. It utilizes the gradient extrapolation step also for estimating exact
gradients in addition to predicting dual information as in GEM. As a result, it has several advantages over
RPDG. Firstly, RPDG requires a restricted assumption that each fi has to be differentiable and has Lipschitz
continuous gradients over the whole Rn due to its primal extrapolation step. RGEM relaxes this assumption
to having Lipschitz gradients over the feasible set X (see (1.2)), and hence can be applied to a much broader
class of problems. Secondly, RGEM possesses simpler convergence analysis carried out in the primal space due
to its simplified algorithmic scheme. However, RPDG has a complicated algorithmic scheme, which contains
a primal extrapolation step and a gradient (dual) prediction step in addition to solving a primal proximal
subproblem, and thus leads to an intricate primal-dual convergence analysis. Last but not least, it is unknown
whether RPDG could maintain the optimal convergence rate (1.6) without the exact gradient evaluation of f
during initialization.

This paper is organized as follows. In Section 2 we present the proposed random gradient extrapolation
methods (RGEM), and their convergence properties for solving (1.1) and (1.5). In order to provide more
insights into the design of the algorithmic scheme of RGEM, we provide an introduction to the gradient
extrapolation method (GEM) and its relation to the primal-dual gradient method, as well as Nesterov’s
method in Section 3. Section 4 is devoted to the convergence analysis of RGEM. Some concluding remarks
are made in Section 5.

1.1. Notation and terminology. We use ‖ ·‖ to denote a general norm in Rn without specific mention.
We also use ‖ · ‖∗ to denote the conjugate norm of ‖ · ‖. For any p ≥ 1, ‖ · ‖p denotes the standard p-norm
in Rn, i.e., ‖x‖pp =

∑n
i=1|xi|p, for any x ∈ Rn. For any convex function h, ∂h(x) is the set of subdifferential

at x. For a given strongly convex function w with modulus 1 (see (1.1)), we define a prox-function associated
with w as

P (x0, x) ≡ Pw(x0, x) := w(x)−
[
w(x0) + 〈w′(x0), x− x0〉

]
, (1.10)

where w′(x0) ∈ ∂w(x0) is an arbitrary subgradient of w at x0. By the strong convexity of w, we have

P (x0, x) ≥ 1

2
‖x− x0‖2, ∀x, x0 ∈ X. (1.11)

It should be pointed out that the prox-function P (·, ·) described above is a generalized Bregman distance in
the sense that w is not necessarily differentiable. This is different from the standard definition for Bregman
distance [5, 2, 3, 17, 6]. Throughout this paper, we assume that the prox-mapping associated with X and w,
given by

MX(g, x0, η) := argminx∈X
{
〈g, x〉+ µw(x) + ηP (x0, x)

}
, (1.12)

is easily computable for any x0 ∈ X, g ∈ Rn, µ ≥ 0, η > 0. For any real number r, dre and brc denote
the nearest integer to r from above and below, respectively. R+ and R++, respectively, denote the set of
nonnegative and positive real numbers.

2. Algorithms and main results. This section contains three subsections. We first present in Sub-
section 2.1 an optimal random gradient extrapolation method (RGEM) for solving the distributed finite-sum
problem in (1.1), and then discuss in Subsection 2.2, a stochastic version of RGEM for solving the stochastic
finite-sum problem in (1.5). Subsection 2.3 is devoted to the implementation of RGEM in a distributed setting
and the discussion about its communication complexity.
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2.1. RGEM for deterministic finite-sum optimization. The basic scheme of RGEM is formally
stated in Algorithm 1. This algorithm simply initializes the gradient as y−1 = y0 = 0. At each iteration,
RGEM requires the new gradient information of only one randomly selected component function fi, but
maintains m pairs of search points and gradients (xti, y

t
i), i = 1, . . . ,m, which are stored by their corresponding

agents in the distributed network. More specifically, it first performs a gradient extrapolation step in (2.1)
and the primal proximal mapping in (2.2). Then a randomly selected block xtit is updated in (2.3) and the
corresponding component gradient ∇fit is computed in (2.4). As can be seen from Algorithm 1, RGEM does
not require any exact gradient evaluations.

Algorithm 1 A random gradient extrapolation method (RGEM)

Input: Let x0 ∈ X, and the nonnegative parameters {αt}, {ηt}, and {τt} be given.
Initialization:
Set x0

i = x0, i = 1, . . . ,m, y−1 = y0 = 0. . No exact gradient evaluation for initialization
for t = 1, . . . , k do

Choose it according to Prob{it = i} = 1
m , i = 1, . . . ,m.

Update zt = (xt, yt) according to

ỹt = yt−1 + αt(y
t−1 − yt−2), (2.1)

xt =MX( 1
m

∑m
i=1ỹ

t
i , x

t−1, ηt), (2.2)

xti =

{
(1 + τt)

−1(xt + τtx
t−1
i ), i = it,

xt−1
i , i 6= it.

(2.3)

yti =

{
∇fi(xti), i = it,

yt−1
i , i 6= it.

(2.4)

end for
Output: For some θt > 0, t = 1, . . . , k, set

xk := (
∑k
t=1θt)

−1
∑k
t=1θtx

t. (2.5)

Note that the computation of xt in (2.2) requires an involved computation of 1
m

∑m
i=1ỹ

t
i . In order to save

computational time when implementing this algorithm, we suggest to compute this quantity in a recursive
manner as follows. Let us denote gt ≡ 1

m

∑m
i=1y

t
i , t = 1, . . . , k. Clearly, in view of the fact that yti = yt−1

i ,
∀i 6= it, we have

gt = gt−1 + 1
m (ytit − y

t−1
it

). (2.6)

Also, by the definition of gt and (2.1), we have

1
m

∑m
i=1ỹ

t
i = 1

m

∑m
i=1y

t−1
i + αt

m (yt−1
it−1
− yt−2

it−1
) = gt−1 + αt

m (yt−1
it−1
− yt−2

it−1
). (2.7)

Using these two ideas mentioned above, we can compute 1
m

∑m
i=1ỹ

t
i in two steps: i) initialize g0 = 0, and

update gt as in (2.6) after the gradient evaluation step (2.4); ii) replace (2.1) by (2.7) to compute 1
m

∑m
i=1ỹ

t
i .

Also note that the difference ytit − yt−1
it

can be saved as it is used in both (2.6) and (2.7) for the next
iteration. These enhancements will be incorporated into the distributed setting in Subsection 2.3 to possibly
save communication costs.

It is also interesting to observe the differences between RGEM and RPDG [22]. RGEM has only one
extrapolation step (2.1) which combines two types of predictions. One is to predict future gradients using
historic data, and the other is to obtain an estimator of the current exact gradient of f from the randomly
updated gradient information of fi. However, RPDG method needs two extrapolation steps in both the
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primal and dual spaces. Due to the existence of the primal extrapolation step, RPDG cannot guarantee the
search points where it performs gradient evaluations to fall within the feasible set X. Hence, it requires the
assumption that fi’s are differentiable with Lipschitz continuous gradients over Rn. Such a strong assumption
is not required by RGEM, since all the primal iterates generated by RGEM stay within the feasible region X.
As a result, RGEM can deal with a much wider class of problems than RPDG. Moreover, RGEM allows no
exact gradient computation for initialization, which provides a fully-distributed algorithmic framework under
the assumption that there exists σ0 ≥ 0 such that

1
m

∑m
i=1‖∇fi(x0)‖2∗ ≤ σ2

0 , (2.8)

where x0 is the given initial point.
We now provide a constant step-size policy for RGEM to solve strongly convex problems given in the form

of (1.1) and show that the resulting algorithm exhibits an optimal linear rate of convergence in Theorem 2.1.
The proof of Theorem 2.1 can be found in Subsection 4.1.

Theorem 2.1. Let x∗ be an optimal solution of (1.1), xk and xk be defined in (2.2) and (2.5), respectively,
and L̂ = maxi=1,...,m Li. Also let {τt}, {ηt} and {αt} be set to

τt ≡ τ = 1
m(1−α) − 1, ηt ≡ η = α

1−αµ, and αt ≡ mα. (2.9)

If (2.8) holds and α is set as

α = 1− 1

m+
√
m2+16mL̂/µ

, (2.10)

then

E[P (xk, x∗)] ≤ 2∆0,σ0
αk

µ , (2.11)

E[ψ(xk)− ψ(x∗)] ≤ 6 max
{
m, L̂µ

}
∆0,σ0

αk/2, (2.12)

where

∆0,σ0 := µP (x0, x∗) + ψ(x0)− ψ∗ +
σ2
0

mµ . (2.13)

In view of Theorem 2.1, we can provide bounds on the total number of gradient evaluations performed by
RGEM to find a stochastic ε-solution of problem (1.1), i.e., a point x̄ ∈ X s.t. E[ψ(x̄)−ψ∗] ≤ ε. Theorem 2.1
implies the number of gradient evaluations of fi performed by RGEM to find a stochastic ε-solution of (1.1)
can be bounded by

K(ε, C, σ2
0) = 2

(
m+

√
m2 + 16mC

)
log

6 max{m,C}∆0,σ0

ε = O
{(

m+
√

mL̂
µ

)
log 1

ε

}
. (2.14)

Here C = L̂/µ. Therefore, whenever
√
mC log(1/ε) is dominating, and Lf and L̂ are in the same order of

magnitude, RGEM can save up to O(
√
m) gradient evaluations of the component function fi than the optimal

deterministic first-order methods. More specifically, RGEM does not require any exact gradient computation
and its communication cost is similar to pure stochastic gradient descent. To the best of our knowledge, it
is the first time that such an optimal RIG method is presented for solving (1.1) in the literature. It should
be pointed out that while the rates of convergence of RGEM obtained in Theorem 2.1 is stated in terms of
expectation, we can develop large-deviation results for these rates of convergence using similar techniques in
[22] for solving strongly convex problems.

Furthermore, if a one-time exact gradient evaluation is available at the initial point, i.e., y−1 = y0 =
(∇f1(x0), . . . ,∇fm(x0)), we can drop the assumption in (2.8) and employ a more aggressive stepsize policy
with

α = 1− 2

m+
√
m2+8mL̂/µ

,

7



Similarly, we can demonstrate that the number of gradient evaluations of fi performed by RGEM with this
initialization method to find a stochastic ε-solution can be bounded by(

m+
√
m2 + 8mC

)
log
(

6 max{m,C}∆0,0

ε

)
+m = O

{(
m+

√
mL̂
µ

)
log 1

ε

}
.

2.2. RGEM for stochastic finite-sum optimization. We discuss in this subsection the stochastic
finite-sum optimization and online learning problems, where only noisy gradient information of fi can be
accessed via a stochastic first-order (SFO) oracle. In particular, for any given point xti ∈ X, the SFO oracle
outputs a vector Gi(x

t
i, ξ

t
i) s.t.

Eξ[Gi(xti, ξti)] = ∇fi(xti), i = 1, . . . ,m, (2.15)

Eξ[‖Gi(xti, ξti)−∇fi(xti)‖2∗] ≤ σ2, i = 1, . . . ,m. (2.16)

We also assume that throughout this subsection that the ‖ · ‖ is associated with the inner product 〈·, ·〉.

As shown in Algorithm 2, the RGEM for stochastic finite-sum optimization is naturally obtained by
replacing the gradient evaluation of fi in Algorithm 1 (see (2.4)) with a stochastic gradient estimator of fi
given in (2.17). In particular, at each iteration, we collect Bt number of stochastic gradients of only one
randomly selected component fi and take their average as the stochastic estimator of ∇fi. Moreover, it needs
to be mentioned that the way RGEM initializes gradients, i.e, y−1 = y0 = 0, is very important for stochastic
optimization, since it is usually impossible to compute exact gradient for expectation functions even at the
initial point.

Algorithm 2 RGEM for stochastic finite-sum optimization

This algorithm is the same as Algorithm 1 except that (2.4) is replaced by

yti =

{
1
Bt

∑Bt
j=1Gi(x

t
i, ξ

t
i,j), i = it,

yt−1
i , i 6= it.

(2.17)

Here, Gi(x
t
i, ξ

t
i,j), j = 1, . . . , Bt, are stochastic gradients of fi computed by the SFO oracle at xti.

Under the standard assumptions in (2.15) and (2.16) for stochastic optimization, and with proper choices
of algorithmic parameters, Theorem 2.2 shows that RGEM can achieve the optimal O{σ2/µ2ε} rate of con-
vergence (up to a certain logarithmic factor) for solving strongly convex problems given in the form of (1.5) in
terms of the number of stochastic gradients of fi. The proof of the this result can be found in Subsection 4.2.

Theorem 2.2. Let x∗ be an optimal solution of (1.5), xk and xk be generated by Algorithm 2, and
L̂ = maxi=1,...,m Li. Suppose that σ0 and σ are defined in (2.8) and (2.16), respectively. Given the iteration
limit k, let {τt}, {ηt} and {αt} be set to (2.9) with α being set as (2.10), and we also set

Bt = dk(1− α)2α−te, t = 1, . . . , k, (2.18)

then

E[P (xk, x∗)] ≤ 2αk∆0,σ0,σ

µ , (2.19)

E[ψ(xk)− ψ(x∗)] ≤ 6 max
{
m, L̂µ

}
∆0,σ0,σα

k/2, (2.20)

where the expectation is taken w.r.t. {it} and {ξti} and

∆0,σ0,σ := µP (x0, x∗) + ψ(x0)− ψ(x∗) +
σ2
0/m+5σ2

µ . (2.21)
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In view of (2.20), the number of iterations performed by RGEM to find a stochastic ε-solution of (1.5),
can be bounded by

K̂(ε, C, σ2
0 , σ

2) := 2
(
m+

√
m2 + 16mC

)
log

6 max{m,C}∆0,σ0,σ

ε . (2.22)

Furthermore, in view of (2.19) this iteration complexity bound can be improved to

K̄(ε, α, σ2
0 , σ

2) := log1/α
2∆̃0,σ0,σ

µε , (2.23)

in terms of finding a point x̄ ∈ X s.t. E[P (x̄, x∗)] ≤ ε. Therefore, the corresponding number of stochastic
gradient evaluations performed by RGEM for solving problem (1.5) can be bounded by∑k

t=1Bt ≤ k
∑k
t=1(1− α)2α−t + k = O

{(
∆0,σ0,σ

µε +m+
√
mC

)
log

∆0,σ0,σ

µε

}
, (2.24)

which together with (2.21) imply that the total number of required stochastic gradients or samples of the
random variables ξi, i = 1, . . . ,m, can be bounded by

Õ
{
σ2
0/m+σ2

µ2ε + µP (x0,x∗)+ψ(x0)−ψ∗

µε +m+
√

mL̂
µ

}
.

Observe that this bound does not depend on the number of terms m for small enough ε. To the best of
our knowledge, it is the first time that such a convergence result is established for RIG algorithms to solve
distributed stochastic finite-sum problems. This complexity bound in fact is in the same order of magnitude (up
to a logarithmic factor) as the complexity bound achieved by the optimal accelerated stochastic approximation
methods [11, 12, 19], which uniformly sample all the random variables ξi, i = 1, . . . ,m. However, this latter
approach will thus involve much higher communication costs in the distributed setting (see Subsection 2.3 for
more discussions).

2.3. RGEM for distributed optimization and machine learning. This subsection is devoted to
RGEMs (see Algorithm 1 and Algorithm 2) from two different perspectives, i.e., the server and the activated
agent under a distributed setting. We also discuss the communication costs incurred by RGEM under this
setting.

Both the server and agents in the distributed network start with the same global initial point x0, i.e.,
x0
i = x0, i = 1, . . . ,m, and the server also sets ∆y = 0 and g0 = 0. During the process of RGEM, the server

updates iterate xt and calculates the output solution xk (cf. (2.5)) which is given by sumx/sumθ. Each agent
only stores its local variable xti and updates it according to the information received from the server (i.e., xt)
when activated. The activated agent also needs to upload the changes of gradient ∆yi to the server. Observe
that since ∆y might be sparse, uploading it will incur smaller amount of communication costs than uploading
the new gradient yti . Note that line 5 of RGEM from the it-th agent’s perspective is optional if the agent saves
historic gradient information from the last update.
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RGEM The server’s perspective

1: while t ≤ k do
2: xt ←MX(gt−1 + αt

m∆y, xt−1, ηt)
3: sumx← sumx + θtx

t

4: sumθ ← sumθ + θt

5: Send signal to the it-th agent where it is se-
lected uniformly from {1, . . . ,m}

6: if it-th agent is responsive then
7: Send current iterate xt to it-th agent
8: if Receive feedback ∆y then
9: gt ← gt−1 + ∆y

10: t← t+ 1
11: else goto Line 5
12: end if
13: else goto Line 5
14: end if
15: end while

RGEM The activated it-th agent’s perspective

1: Download the current iterate xt from the server
2: if t = 1 then
3: yt−1

i ← 0
4: else
5: yt−1

i ← ∇fi(xt−1
i ) . Optional

6: end if
7: xti ← (1 + τt)

−1(xt + τtx
t−1
i )

8: yti ← ∇fi(xti)
9: Upload the local changes to the server, i.e., ∆yi =
yti − y

t−1
i

We now add some remarks about the potential benefits of RGEM for distributed optimization and machine
learning. Firstly, since RGEM does not require any exact gradient evaluation of f , it does not need to wait
for the responses from all agents in order to compute an exact gradient. Each iteration of RGEM only
involves communication between the server and the activated it-th agent. In fact, RGEM will move to the
next iteration in case no response is received from the it-th agent. This scheme works under the assumption
that the probability for any agent being responsive or available at a certain point of time is equal. However,
all other optimal RIG algorithms, except RPDG [22], need the exact gradient information from all network
agents once in a while, which incurs high communication costs and synchronous delays as long as one agent is
not responsive. Even RPDG requires a full round of communications and synchronization at the initial point.

Secondly, since each iteration of RGEM involves only constant number of communication rounds between
the server and one selected agent, the communication complexity for RGEM under distributed setting can be
bounded by

O
{(

m+
√

mL̂
µ

)
log 1

ε

}
.

Therefore, it can save up to O{
√
m} rounds of communication than the optimal deterministic first-order

methods.

For solving distributed stochastic finite-sum optimization problems (1.5), RGEM from the it-th agent’s
perspective will be slightly modified as follows.

RGEM The activated it-th agent’s perspective for solving (1.5)

1: Download the current iterate xt from the server
2: if t = 1 then
3: yt−1

i ← 0 . Assuming RGEM saves yt−1
i for t ≥ 2 at the latest update

4: end if
5: xti ← (1 + τt)

−1(xt + τtx
t−1
i )

6: yti ← 1
Bt

∑Bt
j=1Gi(x

t
i, ξ

t
i,j) . Bt is the batch size, and Gi’s are the stochastic gradients given by SFO

7: Upload the local changes to the server, i.e., ∆yi = yti − y
t−1
i

Similar to the case for the deterministic finite-sum optimization, the total number of communication
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rounds performed by the above RGEM can be bounded by

O
{(

m+
√

mL̂
µ

)
log 1

ε

}
,

for solving (1.5). Each round of communication only involves the server and a randomly selected agent. This
communication complexity seems to be optimal, since it matches the lower complexity bound (1.7) established
in [22]. Moreover, the sampling complexity, i.e., the total number of samples to be collected by all the
agents, is also nearly optimal and comparable to the case when all these samples are collected in a centralized
location and processed by an optimal stochastic approximation method. On the other hand, if one applies an
existing optimal stochastic approximation method to solve the distributed stochastic optimization problem,
the communication complexity will be as high as O(1/

√
ε), which is much worse than RGEM.

3. Gradient extrapolation method: dual of Nesterov’s acceleration. Our goal in this section
is to introduce a new algorithmic framework, referred to as the gradient extrapolation method (GEM), for
solving the convex optimization problem given by

ψ∗ := min
x∈X
{ψ(x) := f(x) + µw(x)} . (3.1)

We show that GEM can be viewed as a dual of Nesterov’s accelerated gradient method although these two
algorithms appear to be quite different. Moreover, GEM possess some nice properties which enable us to
develop and analyze the random gradient extrapolation method for distributed and stochastic optimization.

3.1. Generalized Bregman distance. In this subsection, we provide a brief introduction to the gener-
alized Bregman distance defined in (1.10) and some properties for its associated prox-mapping defined in(1.12).

Note that whenever w is non-differentiable, we need to specify a particular selection of the subgradient w′

before performing the prox-mapping. We assume throughout this paper that such a selection of w′ is defined
recursively as follows. Denote x1 ≡MX(g, x0, η). By the optimality condition of (1.12), we have

g + (µ+ η)w′(x1)− ηw′(x0) ∈ NX(x1),

where NX(x1) := {v ∈ Rn : vT (x − x1) ≤ 0,∀x ∈ X} denotes the normal cone of X at x1. Once such a
w′(x1) satisfying the above relation is identified, we will use it as a subgradient when defining P (x1, x) in the
next iteration. Note that such a subgradient can be identified as long as x1 is obtained, since it satisfies the
optimality condition of (1.12).

The following lemma, which generalizes Lemma 6 of [20] and Lemma 2 of [11], characterizes the solutions
to (1.12). The proof of this result can be found in Lemma 5 of [22].

Lemma 3.1. Let U be a closed convex set and a point ũ ∈ U be given. Also let w : U → R be a convex
function and

W (ũ, u) = w(u)− w(ũ)− 〈w′(ũ), u− ũ〉

for some w′(ũ) ∈ ∂w(ũ). Assume that the function q : U → R satisfies

q(u1)− q(u2)− 〈q′(u2), u1 − u2〉 ≥ µ0W (u2, u1), ∀u1, u2 ∈ U

for some µ0 ≥ 0. Also assume that the scalars µ1 and µ2 are chosen such that µ0 + µ1 + µ2 ≥ 0. If

u∗ ∈ Argmin{q(u) + µ1w(u) + µ2W (ũ, u) : u ∈ U},

then for any u ∈ U , we have

q(u∗) + µ1w(u∗) + µ2W (ũ, u∗) + (µ0 + µ1 + µ2)W (u∗, u) ≤ q(u) + µ1w(u) + µ2W (ũ, u).
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3.2. The algorithm. As shown in Algorithm 3, GEM starts with a gradient extrapolation step (3.2)
to compute g̃t from the two previous gradients gt−1 and gt−2. Based on g̃t, it performs a proximal gradient
descent step in (3.3) and updates the output solution xt. Finally, the gradient at xt is computed for gradient
extrapolation in the next iteration. This algorithm is a special case of RGEM in Algorithm 1 (with m = 1).

Algorithm 3 An optimal gradient extrapolation method (GEM)

Input: Let x0 ∈ X, and the nonnegative parameters {αt}, {ηt}, and {τt} be given.
Set x0 = x0 and g−1 = g0 = ∇f(x0).
for t = 1, 2, . . . , k do

g̃t = αt(g
t−1 − gt−2) + gt−1. (3.2)

xt =MX(g̃t, xt−1, ηt). (3.3)

xt =
(
xt + τtx

t−1
)
/(1 + τt). (3.4)

gt = ∇f(xt). (3.5)

end for
Output: xk.

We now show that GEM can be viewed as the dual of the well-known Nesterov’s accelerated gradient
(NAG) method as studied in [22]. To see such a relationship, we will first rewrite GEM in a primal-dual form.
Let us consider the dual space G, where the gradients of f reside, and equip it with the conjugate norm ‖ · ‖∗.
Let Jf : G → R be the conjugate function of f such that f(x) := maxg∈G{〈x, g〉 − Jf (g)}. We can reformulate
the original problem in (3.1) as the following saddle point problem:

ψ∗ := min
x∈X

{
max
g∈G
{〈x, g〉 − Jf (g)}+ µw(x)

}
. (3.6)

It is clear that Jf is strongly convex with modulus 1/Lf w.r.t. ‖ · ‖∗ (See Chapter E in [15] for details).
Therefore, we can define its associated dual generalized Bregman distance and dual prox-mappings as

Df (g0, g) := Jf (g)− [Jf (g0) + 〈J ′f (g0), g − g0〉], (3.7)

MG(−x̃, g0, τ) := arg min
g∈G

{
〈−x̃, g〉+ Jf (g) + τDf (g0, g)

}
, (3.8)

for any g0, g ∈ G. The following result, whose proof is given in Lemma 1 of [22], shows that the computation
of the dual prox-mapping associated with Df is equivalent to the computation of ∇f .

Lemma 3.2. Let x̃ ∈ X and g0 ∈ G be given and Df (g0, g) be defined in (3.7). For any τ > 0, let us
denote z = [x̃+ τJ ′f (g0)]/(1 + τ). Then we have ∇f(z) =MG(−x̃, g0, τ).

Using this result, we can see that the GEM iteration can be written a primal-dual form. Given (x0, g−1, g0) ∈
X × G × G, it updates (xt, gt) by

g̃t = αt(g
t−1 − gt−2) + gt−1, (3.9)

xt =MX(g̃t, xt−1, ηt), (3.10)

gt =MG(−xt, gt−1, τt), (3.11)

with a specific selection of J ′f (gt−1) = xt−1 in Df (gt−1, g). Indeed, by denoting x0 = x0, we can easily see

from g0 = ∇f(x0) that x0 ∈ ∂Jf (g0). Now assume that gt−1 = ∇f(xt−1) and hence that xt−1 ∈ ∂Jf (gt−1).
By the definition of gt in (3.11) and Lemma 3.2, we conclude that gt = ∇f(xt) with xt = (xt+τtx

t−1)/(1+τt),
which are exactly the definitions given in (3.4) and (3.5).

12



Recall that in a simple version of the NAG method (e.g., [28, 34, 19, 11, 12, 13]), given (xt−1, x̄t−1) ∈ X×X,
it updates (xt, x̄t) by

xt = (1− λt)x̄t−1 + λtx
t−1, (3.12)

gt = ∇f(xt), (3.13)

xt =MX(gt, xt−1, ηt), (3.14)

x̄t = (1− λt)x̄t−1 + λtx
t, (3.15)

for some λt ∈ [0, 1]. Moreover, we have shown in [22] that (3.12)-(3.15) can be viewed as a specific instantiation
of the following primal-dual updates:

x̃t = αt(x
t−1 − xt−2) + xt−1, (3.16)

gt =MG(−x̃t, gt−1, τt), (3.17)

xt =MX(gt, xt−1, ηt). (3.18)

Comparing (3.9)-(3.11) with (3.16)-(3.18), we can clearly see that GEM is a dual version of NAG, obtained
by switching the primal and dual variables in each equation of (3.16)-(3.18). The major difference exists in
that the extrapolation step in GEM is performed in the dual space while the one in NAG is performed in the
primal space. In fact, extrapolation in the dual space will help us to greatly simplify and further enhance the
randomized incremental gradient methods developed in [22] based on NAG. Another interesting fact is that
in GEM, the gradients are computed for the output solutions {xt}. On the other hand, the output solutions
in the NAG method are given by {x̄t} while the gradients are computed for the extrapolation sequence {xt}.

3.3. Convergence of GEM. Our goal in this subsection is to establish the convergence properties of
the GEM method for solving (3.1). Observe that our analysis is carried out completely in the primal space
and does not rely on the primal-dual interpretation described in the previous section. This type of analysis
technique appears to be new for solving problem (3.1) in the literature as it also differs significantly from that
of NAG.

We first establish some general convergence properties for GEM for both smooth convex (µ = 0) and
strongly convex cases (µ > 0).

Theorem 3.3. Suppose that {ηt}, {τt}, and {αt} in GEM satisfy

θt−1 = αtθt, t = 2, . . . , k, (3.19)

θtηt ≤ θt−1(µ+ ηt−1), t = 2, . . . , k, (3.20)

θtτt = θt−1(1 + τt−1), t = 2, . . . , k, (3.21)

αtLf ≤ τt−1ηt, t = 2, . . . , k, (3.22)

2Lf ≤ τk(µ+ ηk), (3.23)

for some θt ≥ 0, t = 1, . . . , k. Then, for any k ≥ 1 and any given x ∈ X, we have

θk(1 + τk)[ψ(xk)− ψ(x)] + θk(µ+ηk)
2 P (xk, x) ≤ θ1τ1[ψ(x0)− ψ(x)] + θ1η1P (x0, x). (3.24)

Proof. Applying Lemma 3.1 to (3.3), we obtain

〈xt − x, αt(gt−1 − gt−2) + gt−1〉+ µw(xt)− µw(x) ≤ ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt). (3.25)
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Moreover, using the definition of ψ, the convexity of f , and the fact that gt = ∇f(xt), we have

(1 + τt)f(xt) + µw(xt)− ψ(x) ≤ (1 + τt)f(xt) + µw(xt)− µw(x)− [f(xt) + 〈gt, x− xt〉]
= τt[f(xt)− 〈gt, xt − xt−1〉]− 〈gt, x− xt〉+ µw(xt)− µw(x)

≤ − τt
2Lf
‖gt − gt−1‖2∗ + τtf(xt−1)− 〈gt, x− xt〉+ µw(xt)− µw(x)

≤ − τt
2Lf
‖gt − gt−1‖2∗ + τtf(xt−1) + 〈xt − x, gt − gt−1 − αt(gt−1 − gt−2)〉

+ ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt),

where the first equality follows from the definition of xt in (3.4), the second inequality follows from the
smoothness of f (see Theorem 2.1.5 in [28]), and the last inequality follows from (3.25). Multiplying both
sides of the above inequality by θt, and summing up the resulting inequalities from t = 1 to k, we obtain∑k

t=1θt(1 + τt)f(xt) +
∑k
t=1θt[µw(xt)− ψ(x)] ≤ −

∑k
t=1

θtτt
2Lf
‖gt − gt−1‖2∗ +

∑k
t=1θtτtf(xt−1)

+
∑k
t=1θt〈xt − x, gt − gt−1 − αt(gt−1 − gt−2)〉

+
∑k
t=1θt[ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt)]. (3.26)

Now by (3.19) and the fact that g−1 = g0, we have∑k
t=1θt〈xt − x, gt − gt−1 − αt(gt−1 − gt−2)〉

=
∑k
t=1θt[〈xt − x, gt − gt−1〉 − αt〈xt−1 − x, gt−1 − gt−2〉]−

∑k
t=2θtαt〈xt − xt−1, gt−1 − gt−2〉

= θk〈xk − x, gk − gk−1〉 −
∑k
t=2θtαt〈xt − xt−1, gt−1 − gt−2〉.

Moreover, in view of (3.20), (3.21) and the definition of xt (3.4), we obtain

∑k
t=1θt[ηtP (xt−1, x)− (µ+ ηt)P (xt, x)]

(3.20)

≤ θ1η1P (x0, x)− θk(µ+ ηk)P (xk, x),∑k
t=1θt[(1 + τt)f(xt)− τtf(xt−1)]

(3.21)
= θk(1 + τk)f(xk)− θ1τ1f(x0),∑k

t=1θt
(3.21)

=
∑k
t=2[θtτt − θt−1τt−1] + θk = θk(1 + τk)− θ1τ1,

θk(1 + τk)xk
(3.4)
= θk(xk + τk

1+τk−1
xk−1 + · · ·+

∏k
t=2

τt
1+τt−1

x1 +
∏k
t=2

τt
1+τt−1

τ1x
0)

(3.21)
=
∑k
t=1θtx

t + θ1τ1x
0.

The last two relations, in view of the convexity of w(·), also imply that

θk(1 + τk)µw(xk) ≤
∑k
t=1θtµw(xt) + θ1τ1µw(x0).

Therefore, by (3.26), the above relations, and the definition of ψ, we conclude that

θk(1 + τk)[ψ(xk)− ψ(x)] ≤
∑k
t=2

[
− θt−1τt−1

2Lf
‖gt−1 − gt−2‖2∗ − θtαt〈xt − xt−1, gt−1 − gt−2〉 − θtηtP (xt−1, xt)

]
− θk

[
τk

2Lf
‖gk − gk−1‖2∗ − 〈xk − x, gk − gk−1〉+ (µ+ ηk)P (xk, x)

]
+ θ1η1P (x0, x)

+ θ1τ1[ψ(x0)− ψ(x)]− θ1η1P (x0, x1). (3.27)

By the strong convexity of P (·, ·) in (1.11), the simple relation that b〈u, v〉 − a‖v‖2/2 ≤ b2‖u‖2/(2a), ∀a > 0,
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and the conditions in (3.22) and (3.23), we have

−
∑k
t=2

[
θt−1τt−1

2Lf
‖gt−1 − gt−2‖2∗ + θtαt〈xt − xt−1, gt−1 − gt−2〉+ θtηtP (xt−1, xt)

]
≤
∑k
t=2

θt
2

(
αtLf
τt−1

− ηt
)
‖xt−1 − xt‖2 ≤ 0

− θk
[
τk

2Lf
‖gk − gk−1‖2∗ − 〈xk − x, gk − gk−1〉+ (µ+ηk)

2 P (xk, x)
]

≤ θk
2

(
Lf
τk
− µ+ηk

2

)
‖xk − x‖2 ≤ 0.

Using the above relations in (3.27), we obtain (3.24).

We are now ready to establish the optimal convergence behavior of GEM as a consequence of Theorem 3.3.
We first provide a constant step-size policy which guarantees an optimal linear rate of convergence for the
strongly convex case (µ > 0).

Corollary 3.4. Let x∗ be an optimal solution of (1.1), xk and xk be defined in (3.3) and (3.4),
respectively. Suppose that µ > 0, and that {τt}, {ηt} and {αt} are set to

τt ≡ τ =
√

2Lf
µ , ηt ≡ η =

√
2Lfµ, and αt ≡ α =

√
2Lf/µ

1+
√

2Lf/µ
, ∀t = 1, . . . , k. (3.28)

Then,

P (xk, x∗) ≤ 2αk[P (x0, x∗) + 1
µ (ψ(x0)− ψ∗)], (3.29)

ψ(xk)− ψ∗ ≤ αk
[
µP (x0, x∗) + ψ(x0)− ψ∗

]
. (3.30)

Proof. Let us set θt = α−t, t = 1, . . . , k. It is easy to check that the selection of {τt}, {ηt} and {αt} in
(3.28) satisfies conditions (3.19)-(3.23). In view of Theorem 3.3 and (3.28), we have

ψ(xk)− ψ(x∗) + µ+η
2(1+τ)P (xk, x∗) ≤ θ1τ

θk(1+τ) [ψ(x0)− ψ(x∗)] + θ1η
θk(1+τ)P (x0, x∗)

= αk[ψ(x0)− ψ(x∗) + µP (x0, x∗)].

It also follows from the above relation, the fact ψ(xk)− ψ(x∗) ≥ 0, and (3.28) that

P (xk, x∗) ≤ 2(1+τ)αk

µ+η [µP (x0, x∗) + ψ(x0)− ψ(x∗)] = 2αk[P (x0, x∗) + 1
µ (ψ(x0)− ψ(x∗))].

We now provide a stepsize policy which guarantees the optimal rate of convergence for the smooth case
(µ = 0). Observe that in smooth case we can estimate the solution quality for the sequence {xk} only.

Corollary 3.5. Let x∗ be an optimal solution of (1.1), and xk be defined in (3.4). Suppose that µ = 0,
and that {τt}, {ηt} and {αt} are set to

τt = t
2 , ηt =

4Lf
t , and αt = t

t+1 , ∀t = 1, . . . , k. (3.31)

Then,

ψ(xk)− ψ(x∗) = f(xk)− f(x∗) ≤ 2
(k+1)(k+2) [f(x0)− f(x∗) + 8LfP (x0, x∗)]. (3.32)

Proof. Let us set θt = t+1, t = 1, . . . , k. It is easy to check that the parameters in (3.31) satisfy conditions
(3.22)-(3.23). In view of (3.24) and (3.31), we conclude that

ψ(xk)− ψ(x∗) ≤ 2
(k+1)(k+2) [ψ(x0)− ψ(x∗) + 8LfP (x0, x∗)].
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In Corollary 3.6, we improve the above complexity result in terms of the dependence on f(x0)− f(x∗) by
using a different step-size policy and a slightly more involved analysis for the smooth case (µ = 0).

Corollary 3.6. Let x∗ be an optimal solution of (1.1), xk and xk be defined in (3.3) and (3.4),
respectively. Suppose that µ = 0, and that {τt}, {ηt} and {αt} are set to

τt = t−1
2 , ηt =

6Lf
t , and αt = t−1

t , ∀t = 1, . . . , k. (3.33)

Then, for any k ≥ 1,

ψ(xk)− ψ(x∗) = f(xk)− f(x∗) ≤ 12Lf
k(k+1)P (x0, x∗). (3.34)

Proof. If we set θt = t, t = 1, . . . , k. It is easy to check that the parameters in (3.33) satisfy conditions
(3.19)-(3.21) and (3.23). However, condition (3.22) only holds for t = 3, . . . , k, i.e.,

αtLf ≤ τt−1ηt, t = 3, . . . , k. (3.35)

In view of (3.27) and the fact that τ1 = 0, we have

θk(1 + τk)[ψ(xk)− ψ(x)] ≤ −θ2[α2〈x2 − x1, g1 − g0〉+ η2P (x1, x2)]− θ1η1P (x0, x1)

−
∑k
t=3

[
θt−1τt−1

2Lf
‖gt−1 − gt−2‖2∗ + θtαt〈xt − xt−1, gt−1 − gt−2〉+ θtηtP (xt−1, xt)

]
− θk

[
τk

2Lf
‖gk − gk−1‖2∗ − 〈xk − x, gk − gk−1〉+ (µ+ ηk)P (xk, x)

]
+ θ1η1P (x0, x)

≤ θ1α2

2η2
‖g1 − g0‖2∗ −

θ1η1
2 ‖x

1 − x0‖2 +
∑k
t=3

θt
2

(
αtLf
τt−1

− ηt
)
‖xt−1 − xt‖2

+ θk
2

(
Lf
τk
− ηk

2

)
‖xk − x‖2 + θ1η1P (x0, x)− θkηk

2 P (xk, x)

≤ θ1α2L
2
f

2η2
‖x1 − x0‖2 − θ1η1

2 ‖x
1 − x0‖2 + θ1η1P (x0, x)− θkηk

2 P (xk, x)

≤ θ1

(
α2L

2
f

2η2
− η1

)
‖x1 − x0‖2 + θ1η1P (x0, x)− θkηk

2 P (xk, x),

where the second inequality follows from the simple relation that b〈u, v〉 − a‖v‖2/2 ≤ b2‖u‖2/(2a), ∀a > 0
and (1.11), the third inequality follows from (3.35), (3.23), the definition of gt in (3.5) and (1.4), and the
last inequality follows from the facts that x0 = x0 and x1 = x1 (due to τ1 = 0). Therefore, by plugging the
parameter setting in (3.33) into the above inequality, we conclude that

ψ(xk)− ψ∗ = f(xk)− f(x∗) ≤ [θk(1 + τk)]−1[θ1η1P (x0, x∗)− θkηk
2 P (xk, x)] ≤ 12Lf

k(k+1)P (x0, x∗).

In view of the results obtained in the above three corollaries, GEM exhibits optimal rates of convergence
for both strongly convex and smooth cases. Different from the classical NAG method, GEM performs extrap-
olation on the gradients, rather than the iterates. This fact will help us to develop an enhanced randomized
incremental gradient method than RPDG in [22], i.e., the Random Gradient Extrapolation Method, with a
much simpler analysis.

4. Convergence analysis of RGEM. Our main goal in this section is to establish the convergence
properties of RGEM for solving (1.1) and (1.5), i.e., the main results stated in Theorem 2.1 and 2.2. In
fact, comparing RGEM in Algorithm 1 with GEM in Algorithm 3, RGEM is a direct randomization of
GEM. Therefore, inheriting from GEM, its convergence analysis is carried out completely in the primal space.
However, the analysis for RGEM is more challenging especially because we need to 1) build up the relationship
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between 1
m

∑m
i=1fi(x

k
i ) and f(xk), for which we exploit the function Q defined in (4.3) as an intermediate tool;

2) bound the error caused by inexact gradients at the initial point and 3) analyze the accumulated error caused
by randomization and noisy stochastic gradients.

Before proving Theorem 2.1 and 2.2, we first need to provide some important technical results. The
following simple result demonstrates a few identities related to xti (cf. (2.3)) and yt (cf. (2.4) or (2.17)).

Lemma 4.1. Let xt and yt be defined in (2.2) and (2.4) (or (2.17)), respectively, and x̂ti and ŷt be defined
as

x̂ti = (1 + τt)
−1(xt + τtx

t−1
i ), i = 1, . . . ,m, t ≥ 1, (4.1)

ŷti =

{
∇fi(x̂ti), if yt is defined in (2.4),
1
Bt

∑Bt
j=1Gi(x̂

t
i, ξ

t
i,j), if yt is defined in (2.17),

i = 1, . . . ,m, t ≥ 1, (4.2)

respectively. Then we have, for any i = 1, . . . ,m and t = 1, . . . , k,

Et[yti ] = 1
m ŷ

t
i + (1− 1

m )yt−1
i ,

Et[xti] = 1
m x̂

t
i + (1− 1

m )xt−1
i ,

Et[fi(xti)] = 1
mfi(x̂

t
i) + (1− 1

m )fi(x
t−1
i ),

Et[‖∇fi(xti)−∇fi(xt−1
i )‖2∗] = 1

m‖∇fi(x̂
t
i)−∇fi(xt−1

i )‖2∗,

where Et denotes the conditional expectation w.r.t. it given i1, . . . , it−1 when yt is defined in (2.4), and w.r.t.
it given i1, . . . , it−1, ξ

t
1, . . . , ξ

t
m when yt is defined in (2.17), respectively.

Proof. This first equality follows immediately from the facts that Probt{yti = ŷti} = Probt{it = i} = 1
m

and Probt{yti = yt−1
i } = 1 − 1

m . Here Probt denotes the conditional probability w.r.t. it given i1, . . . , it−1

when yt is defined in (2.4) and w.r.t it given i1, . . . , it−1, ξ
t
1, . . . , ξ

t
m when yt is defined in (2.17), respectively.

Similarly, we can prove the rest equalities.

We define the following function Q to help us analyze the convergence properties of RGEM. Let x, x ∈ X
be two feasible solutions of (1.1) (or (1.5)), we define the corresponding Q(x, x) by

Q(x, x) := 〈∇f(x), x− x〉+ µw(x)− µw(x). (4.3)

It is obvious that if we fix x = x∗, an optimal solution of (1.1) (or (1.5)), by the convexity of w and the
optimality condition of x∗, for any feasible solution x, we can conclude that

Q(x, x∗) ≥ 〈∇f(x∗) + µw′(x∗), x− x∗〉 ≥ 0.

Moreover, observing that f is smooth, we conclude that

Q(x, x∗) = f(x∗) + 〈∇f(x∗), x− x∗〉+ µw(x)− ψ(x∗) ≥ −Lf2 ‖x− x
∗‖2 + ψ(x)− ψ(x∗). (4.4)

The following lemma establishes an important relationship regarding Q.

Lemma 4.2. Let xt be defined in (2.2), and x ∈ X be any feasible solution of (1.1) or (1.5). Suppose that
τt in RGEM satisfy

θt(m(1 + τt)− 1) = θt−1m(1 + τt−1), t = 2, . . . , k, (4.5)

for some θt ≥ 0, t = 1, . . . , k. Then, we have∑k
t=1θtE[Q(xt, x)] ≤ θk(1 + τk)

∑m
i=1E[fi(x

k
i )] +

∑k
t=1θtE[µw(xt)− ψ(x)]

− θ1(m(1 + τ1)− 1)[〈x0 − x,∇f(x)〉+ f(x)]. (4.6)
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Proof. In view of the definition of Q in (4.3), we have

Q(xt, x) = 1
m

∑m
i=1〈∇fi(x), xt − x〉+ µw(xt)− µw(x)

(4.1)
= 1

m

∑m
i=1[(1 + τt)〈x̂ti − x,∇fi(x)〉 − τt〈xt−1

i − x,∇fi(x)〉] + µw(xt)− µw(x).

Taking expectation on both sides of the above relation over {i1, . . . , ik}, and using Lemma 4.1, we obtain

E[Q(xt, x)] =
∑m
i=1E[(1 + τt)〈xti − x,∇fi(x)〉 − ((1 + τt)− 1

m )〈xt−1
i − x,∇fi(x)〉] + E[µw(xt)− µw(x)].

Multiplying both sides of the above inequality by θt, and summing up the resulting inequalities from t = 1 to
k, we conclude that∑k

t=1θtE[Q(xt, x)] =
∑m
i=1

∑k
t=1E[θt(1 + τt)〈xti − x,∇fi(x)〉 − θt((1 + τt)− 1

m )〈xt−1
i − x,∇fi(x)〉]

+
∑k
t=1θtE[µw(xt)− µw(x)].

Note that by (4.5) and the fact that x0
i = x0, i = 1, . . . ,m, we have∑k

t=1θt =
∑k
t=2[θtm(1 + τt)− θt−1m(1 + τt−1)] + θ1 = θkm(1 + τk)− θ1(m(1 + τ1)− 1), (4.7)∑k

t=1[θt(1 + τ1)〈xti − x,∇fi(x)〉 − θt((1 + τt)− 1
m )〈xt−1

i − x,∇fi(x)〉]
= θk(1 + τk)〈xki − x,∇fi(x)〉 − θ1((1 + τ1)− 1

m )〈x0 − x,∇fi(x)〉, i = 1, . . . ,m.

Combining the above three relations and using the convexity of fi, we obtain∑k
t=1θtE[Q(xt, x)] ≤ θk(1 + τk)

∑m
i=1E[fi(x

k
i )− fi(x)]− θ1(m(1 + τ1)− 1)〈x0 − x,∇f(x)〉

+
∑k
t=1θtE[µw(xt)− µw(x)],

which in view of (4.7) implies (4.6).

4.1. Convergence analysis of RGEM for deterministic finite-sum optimization. We now prove
the main convergence properties for RGEM to solve (1.1). Observe that RGEM starts with y0 = 0 and
only updates the corresponding it-block of (xti, y

t
i), i = 1, . . . ,m, according to (2.3) and (2.4), respectively.

Therefore, for yt generated by RGEM, we have

yti =

{
0, if the i-th block has never been updated for the first t iterations,

∇fi(xti), o.w.
(4.8)

Throughout this subsection, we assume that there exists σ0 ≥ 0 which is the upper bound of the initial
gradients, i.e., (2.8) holds. Proposition 4.3 below establishes some general convergence properties of RGEM
for solving strongly convex problems.

Proposition 4.3. Let xt and xk be defined as in (2.2) and (2.5), respectively, and x∗ be an optimal
solution of (1.1). Under the assumption that there exists σ0 satisfying (2.8), and suppose that {ηt}, {τt}, and
{αt} in RGEM satisfy (4.5) and

mθt−1 = αtθt, t ≥ 2, (4.9)

θtηt ≤ θt−1(µ+ ηt−1), t ≥ 2, (4.10)

2αtLi ≤ mτt−1ηt, i = 1, . . . ,m; t ≥ 2, (4.11)

4Li ≤ τk(µ+ ηk), i = 1, . . . ,m, (4.12)
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for some θt ≥ 0, t = 1, . . . , k. Then, for any k ≥ 1, we have

E[Q(xk, x∗)] ≤ (
∑k
t=1θt)

−1∆̃0,σ0 ,

E[P (xk, x∗)] ≤ 2∆̃0,σ0

θk(µ+ηk) , (4.13)

where

∆̃0,σ0 := θ1(m(1 + τ1)− 1)(ψ(x0)− ψ∗) + θ1η1P (x0, x∗) +
∑k
t=1(m−1

m )t−1 2θtαt+1

mηt+1
σ2

0 . (4.14)

Proof. In view of the definition of xt in (2.2) and Lemma 3.1, we have,

〈xt − x, 1
m

∑m
i=1ỹ

t
i〉+ µw(xt)− µw(x) ≤ ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt). (4.15)

Moreover, using the definition of ψ in (1.1), the convexity of fi, and the fact that ŷti = ∇fi(x̂ti) (see (4.2) with
yt defined in (2.4)), we obtain

1+τt
m

∑m
i=1fi(x̂

t
i) + µw(xt)− ψ(x) ≤ 1+τt

m

∑m
i=1fi(x̂

t
i) + µw(xt)− µw(x)− 1

m

∑m
i=1[fi(x̂

t
i) + 〈ŷti , x− x̂

t
i〉]

= τt
m

∑m
i=1[fi(x̂

t
i) + 〈ŷti , x

t−1
i − x̂ti〉] + µw(xt)− µw(x)− 1

m

∑m
i=1〈ŷti , x− xt〉

≤ − τt
2m

∑m
i=1

1
Li
‖∇fi(x̂ti)−∇fi(xt−1

i )‖2∗ + τt
m

∑m
i=1fi(x

t−1
i )

+ µw(xt)− µw(x)− 1
m

∑m
i=1〈ŷti , x− xt〉

≤ − τt
2m

∑m
i=1

1
Li
‖∇fi(x̂ti)−∇fi(xt−1

i )‖2∗ + τt
m

∑m
i=1fi(x

t−1
i )

+ 〈xt − x, 1
m

∑m
i=1[ŷti − y

t−1
i − αt(yt−1

i − yt−2
i )]〉

+ ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt), (4.16)

where the first equality follows from the definition of x̂ti in (4.1), the second inequality follows from the
smoothness of fi (see Theorem 2.1.5 in [28]) and (4.2), and the last inequality follows from (4.15) and the
definition of ỹt in (2.1). Therefore, taking expectation on both sides of the above relation over {i1, . . . , ik},
and using Lemma 4.1, we have

E[(1 + τt)
∑m
i=1fi(x

t
i) + µw(xt)− ψ(x)] ≤ E[− τt

2Lit
‖∇fit(xtit)−∇fit(x

t−1
it

)‖2∗ + 1
m

∑m
i=1(m(1 + τt)− 1)fi(x

t−1
i )]

+ E{〈xt − x, 1
m

∑m
i=1[m(yti − y

t−1
i )− αt(yt−1

i − yt−2
i )]〉}

+ E[ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt)].

Multiplying both sides of the above inequality by θt, and summing up the resulting inequalities from t = 1 to
k, we obtain∑k

t=1

∑m
i=1E[θt(1 + τt)fi(x

t
i)] +

∑k
t=1θtE[µw(xt)− ψ(x)]

≤
∑k
t=1θtE

[
− τt

2Lit
‖∇fit(xtit)−∇fit(x

t−1
it

)‖2∗ +
∑m
i=1((1 + τt)− 1

m )fi(x
t−1
i )

]
+
∑k
t=1

∑m
i=1θtE[〈xt − x, yti − y

t−1
i − αt

m (yt−1
i − yt−2

i )〉]

+
∑k
t=1θtE[ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt)]. (4.17)

Now by (4.9), and the facts that y−1 = y0 and that we only update one block of yt (see (2.4)), we have∑k
t=1

∑m
i=1θtE[〈xt − x, yti − y

t−1
i − αt

m (yt−1
i − yt−2

i )〉]

=
∑k
t=1E[θt〈xt − x, ytit − y

t−1
it
〉 − θtαt

m 〈x
t−1 − x, yt−1

it−1
− yt−2

it−1
〉]−

∑k
t=2

θtαt
m E[〈xt − xt−1, yt−1

it−1
− yt−2

it−1
〉]

(4.9)
= θkE[〈xk − x, ykik − y

k−1
ik
〉 −

∑k
t=2

θtαt
m E[〈xt − xt−1, yt−1

it−1
− yt−2

it−1
〉].
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Moreover, in view of (4.10), (4.5), and the fact that x0
i = x0, i = 1, . . . ,m, we obtain

∑k
t=1θt[ηtP (xt−1, x)− (µ+ ηt)P (xt, x)]

(4.10)

≤ θ1η1P (x0, x)− θk(µ+ ηk)P (xk, x),∑k
t=1

∑m
i=1E[θt(1 + τt)fi(x

t
i)− θt((1 + τt)− 1

m )fi(x
t−1
i )]

(4.5)
=
∑m
i=1E[θk(1 + τk)fi(x

k
i )]− θ1(m(1 + τ1)− 1)f(x0)

which together with (4.17) and (4.8) imply that

θk(1 + τk)
∑m
i=1E[fi(x

k
i )] +

∑k
t=1θtE[µw(xt)− ψ(x)] + θk(µ+ηk)

2 E[P (xk, x)]

≤ θ1(m(1 + τ1)− 1)f(x0) + θ1η1P (x0, x)

+
∑k
t=2E

[
− θtαtm 〈x

t − xt−1, yt−1
it−1
− yt−2

it−1
〉 − θtηtP (xt−1, xt)− θt−1τt−1

2Lit−1
‖yt−1
it−1
−∇fit−1(xt−2

it−1
)‖2∗
]

+ θkE
[
〈xk − x, ykik − y

k−1
ik
〉 − (µ+ηk)

2 P (xk, x)− τk
2Lik
‖ykik −∇fik(xk−1

ik
)‖2∗
]
. (4.18)

By the strong convexity of P (·, ·) in (1.11), the simple relations that b〈u, v〉 − a‖v‖2/2 ≤ b2‖u‖2/(2a),∀a > 0
and ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, and the conditions in (4.11) and (4.12), we have

∑k
t=2

[
− θtαtm 〈x

t − xt−1, yt−1
it−1
− yt−2

it−1
〉 − θtηtP (xt−1, xt)− θt−1τt−1

2Lit−1
‖yt−1
it−1
−∇fit−1

(xt−2
it−1

)‖2∗
]

(1.11)

≤
∑k
t=2

[
− θtαtm 〈x

t − xt−1, yt−1
it−1
− yt−2

it−1
〉 − θtηt

2 ‖x
t−1 − xt‖2 − θt−1τt−1

2Lit−1
‖yt−1
it−1
−∇fit−1

(xt−2
it−1

)‖2∗
]

≤
∑k
t=2

[
θt−1αt
2mηt

‖yt−1
it−1
− yt−2

it−1
‖2∗ −

θt−1τt−1

2Lit−1
‖yt−1
it−1
−∇fit−1

(xt−2
it−1

)‖2∗
]

≤
∑k
t=2

[(
θt−1αt
mηt

− θt−1τt−1

2Lit−1

)
‖yt−1
it−1
−∇fit−1(xt−2

it−1
)‖2∗ + θt−1αt

mηt
‖∇fit−1(xt−2

it−1
)− yt−2

it−1
‖2∗
]

(4.11)

≤
∑k
t=2

θt−1αt
mηt

[
‖∇fit−1(xt−2

it−1
)− yt−2

it−1
‖2∗
]
,

and similarly,

θk

[
〈xk − x, ykik − y

k−1
ik
〉 − (µ+ηk)

2 P (xk, x)− τk
2Lik
‖ykik −∇fik(xk−1

ik
)‖2∗
]

≤ 2θk
µ+ηk

[
‖∇fik(xk−1

ik
)− yk−1

ik
‖2∗
]
≤ 2θkαk+1

mηk+1

[
‖∇fik(xk−1

ik
)− yk−1

ik
‖2∗
]
,

where the last inequality follows from the fact that mηk+1 ≤ αk+1(µ + ηk) (induced from (4.9) and (4.10)).
Therefore, combing the above three relations, we conclude that

θk(1 + τk)
∑m
i=1E[fi(x

k
i )] +

∑k
t=1θtE[µw(xt)− ψ(x)] + θk(µ+ηk)

2 E[P (xk, x)]

≤ θ1(m(1 + τ1)− 1)f(x0) + θ1η1P (x0, x) +
∑k
t=1

2θtαt+1

mηt+1
E[‖∇fit(xt−1

it
)− yt−1

it
‖2∗]. (4.19)

We now provide a bound on E[‖∇fit(xt−1
it

)− yt−1
it
‖2∗]. In view of (4.8), we have

‖∇fit(xt−1
it

)− yt−1
it
‖2∗ =

{
‖∇fit(xt−1

it
)‖2∗, if the it-th block has never been updated until iteration t;

0, o.w.

Let us denote event Bit := {the it-th block has never been updated until iteration t}, for all t = 1, . . . , k, we
have

E[‖∇fit(xt−1
it

)− yt−1
it
‖2∗] = E[‖∇fit(xt−1

it
)‖2∗|Bit ]Prob{Bit} ≤

(
m−1
m

)t−1
σ2

0 ,
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where the last inequality follows from the definitions of Bit , xti in (2.3) and σ2
0 in (2.8). Fixing x = x∗, and

using the above result in (4.19), we then conclude from (4.19) and Lemma 4.2 that

0 ≤
∑k
t=1θtE[Q(xt, x∗)] ≤ θ1(m(1 + τ1)− 1)[f(x0)− 〈x0 − x∗,∇f(x∗)〉 − f(x∗)]

+ θ1η1P (x0, x∗) +
∑k
t=1(m−1

m )t−1 2θtαt+1

mηt+1
σ2

0 −
θk(µ+ηk)

2 E[P (xk, x∗)],

which, in view of the relation −〈x0 − x∗,∇f(x∗)〉 ≤ 〈x0 − x∗, µw′(x∗)〉 ≤ µw(x0)− µw(x∗) and the convexity
of Q(·, x∗), implies the first result in (4.13). Moreover, we can also conclude from the above inequality that

θk(µ+ηk)
2 E[P (xk, x∗)] ≤ θ1(m(1 + τ1)− 1)[ψ(x0)− ψ(x∗)] + θ1η1P (x0, x∗) +

∑k
t=1(m−1

m )t−1 2θtαt+1

mηt+1
σ2

0 ,

from which the second result in (4.13) follows.

With the help of Proposition 4.3, we are now ready to prove Theorem 2.1, which establishes the convergence
properties of RGEM. In particular, Theorem 2.1 shows that RGEM can achieve the optimal convergence rate

as O
{(

m+

√
mL̂/µ

)
log 1/ε

}
for strongly convex problems.

Proof of Theorem 2.1. Letting θt = α−t, t = 1, . . . , k, we can easily check that parameter setting in (2.9)
with α defined in (2.10) satisfies conditions (4.5) and (4.9)-(4.12) stated in Proposition 4.3. It then follows
from (2.9) and (4.13) that

E[Q(xk, x∗)] ≤ αk

1−αk

[
µP (x0, x∗) + ψ(x0)− ψ∗ +

2m(1−α)2σ2
0

(m−1)µ

∑k
t=1

(
m−1
mα

)t]
,

E[P (xk, x∗)] ≤ 2αk
[
P (x0, x∗) + ψ(x0)−ψ∗

µ +
2m(1−α)2σ2

0

(m−1)µ2

∑k
t=1

(
m−1
mα

)t]
, ∀k ≥ 1.

Also observe that α ≥ 2m−1
2m , we then have∑k

t=1

(
m−1
mα

)t ≤∑k
t=1

(
2(m−1)
2m−1

)t
≤ 2(m− 1).

Combining the above three relations and the fact that m(1− α) ≤ 1/2, we have

E[Q(xk, x∗)] ≤ αk

1−αk∆0,σ0 ,

E[P (xk, x∗)] ≤ 2αk∆0,σ0
/µ, ∀k ≥ 1, (4.20)

where ∆0,σ0
is defined in (2.13). The second relation immediately implies our bound in (2.11). Moreover, by

the strong convexity of P (·, ·) in (1.11) and (2.11), we have

Lf
2 E[‖xk − x∗‖2] ≤ Lf

2 (
∑k
t=1θt)

−1
∑k
t=1θtE[‖xt − x∗‖2]

(1.11)

≤ Lf
(1−α)αk

1−αk
∑k
t=1α

−tE[P (xt, x∗)]

(2.11)

≤ Lf (1−α)αk

1−αk
∑k
t=1

2∆0,σ0

µ =
2Lf (1−α)∆0,σ0

kαk

µ(1−αk)
.

Combining the above relation with the first inequality in (4.20) and (4.4), we obtain

E[ψ(xk)− ψ(x∗)]
(4.4)

≤ E[Q(xk, x∗)] +
Lf
2 E[‖xk − x∗‖2] ≤

(
1 +

2Lf (1−α)
µ k

)
∆0,σ0α

k

1−αk .

Observing that

1
1−α ≤ 2 max{m, L̂/µ},

(k + 1)α
k(1−α)
1−αk =

(∑k
t=1

αt

αt + 1
)
αk(1−α)

1−αk ≤
(∑k

t=1
αt

α3t/2 + 1
)
αk(1−α)

1−αk

≤ 1−αk/2
αk/2(1−α1/2)

αk(1−α)
1−αk + αk ≤ 2αk/2 + αk ≤ 3αk/2,
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we have

E[ψ(xk)− ψ(x∗)] ≤ 2 max
{
m, L̂µ

}
∆0,σ0

(k+1)αk(1−α)

1−αk ≤ 6 max
{
m, L̂µ

}
∆0,σ0

αk/2.

4.2. Convergence analysis of RGEM for stochastic finite-sum optimization. Our goal in this
section is to establish the convergence properties of RGEM for solving stochastic finite-sum optimization
problems in (1.5). For notation convenience, we use E[ik] for taking expectation over {i1, . . . , ik}, Eξ for

expectations over {ξ1, . . . , ξk}, respectively, we use E to denote the expectations over all random variables.
Note that the parameter {Bt} in Algorithm 2 denotes the batch size used to compute ytit in (2.17). Since

we now assume that ‖ · ‖ is associated with a certain inner product, it can be easily seen from (2.17), and the
two assumptions we have for the stochastic gradients computed by SFO oracle, i.e., (2.15) and (2.16), that

Eξ[ytit ] = ∇fit(xtit) and Eξ[‖ytit −∇fit(x
t
it

)‖2∗] ≤ σ2

Bt
, ∀it, t = 1, . . . , k, (4.21)

and hence ytit is an unbiased estimator of ∇fit(xtit). Moreover, for yt generated by Algorithm 2, we can see
that

yti =

{
0, if the i-th block has never been updated for the first t iterations;
1
Bl

∑Bl
j=1Gi(x

l
i, ξ

l
i,j), if the latest update happened at l-th iteration, for 1 ≤ l ≤ t.

(4.22)

We first establish some general convergence properties for Algorithm 2.

Proposition 4.4. Let xt and xk be defined as in (2.2) and (2.5), respectively, and x∗ be an optimal
solution of (1.5). Suppose that σ0 and σ are defined in (2.8) and (2.16), respectively, and {ηt}, {τt}, and
{αt} in Algorithm 2 satisfy (4.5), (4.9) (4.10), and (4.12) for some θt ≥ 0, t = 1, . . . , k. Moreover, if

3αtLi ≤ mτt−1ηt, i = 1, . . . ,m; t ≥ 2, (4.23)

then for any k ≥ 1, we have

E[Q(xk, x∗)] ≤ (
∑k
t=1θt)

−1∆̃0,σ0,σ,

E[P (xk, x∗)] ≤ 2∆̃0,σ0,σ

θk(µ+ηk) , (4.24)

where

∆̃0,σ0,σ := ∆̃0,σ0
+
∑k
t=2

3θt−1αtσ
2

2mηtBt−1
+
∑k
t=1

2θtαt+1

m2ηt+1

∑t−1
l=1(m−1

m )t−1−l σ2

Bl
, (4.25)

with ∆̃0,σ0
defined in (4.14).

Proof. Observe that in Algorithm 2 yt is updated as in (2.17). Therefore, according to (4.2), we have

ŷti = 1
Bt

∑Bt
j=1Gi(x̂

t
i, ξ

t
i,j), i = 1, . . . ,m, t ≥ 1,

which together with the first relation in (4.21) imply that Eξ[〈ŷti , x− x̂
t
i〉] = Eξ[〈∇fi(x̂ti), x− x̂

t
i〉]. Hence, we

can rewrite (4.16) as

Eξ[ 1+τt
m

∑m
i=1fi(x̂

t
i) + µw(xt)− ψ(x)] ≤ Eξ

[
1+τt
m

∑m
i=1fi(x̂

t
i) + µw(xt)− µw(x)− 1

m

∑m
i=1[fi(x̂

t
i) + 〈∇fi(x̂ti), x− x̂

t
i〉]
]

= Eξ
[

1+τt
m

∑m
i=1fi(x̂

t
i) + µw(xt)− µw(x)− 1

m

∑m
i=1[fi(x̂

t
i) + 〈ŷti , x− x̂

t
i〉]
]

≤ Eξ
[
− τt

2m

∑m
i=1

1
Li
‖∇fi(x̂ti)−∇fi(xt−1

i )‖2∗ + τt
m

∑m
i=1fi(x

t−1
i )

+ 〈xt − x, 1
m

∑m
i=1[ŷti − y

t−1
i − αt(yt−1

i − yt−2
i )]〉

+ ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt)
]
,
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Following the same procedure as in the proof of Proposition 4.3, we obtain the following similar relation (cf.
(4.18))

θk(1 + τk)
∑m
i=1E[fi(x

k
i )] +

∑k
t=1θtE[µw(xt)− ψ(x)] + θk(µ+ηk)

2 E[P (xk, x)]

≤ θ1(m(1 + τ1)− 1)f(x0) + θ1η1P (x0, x)

+
∑k
t=2E

[
− θtαtm 〈x

t − xt−1, yt−1
it−1
− yt−2

it−1
〉 − θtηtP (xt−1, xt)− θt−1τt−1

2Lit−1
‖∇fit−1

(xt−1
it−1

)−∇fit−1
(xt−2
it−1

)‖2∗
]

+ θkE
[
〈xk − x, ykik − y

k−1
ik
〉 − (µ+ηk)

2 P (xk, x)− τk
2Lik
‖∇fik(xkik)−∇fik(xk−1

ik
)‖2∗
]
.

By the strong convexity of P (·, ·) in (1.11), the fact that b〈u, v〉 − a‖v‖2/2 ≤ b2‖u‖2/(2a),∀a > 0, and the
Cauchy-Schwartz inequality, we have, for t = 2, . . . , k,

E[− θtαtm 〈x
t − xt−1, yt−1

it−1
− yt−2

it−1
〉 − θtηtP (xt−1, xt)− θt−1τt−1

2Lit−1
‖∇fit−1(xt−1

it−1
)−∇fit−1(xt−2

it−1
)‖2∗]

(1.11)

≤ E[− θtαtm 〈x
t − xt−1, yt−1

it−1
−∇fit−1(xt−1

it−1
) +∇fit−1(xt−1

it−1
)−∇fit−1(xt−2

it−1
) +∇fit−1(xt−2

it−1
)− yt−2

it−1
〉]

− E
[
θtηt

2 ‖x
t−1 − xt‖2 + θt−1τt−1

2Lit−1
‖∇fit−1

(xt−1
it−1

)−∇fit−1
(xt−2
it−1

)‖2∗
]

≤ E
[(

3θt−1αt
2mηt

− θt−1τt−1

2Lit−1

)
‖∇fit−1(xt−1

it−1
)−∇fit−1(xt−2

it−1
)‖2∗
]

+ 3θt−1αt
2mηt

E
[
‖yt−1
it−1
−∇fit−1

(xt−1
it−1

)‖2∗ + ‖∇fit−1
(xt−2
it−1

)− yt−2
it−1
‖2∗
]

(4.23)

≤ 3θt−1αt
2mηt

E
[
‖yt−1
it−1
−∇fit−1(xt−1

it−1
)‖2∗ + ‖∇fit−1(xt−2

it−1
)− yt−2

it−1
‖2∗
]
.

Similarly, we can also obtain

E
[
〈xk − x, ykik − y

k−1
ik
〉 − (µ+ηk)

2 P (xk, x)− τk
2Lik
‖fik(xkik)−∇fik(xk−1

ik
)‖2∗
]

(4.21),(1.11)

≤ E
[
〈xk − x,∇fik(xkik)−∇fik(xk−1

ik
) +∇fik(xk−1

ik
)− yk−1

ik
〉
]

− E
[

(µ+ηk)
4 ‖xk − x‖2 + τk

2Lik
‖fik(xkik)−∇fik(xk−1

ik
)‖2∗
]

≤ E
[(

2
µ+ηk

− τk
2Lik

)
‖∇fik(xkik)−∇fik(xk−1

ik
)‖2∗ + 2

µ+ηk
‖∇fik(xk−1

ik
)− yk−1

ik
‖2∗
]

(4.12)

≤ E
[

2
µ+ηk

‖∇fik(xk−1
ik

)− yk−1
ik
‖2∗
]
.

Combining the above three relations, and using the fact that mηk+1 ≤ αk+1(µ+ ηk) (induced from (4.9) and
(4.10)), we have

θk(1 + τk)
∑m
i=1E[fi(x

k
i )] +

∑k
t=1θtE[µw(xt)− ψ(x)] + θk(µ+ηk)

2 E[P (xk, x)]

≤ θ1(m(1 + τ1)− 1)f(x0) + θ1η1P (x0, x)

+
∑k
t=2

3θt−1αt
2mηt

E[‖yt−1
it−1
−∇fit−1(xt−1

it−1
)‖2∗] +

∑k
t=1

2θtαt+1

mηt+1
E[‖∇fit(xt−1

it
)− yt−1

it
‖2∗].

Moreover, in view of the second relation in (4.21), we have

E[‖yt−1
it−1
−∇fit−1

(xt−1
it−1

)‖2∗] ≤ σ2

Bt−1
, ∀t ≥ 2.

Let us denote Eit,t := max{l : il = it, l < t} with Eit,t = 0 denoting the event that the it-th block has never
been updated until iteration t, we can also conclude that for any t ≥ 1

E[‖∇fit(xt−1
it

)− yt−1
it
‖2∗] =

∑t−1
l=0E

[
‖∇fil(xlil)− y

l
il
‖2∗|{Eit,t = l}

]
Prob{Eit,t = l}

≤ (m−1
m )t−1σ2

0 +
∑t−1
l=1

1
m (m−1

m )t−1−l σ2

Bl
,
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where the first term in the inequality corresponds to the case when the it-block has never been updated for
the first t − 1 iterations, and the second term represents that its latest update for the first t − 1 iterations
happened at the l-th iteration. Hence, using Lemma 4.2 and following the same argument as in the proof of
Proposition 4.3, we obtain our results in (4.24).

We are now ready to prove Theorem 2.2, which establishes an optimal complexity bound (up to a log-
arithmic factor) on the number of calls to the SFO oracle and a linear rate of convergence in terms of the
communication complexity for solving problem (1.5).

Proof of Theorem 2.2 Let us set θt = α−t, t = 1, . . . , k. It is easy to check that the parameter setting
in (2.9) with α defined in (2.10) satisfies conditions (4.5), (4.9), (4.10), (4.12), and (4.23) as required by
Proposition 4.4. By (2.9), the definition of Bt in (2.18), and the fact that α ≥ 2m−1

2m > (m− 1)/m, we have∑k
t=2

3θt−1αtσ
2

2mηtBt−1
≤
∑k
t=2

3σ2

2µ(1−α)k ≤
3σ2

2µ(1−α) ,∑k
t=1

2θtαt+1

m2ηt+1

∑t−1
l=1(m−1

m )t−1−l σ2

Bl
≤ 2σ2

αµm(1−α)k

∑k
t=1(m−1

mα )t−1
∑t−1
l=1( mα

m−1 )l

≤ 2σ2

µ(1−α)mαk

∑k
t=1(m−1

mα )t−1( mα
m−1 )t−1 1

1−(m−1)/(mα)

≤ 2σ2

µ(1−α)
1

mα−(m−1) ≤
4σ2

µ(1−α) .

Hence, similar to the proof of Theorem 2.1, using the above relations and (2.9) in (4.24), we obtain

E[Q(xk, x∗)] ≤ αk

1−αk

[
∆0,σ0 + 5σ2

µ

]
,

E[P (xk, x∗)] ≤ 2αk
[
∆0,σ0 + 5σ2

µ2

]
,

where ∆0,σ0 is defined in (2.13). The second relation implies our results in (2.19). Moreover, (2.20) follows
from the same argument as we used in proving Theorem 2.1.

5. Concluding remarks. In this paper, we propose a new randomized incremental gradient method, re-
ferred to as random gradient extrapolation method, for solving the classes of deterministic finite-sum optimiza-
tion problems in (1.1) and stochastic finite-sum optimization problems in (1.5), respectively. We demonstrate
that without any exact gradient evaluation even at the initial point, this algorithm achieves optimal linear
rate of convergence for deterministic strongly convex problems, as well as exhibiting optimal sublinear rate of
convergence (up to a logarithmic factor) for stochastic strongly convex problems. All these complexity bounds
have been established in terms of the total number of gradient computations of component function fi and
the latter complexity bound on the computation of stochastic gradients is in fact asymptotically independent
of the number of components m. Moreover, we consider solving finite-sum problems in (1.1) and (1.5) in a
distributed network setting with m agents connected to a central server. Since each iteration of our proposed
algorithm only involves constant number of communication rounds between the server and one randomly
selected agent, it achieves linear communication complexity and avoids synchronous delays among agents.
It is worth pointing out that by exploiting the mini-batch technique, the algorithm can also achieve linear
communication complexity for solving stochastic finite-sum problems, which is the best-known communication
complexity for distributed stochastic optimization problems in the literature.
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